Title: Upper and lower sharp bounds for Neumann eigenvalues of the Hermite operator.

Abstract: Denote by $\mu_1(\Omega)$ the first nontrivial eigenvalue of the problem

(1)
$$\begin{cases} -\Delta u + x \cdot \nabla u = \mu u & \text{in } \Omega \\ \frac{\partial u}{\partial \nu} = 0 & \text{on } \partial \Omega, \end{cases}$$

where Ω is a smooth and possibly unbounded domain of \mathbb{R}^n and ν is the outward normal to $\partial\Omega$. We firstly prove that among all smooth domains Ω of \mathbb{R}^n symmetric about the origin, having prescribed Gaussian measure, $\mu_1(\Omega)$ is maximum if and only if Ω is the euclidean ball centered at the origin (see [1]).

We will then consider (1) when Ω is a convex and possibly unbounded domain in \mathbb{R}^2 having an axis of symmetry \tilde{r} passing through the origin. Denoted with $\mu_1^{\text{odd}}(\Omega)$ the lowest eigenvalue of (1) having a corresponding eigenfunction odd with respect to \tilde{r} , we will provide (see [2]) a lower bound for $\mu_1^{\text{odd}}(\Omega)$ in terms of the first eigenvalue of a suitable Sturm-Liuville problem.

Finally, time permitting, we will discuss the inequality

$$\mu_1(\Omega) \ge 1$$

where Ω is a convex domain of \mathbb{R}^n (see [3] and [4]).

References

- F. Chiacchio G. di Blasio, Isoperimetric estimates for the first Neumann eigenvalue of Hermite differential equations, Ann. Inst. H. Poincaré Anal. Non Linéaire. Volume 29, Issue 2, 199–216, (2012).
- [2] B. Brandolini -F. Chiacchio C. Trombetti, A sharp lower bound for some Neumann eigenvalues of the Hermite operator, Differential and Integral Equations 26 (2013), 639-654.
- B. Brandolini F. Chiacchio A. Henrot C. Trombetti, An optimal Poincaré-Wirtinger inequality in Gauss space, Math. Research Letters 20 (2013), 449-457.
- [4] Brandolini B. Chiacchio F. Krejcirik D. Trombetti C., The equality case in a Poincaré-Wirtinger type inequality, http://arxiv.org/abs/1410.0676.