On the spectrum of the Kronig-Penney model in a constant electric field

SIMON LARSON

Caltech

Abstract. We are interested in the nature of the spectrum of the onedimensional Schrödinger operator

$$-\frac{d^2}{dx^2} - Fx + \sum_{n \in \mathbb{Z}} g_n \delta(x - n)$$

with F > 0 and two different choices of the coupling constants $\{g_n\}_{n \in \mathbb{Z}}$. In the first model $g_n \equiv \lambda$ and we prove that if $F \in \pi^2 \mathbb{Q}$ then the spectrum is \mathbb{R} and is furthermore absolutely continuous away from an explicit discrete set of points. In the second model g_n are independent random variables with mean zero and variance λ^2 . Under certain assumptions on the distribution of these random variables we prove that almost surely the spectrum is dense pure point if $F < \lambda^2/2$ and purely singular continuous if $F > \lambda^2/2$. Based on joint work with Rupert Frank.