
PICmicro MID-RANGE MCU FAMILY

DS31004A-page 4-2  1997 Microchip Technology Inc.

4.1 Introduction

The high performance of the PICmicro™ devices can be attributed to a number of architectural
features commonly found in RISC microprocessors. These include:

• Harvard architecture
• Long Word Instructions
• Single Word Instructions
• Single Cycle Instructions
• Instruction Pipelining
• Reduced Instruction Set
• Register File Architecture
• Orthogonal (Symmetric) Instructions

Figure 4-2 shows a simple core memory bus arrangement for Mid-Range MCU devices.

Harvard Architecture:

Harvard architecture has the program memory and data memory as separate memories and are
accessed from separate buses. This improves bandwidth over traditional von Neumann architec-
ture in which program and data are fetched from the same memory using the same bus. To exe-
cute an instruction, a von Neumann machine must make one or more (generally more) accesses
across the 8-bit bus to fetch the instruction. Then data may need to be fetched, operated on, and
possibly written. As can be seen from this description, that bus can be extremely conjested. While
with a Harvard architecture, the instruction is fetched in a single instruction cycle (all 14-bits).
While the program memory is being accessed, the data memory is on an independent bus and
can be read and written. These separated buses allow one instruction to execute while the next
instruction is fetched. A comparison of Harvard vs. von-Neumann architectures is shown in
Figure 4-1.

Figure 4-1: Harvard vs. von Neumann Block Architectures

Long Word Instructions:

Long word instructions have a wider (more bits) instruction bus than the 8-bit Data Memory Bus.
This is possible because the two buses are separate. This further allows instructions to be sized
differently than the 8-bit wide data word which allows a more efficient use of the program mem-
ory, since the program memory width is optimized to the architectural requirements.

Single Word Instructions:

Single Word instruction opcodes are 14-bits wide making it possible to have all single word
instructions. A 14-bit wide program memory access bus fetches a 14-bit instruction in a single
cycle. With single word instructions, the number of words of program memory locations equals
the number of instructions for the device. This means that all locations are valid instructions.

Typically in the von Neumann architecture, most instructions are multi-byte. In general, a device
with 4-KBytes of program memory would allow approximately 2K of instructions. This 2:1 ratio is
generalized and dependent on the application code. Since each instruction may take multiple
bytes, there is no assurance that each location is a valid instruction.

Program
Memory

Data
Memory

Program

Memory

and
DataCPU CPU

88 14

Harvard von-Neumann

 1997 Microchip Technology Inc. DS31004A-page 4-3

Section 4. Architecture
A

rch
itectu

re

4

Instruction Pipeline:

The instruction pipeline is a two-stage pipeline which overlaps the fetch and execution of instruc-
tions. The fetch of the instruction takes one TCY, while the execution takes another TCY. However,
due to the overlap of the fetch of current instruction and execution of previous instruction, an
instruction is fetched and another instruction is executed every single TCY.

Single Cycle Instructions:

With the Program Memory bus being 14-bits wide, the entire instruction is fetched in a single
machine cycle (TCY). The instruction contains all the information required and is executed in a
single cycle. There may be a one cycle delay in execution if the result of the instruction modified
the contents of the Program Counter. This requires the pipeline to be flushed and a new instruc-
tion to be fetched.

Reduced Instruction Set:

When an instruction set is well designed and highly orthogonal (symmetric), fewer instructions
are required to perform all needed tasks. With fewer instructions, the whole set can be more rap-
idly learned.

Register File Architecture:

The register files/data memory can be directly or indirectly addressed. All special function regis-
ters, including the program counter, are mapped in the data memory.

Orthogonal (Symmetric) Instructions:

Orthogonal instructions make it possible to carry out any operation on any register using any
addressing mode. This symmetrical nature and lack of “special instructions” make programming
simple yet efficient. In addition, the learning curve is reduced significantly. The mid-range instruc-
tion set uses only two non-register oriented instructions, which are used for two of the cores fea-
tures. One is the SLEEP instruction which places the device into the lowest power use mode. The
other is the CLRWDT instruction which verifies the chip is operating properly by preventing the
on-chip Watchdog Timer (WDT) from overflowing and resetting the device.

PICmicro MID-RANGE MCU FAMILY

DS31004A-page 4-4  1997 Microchip Technology Inc.

Figure 4-2: General Mid-range PICmicro Block Diagram

EPROM

Program
Memory

8K x 14

13 Data Bus 8

14Program
Bus

Instruction reg

Program Counter

8 Level Stack
(13-bit)

RAM
File

Registers

368 x 8

Direct Addr 7

RAM Addr (1) 9

Addr MUX

Indirect
Addr

FSR reg

STATUS reg

MUX

ALU

W reg

Power-up
Timer

Oscillator
Start-up Timer

Power-on
Reset

Watchdog
Timer

Instruction
Decode &

Control

Timing
Generation

OSC1/CLKIN
OSC2/CLKOUT

MCLR VDD, VSS

PORTA

PORTB

PORTC

PORTD

PORTE

RA4
RA5

RC0
RC1
RC2
RC3
RC4
RC5
RC6
RC7

8

8

Brown-out
Reset (2)

Note 1: The high order bits of the Direct Address for the RAM are from the STATUS register.
2: Not all devices have this feature, please refer to device data sheet.
3: Many of the general purpose I/O pins are multiplexed with one or more peripheral module functions.

The multiplexing combinations are device dependent.

USARTsCCPs Comparators
Synchronous

A/DTimer0 Timer1 Timer2

Serial Port

RA3
RA2
RA1
RA0

8

3

up to

up to

RB0/INT
RB1
RB2
RB3
RB4
RB5
RB6
RB7

RD0
RD1
RD2
RD3
RD4
RD5
RD6
RD7

Data EEPROM
up to

256 x 8

Other LCD Drivers

Voltage
Reference

Modules

Peripheral Modules (Note 3)

PORTF
RF0
RF1
RF2
RF3
RF4
RF5
RF6
RF7

PORTG
RG0
RG1
RG2
RG3
RG4
RG5
RG6
RG7

Parallel
Slave Port

General Purpose I/O

RE0
RE1
RE2
RE3
RE4
RE5
RE6
RE7

Internal
RC clock (2)

(Note 3)

 1997 Microchip Technology Inc. DS31004A-page 4-5

Section 4. Architecture
A

rch
itectu

re

4

4.2 Clocking Scheme/Instruction Cycle

The clock input (from OSC1) is internally divided by four to generate four non-overlapping
quadrature clocks, namely Q1, Q2, Q3, and Q4. Internally, the program counter (PC) is incre-
mented every Q1, and the instruction is fetched from the program memory and latched into the
instruction register in Q4. The instruction is decoded and executed during the following Q1
through Q4. The clocks and instruction execution flow are illustrated in Figure 4-3, and
Example 4-1.

Figure 4-3: Clock/Instruction Cycle

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

OSC1

Q1

Q2

Q3

Q4

PC

OSC2/CLKOUT
(RC mode)

PC PC+1 PC+2

Fetch INST (PC)
Execute INST (PC-1) Fetch INST (PC+1)

Execute INST (PC) Fetch INST (PC+2)
Execute INST (PC+1)

Internal
phase
clock

TCY1 TCY2 TCY3

PICmicro MID-RANGE MCU FAMILY

DS31004A-page 4-6  1997 Microchip Technology Inc.

4.3 Instruction Flow/Pipelining

An “Instruction Cycle” consists of four Q cycles (Q1, Q2, Q3, and Q4). Fetch takes one instruction
cycle while decode and execute takes another instruction cycle. However, due to Pipelining, each
instruction effectively executes in one cycle. If an instruction causes the program counter to
change (e.g. GOTO) then an extra cycle is required to complete the instruction (Example 4-1).

The instruction fetch begins with the program counter incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the “Instruction Register (IR)” in
cycle Q1. This instruction is then decoded and executed during the Q2, Q3, and Q4 cycles. Data
memory is read during Q2 (operand read) and written during Q4 (destination write).

Example 4-1 shows the operation of the two stage pipeline for the instruction sequence shown.
At time TCY0, the first instruction is fetched from program memory. During TCY1, the first instruc-
tion executes while the second instruction is fetched. During TCY2, the second instruction exe-
cutes while the third instruction is fetched. During TCY3, the fourth instruction is fetched while the
third instruction (CALL SUB_1) is executed. When the third instruction completes execution, the
CPU forces the address of instruction four onto the Stack and then changes the Program Counter
(PC) to the address of SUB_1. This means that the instruction that was fetched during TCY3 needs
to be “flushed” from the pipeline. During TCY4, instruction four is flushed (executed as a NOP) and
the instruction at address SUB_1 is fetched. Finally during TCY5, instruction five is executed and
the instruction at address SUB_1 + 1 is fetched.

Example 4-1: Instruction Pipeline Flow

All instructions are single cycle, except for any program branches. These take two cycles since the fetch
instruction is “flushed” from the pipeline while the new instruction is being fetched and then executed.

TCY0 TCY1 TCY2 TCY3 TCY4 TCY5

1. MOVLW 55h Fetch 1 Execute 1

2. MOVWF PORTB Fetch 2 Execute 2

3. CALL SUB_1 Fetch 3 Execute 3

4. BSF PORTA, BIT3 (Forced NOP) Fetch 4 Flush

5. Instruction @ address SUB_1 Fetch SUB_1 Execute SUB_1

Fetch SUB_1 + 1

 1997 Microchip Technology Inc. DS31005A-page 5-3

Section 5. CPU and ALU
C

P
U

 an
d

 A
L

U

5

Table 5-1: Mid-Range MCU Instruction Set

Mnemonic,
Operands

Description Cycles
14-Bit Instruction Word Status

Bits
Affected

Notes
MSb LSb

BYTE-ORIENTED FILE REGISTER OPERATIONS
ADDWF
ANDWF
CLRF
CLRW
COMF
DECF
DECFSZ
INCF
INCFSZ
IORWF
MOVF
MOVWF
NOP
RLF
RRF
SUBWF
SWAPF
XORWF

f, d
f, d
f
-
f, d
f, d
f, d
f, d
f, d
f, d
f, d
f
-
f, d
f, d
f, d
f, d
f, d

Add W and f
AND W with f
Clear f
Clear W
Complement f
Decrement f
Decrement f, Skip if 0
Increment f
Increment f, Skip if 0
Inclusive OR W with f
Move f
Move W to f
No Operation
Rotate Left f through Carry
Rotate Right f through Carry
Subtract W from f
Swap nibbles in f
Exclusive OR W with f

1
1
1
1
1
1
1(2)
1
1(2)
1
1
1
1
1
1
1
1
1

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

0111
0101
0001
0001
1001
0011
1011
1010
1111
0100
1000
0000
0000
1101
1100
0010
1110
0110

dfff
dfff
lfff
0xxx
dfff
dfff
dfff
dfff
dfff
dfff
dfff
lfff
0xx0
dfff
dfff
dfff
dfff
dfff

ffff
ffff
ffff
xxxx
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
0000
ffff
ffff
ffff
ffff
ffff

C,DC,Z
Z
Z
Z
Z
Z

Z

Z
Z

C
C
C,DC,Z

Z

1,2
1,2
2

1,2
1,2
1,2,3
1,2
1,2,3
1,2
1,2

1,2
1,2
1,2
1,2
1,2

BIT-ORIENTED FILE REGISTER OPERATIONS
BCF
BSF
BTFSC
BTFSS

f, b
f, b
f, b
f, b

Bit Clear f
Bit Set f
Bit Test f, Skip if Clear
Bit Test f, Skip if Set

1
1
1 (2)
1 (2)

01
01
01
01

00bb
01bb
10bb
11bb

bfff
bfff
bfff-
bfff

ffff
ffff
ffff
ffff

1,2
1,2
3
3

LITERAL AND CONTROL OPERATIONS
ADDLW
ANDLW
CALL
CLRWDT
GOTO
IORLW
MOVLW
RETFIE
RETLW
RETURN
SLEEP
SUBLW
XORLW

k
k
k
-
k
k
k
-
k
-
-
k
k

Add literal and W
AND literal with W
Call subroutine
Clear Watchdog Timer
Go to address
Inclusive OR literal with W
Move literal to W
Return from interrupt
Return with literal in W
Return from Subroutine
Go into standby mode
Subtract W from literal
Exclusive OR literal with W

1
1
2
1
2
1
1
2
2
2
1
1
1

11
11
10
00
10
11
11
00
11
00
00
11
11

111x
1001
0kkk
0000
1kkk
1000
00xx
0000
01xx
0000
0000
110x
1010

kkkk
kkkk
kkkk
0110
kkkk
kkkk
kkkk
0000
kkkk
0000
0110
kkkk
kkkk

kkkk
kkkk
kkkk
0100
kkkk
kkkk
kkkk
1001
kkkk
1000
0011
kkkk
kkkk

C,DC,Z
Z

TO,PD

Z

TO,PD
C,DC,Z
Z

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that
value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is
driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be
cleared if assigned to the Timer0 Module.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The
second cycle is executed as a NOP.

PICmicro MID-RANGE MCU FAMILY

DS31005A-page 5-4  1997 Microchip Technology Inc.

5.2 General Instruction Format

The Mid-Range MCU instructions can be broken down into four general formats as shown in
Figure 5-1. As can be seen the opcode for the instruction varies from 3-bits to 6-bits. This variable
opcode size is what allows 35 instructions to be implemented.

Figure 5-1: General Format for Instructions

5.3 Central Processing Unit (CPU)

The CPU can be thought of as the “brains” of the device. It is responsible for fetching the correct
instruction for execution, decoding that instruction, and then executing that instruction.

The CPU sometimes works in conjunction with the ALU to complete the execution of the instruc-
tion (in arithmetic and logical operations).

The CPU controls the program memory address bus, the data memory address bus, and
accesses to the stack.

5.4 Instruction Clock

Each instruction cycle (TCY) is comprised of four Q cycles (Q1-Q4). The Q cycle time is the same
as the device oscillator cycle time (TOSC). The Q cycles provide the timing/designation for the
Decode, Read, Process Data, Write, etc., of each instruction cycle. The following diagram shows
the relationship of the Q cycles to the instruction cycle.

The four Q cycles that make up an instruction cycle (TCY) can be generalized as:

Q1: Instruction Decode Cycle or forced No operation

Q2: Instruction Read Data Cycle or No operation

Q3: Process the Data

Q4: Instruction Write Data Cycle or No operation

Each instruction will show a detailed Q cycle operation for the instruction.

Figure 5-2: Q Cycle Activity

Byte-oriented file register operations
13 8 7 6 0

d = 0 for destination WOPCODE d f (FILE #)
d = 1 for destination f
f = 7-bit file register address

Bit-oriented file register operations
13 10 9 7 6 0

OPCODE b (BIT #) f (FILE #) b = 3-bit bit address
f = 7-bit file register address

Literal and control operations

13 8 7 0

OPCODE k (literal) k = 8-bit immediate value

13 11 10 0

OPCODE k (literal) k = 11-bit immediate value

General

CALL and GOTO instructions only

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

TCY1 TCY2 TCY3

Tosc

 1997 Microchip Technology Inc. DS31005A-page 5-5

Section 5. CPU and ALU
C

P
U

 an
d

 A
L

U

5

5.5 Arithmetic Logical Unit (ALU)

PICmicro MCUs contain an 8-bit ALU and an 8-bit working register. The ALU is a general pur-
pose arithmetic and logical unit. It performs arithmetic and Boolean functions between the data
in the working register and any register file.

Figure 5-3: Operation of the ALU and W Register

The ALU is 8-bits wide and is capable of addition, subtraction, shift and logical operations. Unless
otherwise mentioned, arithmetic operations are two's complement in nature. In two-operand
instructions, typically one operand is the working register (W register). The other operand is a file
register or an immediate constant. In single operand instructions, the operand is either the W reg-
ister or a file register.

The W register is an 8-bit working register used for ALU operations. It is not an addressable reg-
ister.

Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit
Carry (DC), and Zero (Z) bits in the STATUS register. The C and DC bits operate as a borrow bit
and a digit borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for
examples.

W Register

Register
File

8

d bit, or from instruction

8

8

8-bit literal
(from instruction word)

d = '0' or d = '1'

(SFR’s)
and

General
Purpose

RAM
(GPR)ALU

Literal Instructions

8

8

Special
Function
Registers

8-bit register value
(from direct or indirect
 address of instruction)

PICmicro MID-RANGE MCU FAMILY

DS31005A-page 5-6  1997 Microchip Technology Inc.

5.6 STATUS Register

The STATUS register, shown in Figure 5-1, contains the arithmetic status of the ALU, the RESET
status and the bank select bits for data memory. Since the selection of the Data Memory banks
is controlled by this register, it is required to be present in every bank. Also, this register is in the
same relative position (offset) in each bank (see Figure 6-5: “Register File Map” in the “Mem-
ory Organization” section).

The STATUS register can be the destination for any instruction, as with any other register. If the
STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write
to these three bits is disabled. These bits are set or cleared according to the device logic. Fur-
thermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the
STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper-three bits and set the Z bit. This leaves the
STATUS register as 000u u1uu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to
alter the STATUS register because these instructions do not affect the Z, C or DC bits from the
STATUS register. For other instructions, not affecting any status bits, see Table 5-1.

Note 1: Some devices do not require the IRP and RP1 (STATUS<7:6>) bits. These bits are
not used by the Section 5. CPU and ALU and should be maintained clear. Use of
these bits as general purpose R/W bits is NOT recommended, since this may affect
upward code compatibility with future products.

Note 2: The C and DC bits operate as a borrow and digit borrow bit, respectively, in subtrac-
tion.

 1997 Microchip Technology Inc. DS31005A-page 5-7

Section 5. CPU and ALU
C

P
U

 an
d

 A
L

U

5

Register 5-1: STATUS Register

R/W-0 R/W-0 R/W-0 R-1 R-1 R/W-x R/W-x R/W-x
IRP RP1 RP0 TO PD Z DC C

bit 7 bit 0

bit 7 IRP: Register Bank Select bit (used for indirect addressing)
1 = Bank 2, 3 (100h - 1FFh)
0 = Bank 0, 1 (00h - FFh)

For devices with only Bank0 and Bank1 the IRP bit is reserved, always maintain this bit clear.

bit 6:5 RP1:RP0: Register Bank Select bits (used for direct addressing)
11 = Bank 3 (180h - 1FFh)
10 = Bank 2 (100h - 17Fh)
01 = Bank 1 (80h - FFh)
00 = Bank 0 (00h - 7Fh)

Each bank is 128 bytes. For devices with only Bank0 and Bank1 the IRP bit is reserved,
always maintain this bit clear.

bit 4 TO: Time-out bit
1 = After power-up, CLRWDT instruction, or SLEEP instruction
0 = A WDT time-out occurred

bit 3 PD: Power-down bit
1 = After power-up or by the CLRWDT instruction
0 = By execution of the SLEEP instruction

bit2 Z: Zero bit
1 = The result of an arithmetic or logic operation is zero
0 = The result of an arithmetic or logic operation is not zero

bit 1 DC: Digit carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) (for borrow the polarity
is reversed)
1 = A carry-out from the 4th low order bit of the result occurred
0 = No carry-out from the 4th low order bit of the result

bit 0 C: Carry/borrow bit (ADDWF, ADDLW,SUBLW,SUBWF instructions)
1 = A carry-out from the most significant bit of the result occurred
0 = No carry-out from the most significant bit of the result occurred

Note: For borrow the polarity is reversed. A subtraction is executed by adding the two’s
complement of the second operand. For rotate (RRF, RLF) instructions, this bit is
loaded with either the high or low order bit of the source register.

Legend

R = Readable bit W = Writable bit

U = Unimplemented bit, read as ‘0’ - n = Value at POR reset

PICmicro MID-RANGE MCU FAMILY

DS31005A-page 5-8  1997 Microchip Technology Inc.

5.7 OPTION_REG Register

The OPTION_REG register is a readable and writable register which contains various control bits
to configure the TMR0/WDT prescaler, the external INT Interrupt, TMR0, and the weak pull-ups
on PORTB.

Register 5-2: OPTION_REG Register

R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
RBPU INTEDG T0CS T0SE PSA PS2 PS1 PS0

bit 7 bit 0

bit 7 RBPU: PORTB Pull-up Enable bit
1 = PORTB pull-ups are disabled
0 = PORTB pull-ups are enabled by individual port latch values

bit 6 INTEDG: Interrupt Edge Select bit
1 = Interrupt on rising edge of INT pin
0 = Interrupt on falling edge of INT pin

bit 5 T0CS: TMR0 Clock Source Select bit
1 = Transition on T0CKI pin
0 = Internal instruction cycle clock (CLKOUT)

bit 4 T0SE: TMR0 Source Edge Select bit
1 = Increment on high-to-low transition on T0CKI pin
0 = Increment on low-to-high transition on T0CKI pin

bit 3 PSA: Prescaler Assignment bit
1 = Prescaler is assigned to the WDT
0 = Prescaler is assigned to the Timer0 module

bit 2-0 PS2:PS0: Prescaler Rate Select bits

Legend

R = Readable bit W = Writable bit

U = Unimplemented bit, read as ‘0’ - n = Value at POR reset

000
001
010
011
100
101
110
111

1 : 2
1 : 4
1 : 8
1 : 16
1 : 32
1 : 64
1 : 128
1 : 256

1 : 1
1 : 2
1 : 4
1 : 8
1 : 16
1 : 32
1 : 64
1 : 128

Bit Value TMR0 Rate WDT Rate

Note: To achieve a 1:1 prescaler assignment for the TMR0 register, assign the prescaler
to the Watchdog Timer.

 1997 Microchip Technology Inc. DS31005A-page 5-9

Section 5. CPU and ALU
C

P
U

 an
d

 A
L

U

5

5.8 PCON Register
The Power Control (PCON) register contains flag bit(s), that together with the TO and PD bits,
allows the user to differentiate between the device resets.

Register 5-3: PCON Register

Note 1: BOR is unknown on Power-on Reset. It must then be set by the user and checked
on subsequent resets to see if BOR is clear, indicating a brown-out has occurred.
The BOR status bit is a don't care and is not necessarily predictable if the brown-out
circuit is disabled (by clearing the BODEN bit in the Configuration word).

Note 2: It is recommended that the POR bit be cleared after a power-on reset has been
detected, so that subsequent power-on resets may be detected.

R-u U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0
MPEEN — — — — PER POR BOR

bit 7 bit 0

bit 7 MPEEN: Memory Parity Error Circuitry Status bit
This bit reflects the value of the MPEEN configuration bit.

bit 6:3 Unimplemented: Read as '0'

bit 2 PER: Memory Parity Error Reset Status bit
1 = No error occurred
0 = A program memory fetch parity error occurred
 (must be set in software after a Power-on Reset occurs)

bit 1 POR: Power-on Reset Status bit
1 = No Power-on Reset occurred
0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)

bit 0 BOR: Brown-out Reset Status bit
1 = No Brown-out Reset occurred
0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)

Legend

R = Readable bit W = Writable bit

U = Unimplemented bit, read as ‘0’ - n = Value at POR reset

 1997 Microchip Technology Inc. DS31006A-page 6-3

Section 6. Memory Organization
M

em
o

ry
O

rg
an

izatio
n

6
Figure 6-1: Architectural Program Memory Map and Stack

PC<12:8>

13

0000h

0004h
0005h

07FFh
0800h

1FFFh

Stack Level 1

Stack Level 8

Reset Vector

Interrupt Vector

On-chip Program

On-chip Program
Memory (Page 1)

Memory (Page 0)

CALL, RETURN
RETFIE, RETLW

On-chip Program
Memory (Page 2)

On-chip Program
Memory (Page 3)

0FFFh
1000h

17FFh
1800h

2K

4K

6K

8K

PC<12:0> PCL

PCLATH

Note 1: Not all devices implement the entire program memory space
2: Calibration Data may be programmed into program memory locations.

PICmicro MID-RANGE MCU FAMILY

DS31006A-page 6-4  1997 Microchip Technology Inc.

6.2.1 Reset Vector

On any device, a reset forces the Program Counter (PC) to address 0h. We call this address the
“Reset Vector Address” since this is the address that program execution will branch to when a
device reset occurs.

Any reset will also clear the contents of the PCLATH register. This means that any branch at the
Reset Vector Address (0h) will jump to that location in PAGE0 of the program memory.

6.2.2 Interrupt Vector

When an interrupt is acknowledged the PC is forced to address 0004h. We call this the “Interrupt
Vector Address”. When the PC is forced to the interrupt vector, the PCLATH register is not mod-
ified. Once in the service interrupt routine (ISR), this means that before any write to the PC, the
PCLATH register should be written with the value that will specify the desired location in program
memory. Before the PCLATH register is modified by the Interrupt Service Routine (ISR) the con-
tents of the PCLATH may need to be saved, so it can be restored before returning from the ISR.

6.2.3 Calibration Information

Some devices have calibration information stored in their program memory. This information is
programmed by Microchip when the device is under final test. The use of these values allows the
application to achieve better results. The calibration information is typically at the end of program
memory, and is implemented as a RETLW instruction with the literal value being the specified cal-
ibration information.

Note: For windowed devices, write down all calibration values BEFORE erasing. This
allows the device’s calibration values to be restored when the device is re-pro-
grammed. When possible writing the values on the package is recommended.

 1997 Microchip Technology Inc. DS31006A-page 6-5

Section 6. Memory Organization
M

em
o

ry
O

rg
an

izatio
n

6
6.2.4 Program Counter (PC)

The program counter (PC) specifies the address of the instruction to fetch for execution. The PC
is 13-bits wide. The low byte is called the PCL register. This register is readable and writable. The
high byte is called the PCH register. This register contains the PC<12:8> bits and is not directly
readable or writable. All updates to the PCH register go through the PCLATH register.

Figure 6-2 shows the four situations for the loading of the PC. Situation 1 shows how the PC is
loaded on a write to PCL (PCLATH<4:0> → PCH). Situation 2 shows how the PC is loaded during
a GOTO instruction (PCLATH<4:3> → PCH). Situation 3 shows how the PC is loaded during a
CALL instruction (PCLATH<4:3> → PCH), with the PC loaded (PUSHed) onto the Top of Stack.
Situation 4 shows how the PC is loaded during one of the return instructions where the PC
loaded (POPed) from the Top of Stack.

Figure 6-2: Loading of PC In Different Situations

PC

12 8 7 0

5
PCLATH<4:0>

PCLATH
ALU result

Opcode <10:0>

8

PC

12 11 10 0

11PCLATH<4:3>

PCH PCL

8 7

2

PCLATH

PCH PCL

Situation 1 - Instruction with PCL as destination

Situation 2 - GOTO Instruction

STACK (13-bits x 8)

Top of STACK

STACK (13-bits x 8)

Top of STACK

Opcode <10:0>

PC

12 11 10 0

11PCLATH<4:3>

8 7

2

PCLATH

PCH PCL

Situation 3 - CALL Instruction
STACK (13-bits x 8)

Top of STACK

Opcode <10:0>

PC

12 11 10 0

11

8 7

PCLATH

PCH PCL

Situation 4 - RETURN, RETFIE, or RETLW Instruction
STACK (13-bits x 8)

Top of STACK
13

13

Note: PCLATH is never updated with the contents of PCH.

PICmicro MID-RANGE MCU FAMILY

DS31006A-page 6-6  1997 Microchip Technology Inc.

6.2.4.1 Computed GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL).
When doing a table read using a computed GOTO method, care should be exercised if the table
location crosses a PCL memory boundary (each 256 byte block).

6.2.5 Stack

The stack allows a combination of up to 8 program calls and interrupts to occur. The stack con-
tains the return address from this branch in program execution.

Mid-Range MCU devices have an 8-level deep x 13-bit wide hardware stack. The stack space is
not part of either program or data space and the stack pointer is not readable or writable. The PC
is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch.
The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH
is not modified when the stack is PUSHed or POPed.

After the stack has been PUSHed eight times, the ninth push overwrites the value that was stored
from the first push. The tenth push overwrites the second push (and so on). An example of the
overwriting of the stack is shown in Figure 6-3.

Figure 6-3: Stack Modification

Note: Any write to the Program Counter (PCL), will cause the lower five bits of the PCLATH
to be loaded into PCH.

Push1 Push9
Push2 Push10
Push3
Push4

Push5
Push6
Push7
Push8

Top of STACK

STACK

Note 1: There are no status bits to indicate stack overflow or stack underflow conditions.

Note 2: There are no instructions/mnemonics called PUSH or POP. These are actions that
occur from the execution of the CALL, RETURN, RETLW, and RETFIE instructions,
or the vectoring to an interrupt address.

 1997 Microchip Technology Inc. DS31006A-page 6-7

Section 6. Memory Organization
M

em
o

ry
O

rg
an

izatio
n

6
6.2.6 Program Memory Paging

Some devices have program memory sizes greater then 2K words, but the CALL and GOTO
instructions only have a 11-bit address range. This 11-bit address range allows a branch within
a 2K program memory page size. To allow CALL and GOTO instructions to address the entire 1K
program memory address range, there must be another two bits to specify the program memory
page. These paging bits come from the PCLATH<4:3> bits (Figure 6-2). When doing a CALL or
GOTO instruction, the user must ensure that page bits (PCLATH<4:3>) are programmed so that
the desired program memory page is addressed (Figure 6-2). When one of the return instruc-
tions is executed, the entire 13-bit PC is POPed from the stack. Therefore, manipulation of the
PCLATH<4:3> is not required for the return instructions.

Example 6-1 shows the calling of a subroutine in page 1 of the program memory. This example
assumes that PCLATH is saved and restored by the interrupt service routine (if interrupts are
used).

Example 6-1: Call of a Subroutine in Page1 from Page0

Note: Devices with program memory sizes 2K words and less, ignore both paging bits
(PCLATH<4:3>), which are used to access program memory when more than one
page is available. The use of PCLATH<4:3> as general purpose read/write bits (for
these devices) is not recommended since this may affect upward compatibility with
future products.

Devices with program memory sizes between 2K words and 4K words, ignore the
paging bit (PCLATH<4>), which is used to access program memory pages 2 and 3
(1000h - 1FFFh). The use of PCLATH<4> as a general purpose read/write bit (for
these devices) is not recommended since this may affect upward compatibility with
future products.

 ORG 0x500
 BSF PCLATH,3 ; Select Page1 (800h-FFFh)
 CALL SUB1_P1 ; Call subroutine in Page1 (800h-FFFh)
 : ;
 : ;
 ORG 0x900 ;
SUB1_P1: ; called subroutine Page1 (800h-FFFh)
 : ;
 RETURN ; return to Call subroutine in Page0 (000h-7FFh)
 ;

PICmicro MID-RANGE MCU FAMILY

DS31006A-page 6-8  1997 Microchip Technology Inc.

6.3 Data Memory Organization

Data memory is made up of the Special Function Registers (SFR) area, and the General Pur-
pose Registers (GPR) area. The SFRs control the operation of the device, while GPRs are the
general area for data storage and scratch pad operations.

The data memory is banked for both the GPR and SFR areas. The GPR area is banked to allow
greater than 96 bytes of general purpose RAM to be addressed. SFRs are for the registers that
control the peripheral and core functions. Banking requires the use of control bits for bank selec-
tion. These control bits are located in the STATUS Register (STATUS<7:5>). Figure 6-5 shows
one of the data memory map organizations, this organization is device dependent.

To move values from one register to another register, the value must pass through the W register.
This means that for all register-to-register moves, two instruction cycles are required.

The entire data memory can be accessed either directly or indirectly. Direct addressing may
require the use of the RP1:RP0 bits. Indirect addressing requires the use of the File Select Reg-
ister (FSR). Indirect addressing uses the Indirect Register Pointer (IRP) bit of the STATUS regis-
ter for accesses into the Bank0 / Bank1 or the Bank2 / Bank3 areas of data memory.

6.3.1 General Purpose Registers (GPR)

Some Mid-Range MCU devices have banked memory in the GPR area. GPRs are not initialized
by a Power-on Reset and are unchanged on all other resets.

The register file can be accessed either directly, or using the File Select Register FSR, indirectly.
Some devices have areas that are shared across the data memory banks, so a read / write to
that area will appear as the same location (value) regardless of the current bank. We refer to this
area as the Common RAM.

6.3.2 Special Function Registers (SFR)

The SFRs are used by the CPU and Peripheral Modules for controlling the desired operation of
the device. These registers are implemented as static RAM.

The SFRs can be classified into two sets, those associated with the “core” function and those
related to the peripheral functions. Those registers related to the “core” are described in this sec-
tion, while those related to the operation of the peripheral features are described in the section
of that peripheral feature.

All Mid-Range MCU devices have banked memory in the SFR area. Switching between these
banks requires the RP0 and RP1 bits in the STATUS register to be configured for the desired
bank. Some SFRs are initialized by a Power-on Reset and other resets, while other SFRs are
unaffected.

The register file can be accessed either directly, or using the File Select Register FSR, indirectly.

Note: The Special Function Register (SFR) Area may have General Purpose Registers
(GPRs) mapped in these locations.

 1997 Microchip Technology Inc. DS31006A-page 6-9

Section 6. Memory Organization
M

em
o

ry
O

rg
an

izatio
n

6
6.3.3 Banking

The data memory is partitioned into four banks. Each bank contains General Purpose Registers
and Special Function Registers. Switching between these banks requires the RP0 and RP1 bits
in the STATUS register to be configured for the desired bank when using direct addressing. The
IRP bit in the STATUS register is used for indirect addressing.

Table 6-1: Direct and Indirect Addressing of Banks

Each Bank extends up to 7Fh (128 bytes). The lower locations of each bank are reserved for the
Special Function Registers. Above the Special Function Registers are General Purpose Regis-
ters. All data memory is implemented as static RAM. All Banks may contain special function reg-
isters. Some “high use” special function registers from Bank0 are mirrored in the other banks for
code reduction and quicker access.

Through the evolution of the products, there are a few variations in the layout of the Data Memory.
The data memory organization that will be the standard for all new devices is shown in
Figure 6-5. This Memory map has the last 16-bytes mapped across all memory banks. This is to
reduce the software overhead for context switching. The registers in bold will be in every device.
The other registers are peripheral dependent. Not every peripheral’s registers are shown,
because some file addresses have a different registers from those shown. As with all the figures,
tables, and specifications presented in this reference guide, verify the details with the device spe-
cific data sheet.

Figure 6-4: Direct Addressing

Accessed
Bank

Direct
(RP1:RP0)

Indirect
(IRP)

0 0 0
0

1 0 1

2 1 0
1

3 1 1

Data
Memory

Direct Addressing

bank select location select

RP1 RP0 6 0from opcode

00 01 10 11

7Fh

00h

7Fh

Bank0 Bank1 Bank2 Bank3

PICmicro MID-RANGE MCU FAMILY

DS31006A-page 6-10  1997 Microchip Technology Inc.

Figure 6-5: Register File Map

File
Address

File
Address

File
Address

File
Address

INDF 00h INDF 80h INDF 100h INDF 180h
TMR0 01h OPTION_REG 81h TMR0 101h OPTION_REG 181h
PCL 02h PCL 82h PCL 102h PCL 182h

STATUS 03h STATUS 83h STATUS 103h STATUS 183h
FSR 04h FSR 84h FSR 104h FSR 184h

PORTA 05h TRISA 85h 105h 185h
PORTB 06h TRISB 86h PORTB 106h TRISB 186h
PORTC 07h TRISC 87h PORTF 107h TRISF 187h
PORTD 08h TRISD 88h PORTG 108h TRISG 188h
PORTE 09h TRISE 89h 109h 189h
PCLATH 0Ah PCLATH 8Ah PCLATH 10Ah PCLATH 18Ah
INTCON 0Bh INTCON 8Bh INTCON 10Bh INTCON 18Bh

PIR1 0Ch PIE1 8Ch 10Ch 18Ch
PIR2 0Dh PIE2 8Dh 10Dh 18Dh

TMR1L 0Eh PCON 8Eh 10Eh 18Eh
TMR1H 0Fh OSCCAL 8Fh 10Fh 18Fh
T1CON 10h 90h 110h 190h
TMR2 11h 91h 111h 191h

T2CON 12h PR2 92h 112h 192h
SSPBUF 13h SSPADD 93h 113h 193h
SSPCON 14h SSPATAT 94h 114h 194h
CCPR1L 15h 95h 115h 195h
CCPR1H 16h 96h 116h 196h

CCP1CON 17h 97h 117h 197h
RCSTA 18h TXSTA 98h 118h 198h
TXREG 19h SPBRG 99h 119h 199h
RCREG 1Ah 9Ah 11Ah 19Ah
CCPR2L 1Bh 9Bh 11Bh 19Bh
CCPR2H 1Ch 9Ch 11Ch 19Ch

CCP2CON 1Dh 9Dh 11Dh 19Dh
ADRES 1Eh 9Eh 11Eh 19Eh

ADCON0 1Fh ADCON1 9Fh 11Fh 19Fh

General
Purpose

Registers (2)

20h
General
Purpose

Registers (3)

A0h

EFh

General
Purpose

Registers (3)

120h

16Fh

General
Purpose

Registers (3)

1A0h

1EFh

7Fh

Mapped in
Bank0

70h - 7Fh (4)

F0h

FFh

Mapped in
Bank0

70h - 7Fh (4)

170h

17Fh

Mapped in
Bank0

70h - 7Fh (4)

1F0h

1FFh
Bank0 Bank1 Bank2 (5) Bank3 (5)

Note 1: Registers in BOLD will be present in every device.
2: Not all locations may be implemented. Unimplemented locations will read as '0'.
3: These locations may not be implemented. Depending on the device, accesses to the unimplemented loca-

tions operate differently. Please refer to the specific device data sheet for details.
4: Some device do not map these registers into Bank0. In devices where these registers are mapped into

Bank0, these registers are referred to as common RAM
5: Some devices may not implement these banks. Locations in unimplemented banks will read as ’0’.
6: General Purpose Registers (GPRs) may be located in the Special Function Register (SFR) area.

 1997 Microchip Technology Inc. DS31006A-page 6-11

Section 6. Memory Organization
M

em
o

ry
O

rg
an

izatio
n

6
The map in Figure 6-6 shows the register file memory map of some 18-pin devices.
Unimplemented registers will read as '0'.

Figure 6-6: Register File Map

File
Address

File
Address

INDF 00h INDF 80h
TMR0 01h OPTION_REG 81h
PCL 02h PCL 82h

STATUS 03h STATUS 83h
FSR 04h FSR 84h

PORTA 05h TRISA 85h
PORTB 06h TRISB 86h

07h PCON 87h
ADCON0 /
EEDATA (2)

08h ADCON1 /
EECON1 (2)

88h

ADRES /
EEADR (2)

09h ADRES /
EECON2 (2)

89h

PCLATH 0Ah PCLATH 8Ah
INTCON 0Bh INTCON 8Bh

General
Purpose

Registers (3)

0Ch

7Fh

General
Purpose

Registers (4)

8Ch

FFh
Bank0 Bank1

Note 1: Registers in BOLD will be present in every device.
2: These registers may not be implemented, or are implemented as other registers in

some devices.
3: Not all locations may be implemented. Unimplemented locations will read as ’0’.
4: These locations are unimplemented in Bank1. Access to these unimplemented

locations will access the corresponding Bank0 register.

PICmicro MID-RANGE MCU FAMILY

DS31006A-page 6-12  1997 Microchip Technology Inc.

6.3.4 Indirect Addressing, INDF, and FSR Registers

Indirect addressing is a mode of addressing data memory where the data memory address in
the instruction is not fixed. An SFR register is used as a pointer to the data memory location that
is to be read or written. Since this pointer is in RAM, the contents can be modified by the pro-
gram. This can be useful for data tables in the data memory. Figure 6-7 shows the operation of
indirect addressing. This shows the moving of the value to the data memory address specified
by the value of the FSR register.

Indirect addressing is possible by using the INDF register. Any instruction using the INDF register
actually accesses the register pointed to by the File Select Register, FSR. Reading the INDF reg-
ister itself indirectly (FSR = '0') will read 00h. Writing to the INDF register indirectly results in a
no-operation (although status bits may be affected). An effective 9-bit address is generated by
the concatenation of the IRP bit (STATUS<7>) with the 8-bit FSR register, as shown in Figure 6-8.

Figure 6-7: Indirect Addressing

Opcode Address

File Address = INDF

FSR

Instruction
Executed

Instruction
Fetched

RAM

Opcode File IRP

RP1:RP0 99

72

9

Address = 0hAddress != 0

 1997 Microchip Technology Inc. DS31006A-page 6-13

Section 6. Memory Organization
M

em
o

ry
O

rg
an

izatio
n

6
Figure 6-8: Indirect Addressing

Example 6-2 shows a simple use of indirect addressing to clear RAM (locations 20h-2Fh) in a
minimum number of instructions. A similar concept could be used to move a defined number of
bytes (block) of data to the USART transmit register (TXREG). The starting address of the block
of data to be transmitted could easily be modified by the program.

Example 6-2: Indirect Addressing

Data
Memory

Indirect Addressing

IRP FSR register7 0

bank select location select

00 01 10 11
00h

7Fh

00h

7Fh

Bank0 Bank1 Bank2 Bank3

 BCF STATUS, IRP ; Indirect addressing Bank0/1
 MOVLW 0x20 ; Initialize pointer to RAM
 MOVWF FSR ;
NEXT CLRF INDF ; Clear INDF register
 INCF FSR,F ; Inc pointer
 BTFSS FSR,4 ; All done?
 GOTO NEXT ; NO, clear next
CONTINUE ;
 : ; YES, continue

PICmicro MID-RANGE MCU FAMILY

DS31006A-page 6-14  1997 Microchip Technology Inc.

6.4 Initialization

Example 6-3 shows how the bank switching occurs for Direct addressing, while Example 6-4
shows some code to do initialization (clearing) of General Purpose RAM.

Example 6-3: Bank Switching

 CLRF STATUS ; Clear STATUS register (Bank0)
 : ;
 BSF STATUS, RP0 ; Bank1
 : ;
 BCF STATUS, RP0 ; Bank0
 : ;
 MOVLW 0x60 ; Set RP0 and RP1 in STATUS register, other
 XORWF STATUS, F ; bits unchanged (Bank3)
 : ;
 BCF STATUS, RP0 ; Bank2
 : ;
 BCF STATUS, RP1 ; Bank0

PICmicro MID-RANGE MCU FAMILY

DS31006A-page 6-16  1997 Microchip Technology Inc.

6.5 Design Tips

Question 1: Program execution seems to get lost.

Answer 1:

When a device with more then 2K words of program memory is used, the calling of subroutines
may require that the PCLATH register be loaded prior to the CALL (or GOTO) instruction to specify
the correct program memory page that the routine is located on. The following instructions will
correctly load PCLATH register, regardless of the program memory location of the label SUB_1.

 MOVLW HIGH (SUB_1) ; Select Program Memory Page of
 MOVWF PCLATH ; Routine.
 CALL SUB_1 ; Call the desired routine
 :
 :
SUB_1 : ; Start of routine
 :
 RETURN ; Return from routine

Question 2: I need to initialize RAM to ’0’s. What is an easy way to do that?

Answer 2:

Example 6-4 shows this. If the device you are using does not use all 4 data memory banks, some
of the code may be removed.

 1997 Microchip Technology Inc. DS31029A-page 29-3

Section 29. Instruction Set
In

stru
ctio

n

S
et

29

Table 29-1: Midrange Instruction Set

Mnemonic,
Operands

Description Cycles
14-Bit Instruction Word Status

Affected
Notes

MSb LSb

BYTE-ORIENTED FILE REGISTER OPERATIONS
ADDWF
ANDWF
CLRF
CLRW
COMF
DECF
DECFSZ
INCF
INCFSZ
IORWF
MOVF
MOVWF
NOP
RLF
RRF
SUBWF
SWAPF
XORWF

f, d
f, d
f
-
f, d
f, d
f, d
f, d
f, d
f, d
f, d
f
-
f, d
f, d
f, d
f, d
f, d

Add W and f
AND W with f
Clear f
Clear W
Complement f
Decrement f
Decrement f, Skip if 0
Increment f
Increment f, Skip if 0
Inclusive OR W with f
Move f
Move W to f
No Operation
Rotate Left f through Carry
Rotate Right f through Carry
Subtract W from f
Swap nibbles in f
Exclusive OR W with f

1
1
1
1
1
1
1(2)
1
1(2)
1
1
1
1
1
1
1
1
1

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

0111
0101
0001
0001
1001
0011
1011
1010
1111
0100
1000
0000
0000
1101
1100
0010
1110
0110

dfff
dfff
lfff
0xxx
dfff
dfff
dfff
dfff
dfff
dfff
dfff
lfff
0xx0
dfff
dfff
dfff
dfff
dfff

ffff
ffff
ffff
xxxx
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
0000
ffff
ffff
ffff
ffff
ffff

C,DC,Z
Z
Z
Z
Z
Z

Z

Z
Z

C
C
C,DC,Z

Z

1,2
1,2
2

1,2
1,2
1,2,3
1,2
1,2,3
1,2
1,2

1,2
1,2
1,2
1,2
1,2

BIT-ORIENTED FILE REGISTER OPERATIONS
BCF
BSF
BTFSC
BTFSS

f, b
f, b
f, b
f, b

Bit Clear f
Bit Set f
Bit Test f, Skip if Clear
Bit Test f, Skip if Set

1
1
1 (2)
1 (2)

01
01
01
01

00bb
01bb
10bb
11bb

bfff
bfff
bfff
bfff

ffff
ffff
ffff
ffff

1,2
1,2
3
3

LITERAL AND CONTROL OPERATIONS
ADDLW
ANDLW
CALL
CLRWDT
GOTO
IORLW
MOVLW
RETFIE
RETLW
RETURN
SLEEP
SUBLW
XORLW

k
k
k
-
k
k
k
-
k
-
-
k
k

Add literal and W
AND literal with W
Call subroutine
Clear Watchdog Timer
Go to address
Inclusive OR literal with W
Move literal to W
Return from interrupt
Return with literal in W
Return from Subroutine
Go into standby mode
Subtract W from literal
Exclusive OR literal with W

1
1
2
1
2
1
1
2
2
2
1
1
1

11
11
10
00
10
11
11
00
11
00
00
11
11

111x
1001
0kkk
0000
1kkk
1000
00xx
0000
01xx
0000
0000
110x
1010

kkkk
kkkk
kkkk
0110
kkkk
kkkk
kkkk
0000
kkkk
0000
0110
kkkk
kkkk

kkkk
kkkk
kkkk
0100
kkkk
kkkk
kkkk
1001
kkkk
1000
0011
kkkk
kkkk

C,DC,Z
Z

TO,PD

Z

TO,PD
C,DC,Z
Z

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that
value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is
driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be
cleared if assigned to the Timer0 Module.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The sec-
ond cycle is executed as a NOP.

PICmicro MID-RANGE MCU FAMILY

DS31029A-page 29-4  1997 Microchip Technology Inc.

29.2 Instruction Formats

Figure 29-1 shows the three general formats that the instructions can have. As can be seen from
the general format of the instructions, the opcode portion of the instruction word varies from
3-bits to 6-bits of information. This is what allows the midrange instruction set to have 35 instruc-
tions.

All instruction examples use the following format to represent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.

To represent a binary number:

00000100b

where b is a binary string identifier.

Figure 29-1: General Format for Instructions

Note 1: Any unused opcode is Reserved. Use of any reserved opcode may cause unex-
pected operation.

Note 2: To maintain upward compatibility with future midrange products, do not use the
OPTION and TRIS instructions.

Byte-oriented file register operations
13 8 7 6 0

d = 0 for destination W

OPCODE d f (FILE #)

d = 1 for destination f
f = 7-bit file register address

Bit-oriented file register operations
13 10 9 7 6 0

OPCODE b (BIT #) f (FILE #)

b = 3-bit bit address
f = 7-bit file register address

Literal and control operations

13 8 7 0

OPCODE k (literal)

k = 8-bit literal (immediate) value

13 11 10 0

OPCODE k (literal)

k = 11-bit literal (immediate) value

General

CALL and GOTO instructions only

 1997 Microchip Technology Inc. DS31029A-page 29-5

Section 29. Instruction Set
In

stru
ctio

n

S
et

29

Table 29-2: Instruction Description Conventions

Field Description

f Register file address (0x00 to 0x7F)
W Working register (accumulator)
b Bit address within an 8-bit file register (0 to 7)
k Literal field, constant data or label (may be either an 8-bit or an 11-bit value)
x Don't care (0 or 1)

The assembler will generate code with x = 0. It is the recommended form of use for
compatibility with all Microchip software tools.

d Destination select;
d = 0: store result in W,
d = 1: store result in file register f.

dest Destination either the W register or the specified register file location
label Label name
TOS Top of Stack
PC Program Counter
PCLATH Program Counter High Latch
GIE Global Interrupt Enable bit
WDT Watchdog Timer
TO Time-out bit
PD Power-down bit
[] Optional
() Contents
→ Assigned to
< > Register bit field
∈ In the set of
italics User defined term (font is courier)

PICmicro MID-RANGE MCU FAMILY

DS31029A-page 29-6  1997 Microchip Technology Inc.

29.3 Special Function Registers as Source/Destination

The Section 29. Instruction Set’s orthogonal instruction set allows read and write of all file regis-
ters, including special function registers. Some special situations the user should be aware of are
explained in the following subsections:

29.3.1 STATUS Register as Destination

If an instruction writes to the STATUS register, the Z, C, DC and OV bits may be set or cleared
as a result of the instruction and overwrite the original data bits written. For example, executing
CLRF STATUS will clear register STATUS, and then set the Z bit leaving 0000 0100b in the reg-
ister.

29.3.2 PCL as Source or Destination

Read, write or read-modify-write on PCL may have the following results:

Read PC: PCL → dest; PCLATH does not change;

Write PCL: PCLATH → PCH;
8-bit destination value → PCL

Read-Modify-Write: PCL→ ALU operand
PCLATH → PCH;
8-bit result → PCL

Where PCH = program counter high byte (not an addressable register), PCLATH = Program
counter high holding latch, dest = destination, W register or register file f.

29.3.3 Bit Manipulation

All bit manipulation instructions will first read the entire register, operate on the selected bit and
then write the result back (read-modify-write (R-M-W)) the specified register. The user should
keep this in mind when operating on some special function registers, such as ports.

Note: Status bits that are manipulated by the device (including the interrupt flag bits) are
set or cleared in the Q1 cycle. So there is no issue with executing R-M-W instructions
on registers which contain these bits.

 1997 Microchip Technology Inc. DS31029A-page 29-7

Section 29. Instruction Set
In

stru
ctio

n

S
et

29

29.4 Q Cycle Activity

Each instruction cycle (Tcy) is comprised of four Q cycles (Q1-Q4). The Q cycle is the same as
the device oscillator cycle (TOSC). The Q cycles provide the timing/designation for the Decode,
Read, Process Data, Write etc., of each instruction cycle. The following diagram shows the rela-
tionship of the Q cycles to the instruction cycle.

The four Q cycles that make up an instruction cycle (Tcy) can be generalized as:

Q1: Instruction Decode Cycle or forced No Operation
Q2: Instruction Read Cycle or No Operation
Q3: Process the Data
Q4: Instruction Write Cycle or No Operation

Each instruction will show the detailed Q cycle operation for the instruction.

Figure 29-2: Q Cycle Activity

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

Tcy1 Tcy2 Tcy3

Tosc

PICmicro MID-RANGE MCU FAMILY

DS31029A-page 29-8  1997 Microchip Technology Inc.

29.5 Instruction Descriptions

ADDLW Add Literal and W

Syntax: [label] ADDLW k

Operands: 0 ≤ k ≤ 255

Operation: (W) + k → W

Status Affected: C, DC, Z

Encoding: 11 111x kkkk kkkk

Description: The contents of the W register are added to the eight bit literal 'k' and the result is
placed in the W register.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
literal 'k'

Process
data

Write to W
register

Example1 ADDLW 0x15

Before Instruction
W = 0x10

After Instruction
W = 0x25

Example 2 ADDLW MYREG

Before Instruction
W = 0x10

Address of MYREG † = 0x37
† MYREG is a symbol for a data memory location

After Instruction
W = 0x47

Example 3 ADDLW HIGH (LU_TABLE)

Before Instruction
W = 0x10

Address of LU_TABLE † = 0x9375
† LU_TABLE is a label for an address in program memory

After Instruction
W = 0xA3

Example 4 ADDLW MYREG

Before Instruction
W = 0x10

Address of PCL † = 0x02
† PCL is the symbol for the Program Counter low byte location

After Instruction
W = 0x12

 1997 Microchip Technology Inc. DS31029A-page 29-9

Section 29. Instruction Set
In

stru
ctio

n

S
et

29

ADDWF Add W and f

Syntax: [label] ADDWF f,d

Operands: 0 ≤ f ≤ 127
d ∈ [0,1]

Operation: (W) + (f) → destination

Status Affected: C, DC, Z

Encoding: 00 0111 dfff ffff

Description: Add the contents of the W register with register 'f'. If 'd' is 0 the result is stored in the
W register. If 'd' is 1 the result is stored back in register 'f'.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register 'f'

Process
data

Write to
destination

Example 1 ADDWF FSR, 0

Before Instruction
W = 0x17
FSR = 0xC2

After Instruction
W = 0xD9
FSR = 0xC2

Example 2 ADDWF INDF, 1

Before Instruction
W = 0x17
FSR = 0xC2
Contents of Address (FSR) = 0x20

After Instruction
W = 0x17
FSR = 0xC2
Contents of Address (FSR) = 0x37

Example 3 ADDWF PCL

Case 1: Before Instruction
W = 0x10
PCL = 0x37
C = x

After Instruction
PCL = 0x47
C = 0

Case 2: Before Instruction
W = 0x10
PCL = 0xF7
PCH = 0x08
C = x

After Instruction
PCL = 0x07
PCH = 0x08
C = 1

PICmicro MID-RANGE MCU FAMILY

DS31029A-page 29-10  1997 Microchip Technology Inc.

ANDLW And Literal with W

Syntax: [label] ANDLW k

Operands: 0 ≤ k ≤ 255

Operation: (W).AND. (k) → W

Status Affected: Z

Encoding: 11 1001 kkkk kkkk

Description: The contents of W register are AND’ed with the eight bit literal 'k'. The result is
placed in the W register.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read literal
'k'

Process
data

Write to W
register

Example 1 ANDLW 0x5F

Before Instruction
W = 0xA3

After Instruction
W = 0x03

; 0101 1111 (0x5F)
; 1010 0011 (0xA3)
;---------- ------
; 0000 0011 (0x03)

Example 2 ANDLW MYREG

Before Instruction
W = 0xA3

Address of MYREG † = 0x37
† MYREG is a symbol for a data memory location

After Instruction
W = 0x23

Example 3 ANDLW HIGH (LU_TABLE)

Before Instruction
W = 0xA3

Address of LU_TABLE † = 0x9375
† LU_TABLE is a label for an address in program memory

After Instruction
W = 0x83

 1997 Microchip Technology Inc. DS31029A-page 29-11

Section 29. Instruction Set
In

stru
ctio

n

S
et

29

ANDWF AND W with f

Syntax: [label] ANDWF f,d

Operands: 0 ≤ f ≤ 127
d ∈ [0,1]

Operation: (W).AND. (f) → destination

Status Affected: Z

Encoding: 00 0101 dfff ffff

Description: AND the W register with register 'f'. If 'd' is 0 the result is stored in the W register. If
'd' is 1 the result is stored back in register 'f'.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register 'f'

Process
data

Write to
destination

Example 1 ANDWF FSR, 1

Before Instruction
 W = 0x17
FSR = 0xC2

After Instruction
W = 0x17
FSR = 0x02

; 0001 0111 (0x17)
; 1100 0010 (0xC2)
;---------- ------
; 0000 0010 (0x02)

Example 2 ANDWF FSR, 0

Before Instruction
 W = 0x17
FSR = 0xC2

After Instruction
W = 0x02
FSR = 0xC2

; 0001 0111 (0x17)
; 1100 0010 (0xC2)
;---------- ------
; 0000 0010 (0x02)

Example 3 ANDWF INDF, 1

Before Instruction
W = 0x17
FSR = 0xC2
Contents of Address (FSR) = 0x5A

After Instruction
W = 0x17
FSR = 0xC2
Contents of Address (FSR) = 0x15

PICmicro MID-RANGE MCU FAMILY

DS31029A-page 29-12  1997 Microchip Technology Inc.

BCF Bit Clear f

Syntax: [label] BCF f,b

Operands: 0 ≤ f ≤ 127
0 ≤ b ≤ 7

Operation: 0 → f

Status Affected: None

Encoding: 01 00bb bfff ffff

Description: Bit 'b' in register 'f' is cleared.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register 'f'

Process
data

Write
register 'f'

Example 1 BCF FLAG_REG, 7

Before Instruction
FLAG_REG = 0xC7

After Instruction

FLAG_REG = 0x47

; 1100 0111

; 0100 0111

Example 2 BCF INDF, 3

Before Instruction
W = 0x17
FSR = 0xC2
Contents of Address (FSR) = 0x2F

After Instruction
W = 0x17
FSR = 0xC2
Contents of Address (FSR) = 0x27

 1997 Microchip Technology Inc. DS31029A-page 29-13

Section 29. Instruction Set
In

stru
ctio

n

S
et

29

BSF Bit Set f

Syntax: [label] BSF f,b

Operands: 0 ≤ f ≤ 127
0 ≤ b ≤ 7

Operation: 1 → f

Status Affected: None

Encoding: 01 01bb bfff ffff

Description: Bit 'b' in register 'f' is set.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register 'f'

Process
data

Write
register 'f'

Example 1 BSF FLAG_REG, 7

Before Instruction
FLAG_REG =0x0A

After Instruction

FLAG_REG =0x8A

; 0000 1010

; 1000 1010

Example 2 BSF INDF, 3

Before Instruction
W = 0x17
FSR = 0xC2
Contents of Address (FSR) = 0x20

After Instruction
W = 0x17
FSR = 0xC2
Contents of Address (FSR) = 0x28

PICmicro MID-RANGE MCU FAMILY

DS31029A-page 29-14  1997 Microchip Technology Inc.

BTFSC Bit Test, Skip if Clear

Syntax: [label] BTFSC f,b

Operands: 0 ≤ f ≤ 127
0 ≤ b ≤ 7

Operation: skip if (f) = 0

Status Affected: None

Encoding: 01 10bb bfff ffff

Description: If bit 'b' in register 'f' is '0' then the next instruction is skipped.
If bit 'b' is '0' then the next instruction (fetched during the current instruction execu-
tion) is discarded, and a NOP is executed instead, making this a 2 cycle instruction.

Words: 1

Cycles: 1(2)

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register 'f'

Process
data

No
operation

If skip (2nd cycle):
Q1 Q2 Q3 Q4

No
operation

No
operation

No
operation

No
operation

Example 1 HERE
FALSE
TRUE

BTFSC
GOTO
•
•
•

FLAG, 4
PROCESS_CODE

Case 1: Before Instruction
PC = addressHERE
FLAG= xxx0 xxxx

After Instruction
Since FLAG<4>= 0,
PC = addressTRUE

Case 2: Before Instruction
PC = addressHERE
FLAG= xxx1 xxxx

After Instruction
Since FLAG<4>=1,
PC = addressFALSE

 1997 Microchip Technology Inc. DS31029A-page 29-15

Section 29. Instruction Set
In

stru
ctio

n

S
et

29

BTFSS Bit Test f, Skip if Set

Syntax: [label] BTFSS f,b

Operands: 0 ≤ f ≤ 127
0 ≤ b < 7

Operation: skip if (f) = 1

Status Affected: None

Encoding: 01 11bb bfff ffff

Description: If bit 'b' in register 'f' is '1' then the next instruction is skipped.
If bit 'b' is '1', then the next instruction (fetched during the current instruc-
tion execution) is discarded and a NOP is executed instead, making this a
2 cycle instruction.

Words: 1

Cycles: 1(2)

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register 'f'

Process
data

No
operation

If skip (2nd cycle):
Q1 Q2 Q3 Q4

No
operation

No
operation

No
operation

No
operation

Example 1 HERE
FALSE
TRUE

BTFSS
GOTO
•
•
•

FLAG, 4
PROCESS_CODE

Case 1: Before Instruction
PC = addressHERE
FLAG= xxx0 xxxx

After Instruction
Since FLAG<4>= 0,
PC = addressFALSE

Case 2: Before Instruction
PC = addressHERE
FLAG= xxx1 xxxx

After Instruction
Since FLAG<4>=1,
PC = addressTRUE

PICmicro MID-RANGE MCU FAMILY

DS31029A-page 29-16  1997 Microchip Technology Inc.

CALL Call Subroutine

Syntax: [label] CALL k

Operands: 0 ≤ k ≤ 2047

Operation: (PC)+ 1→ TOS,
k → PC<10:0>,
(PCLATH<4:3>) → PC<12:11>

Status Affected: None

Encoding: 10 0kkk kkkk kkkk

Description: Call Subroutine. First, the 13-bit return address (PC+1) is pushed onto the
stack. The eleven bit immediate address is loaded into PC bits <10:0>. The
upper bits of the PC are loaded from PCLATH<4:3>. CALL is a two cycle
instruction.

Words: 1

Cycles: 2

Q Cycle Activity:
1st cycle:

Q1 Q2 Q3 Q4
Decode Read literal

'k'
Process

data
No

operation

2nd cycle:
Q1 Q2 Q3 Q4

No
operation

No
operation

No
operation

No
operation

Example 1 HERE CALL THERE

Before Instruction
PC = AddressHERE

After Instruction
TOS = Address HERE+1
PC = Address THERE

 1997 Microchip Technology Inc. DS31029A-page 29-17

Section 29. Instruction Set
In

stru
ctio

n

S
et

29

CLRF Clear f

Syntax: [label] CLRF f

Operands: 0 ≤ f ≤ 127

Operation: 00h → f
1 → Z

Status Affected: Z

Encoding: 00 0001 1fff ffff

Description: The contents of register 'f' are cleared and the Z bit is set.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register 'f'

Process
data

Write
register 'f'

Example 1 CLRF FLAG_REG

Before Instruction
FLAG_REG=0x5A

After Instruction
FLAG_REG=0x00
Z = 1

Example 2 CLRF INDF

Before Instruction
FSR = 0xC2
Contents of Address (FSR)=0xAA

After Instruction
FSR = 0xC2
Contents of Address (FSR)=0x00
Z = 1

PICmicro MID-RANGE MCU FAMILY

DS31029A-page 29-18  1997 Microchip Technology Inc.

CLRW Clear W

Syntax: [label] CLRW

Operands: None

Operation: 00h → W
1 → Z

Status Affected: Z

Encoding: 00 0001 0xxx xxxx

Description: W register is cleared. Zero bit (Z) is set.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register 'f'

Process
data

Write
register 'W'

Example 1 CLRW

Before Instruction
W = 0x5A

After Instruction
W = 0x00
Z = 1

 1997 Microchip Technology Inc. DS31029A-page 29-19

Section 29. Instruction Set
In

stru
ctio

n

S
et

29

CLRWDT Clear Watchdog Timer

Syntax: [label] CLRWDT

Operands: None

Operation: 00h → WDT
0 → WDT prescaler count,
1 → TO
1 → PD

Status Affected: TO, PD

Encoding: 00 0000 0110 0100

Description: CLRWDT instruction clears the Watchdog Timer. It also clears the pres-
caler count of the WDT. Status bits TO and PD are set.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode No
operation

Process
data

Clear
WDT

Counter

Example 1 CLRWDT

Before Instruction
WDT counter= x
WDT prescaler =1:128

After Instruction
WDT counter=0x00
WDT prescaler count=0
TO = 1
PD = 1
WDT prescaler =1:128

Note: The CLRWDT instruction does not affect the assignment of the WDT prescaler.

PICmicro MID-RANGE MCU FAMILY

DS31029A-page 29-20  1997 Microchip Technology Inc.

COMF Complement f

Syntax: [label] COMF f,d

Operands: 0 ≤ f ≤ 127
d ∈ [0,1]

Operation: (f) → destination

Status Affected: Z

Encoding: 00 1001 dfff ffff

Description: The contents of register 'f' are 1’s complemented. If 'd' is 0 the result is
stored in W. If 'd' is 1 the result is stored back in register 'f'.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register 'f'

Process
data

Write to
destination

Example 1 COMF REG1, 0

Before Instruction
REG1= 0x13

After Instruction
REG1= 0x13
W = 0xEC

Example 2 COMF INDF, 1

Before Instruction
FSR = 0xC2
Contents of Address (FSR)=0xAA

After Instruction
FSR = 0xC2
Contents of Address (FSR)=0x55

Example 3 COMF REG1, 1

Before Instruction
REG1= 0xFF

After Instruction
REG1= 0x00
Z = 1

 1997 Microchip Technology Inc. DS31029A-page 29-21

Section 29. Instruction Set
In

stru
ctio

n

S
et

29

DECF Decrement f

Syntax: [label] DECF f,d

Operands: 0 ≤ f ≤ 127
d ∈ [0,1]

Operation: (f) - 1 → destination

Status Affected: Z

Encoding: 00 0011 dfff ffff

Description: Decrement register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the
result is stored back in register 'f'.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register 'f'

Process
data

Write to
destination

Example 1 DECF CNT, 1

Before Instruction
CNT = 0x01
Z = 0

After Instruction
CNT = 0x00
Z = 1

Example 2 DECF INDF, 1

Before Instruction
FSR = 0xC2
Contents of Address (FSR) = 0x01
Z = 0

After Instruction
FSR = 0xC2
Contents of Address (FSR) = 0x00
Z = 1

Example 3 DECF CNT, 0

Before Instruction
CNT = 0x10
W = x
Z = 0

After Instruction
CNT = 0x10
W = 0x0F
Z = 0

PICmicro MID-RANGE MCU FAMILY

DS31029A-page 29-22  1997 Microchip Technology Inc.

DECFSZ Decrement f, Skip if 0

Syntax: [label] DECFSZ f,d

Operands: 0 ≤ f ≤ 127
d ∈ [0,1]

Operation: (f) - 1 → destination; skip if result = 0

Status Affected: None

Encoding: 00 1011 dfff ffff

Description: The contents of register 'f' are decremented. If 'd' is 0 the result is placed
in the W register. If 'd' is 1 the result is placed back in register 'f'.
If the result is 0, then the next instruction (fetched during the current
instruction execution) is discarded and a NOP is executed instead, mak-
ing this a 2 cycle instruction.

Words: 1

Cycles: 1(2)

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register 'f'

Process
data

Write to
destination

If skip (2nd cycle):
Q1 Q2 Q3 Q4

No
operation

No
operation

No
operation

No
operation

Example HERE DECFSZ CNT, 1
 GOTO LOOP
CONTINUE •
 •
 •

Case 1: Before Instruction
PC = address HERE
CNT = 0x01

After Instruction
CNT = 0x00
PC = address CONTINUE

Case 2: Before Instruction
PC = address HERE
CNT = 0x02

After Instruction
CNT = 0x01
PC = address HERE + 1

 1997 Microchip Technology Inc. DS31029A-page 29-23

Section 29. Instruction Set
In

stru
ctio

n

S
et

29

GOTO Unconditional Branch

Syntax: [label] GOTO k

Operands: 0 ≤ k ≤ 2047

Operation: k → PC<10:0>
PCLATH<4:3> → PC<12:11>

Status Affected: None

Encoding: 10 1kkk kkkk kkkk

Description: GOTO is an unconditional branch. The eleven bit immediate value is loaded
into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>.
GOTO is a two cycle instruction.

Words: 1

Cycles: 2

Q Cycle Activity:
1st cycle:

Q1 Q2 Q3 Q4
Decode Read literal

'k'<7:0>
Process

data
No

operation

2nd cycle:
Q1 Q2 Q3 Q4

No
operation

No
operation

No
operation

No
operation

Example GOTO THERE

After Instruction
PC =AddressTHERE

PICmicro MID-RANGE MCU FAMILY

DS31029A-page 29-24  1997 Microchip Technology Inc.

INCF Increment f

Syntax: [label] INCF f,d

Operands: 0 ≤ f ≤ 127
d ∈ [0,1]

Operation: (f) + 1 → destination

Status Affected: Z

Encoding: 00 1010 dfff ffff

Description: The contents of register 'f' are incremented. If 'd' is 0 the result is placed in
the W register. If 'd' is 1 the result is placed back in register 'f'.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register 'f'

Process
data

Write to
destination

Example 1 INCF CNT, 1

Before Instruction
CNT = 0xFF
Z = 0

After Instruction
CNT = 0x00
Z = 1

Example 2 INCF INDF, 1

Before Instruction
FSR = 0xC2
Contents of Address (FSR) = 0xFF
Z = 0

After Instruction
FSR = 0xC2
Contents of Address (FSR) = 0x00
Z = 1

Example 3 INCF CNT, 0

Before Instruction
CNT = 0x10
W = x
Z = 0

After Instruction
CNT = 0x10
W = 0x11
Z = 0

 1997 Microchip Technology Inc. DS31029A-page 29-25

Section 29. Instruction Set
In

stru
ctio

n

S
et

29

INCFSZ Increment f, Skip if 0

Syntax: [label] INCFSZ f,d

Operands: 0 ≤ f ≤ 127
d ∈ [0,1]

Operation: (f) + 1 → destination, skip if result = 0

Status Affected: None

Encoding: 00 1111 dfff ffff

Description: The contents of register 'f' are incremented. If 'd' is 0 the result is placed in
the W register. If 'd' is 1 the result is placed back in register 'f'.
If the result is 0, then the next instruction (fetched during the current
instruction execution) is discarded and a NOP is executed instead, making
this a 2 cycle instruction.

Words: 1

Cycles: 1(2)

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register 'f'

Process
data

Write to
destination

If skip (2nd cycle):
Q1 Q2 Q3 Q4

No
operation

No
operation

No
operation

No
operation

Example HERE INCFSZ CNT, 1
 GOTO LOOP
CONTINUE •
 •
 •

Case 1: Before Instruction
PC = address HERE
CNT = 0xFF

After Instruction
CNT = 0x00
PC = address CONTINUE

Case 2: Before Instruction
PC = address HERE
CNT = 0x00

After Instruction
CNT = 0x01
PC = address HERE + 1

PICmicro MID-RANGE MCU FAMILY

DS31029A-page 29-26  1997 Microchip Technology Inc.

IORLW Inclusive OR Literal with W

Syntax: [label] IORLW k

Operands: 0 ≤ k ≤ 255

Operation: (W).OR. k → W

Status Affected: Z

Encoding: 11 1000 kkkk kkkk

Description: The contents of the W register is OR’ed with the eight bit literal 'k'. The result is
placed in the W register.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
literal 'k'

Process
data

Write to W
register

Example 1 IORLW 0x35

Before Instruction
W = 0x9A

After Instruction
W = 0xBF
Z = 0

Example 2 IORLW MYREG

Before Instruction
W = 0x9A

Address of MYREG † = 0x37
† MYREG is a symbol for a data memory location

After Instruction
W = 0x9F
Z = 0

Example 3 IORLW HIGH (LU_TABLE)

Before Instruction
W = 0x9A

Address of LU_TABLE † = 0x9375
† LU_TABLE is a label for an address in program memory

After Instruction
W = 0x9B
Z = 0

Example 4 IORLW 0x00

Before Instruction
W = 0x00

After Instruction
W = 0x00
Z = 1

 1997 Microchip Technology Inc. DS31029A-page 29-27

Section 29. Instruction Set
In

stru
ctio

n

S
et

29

IORWF Inclusive OR W with f

Syntax: [label] IORWF f,d

Operands: 0 ≤ f ≤ 127
d ∈ [0,1]

Operation: (W).OR. (f) → destination

Status Affected: Z

Encoding: 00 0100 dfff ffff

Description: Inclusive OR the W register with register 'f'. If 'd' is 0 the result is placed in
the W register. If 'd' is 1 the result is placed back in register 'f'.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register 'f'

Process
data

Write to
destination

Example 1 IORWF RESULT, 0

Before Instruction
RESULT=0x13
W = 0x91

After Instruction
RESULT=0x13
W = 0x93
Z = 0

Example 2 IORWF INDF, 1

Before Instruction
W = 0x17
FSR = 0xC2
Contents of Address (FSR) = 0x30

After Instruction
W = 0x17
FSR = 0xC2
Contents of Address (FSR) = 0x37
Z = 0

Example 3 IORWF RESULT, 1

Case 1: Before Instruction
RESULT=0x13
W = 0x91

After Instruction
RESULT=0x93
W = 0x91
Z = 0

Case 2: Before Instruction
RESULT=0x00
W = 0x00

After Instruction
RESULT=0x00
W = 0x00
Z = 1

PICmicro MID-RANGE MCU FAMILY

DS31029A-page 29-28  1997 Microchip Technology Inc.

MOVLW Move Literal to W

Syntax: [label] MOVLW k

Operands: 0 ≤ k ≤ 255

Operation: k → W

Status Affected: None

Encoding: 11 00xx kkkk kkkk

Description: The eight bit literal 'k' is loaded into W register. The don’t cares will assemble as 0’s.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
literal 'k'

Process
data

Write to W
register

Example 1 MOVLW 0x5A

After Instruction
W = 0x5A

Example 2 MOVLW MYREG

Before Instruction
W = 0x10

Address of MYREG † = 0x37
† MYREG is a symbol for a data memory location

After Instruction
W = 0x37

Example 3 MOVLW HIGH (LU_TABLE)

Before Instruction
W = 0x10

Address of LU_TABLE † = 0x9375
† LU_TABLE is a label for an address in program memory

After Instruction
W = 0x93

 1997 Microchip Technology Inc. DS31029A-page 29-29

Section 29. Instruction Set
In

stru
ctio

n

S
et

29

MOVF Move f

Syntax: [label] MOVF f,d

Operands: 0 ≤ f ≤ 127
d ∈ [0,1]

Operation: (f) → destination

Status Affected: Z

Encoding: 00 1000 dfff ffff

Description: The contents of register ’f’ is moved to a destination dependent upon the
status of ’d’. If ’d’ = 0, destination is W register. If ’d’ = 1, the destination is
file register ’f’ itself. ’d’ = 1 is useful to test a file register since status flag Z
is affected.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register 'f'

Process
data

Write to
destination

Example 1 MOVF FSR, 0

Before Instruction
W = 0x00
FSR = 0xC2

After Instruction
W = 0xC2
Z = 0

Example 2 MOVF INDF, 0

Before Instruction
W = 0x17
FSR = 0xC2
Contents of Address (FSR) = 0x00

After Instruction
W = 0x17
FSR = 0xC2
Contents of Address (FSR) = 0x00
Z = 1

Example 3 MOVF FSR, 1

Case 1: Before Instruction
FSR = 0x43

After Instruction
FSR = 0x43
Z = 0

Case 2: Before Instruction
FSR = 0x00

After Instruction
FSR = 0x00
Z = 1

PICmicro MID-RANGE MCU FAMILY

DS31029A-page 29-30  1997 Microchip Technology Inc.

MOVWF Move W to f

Syntax: [label] MOVWF f

Operands: 0 ≤ f ≤ 127

Operation: (W) → f

Status Affected: None

Encoding: 00 0000 1fff ffff

Description: Move data from W register to register 'f'.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register 'f'

Process
data

Write
register 'f'

Example 1 MOVWF OPTION_REG

Before Instruction
OPTION_REG=0xFF
W = 0x4F

After Instruction
OPTION_REG=0x4F
W = 0x4F

Example 2 MOVWF INDF

Before Instruction
W = 0x17
FSR = 0xC2
Contents of Address (FSR) = 0x00

After Instruction
W = 0x17
FSR = 0xC2
Contents of Address (FSR) = 0x17

 1997 Microchip Technology Inc. DS31029A-page 29-31

Section 29. Instruction Set
In

stru
ctio

n

S
et

29

NOP No Operation

Syntax: [label] NOP

Operands: None

Operation: No operation

Status Affected: None

Encoding: 00 0000 0xx0 0000

Description: No operation.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode No
operation

No
operation

No
operation

Example HERE NOP

: Before Instruction
PC = address HERE

After Instruction
PC = address HERE + 1

PICmicro MID-RANGE MCU FAMILY

DS31029A-page 29-32  1997 Microchip Technology Inc.

OPTION Load Option Register

Syntax: [label] OPTION

Operands: None

Operation: (W) → OPTION

Status Affected: None

Encoding: 00 0000 0110 0010

Description: The contents of the W register are loaded in the OPTION register. This
instruction is supported for code compatibility with PIC16C5X products.
Since OPTION is a readable/writable register, the user can directly
address it.

Words: 1

Cycles: 1

To maintain upward compatibility with future PIC16CXX products, do
not use this instruction.

 1997 Microchip Technology Inc. DS31029A-page 29-33

Section 29. Instruction Set
In

stru
ctio

n

S
et

29

RETFIE Return from Interrupt

Syntax: [label] RETFIE

Operands: None

Operation: TOS → PC,
1 → GIE

Status Affected: None

Encoding: 00 0000 0000 1001

Description: Return from Interrupt. The 13-bit address at the Top of Stack (TOS) is
loaded in the PC. The Global Interrupt Enable bit, GIE (INTCON<7>), is
automatically set, enabling Interrupts. This is a two cycle instruction.

Words: 1

Cycles: 2

Q Cycle Activity:
1st cycle:

Q1 Q2 Q3 Q4
Decode No

operation
Process

data
No

operation

2nd cycle:
Q1 Q2 Q3 Q4

No
operation

No
operation

No
operation

No
operation

Example RETFIE

After Instruction
PC = TOS
GIE = 1

PICmicro MID-RANGE MCU FAMILY

DS31029A-page 29-34  1997 Microchip Technology Inc.

RETLW Return with Literal in W

Syntax: [label] RETLW k

Operands: 0 ≤ k ≤ 255

Operation: k → W;
TOS → PC

Status Affected: None

Encoding: 11 01xx kkkk kkkk

Description: The W register is loaded with the eight bit literal 'k'. The program counter is
loaded 13-bit address at the Top of Stack (the return address). This is a
two cycle instruction.

Words: 1

Cycles: 2

Q Cycle Activity:
1st cycle:

Q1 Q2 Q3 Q4
Decode Read

literal 'k'
Process

data
Write to W

register

2nd cycle:
Q1 Q2 Q3 Q4

No
operation

No
operation

No
operation

No
operation

Example

HERE

TABLE

CALL TABLE ; W contains table
 ; offset value
• ; W now has table value
•
•
ADDWF PC ;W = offset
RETLW k1 ;Begin table
RETLW k2 ;
•
•
•
RETLW kn ; End of table

Before Instruction
W = 0x07

After Instruction
W = value of k8
PC = TOS = Address Here + 1

 1997 Microchip Technology Inc. DS31029A-page 29-35

Section 29. Instruction Set
In

stru
ctio

n

S
et

29

RETURN Return from Subroutine

Syntax: [label] RETURN

Operands: None

Operation: TOS → PC

Status Affected: None

Encoding: 00 0000 0000 1000

Description: Return from subroutine. The stack is POPed and the top of the stack
(TOS) is loaded into the program counter. This is a two cycle instruc-
tion.

Words: 1

Cycles: 2

Q Cycle Activity:
1st cycle:

Q1 Q2 Q3 Q4
Decode No

operation
Process

data
No

operation

2nd cycle:
Q1 Q2 Q3 Q4

No
operation

No
operation

No
operation

No
operation

Example HERE RETURN

After Instruction
PC = TOS

PICmicro MID-RANGE MCU FAMILY

DS31029A-page 29-36  1997 Microchip Technology Inc.

RLF Rotate Left f through Carry

Syntax: [label] RLF f,d

Operands: 0 ≤ f ≤ 127
d ∈ [0,1]

Operation: See description below

Status Affected: C

Encoding: 00 1101 dfff ffff

Description: The contents of register 'f' are rotated one bit to the left through the Carry
Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is
stored back in register 'f'.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register 'f'

Process
data

Write to
destination

Example 1 RLF REG1,0

Before Instruction
REG1= 1110 0110
C = 0

After Instruction
REG1=1110 0110
W =1100 1100
C =1

Example 2 RLF INDF, 1

Case 1: Before Instruction
W = xxxx xxxx
FSR = 0xC2
Contents of Address (FSR) = 0011 1010
C = 1

After Instruction
W = 0x17
FSR = 0xC2
Contents of Address (FSR) = 0111 0101
C = 0

Case 2: Before Instruction
W = xxxx xxxx
FSR = 0xC2
Contents of Address (FSR) = 1011 1001
C = 0

After Instruction
W = 0x17
FSR = 0xC2
Contents of Address (FSR) = 0111 0010
C = 1

Register fC

 1997 Microchip Technology Inc. DS31029A-page 29-37

Section 29. Instruction Set
In

stru
ctio

n

S
et

29

RRF Rotate Right f through Carry

Syntax: [label] RRF f,d

Operands: 0 ≤ f ≤ 127
d ∈ [0,1]

Operation: See description below

Status Affected: C

Encoding: 00 1100 dfff ffff

Description: The contents of register 'f' are rotated one bit to the right through the Carry
Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is
placed back in register 'f'.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register 'f'

Process
data

Write to
destination

Example 1 RRF REG1,0

Before Instruction
REG1= 1110 0110
W = xxxx xxxx
C = 0

After Instruction
REG1= 1110 0110
W = 0111 0011
C = 0

Example 2 RRF INDF, 1

Case 1: Before Instruction
W = xxxx xxxx
FSR = 0xC2
Contents of Address (FSR) = 0011 1010
C = 1

After Instruction
W = 0x17
FSR = 0xC2
Contents of Address (FSR) = 1001 1101
C = 0

Case 2: Before Instruction
W = xxxx xxxx
FSR = 0xC2
Contents of Address (FSR) = 0011 1001
C = 0

After Instruction
W = 0x17
FSR = 0xC2
Contents of Address (FSR) = 0001 1100
C = 1

Register fC

PICmicro MID-RANGE MCU FAMILY

DS31029A-page 29-38  1997 Microchip Technology Inc.

SLEEP
Syntax: [label] SLEEP

Operands: None

Operation: 00h → WDT,
0 → WDT prescaler count,
1 → TO,
0 → PD

Status Affected: TO, PD

Encoding: 00 0000 0110 0011

Description: The power-down status bit, PD is cleared. Time-out status bit, TO is set.
Watchdog Timer and its prescaler count are cleared.
The processor is put into SLEEP mode with the oscillator stopped.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode No
operation

No
operation

Go to sleep

Example: SLEEP

Note: The SLEEP instruction does not affect the assignment of the WDT prescaler

 1997 Microchip Technology Inc. DS31029A-page 29-39

Section 29. Instruction Set
In

stru
ctio

n

S
et

29

SUBLW Subtract W from Literal

Syntax: [label] SUBLW k

Operands: 0 ≤ k ≤ 255

Operation: k - (W) → W

Status Affected: C, DC, Z

Encoding: 11 110x kkkk kkkk

Description: The W register is subtracted (2’s complement method) from the eight bit
literal 'k'. The result is placed in the W register.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
literal 'k'

Process
data

Write to W
register

Example 1: SUBLW 0x02

Case 1: Before Instruction

W = 0x01
C = x
Z = x

After Instruction

W = 0x01
C = 1 ; result is positive
Z = 0

Case 2: Before Instruction

W = 0x02
C = x
Z = x

After Instruction

W = 0x00
C = 1 ; result is zero
Z = 1

Case 3: Before Instruction

W = 0x03
C = x
Z = x

After Instruction

W = 0xFF
C = 0 ; result is negative
Z = 0

Example 2 SUBLW MYREG

Before Instruction
W = 0x10

Address of MYREG † = 0x37
† MYREG is a symbol for a data memory location

After Instruction
W = 0x27
C = 1 ; result is positive

PICmicro MID-RANGE MCU FAMILY

DS31029A-page 29-40  1997 Microchip Technology Inc.

SUBWF Subtract W from f

Syntax: [label] SUBWF f,d

Operands: 0 ≤ f ≤ 127
d ∈ [0,1]

Operation: (f) - (W) → destination

Status Affected: C, DC, Z

Encoding: 00 0010 dfff ffff

Description: Subtract (2’s complement method) W register from register 'f'. If 'd' is 0 the
result is stored in the W register. If 'd' is 1 the result is stored back in reg-
ister 'f'.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register 'f'

Process
data

Write to
destination

Example 1: SUBWF REG1,1

Case 1: Before Instruction

REG1= 3
W = 2
C = x
Z = x

After Instruction

REG1= 1
W = 2
C = 1 ; result is positive
Z = 0

Case 2: Before Instruction

REG1= 2
W = 2
C = x
Z = x

After Instruction

REG1= 0
W = 2
C = 1 ; result is zero
Z = 1

Case 3: Before Instruction

REG1= 1
W = 2
C = x
Z = x

After Instruction

REG1= 0xFF
W = 2
C = 0 ; result is negative
Z = 0

 1997 Microchip Technology Inc. DS31029A-page 29-41

Section 29. Instruction Set
In

stru
ctio

n

S
et

29

SWAPF Swap Nibbles in f

Syntax: [label] SWAPF f,d

Operands: 0 ≤ f ≤ 127
d ∈ [0,1]

Operation: (f<3:0>) → destination<7:4>,
(f<7:4>) → destination<3:0>

Status Affected: None

Encoding: 00 1110 dfff ffff

Description: The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0 the
result is placed in W register. If 'd' is 1 the result is placed in register 'f'.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register 'f'

Process
data

Write to
destination

Example 1 SWAPF REG, 0

Before Instruction

REG1= 0xA5

After Instruction

REG1= 0xA5
W = 0x5A

Example 2 SWAPF INDF, 1

Before Instruction
W = 0x17
FSR = 0xC2
Contents of Address (FSR) = 0x20

After Instruction
W = 0x17
FSR = 0xC2
Contents of Address (FSR) = 0x02

Example 3 SWAPF REG, 1

Before Instruction

REG1= 0xA5

After Instruction

REG1= 0x5A

PICmicro MID-RANGE MCU FAMILY

DS31029A-page 29-42  1997 Microchip Technology Inc.

TRIS Load TRIS Register

Syntax: [label] TRIS f

Operands: 5 ≤ f ≤ 7

Operation: (W) → TRIS register f;

Status Affected: None

Encoding: 00 0000 0110 0fff

Description: The instruction is supported for code compatibility with the PIC16C5X prod-
ucts. Since TRIS registers are readable and writable, the user can directly
address them.

Words: 1

Cycles: 1

Example

To maintain upward compatibility with future PIC16CXX products, do
not use this instruction.

 1997 Microchip Technology Inc. DS31029A-page 29-43

Section 29. Instruction Set
In

stru
ctio

n

S
et

29

XORLW Exclusive OR Literal with W

Syntax: [label] XORLW k

Operands: 0 ≤ k ≤ 255

Operation: (W).XOR. k → W

Status Affected: Z

Encoding: 11 1010 kkkk kkkk

Description: The contents of the W register are XOR’ed with the eight bit literal 'k'. The
result is placed in the W register.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
literal 'k'

Process
data

Write to W
register

Example 1 XORLW 0xAF ; 1010 1111 (0xAF)

Before Instruction ; 1011 0101 (0xB5)

W = 0xB5 ; --------- ------

After Instruction ; 0001 1010 (0x1A)

W = 0x1A
Z = 0

Example 2 XORLW MYREG

Before Instruction
W = 0xAF

Address of MYREG † = 0x37
† MYREG is a symbol for a data memory location

After Instruction
W = 0x18
Z = 0

Example 3 XORLW HIGH (LU_TABLE)

Before Instruction
W = 0xAF

Address of LU_TABLE † = 0x9375
† LU_TABLE is a label for an address in program memory

After Instruction
W = 0x3C
Z = 0

PICmicro MID-RANGE MCU FAMILY

DS31029A-page 29-44  1997 Microchip Technology Inc.

XORWF Exclusive OR W with f

Syntax: [label] XORWF f,d

Operands: 0 ≤ f ≤ 127
d ∈ [0,1]

Operation: (W).XOR. (f) → destination

Status Affected: Z

Encoding: 00 0110 dfff ffff

Description: Exclusive OR the contents of the W register with register 'f'. If 'd' is 0 the
result is stored in the W register. If 'd' is 1 the result is stored back in regis-
ter 'f'.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register 'f'

Process
data

Write to
destination

Example 1 XORWF REG, 1 ; 1010 1111 (0xAF)

Before Instruction ; 1011 0101 (0xB5)

REG= 0xAF
W = 0xB5

; --------- ------
; 0001 1010 (0x1A)

After Instruction

REG= 0x1A
W = 0xB5

Example 2 XORWF REG, 0 ; 1010 1111 (0xAF)

Before Instruction ; 1011 0101 (0xB5)

REG= 0xAF
W = 0xB5

; --------- ------
; 0001 1010 (0x1A)

After Instruction

REG= 0xAF
W = 0x1A

Example 3 XORWF INDF, 1

Before Instruction
W = 0xB5
FSR = 0xC2
Contents of Address (FSR) = 0xAF

After Instruction
W = 0xB5
FSR = 0xC2
Contents of Address (FSR) = 0x1A

PICmicro MID-RANGE MCU FAMILY

DS31008A-page 8-4  1997 Microchip Technology Inc.

Figure 8-1: Interrupt Logic

TMR1IE
TMR1IF

TMR2IE
TMR2IF

INTF
INTE

RBIF
RBIE

T0IF
T0IE

GIE

PEIE

Wake-up (If in SLEEP mode)

Interrupt to CPU

INTCON RegisterPIR/PIE Registers

ADCIE
ADCIF

ADIE
ADIF

CCP1IE
CCP1IF

CCP2IE
CCP2IF

CMIE
CMIF

EEIE
EEIF

LCDIE
LCDIF

PBIE
PBIF

PSPIE
PSPIF

RCIE
RCIF

SSPIE
SSPIF

OVFIE
OVFIF

TXIE
TXIF

GPIF
GPIE

(EEIE 2)

Note 1: This shows all current Interrupt bits (at time of manual printing) for
all PICmicro Mid-Range MCUs. Which bits pertain to a specific
device is dependent upon the device type and peripherals imple-
mented. See specific device data sheet.

2: Some of the original Mid-Range devices had only one peripheral
module. These devices do not have the PEIE bit, and have the mod-
ule enable bit in the INTCON register.

(ADIE 2)

Clear GIE bit

 1997 Microchip Technology Inc. DS31008A-page 8-5

Section 8. Interrupts
In

terru
p

ts

8

8.2 Control Registers

Generally devices have a minimum of three registers associated with interrupts. The INTCON
register which contains Global Interrupt Enable bit, GIE, as well as the Peripheral Interrupt
Enable bit, PEIE, and the PIE / PIR register pair which enable the peripheral interrupts and dis-
play the interrupt flag status.

8.2.1 INTCON Register

The INTCON Register is a readable and writable register which contains various enable and flag
bits.

Register 8-1: INTCON Register

Note: Interrupt flag bits get set when an interrupt condition occurs regardless of the state
of its corresponding enable bit or the global enable bit, GIE (INTCON<7>).This
feature allows for software polling.

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
GIE PEIE (3) T0IE INTE (2) RBIE (1,

2)
T0IF INTF (2) RBIF (1, 2)

bit 7 bit 0

bit 7 GIE: Global Interrupt Enable bit
1 = Enables all un-masked interrupts
0 = Disables all interrupts

bit 6 PEIE: Peripheral Interrupt Enable bit
1 = Enables all un-masked peripheral interrupts
0 = Disables all peripheral interrupts

bit 5 T0IE: TMR0 Overflow Interrupt Enable bit
1 = Enables the TMR0 overflow interrupt
0 = Disables the TMR0 overflow interrupt

bit 4 INTE: INT External Interrupt Enable bit
1 = Enables the INT external interrupt
0 = Disables the INT external interrupt

bit 3 RBIE (1): RB Port Change Interrupt Enable bit
1 = Enables the RB port change interrupt
0 = Disables the RB port change interrupt

bit 2 T0IF: TMR0 Overflow Interrupt Flag bit
1 = TMR0 register has overflowed (must be cleared in software)
0 = TMR0 register did not overflow

bit 1 INTF: INT External Interrupt Flag bit
1 = The INT external interrupt occurred (must be cleared in software)
0 = The INT external interrupt did not occur

bit 0 RBIF (1): RB Port Change Interrupt Flag bit
1 = At least one of the RB7:RB4 pins changed state (must be cleared in software)
0 = None of the RB7:RB4 pins have changed state

Legend

R = Readable bit W = Writable bit

U = Unimplemented bit, read as ‘0’ - n = Value at POR reset

Note 1: In some devices, the RBIE bit may also be known as GPIE and the RBIF bit may be
know as GPIF.

Note 2: Some devices may not have this feature. For those devices this bit is reserved.

Note 3: In devices with only one peripheral interrupt, this bit may be EEIE or ADIE.

PICmicro MID-RANGE MCU FAMILY

DS31008A-page 8-6  1997 Microchip Technology Inc.

8.2.2 PIE Register(s)

Depending on the number of peripheral interrupt sources, there may be multiple Peripheral Inter-
rupt Enable registers (PIE1, PIE2). These registers contain the individual enable bits for the
Peripheral interrupts. These registers will be generically referred to as PIE. If the device has a
PIE register, The PEIE bit must be set to enable any of these peripheral interrupts.

Although, the PIE register bits have a general bit location with each register, future devices may
not have consistent placement. Bit location inconsistencies will not be a problem if you use the
supplied Microchip Include files for the symbolic use of these bits. This will allow the Assem-
bler/Compiler to automatically take care of the placement of these bits by specifying the correct
register and bit name.

Note: Bit PEIE (INTCON<6>) must be set to enable any of the peripheral interrupts.

 1997 Microchip Technology Inc. DS31008A-page 8-7

Section 8. Interrupts
In

terru
p

ts

8

Register 8-2: PIE Register

R/W-0
(Note 1)

bit 7 bit 0

bit TMR1IE: TMR1 Overflow Interrupt Enable bit
1 = Enables the TMR1 overflow interrupt
0 = Disables the TMR1 overflow interrupt

bit TMR2IE: TMR2 to PR2 Match Interrupt Enable bit
1 = Enables the TMR2 to PR2 match interrupt
0 = Disables the TMR2 to PR2 match interrupt

bit CCP1IE: CCP1 Interrupt Enable bit
1 = Enables the CCP1 interrupt
0 = Disables the CCP1 interrupt

bit CCP2IE: CCP2 Interrupt Enable bit
1 = Enables the CCP2 interrupt
0 = Disables the CCP2 interrupt

bit SSPIE: Synchronous Serial Port Interrupt Enable bit
1 = Enables the SSP interrupt
0 = Disables the SSP interrupt

bit RCIE: USART Receive Interrupt Enable bit
1 = Enables the USART receive interrupt
0 = Disables the USART receive interrupt

bit TXIE: USART Transmit Interrupt Enable bit
1 = Enables the USART transmit interrupt
0 = Disables the USART transmit interrupt

bit ADIE: A/D Converter Interrupt Enable bit
1 = Enables the A/D interrupt
0 = Disables the A/D interrupt

bit ADCIE: Slope A/D Converter comparator Trip Interrupt Enable bit
1 = Enables the Slope A/D interrupt
0 = Disables the Slope A/D interrupt

bit OVFIE: Slope A/D TMR Overflow Interrupt Enable bit
1 = Enables the Slope A/D TMR overflow interrupt
0 = Disables the Slope A/D TMR overflow interrupt

bit PSPIE: Parallel Slave Port Read/Write Interrupt Enable bit
1 = Enables the PSP read/write interrupt
0 = Disables the PSP read/write interrupt

bit EEIE: EE Write Complete Interrupt Enable bit
1 = Enables the EE write complete interrupt
0 = Disables the EE write complete interrupt

bit LCDIE: LCD Interrupt Enable bit
1 = Enables the LCD interrupt
0 = Disables the LCD interrupt

bit CMIE: Comparator Interrupt Enable bit
1 = Enables the Comparator interrupt
0 = Disables the Comparator interrupt

Legend

R = Readable bit W = Writable bit

U = Unimplemented bit, read as ‘0’ - n = Value at POR reset

Note 1: The bit position of the enable bits is device dependent. Please refer to the device
data sheet for bit placement.

PICmicro MID-RANGE MCU FAMILY

DS31008A-page 8-8  1997 Microchip Technology Inc.

8.2.3 PIR Register(s)

Depending on the number of peripheral interrupt sources, there may be multiple Peripheral Inter-
rupt Flag registers (PIR1, PIR2). These registers contain the individual flag bits for the peripheral
interrupts. These registers will be generically referred to as PIR.

Although, the PIR bits have a general bit location within each register, future devices may not be
able to be consistent with that. It is recommended that you use the supplied Microchip Include
files for the symbolic use of these bits. This will allow the Assembler/Compiler to automatically
take care of the placement of these bits within the specified register.

Note 1: Interrupt flag bits get set when an interrupt condition occurs regardless of the state
of its corresponding enable bit or the global enable bit, GIE (INTCON<7>).

Note 2: User software should ensure the appropriate interrupt flag bits are cleared (by soft-
ware) prior to enabling an interrupt, and after servicing that interrupt.

Register 8-3: PIR Register

R/W-0
(Note 1)

bit 7 bit 0

bit TMR1IF: TMR1 Overflow Interrupt Flag bit
1 = TMR1 register overflowed (must be cleared in software)
0 = TMR1 register did not overflow

bit TMR2IF: TMR2 to PR2 Match Interrupt Flag bit
1 = TMR2 to PR2 match occurred (must be cleared in software)
0 = No TMR2 to PR2 match occurred

bit CCP1IF: CCP1 Interrupt Flag bit

Capture Mode
1 = A TMR1 register capture occurred (must be cleared in software)
0 = No TMR1 register capture occurred

Compare Mode
1 = A TMR1 register compare match occurred (must be cleared in software)
0 = No TMR1 register compare match occurred

PWM Mode
Unused in this mode

bit CCP2IF: CCP2 Interrupt Flag bit

Capture Mode
1 = A TMR1 register capture occurred (must be cleared in software)
0 = No TMR1 register capture occurred

Compare Mode
1 = A TMR1 register compare match occurred (must be cleared in software)
0 = No TMR1 register compare match occurred

PWM Mode
Unused in this mode

bit SSPIF: Synchronous Serial Port Interrupt Flag bit
1 = The transmission/reception is complete
0 = Waiting to transmit/receive

bit RCIF: USART Receive Interrupt Flag bit
1 = The USART receive buffer, RCREG, is full (cleared when RCREG is read)
0 = The USART receive buffer is empty

bit TXIF: USART Transmit Interrupt Flag bit
1 = The USART transmit buffer, TXREG, is empty (cleared when TXREG is written)
0 = The USART transmit buffer is full

bit ADIF: A/D Converter Interrupt Flag bit
1 = An A/D conversion completed (must be cleared in software)
0 = The A/D conversion is not complete

 1997 Microchip Technology Inc. DS31008A-page 8-9

Section 8. Interrupts
In

terru
p

ts

8

bit ADCIF: Slope A/D Converter Comparator Trip Interrupt Flag bit
1 = An A/D conversion completed (must be cleared in software)
0 = The A/D conversion is not complete

bit OVFIF: Slope A/D TMR Overflow Interrupt Flag bit
1 = Slope A/D TMR overflowed (must be cleared in software)
0 = Slope A/D TMR did not overflow

bit PSPIF: Parallel Slave Port Read/Write Interrupt Flag bit
1 = A read or a write operation has taken place (must be cleared in software)
0 = No read or write has occurred

bit EEIF: EE Write Complete Interrupt Flag bit
1 = The data EEPROM write operation is complete (must be cleared in software)
0 = The data EEPROM write operation is not complete

bit LCDIF: LCD Interrupt Flag bit
1 = LCD interrupt has occurred (must be cleared in software)
0 = LCD interrupt has not occurred

bit CMIF: Comparator Interrupt Flag bit
1 = Comparator input has changed (must be cleared in software)
0 = Comparator input has not changed

Register 8-3: PIR Register (Cont’d)

Legend

R = Readable bit W = Writable bit

U = Unimplemented bit, read as ‘0’ - n = Value at POR reset

Note 1: The bit position of the flag bits is device dependent. Please refer to the device data
sheet for bit placement.

PICmicro MID-RANGE MCU FAMILY

DS31008A-page 8-10  1997 Microchip Technology Inc.

8.3 Interrupt Latency

Interrupt latency is defined as the time from the interrupt event (the interrupt flag bit gets set) to
the time that the instruction at address 0004h starts execution (when that interrupt is enabled).

For synchronous interrupts (typically internal), the latency is 3TCY.

For asynchronous interrupts (typically external), such as the INT or Port RB Change Interrupt,
the interrupt latency will be 3 - 3.75TCY (instruction cycles). The exact latency depends upon
when the interrupt event occurs (Figure 8-2) in relation to the instruction cycle.

The latency is the same for both one and two cycle instructions.

8.4 INT and External Interrupts

The external interrupt on the INT pin is edge triggered: either rising if the INTEDG bit
(OPTION<6>) is set, or falling, if the INTEDG bit is clear. When a valid edge appears on the INT
pin, the INTF flag bit (INTCON<1>) is set. This interrupt can be enabled/disabled by setting/clear-
ing the INTE enable bit (INTCON<4>). The INTF bit must be cleared in software in the interrupt
service routine before re-enabling this interrupt. The INT interrupt can wake-up the processor
from SLEEP, if the INTE bit was set prior to going into SLEEP. The status of the GIE bit decides
whether or not the processor branches to the interrupt vector following wake-up. See the
“Watchdog Timer and Sleep Mode” section for details on SLEEP and for timing of wake-up
from SLEEP through INT interrupt.

Figure 8-2: INT Pin and Other External Interrupt Timing

Q2Q1 Q3 Q4 Q2Q1 Q3 Q4 Q2Q1 Q3 Q4 Q2Q1 Q3 Q4 Q2Q1 Q3 Q4

OSC1

CLKOUT

INT pin

INTF flag
(INTCON<1>)

GIE bit
(INTCON<7>)

INSTRUCTION FLOW

PC

Instruction
fetched

Instruction
executed

Interrupt Latency

PC PC+1 PC+1 0004h 0005h

Inst (0004h) Inst (0005h)

Dummy Cycle

Inst (PC) Inst (PC+1)

Inst (PC-1) Inst (0004h)Dummy CycleInst (PC)

—

1

4

5

1

Note 1: INTF flag is sampled here (every Q1).
2: Interrupt latency = 3-4 TCY where TCY = instruction cycle time.

Latency is the same whether Instruction (PC) is a single cycle or a 2-cycle instruction.
3: CLKOUT is available only in RC oscillator mode.
4: For minimum width of INT pulse, refer to AC specs.
5: INTF is enabled to be set anytime during the Q4-Q1 cycles.

2

3

Note: Any interrupts caused by external signals (such as timers, capture, change on port)
will have similar timing.

 1997 Microchip Technology Inc. DS31008A-page 8-11

Section 8. Interrupts
In

terru
p

ts

8

8.5 Context Saving During Interrupts

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to
save key registers during an interrupt e.g. W register and STATUS register. This has to be imple-
mented in software.

The action of saving information is commonly referred to as “PUSHing,” while the action of restor-
ing the information before the return is commonly referred to as “POPing.” These (PUSH, POP)
are not instruction mnemonics, but are conceptual actions. This action can be implemented by a
sequence of instructions. For ease of code transportability, these code segments can be made
into MACROs (see MPASM Assembler User’s Guide for details on creating macros).

Example 8-1 stores and restores the STATUS and W registers for devices with common RAM
(such as the PIC16C77). The user register, W_TEMP, must be defined across all banks and must
be defined at the same offset from the bank base address (i.e., W_TEMP is defined at 0x70 -
0x7F in Bank0). The user register, STATUS_TEMP, must be defined in Bank0, in this example
STATUS_TEMP is also in Bank0.

The steps of Example 8-1:

1. Stores the W register regardless of current bank.
2. Stores the STATUS register in Bank0.
3. Executes the Interrupt Service Routine (ISR) code.
4. Restores the STATUS (and bank select bit register).
5. Restores the W register.

If additional locations need to be saved before executing the Interrupt Service Routine (ISR)
code, they should be saved after the STATUS register is saved (step 2), and restored before the
STATUS register is restored (step 4).

Example 8-1: Saving the STATUS and W Registers in RAM
(for Devices with Common RAM)

 MOVWF W_TEMP ; Copy W to a Temporary Register
 ; regardless of current bank
 SWAPF STATUS,W ; Swap STATUS nibbles and place
 ; into W register
 MOVWF STATUS_TEMP ; Save STATUS to a Temporary register
 ; in Bank0
 :
 : (Interrupt Service Routine (ISR))
 :
 SWAPF STATUS_TEMP,W ; Swap original STATUS register value
 ; into W (restores original bank)
 MOVWF STATUS ; Restore STATUS register from
 ; W register
 SWAPF W_TEMP,F ; Swap W_Temp nibbles and return
 ; value to W_Temp
 SWAPF W_TEMP,W ; Swap W_Temp to W to restore original
 ; W value without affecting STATUS

 1997 Microchip Technology Inc. DS31008A-page 8-15

Section 8. Interrupts
In

terru
p

ts

8

Example 8-6: Source File Template

Example 8-7: Typical Interrupt Service Routine (ISR)

 LIST p = p16C77 ; List Directive,
; Revision History
;
 #INCLUDE <P16C77.INC> ; Microchip Device Header File
;
 #INCLUDE <MY_STD.MAC> ; Include my standard macros
 #INCLUDE <APP.MAC> ; File which includes macros specific
 ; to this application
; Specify Device Configuration Bits
 __CONFIG _XT_OSC & _PWRTE_ON & _BODEN_OFF & _CP_OFF & _WDT_ON
;
 org 0x00 ; Start of Program Memory
RESET_ADDR : ; First instruction to execute after a reset

 end

 org ISR_ADDR ;
 PUSH_MACRO ; MACRO that saves required context registers,
 ; or in-line code
 CLRF STATUS ; Bank0
 BTFSC PIR1, TMR1IF ; Timer1 overflow interrupt?
 GOTO T1_INT ; YES
 BTFSC PIR1, ADIF ; NO, A/D interrupt?
 GOTO AD_INT ; YES, do A/D thing
 : ; NO, do this for all sources
 : ;
 BTFSC PIR1, LCDIF ; NO, LCD interrupt
 GOTO LCD_INT ; YES, do LCD thing
 BTFSC INTCON, RBIF ; NO, Change on PORTB interrupt?
 GOTO PORTB_INT ; YES, Do PortB Change thing
INT_ERROR_LP1 ; NO, do error recovery
 GOTO INT_ERROR_LP1 ; This is the trap if you enter the ISR
 ; but there were no expected
 ; interrupts
T1_INT ; Routine when the Timer1 overflows
 : ;
 BCF PIR1, TMR1IF ; Clear the Timer1 overflow interrupt flag
 GOTO END_ISR ; Ready to leave ISR (for this request)
AD_INT ; Routine when the A/D completes
 : ;
 BCF PIR1, ADIF ; Clear the A/D interrupt flag
 GOTO END_ISR ; Ready to leave ISR (for this request)
LCD_INT ; Routine when the LCD Frame begins
 : ;
 BCF PIR1, LCDIF ; Clear the LCD interrupt flag
 GOTO END_ISR ; Ready to leave ISR (for this request)
PORTB_INT ; Routine when PortB has a change
 : ;
END_ISR ;
 POP_MACRO ; MACRO that restores required registers,
 ; or in-line code
 RETFIE ; Return and enable interrupts

PICmicro MID-RANGE MCU FAMILY

DS31009A-page 9-2  1997 Microchip Technology Inc.

9.1 Introduction

General purpose I/O pins can be considered the simplest of peripherals. They allow the
PICmicro™ to monitor and control other devices. To add flexibility and functionality to a device,
some pins are multiplexed with an alternate function(s). These functions depend on which
peripheral features are on the device. In general, when a peripheral is functioning, that pin may
not be used as a general purpose I/O pin.

For most ports, the I/O pin’s direction (input or output) is controlled by the data direction register,
called the TRIS register. TRIS<x> controls the direction of PORT<x>. A ‘1’ in the TRIS bit corre-
sponds to that pin being an input, while a ‘0’ corresponds to that pin being an output. An easy
way to remember is that a ‘1’ looks like an I (input) and a ‘0’ looks like an O (output).

The PORT register is the latch for the data to be output. When the PORT is read, the device reads
the levels present on the I/O pins (not the latch). This means that care should be taken with
read-modify-write commands on the ports and changing the direction of a pin from an input to an
output.

Figure 9-1 shows a typical I/O port. This does not take into account peripheral functions that may
be multiplexed onto the I/O pin. Reading the PORT register reads the status of the pins whereas
writing to it will write to the port latch. All write operations (such as BSF and BCF instructions) are
read-modify-write operations. Therefore a write to a port implies that the port pins are read, this
value is modified, and then written to the port data latch.

Figure 9-1: Typical I/O Port

Data bus

WR PORT

WR TRIS

RD PORT

Data Latch

TRIS Latch

P

VSS

I/O pin

Note: I/O pin has protection diodes to VDD and VSS.

QD

QCK

QD

QCK

Q D

EN

N

VDD

RD TRIS

Schmitt
Trigger

TTL or

PICmicro MID-RANGE MCU FAMILY

DS31018A-page 18-2  1997 Microchip Technology Inc.

18.1 Introduction

The Universal Synchronous Asynchronous Receiver Transmitter (USART) module is one of the
two serial I/O modules (other is the SSP module). The USART is also known as a Serial Com-
munications Interface or SCI. The USART can be configured as a full duplex asynchronous sys-
tem that can communicate with peripheral devices such as CRT terminals and personal
computers, or it can be configured as a half duplex synchronous system that can communicate
with peripheral devices such as A/D or D/A integrated circuits, Serial EEPROMs etc.

The USART can be configured in the following modes:

• Asynchronous (full duplex)
• Synchronous - Master (half duplex)
• Synchronous - Slave (half duplex)

The SPEN bit (RCSTA<7>), and the TRIS bits, have to be set in order to configure the TX/CK and
RX/DT pins for the USART.

 1997 Microchip Technology Inc. DS31018A-page 18-3

Section 18. USART
U

S
A

R
T

18

18.2 Control Registers

Register 18-1: TXSTA: Transmit Status and Control Register

R/W-0 R/W-0 R/W-0 R/W-0 U-0 R/W-0 R-1 R/W-0
CSRC TX9 TXEN SYNC — BRGH TRMT TX9D

bit 7 bit 0

bit 7 CSRC: Clock Source Select bit
Asynchronous mode
Don’t care

Synchronous mode
1 = Master mode (Clock generated internally from BRG)
0 = Slave mode (Clock from external source)

bit 6 TX9: 9-bit Transmit Enable bit
1 = Selects 9-bit transmission
0 = Selects 8-bit transmission

bit 5 TXEN: Transmit Enable bit
1 = Transmit enabled
0 = Transmit disabled

Note: SREN/CREN overrides TXEN in SYNC mode.

bit 4 SYNC: USART Mode Select bit
1 = Synchronous mode
0 = Asynchronous mode

bit 3 Unimplemented: Read as '0'

bit 2 BRGH: High Baud Rate Select bit
Asynchronous mode
1 = High speed
0 = Low speed

Synchronous mode
Unused in this mode

bit 1 TRMT: Transmit Shift Register Status bit
1 = TSR empty
0 = TSR full

bit 0 TX9D: 9th bit of transmit data. Can be parity bit.

Legend

R = Readable bit W = Writable bit

U = Unimplemented bit, read as ‘0’ - n = Value at POR reset

PICmicro MID-RANGE MCU FAMILY

DS31018A-page 18-4  1997 Microchip Technology Inc.

Register 18-2: RCSTA: Receive Status and Control Register

R/W-0 R/W-0 R/W-0 R/W-0 U-0 R-0 R-0 R-0
SPEN RX9 SREN CREN — FERR OERR RX9D

bit 7 bit 0

bit 7 SPEN: Serial Port Enable bit
1 = Serial port enabled (Configures RX/DT and TX/CK pins as serial port pins)
0 = Serial port disabled

bit 6 RX9: 9-bit Receive Enable bit
1 = Selects 9-bit reception
0 = Selects 8-bit reception

bit 5 SREN: Single Receive Enable bit
Asynchronous mode
Don’t care

Synchronous mode - master
1 = Enables single receive
0 = Disables single receive

This bit is cleared after reception is complete.

Synchronous mode - slave
Unused in this mode

bit 4 CREN: Continuous Receive Enable bit
Asynchronous mode
1 = Enables continuous receive
0 = Disables continuous receive

Synchronous mode
1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)
0 = Disables continuous receive

bit 3 Unimplemented: Read as '0'

bit 2 FERR: Framing Error bit
1 = Framing error (Can be updated by reading RCREG register and receive next valid byte)
0 = No framing error

bit 1 OERR: Overrun Error bit
1 = Overrun error (Can be cleared by clearing bit CREN)
0 = No overrun error

bit 0 RX9D: 9th bit of received data, can be parity bit.

Legend

R = Readable bit W = Writable bit

U = Unimplemented bit, read as ‘0’ - n = Value at POR reset

 1997 Microchip Technology Inc. DS31018A-page 18-5

Section 18. USART
U

S
A

R
T

18

18.3 USART Baud Rate Generator (BRG)

The BRG supports both the Asynchronous and Synchronous modes of the USART. It is a dedi-
cated 8-bit baud rate generator. The SPBRG register controls the period of a free running 8-bit
timer. In asynchronous mode bit BRGH (TXSTA<2>) also controls the baud rate. In synchronous
mode bit BRGH is ignored. Table 18-1 shows the formula for computation of the baud rate for
different USART modes which only apply in master mode (internal clock).

Given the desired baud rate and Fosc, the nearest integer value for the SPBRG register can be
calculated using the formula in Table 18-1, where X equals the value in the SPBRG register (0 to
255). From this, the error in baud rate can be determined.

Table 18-1: Baud Rate Formula

Example 18-1 shows the calculation of the baud rate error for the following conditions:

FOSC = 16 MHz
Desired Baud Rate = 9600
BRGH = 0
SYNC = 0

Example 18-1: Calculating Baud Rate Error

It may be advantageous to use the high baud rate (BRGH = 1) even for slower baud clocks. This
is because the FOSC / (16(X + 1)) equation can reduce the baud rate error in some cases.
Writing a new value to the SPBRG register causes the BRG timer to be reset (or cleared). This
ensures the BRG does not wait for a timer overflow before outputting the new baud rate.

Table 18-2: Registers Associated with Baud Rate Generator

SYNC BRGH = 0 (Low Speed) BRGH = 1 (High Speed)

0
1

(Asynchronous) Baud Rate = FOSC/(64(X+1))
(Synchronous) Baud Rate = FOSC/(4(X+1))

Baud Rate= FOSC/(16(X+1))
NA

X = value in SPBRG (0 to 255)

Desired Baud rate = Fosc / (64 (X + 1))
9600 = 16000000 / (64 (X + 1))
X =  25.042 = 25

Calculated Baud Rate = 16000000 / (64 (25 + 1))
= 9615

Error = (Calculated Baud Rate - Desired Baud Rate)
Desired Baud Rate

= (9615 - 9600) / 9600
= 0.16%

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Value on:

POR,
BOR

Value on all
other resets

TXSTA CSRC TX9 TXEN SYNC — BRGH TRMT TX9D 0000 -010 0000 -010

RCSTA SPEN RX9 SREN CREN — FERR OERR RX9D 0000 -00x 0000 -00x

SPBRG Baud Rate Generator Register 0000 0000 0000 0000

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used by the BRG.

PICmicro MID-RANGE MCU FAMILY

DS31018A-page 18-6  1997 Microchip Technology Inc.

Table 18-3: Baud Rates for Synchronous Mode

BAUD
RATE
(Kbps)

FOSC = 20 MHz SPBRG
value

(decimal)

16 MHz SPBRG
value

(decimal)

10 MHz SPBRG
value

(decimal)

7.15909 MHz SPBRG
value

(decimal)KBAUD
%

ERROR KBAUD
%

ERROR KBAUD
%

ERROR KBAUD
%

ERROR

0.3 NA - - NA - - NA - - NA - -

1.2 NA - - NA - - NA - - NA - -

2.4 NA - - NA - - NA - - NA - -

9.6 NA - - NA - - 9.766 +1.73 255 9.622 +0.23 185

19.2 19.53 +1.73 255 19.23 +0.16 207 19.23 +0.16 129 19.24 +0.23 92

76.8 76.92 +0.16 64 76.92 +0.16 51 75.76 -1.36 32 77.82 +1.32 22

96 96.15 +0.16 51 95.24 -0.79 41 96.15 +0.16 25 94.20 -1.88 18

300 294.1 -1.96 16 307.69 +2.56 12 312.5 +4.17 7 298.3 -0.57 5

500 500 0 9 500 0 7 500 0 4 NA - -

HIGH 5000 - 0 4000 - 0 2500 - 0 1789.8 - 0

LOW 19.53 - 255 15.625 - 255 9.766 - 255 6.991 - 255

BAUD
RATE
(Kbps)

FOSC = 5.0688 MHz 4 MHz
SPBRG
value

(decimal)

3.579545 MHz
SPBRG
value

(decimal)

1 MHz
SPBRG
value

(decimal)

32.768 kHz
SPBRG
value

(decimal)KBAUD
%

ERROR

SPBRG
value

(decimal)
KBAUD

%
ERROR KBAUD

%
ERROR KBAUD

%
ERROR KBAUD

%
ERROR

0.3 NA - - NA - - NA - - NA - - 0.303 +1.14 26

1.2 NA - - NA - - NA - - 1.202 +0.16 207 1.170 -2.48 6

2.4 NA - - NA - - NA - - 2.404 +0.16 103 NA - -

9.6 9.6 0 131 9.615 +0.16 103 9.622 +0.23 92 9.615 +0.16 25 NA - -

19.2 19.2 0 65 19.231 +0.16 51 19.04 -0.83 46 19.24 +0.16 12 NA - -

76.8 79.2 +3.13 15 76.923 +0.16 12 74.57 -2.90 11 83.34 +8.51 2 NA - -

96 97.48 +1.54 12 1000 +4.17 9 99.43 +3.57 8 NA - - NA - -

300 316.8 +5.60 3 NA - - 298.3 -0.57 2 NA - - NA - -

500 NA - - NA - - NA - - NA - - NA - -

HIGH 1267 - 0 100 - 0 894.9 - 0 250 - 0 8.192 - 0

LOW 4.950 - 255 3.906 - 255 3.496 - 255 0.9766 - 255 0.032 - 255

 2003 Microchip Technology Inc. DS39582B-page 1

PIC16F87XA

Devices Included in this Data Sheet:

High-Performance RISC CPU:

• Only 35 single-word instructions to learn
• All single-cycle instructions except for program

branches, which are two-cycle
• Operating speed: DC – 20 MHz clock input

DC – 200 ns instruction cycle
• Up to 8K x 14 words of Flash Program Memory,

Up to 368 x 8 bytes of Data Memory (RAM),
Up to 256 x 8 bytes of EEPROM Data Memory

• Pinout compatible to other 28-pin or 40/44-pin
PIC16CXXX and PIC16FXXX microcontrollers

Peripheral Features:

• Timer0: 8-bit timer/counter with 8-bit prescaler

• Timer1: 16-bit timer/counter with prescaler,
can be incremented during Sleep via external
crystal/clock

• Timer2: 8-bit timer/counter with 8-bit period
register, prescaler and postscaler

• Two Capture, Compare, PWM modules

- Capture is 16-bit, max. resolution is 12.5 ns
- Compare is 16-bit, max. resolution is 200 ns
- PWM max. resolution is 10-bit

• Synchronous Serial Port (SSP) with SPI™
(Master mode) and I2C™ (Master/Slave)

• Universal Synchronous Asynchronous Receiver
Transmitter (USART/SCI) with 9-bit address
detection

• Parallel Slave Port (PSP) – 8 bits wide with
external RD, WR and CS controls (40/44-pin only)

• Brown-out detection circuitry for
Brown-out Reset (BOR)

Analog Features:

• 10-bit, up to 8-channel Analog-to-Digital
Converter (A/D)

• Brown-out Reset (BOR)

• Analog Comparator module with:
- Two analog comparators
- Programmable on-chip voltage reference

(VREF) module
- Programmable input multiplexing from device

inputs and internal voltage reference
- Comparator outputs are externally accessible

Special Microcontroller Features:

• 100,000 erase/write cycle Enhanced Flash
program memory typical

• 1,000,000 erase/write cycle Data EEPROM
memory typical

• Data EEPROM Retention > 40 years

• Self-reprogrammable under software control
• In-Circuit Serial Programming™ (ICSP™)

via two pins
• Single-supply 5V In-Circuit Serial Programming
• Watchdog Timer (WDT) with its own on-chip RC

oscillator for reliable operation
• Programmable code protection

• Power saving Sleep mode
• Selectable oscillator options
• In-Circuit Debug (ICD) via two pins

CMOS Technology:

• Low-power, high-speed Flash/EEPROM
technology

• Fully static design

• Wide operating voltage range (2.0V to 5.5V)
• Commercial and Industrial temperature ranges
• Low-power consumption

• PIC16F873A
• PIC16F874A

• PIC16F876A
• PIC16F877A

Device

Program Memory Data
SRAM
(Bytes)

EEPROM
(Bytes)

I/O
10-bit

A/D (ch)
CCP

(PWM)

MSSP

USART
Timers
8/16-bit

Comparators
Bytes

Single Word
Instructions

SPI
Master

I2C

PIC16F873A 7.2K 4096 192 128 22 5 2 Yes Yes Yes 2/1 2

PIC16F874A 7.2K 4096 192 128 33 8 2 Yes Yes Yes 2/1 2

PIC16F876A 14.3K 8192 368 256 22 5 2 Yes Yes Yes 2/1 2

PIC16F877A 14.3K 8192 368 256 33 8 2 Yes Yes Yes 2/1 2

28/40/44-Pin Enhanced Flash Microcontrollers

wire_16.asm
;**
;
; PVK40 Example : Wire
;
; Processor : PIC16F877A
; Clock : XT 3.2768 MHz
;
; On your PVK40 board set DIP switches according to following way:
; 1) Switch off all DIP switches except:
; 2) Switch on OSC 3.276M on S9
; 3) Switch on B3 LED on S11
;**
; Assembler directives :
 list p = PIC16F877A ; processor type
 __config 0x3F71 ; configuration setting
;--
; Symbol definition :
status equ 0x03 ;status is on the 0x03 address
portb equ 0x06
trisb equ 0x06 ;direct addressing
portd equ 0x08
trisd equ 0x08 ;direct addressing
;
#define PB portd,0 ;pushbutton 0 is on the RD0 pin
#define LED portb,3 ;LED is on the RB3 pin
#define RP0 status,5 ;RP0 is bit 5 in status register
;--
 org 0 ;program starts at address 0x000
 bsf RP0 ;bank 1 in RAM memory
 movlw B'11110111'
 movwf trisb ;pin RB3 is output
 movlw B'11111111'
 movwf trisd ;portd pins are inputs
 bcf RP0 ;bank 0 in RAM memory
;
Main: btfss PB ;is PB 0 or 1?
 goto Main_A ;if PB=0, jump to main_A
 bcf LED ;PB=1, LED off
 goto Main ;closes the loop
Main_A: bsf LED ;LED on
 goto Main ;closes the loop
;**
; end of PVK40 Example : Wire
 end

Page 1

blink_16.asm
;**
;
; PVK40 Example : Blink
;
; Processor : PIC16F877A
; Clock : XT 3.2768 MHz
;
; On your PVK40 board set DIP switches according to following way:
; 1) Switch off all DIP switches except:
; 2) Switch on OSC 3.276M on S9
; 3) Switch on B3 LED on S11
;**
; Assembler directives :
 list p = PIC16F877A ; processor type
 __config 0x3F71 ; configuration setting
;--
; Special Function Register definition :
status equ 0x03 ;status is on the 0x03 address
portb equ 0x06
trisb equ 0x06 ;direct addressing
; General Purpose Register definition :
cnt1 equ 0x20 ;used for Wait subroutine
cnt2 equ 0x21 ;used for Wait subroutine
cnt3 equ 0x22 ;used for Wait subroutine
; Destination definition :
w equ 0x00
f equ 0x01
; Bits definition :
#define LED portb,3 ;LED is on the RB3 pin
#define RP0 status,5 ;RP0 is bit 5 in status register
;--
 org 0 ;program starts at address 0x000
 bsf RP0 ;bank 1 in RAM memory
 movlw B'11110111'
 movwf trisb ;pin RB3 is output
 bcf RP0 ;bank 0 in RAM memory
;
Main: bsf LED ;LED on
 call Wait ;wait 0.5 second
 bcf LED ;LED off
 call Wait ;wait 0.5 second
 goto Main ;closes the loop
;--
Wait: movlw 0x05 ;this subroutine wait 0.5 second
 movwf cnt3 ;1 cycle = 1/(Fosc/4) second =>
Wait_A: movlw 0x6B ;=> we need 409600 cycles
 movwf cnt2 ;0x05*0x6B*0xFF*3 = 409275
Wait_B: movlw 0xFF
 movwf cnt1
Wait_C: decfsz cnt1,f ;decrement cnt1
 goto Wait_C
 decfsz cnt2,f ;and if cnt1=0 then decrement cnt2
 goto Wait_B
 decfsz cnt3,f ;and if cnt2=0 then decrement cnt3
 goto Wait_A
 return ;if cnt3=0 then return
;**
; end of PVK40 Example : Blink
 end

Page 1

