SPECTRAL GAP FOR CONVEX GRAPHENE QUANTUM DOTS

VLADIMIR LOTOREICHIK

NUCLEAR PHYSICS INSTITUTE CZECH ACADEMY OF SCIENCES

We will discuss the massless Dirac operator D_{Ω} on a bounded and sufficiently smooth domain $\Omega \subset \mathbb{R}^2$ with so-called *infinite mass boundary conditions*. This Dirac operator arises in an effective mathematical theory for graphene quantum dots. The operator D_{Ω} is self-adjoint in $L^2(\Omega, \mathbb{C}^2)$ and non-semi-bounded. Its spectrum $\sigma(D_{\Omega})$ is discrete and symmetric with respect to the origin. The size of the spectral gap for D_{Ω}

 $\mathcal{L}_{\Omega} := \operatorname{dist}\left(\sigma(\mathsf{D}_{\Omega}), 0\right) > 0$

is known to be important in applications. Our main result concerns the geometric control on \mathcal{L}_{Ω} for convex C^3 -domains. Namely, we obtain an upper-bound on \mathcal{L}_{Ω} in terms of $\mathcal{L}_{\mathbb{D}}$ for the unit disk \mathbb{D} with an explicit geometrically-induced pre-factor. This result can also be formulated as a reverse Faber-Krahn-type inequality for D_{Ω} under a suitable geometric constraint.

This talk is based on a joint work with Thomas Ourmières-Bonafos.