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Abstract
This paper gives a new method of attack on the Nambu–Goldstone dynamics in
spontaneously broken theories. Since the target space of the Nambu–Goldstone
fields is a group coset space, their effective quantum dynamics can be naturally
phrased in terms of generalized coherent-state functional integrals. As an
explicit example of this line of reasoning, we construct a low-energy effective
Lagrangian for the Heisenberg ferromagnet in a broken phase. The leading field
configuration in the WKB approximation leads to the Landau–Lifshitz equation
for quantum ferromagnet. The corresponding linearized equations allow one to
identify the Nambu–Goldstone boson with a ferromagnetic magnon.

This article is part of a special issue of Journal of Physics A: Mathematical and
Theoretical devoted to ‘Coherent states: mathematical and physical aspects’.

PACS numbers: 31.15.xk, 14.80.Va, 11.30.Qc, 03.65.Vf

1. Introduction

Functional integrals provide indisputably a powerful tool in diverse areas of physics,
both computationally and conceptually. They often offer the easiest route to derivation of
perturbation expansions, accommodate naturally gauge symmetry and serve as an excellent
framework for the non-perturbative analysis [1, 2]. Functional integrals that are based on
the occupation number representation or on the Fock space are enjoying growing popularity
among practitioners in both high-energy and solid-state physics. In contrast, the functional
integrals that are rooted in the over-complete set of coherent states (CS) are used comparatively
less. Despite their cleaner mathematical structure, the CS-based functional integrals are still
rather interesting curiosity than full-fledged tools of particle or solid-states physics.
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The purpose of this paper is to call attention to the fact that CS-based functional integrals
constructed from the so-called group-related or generalized CS [3–7] offer a very natural tool
in theory of critical phenomena with genuine phenomenological implications. In particular,
they have a built-in quality to describe an effective low-energy behavior of systems with the
spontaneous breakdown of a global continuous symmetry provided the interest lies in the
low-energy gapless excitations known as Nambu–Goldstone (NG) bosons. We will illustrate
our point by employing the generalized CS functional integrals to investigate the low-energy
behavior of ferromagnets in the broken phase, i.e. below the Curie temperature.

The structure of this paper is as follows. To set the stage we recall in section 2 some
fundamentals of the group-related CS with a special emphasis on the SU (2) CS. Section 3
is devoted to the formulation of functional integrals by means of generalized CS. A natural
appearance of the geometric Berry–Anandan phase in the action of the CS functional integrals
and the way how it may affect the dynamics is also discussed. As an explicit example, we
derive the SU (2) CS functional integral. The role of the group quotient space as an arena for
the dynamics of NG fields is discussed in section 4. There we also prove the NG theorem
with the help of the coset-space construction of spontaneous symmetry breakdown (SSB).
Distinction between the relativistic and the non-relativistic versions of the NG theorem is
stressed. In section 5, we observe that transition amplitudes as well as the partition function
for NG modes can be formulated via the generalized CS functional integrals. To put more flesh
on the bare bones, we investigate the low-temperature properties of the quantum Heisenberg
model of a ferromagnet in a broken phase. The corresponding CS functional integral can
be identified with the SU (2)/U (1)−σ model. The WKB approximation yields in the limit
of continuous spin lattice (i.e. large wavelength limit) the Landau–Lifshitz equations for a
quantum ferromagnet. A linearized version of the latter equations allows one to identify the
NG field with the massless spin wave. The NG boson then corresponds to a ferromagnetic
magnon. Various remarks and generalizations are postponed to section 6.

2. Group-related CS

To construct the CS related to a Lie group G, we follow here [3]. Let D̂(g), g ∈ G, be
an irreducible unitary representation of G acting in some Hilbert space H. We choose a
normalized fiducial state vector in H and denote it as |0〉. The generalized CS corresponding
to G are then defined as

|0(g)〉 = D̂(g)|0〉 for ∀g ∈ G. (1)

With the foresight of applications in the SSB theory, we have denoted the group-related CS as
|0(g)〉. Two CS |0(g1)〉 and |0(g2)〉 represent the same physical state in H if

D̂(g1)|0〉 = eiα(g1,g2 )D̂(g2)|0〉 ⇔ D̂(g−1
2 g1)|0〉 = eiα(g1,g2 )|0〉. (2)

Defining the stability group H|0〉 as a group of transformations leaving |0〉 invariant (up to a
phase), i.e.

H|0〉 = {h ∈ G : D̂(h)|0〉 = eiβ(h)|0〉 , β(h) ∈ R} , (3)

the distinct G-related CS can be parameterized by the elements of the coset G/H|0〉. Since
H|0〉’s for different fiducial states are mutually isomorphic subgroups of G, we will simply use
H instead of H|0〉.

Let dμ(g) be the left-invariant group measure, i.e. for any fixed g0 ∈ G, dμ(g0·g) = dμ(g).
Having dμ(g), the measure on the coset space G/H is naturally induced. We denote it as dζ.
The resolution of the unity can then be written as

1̂ = c
∫

G
dμ(g) |0(g)〉〈0(g)| = c

∫
G/H

dζ |0(ζ)〉〈0(ζ)|. (4)
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Here, c is determined so as to fulfill the consistency condition

1 = 〈0(ζ′)|0(ζ′)〉 = c
∫

G/H
dζ |〈0(ζ′)|0(ζ)〉|2, ζ′ ∈ G/H. (5)

It is thus meaningful to restrict oneself to representations D̂(g) that are square integrable over
the quotient G/H. The more up-to-date view on the group-related CS together with much of
the background material can be found, e.g., in [8, 9].

2.1. SU(2) coherent states

For our purpose, we will specifically consider the SU (2) CS. The SU (2) group has three
generators Ĵ1, Ĵ2, Ĵ3, which close the su(2) algebra

[Ĵ+, Ĵ−] = 2Ĵ3, [Ĵ3, Ĵ±] = ±Ĵ±. (6)

Here, Ĵ± = Ĵ1 ± iĴ2. The unitary irreducible representations of the su(2) algebra are finite
dimensional and are spanned by the states | j, m〉 fulfilling

Ĵ3| j, m〉 = m| j, m〉,
Ĵ±| j, m〉 =

√
( j ∓ m)( j ± m + 1) | j, m ± 1〉, (|m| � j). (7)

The representations of SU (2) are labeled by the eigenvalues of the su(2) Casimir operator:

Ĉ = Ĵ2 = 1
2 (Ĵ+Ĵ− + Ĵ−Ĵ+) + Ĵ2

3 = j( j + 1)1̂, (8)

i.e.

Ĵ2| j, m〉 = j( j + 1)| j, m〉 with j = 0, 1
2 , 1, 3

2 , . . . . (9)

As the fiducial vector, we might choose the state | j,− j〉. In this way, each representation has
its unique fiducial state—‘vacuum state’ |0〉 ≡ | j,− j〉. The stability group is the subgroup of
rotations around the z-axis, and thus, H = U (1). According to equation (4), the distinct CS are
labeled by ζ ∈ G/H. By noting that SU (2)/U (1) ∼= S2, we can identify ζ with the spherical
angles θ and ϕ. The associated CS can then be written as |0(θ, ϕ)〉:

|0(θ, ϕ)〉 = D̂(θ, ϕ)|0〉 = exp[iθ (Ĵ · n)]|0〉, (10)

with the unit vector n = (sin ϕ, cos ϕ, 0). Using the Gauss decomposition formula

D̂(θ, ϕ) = eξ Ĵ+ elog(1+|ξ |2 )Ĵ3 e−ξ∗ Ĵ− , ξ = tan
θ

2
eiϕ , (11)

one can alternatively use the more economical form

|0(θ, ϕ)〉 = (1 + |ξ |2)− j eξ Ĵ+|0〉 ≡ |0(ξ )〉. (12)

The scalar product of two CS |0(ξ )〉 can be written in the form

〈0(ξ ′∗)|0(ξ )〉 = (1 + ξ ′∗ξ )2 j

(1 + |ξ ′|2) j(1 + |ξ |2) j
. (13)

An important implication of equation (13), which will be relevant later, is that

|〈0(ξ ′∗)|0(ξ )〉|2 =
(

1 + m′ · m
2

)2 j

. (14)

Here, m = (sin θ cos ϕ, sin θ sin ϕ, cos θ ) is the unit vector parameterizing S2. Analogous
arguments hold also for m′. Since the SU (2) CS can be equally well parametrized by m, we
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will use the notation |0(m)〉 ≡ |0(ξ )〉 = |0(θ, ϕ)〉. According to equation (4), the resolution
of the unity reads

1̂ =
∫

SU (2)

dμ(g) |0(g)〉〈0(g)| = c
∫
S2

dm |0(m)〉〈0(m)|. (15)

The constant c is determined from the normalization condition

1 = c
∫
S2

dm |〈0(m′)|0(m)〉|2 = c
4π

2 j + 1
. (16)

So, finally, the resolution of the unity may be written in one of the following equivalent forms:

1̂= 2 j + 1

4π

∫
S2

dm |0(m)〉〈0(m)|= 2 j + 1

π

∫
S2

dξdξ ∗

(1 + |ξ |2)2
|0(ξ ∗)〉〈0(ξ )|, (17)

where in the last line we have used

dξdξ ∗ ≡ d�ξ d
ξ,

with � and 
 denoting the real and imaginary parts, respectively.

3. SU(2) CS functional integral

3.1. Generalized CS and functional integrals

We are now in position to construct the corresponding functional-integral representation
of a transition amplitude 〈0(ζ f ), t f |0(ζi), ti〉. Similarly as in the usual functional-integral
constructions [1], the key is the Heisenberg-picture resolution of unity that in the present case
reads (cf equation (4))

1̂ = c
∫

G/H
dζ |0(ζ), t〉〈0(ζ), t|. (18)

The latter holds for all times t. Let us now partition the time interval [ti, t f ] into N + 1
equidistant pieces 	t by writing t f − ti = (N + 1)	t. We can now label the intermediate
times as, say tn = ti + n	t, n = 1, 2, . . . , N. Introducing the resolution of unity for every
intermediate time point, we obtain

〈0(ζ f ), t f |0(ζi), ti〉 =
(∫

G/H

N∏
k=1

c dζk

)
〈0(ζ f ), t f |0(ζN ), t ′ − 	t〉

× 〈0(ζN ), t ′ − 	t|0(ζN−1), t ′ − 2	t〉〈0(ζN−1), t ′ − 2	t|0(ζN−2), t ′ − 3	t〉
...

× 〈0(ζ1), t + 	t|0(ζi), ti〉. (19)

We have formally set t0 = ti and tN+1 = t f . The affiliated infinitesimal-time transition
amplitude can be written as

〈0(ζk), tk|0(ζk−1), tk−1〉 � 〈0(ζk)|
(

1 − i
∫ tk

tk−1

dt Ĥ(t)

)
|0(ζk−1)〉

� 〈0(ζk)|0(ζk−1)〉
(
1 − i	t H(ζk, ζk−1, tk)

)
� 〈0(ζk)|0(ζk−1)〉 exp

(
−i

∫ tk

tk−1

dt H(ζ, ζ̇, t)

)
. (20)

Here,

H(ζk, ζk−1, tk) = 〈0(ζk)|Ĥ(tk)|0(ζk−1)〉
〈0(ζk)|0(ζk−1)〉
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is the normalized matrix element of the Hamiltonian. Equation (20) can be further simplified
if we use the fact that to the leading order in 	t

〈0(ζk)|0(ζk−1)〉 � 1 − 〈0(ζk)|{|0(ζk)〉 − |0(ζk−1)〉}

� exp

(
−	t

〈0(ζk)|{|0(ζk)〉 − |0(ζk−1)〉}
	t

)

� exp

(
−

∫ tk

tk−1

〈0(ζ)| d

dt
|0(ζ)〉 dt

)
. (21)

It should be also noted that both |0(ζ j)〉 and 〈0(ζi)| are now the Schrödinger-picture CS.
Combining equation (20) with equation (21) allows one to write the finite-time transition
amplitude in the large N limit as

〈0(ζ f ), t f |0(ζi), ti〉 =
∫ ζ(t f )=ζ f

ζ(ti)=ζi

Dμ(ζ) exp

(
i
∫ t f

ti

dt

[
〈0(ζ)|i d

dt
|0(ζ)〉 − H(ζ, ζ̇, t)

])
. (22)

Here, we have formally identified the functional-integral measure as∫ ζ(t f )=ζ f

ζ(ti)=ζi

Dμ(ζ) · · · = lim
N→∞

(∫
G/H

N∏
k=1

c dζk

)
· · · . (23)

Let us also observe that the assumed square integrability of generalized CS implies

〈0(ζ)|i d

dt
|0(ζ)〉 = − d

dt
{〈0(ζ)|}i|0(ζ)〉 =

(
〈0(ζ)|i d

dt
|0(ζ)〉

)∗
, (24)

i.e. 〈0(ζ)|id/dt|0(ζ)〉 is purely real. There is an intimate connection of (24) with the concept
of geometric phase. To see this, we write the corresponding phase factor appearing in the path
integral (22) as∫ t f

ti

〈0(ζ)|i d

dt
|0(ζ)〉 dt =

∫
γ

〈0(ζ)|i∇ζ |0(ζ)〉 · dζ. (25)

In particular, when |0(ζ)〉 are the eigenstates of the Hamiltonian (as, e.g., in nonlinear σ

models where |0(ζ)〉 describe the degenerate ground state) and when ζ(t) traverses during the
period t f − ti, a closed path γ in the G/H space, equation (25) corresponds to the fundamental
formula for the Berry–Anandan phase [10–12]. Closed paths typically occur when (quantum-
mechanical) partition functions Z are to be computed [1]. This is because in such a case

∫ ζ(t f )=ζ f

ζ(ti)=ζi

Dμ(ζ) · · · �→
∫

G/H
dζi

∫ ζ(t f )=ζi

ζ(ti )=ζi

Dμ(ζ) · · · . (26)

We shall say more on this in section 5.

3.2. SU (2) coherent states

Results of the previous two subsections can now be particularized for the SU (2) CS. Namely,
from equation (22), the transition amplitude can be written in the form

〈0(ξ ∗
f ), t f |0(ξi), ti〉 = lim

N→∞

(∫ N∏
k=1

dμ(ξ ∗
k , ξk)

)

× exp

(
i

N∑
l=0

	t

[
i

	t
〈0(ξ ∗

l )|	|0(ξl )〉 − H(ξ ∗
l , ξl−1, tl )

])

5
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=
∫ ξ∗(t f )=ξ∗

f

ξ (ti )=ξi

Dμ(ξ ∗, ξ ) exp

(
i
∫ t f

ti

dt

[
〈0(ξ ∗)|i d

dt
|0(ξ )〉 − H(ξ ∗, ξ , t)

])

=
∫ ξ∗(t f )=ξ∗

f

ξ (ti )=ξi

Dμ(ξ ∗, ξ ) exp

(
i
∫ t f

ti

dt

[
i

j(ξ ∗ξ̇ − ξ̇ ∗ξ )

(1 + |ξ |2) − H(ξ ∗, ξ , t)

])
. (27)

Here,

dμ(ξ ∗
k , ξk) ≡ dξkdξ ∗

k

(1 + |ξk|2)2
and H(ξ ∗

l , ξl−1, tl ) ≡ 〈0(ξ ∗
l )|H(tl )|0(ξl−1)〉

〈0(ξ ∗
l )|0(ξl−1)〉 .

Use was also made of the fact that up to the order 	ξl = ξl − ξl−1 one has

〈0(ξ ∗
l )|	|0(ξl )〉 = 〈0(ξ ∗

l )|{|0(ξl )〉 − |0(ξl−1)〉} = j(ξ ∗
l 	ξl − ξl	ξ ∗

l )

1 + |ξl|2 .

The path integral for SU (2) CS was originally constructed by Klauder [13] and Kuratsuji and
Suzuki [14]. Its main utility has been in semiclassical treatments of quantum systems, which
have Hamiltonians composed of the generators of the SU (2) group, although other applications,
such as duality or geometrical phases of spin systems, are also frequently mentioned in the
literature.

Generalization to field theory (e.g., to continuous spin lattice) can now proceed along
standard lines. In particular, one formally exchanges the coset-space variables ζ a(t) (a =
1, . . . , dim G/H) with the coset-space fields φa(x, t). These fields provide a mapping from
(D+ 1)-dimensional spacetime to the group quotient G/H, i.e. φa(x, t) : R

D+1 �→ G/H. The
space G/H, into which the mapping is done, is known as the target space.

4. NG theorem and the structure of vacuum manifold

We begin this section by summarizing the quantum field theory procedure leading to the NG
theorem [16, 17]. This is of course well known but it is useful to repeat it here in order
to make our discussion self-contained. We will also need it in section 5 in order to set up
functional integrals for NG fields and to correctly interpret the ensuing results. Briefly stated,
the theorem asserts that for a physical system with a global internal symmetry group G,

which is spontaneously broken down to a subgroup H, there are dim(G/H) = dimG − dimH
massless modes—NG bosons. For our purpose, the best way to introduce the NG theorem
is to use the Lorentz-invariant setting and apply the coset-space construction of SSB [16]. A
non-relativistic variant of the theorem will be discussed subsequently.

Let us assume that a full symmetry group of the system, the so-called disordered-phase
symmetry, is G. The Hamiltonian is thus invariant under action of G:

D̂−1(g)ĤD̂(g) = Ĥ for ∀g ∈ G. (28)

Here, D̂(g) is a unitary operator representing the element g ∈ G in the Hilbert space. The
SSB occurs when the vacuum is invariant only under some subgroup H of G. This, e.g.,
happens when the system is cooled down below a critical temperature Tc. A hallmark of the
SSB is the existence of some operator 
̂ known as the order parameter [18] whose ground-
state expectation value 
0 is not invariant under the whole group G, but only under H. The
symmetry H is known as the broken-phase or the ordered-phase symmetry.

Let us for definiteness consider the order parameter to be a multiplet �̂ transforming
under some n-dimensional representation S of G:

D̂−1(g)
̂iD̂(g) =
n∑

j=1

Si j(g)
̂ j. (29)

6
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By definition, the vacuum expectation value 〈0|
̂i|0〉 ≡ 
0
i is not invariant under whole G but

only under H. This means that for g from G/H

〈0|D̂−1(g)
̂iD̂(g)|0〉 =
n∑

j=1

Si j(g)
0
j �= 
0

i . (30)

On the level of group generators, this may be phrased as
n∑

j=1

Si j(T
a)
0

j �= 0 and
n∑

j=1

Si j(t
r)
0

j = 0, (31)

where tr are the generators from H and T a are the broken-symmetry generators.
Equation (30) clearly shows that the ground state is not invariant under the action of g ∈ G/H:

D̂(g)|0〉 ≡ |0(g)〉 �= |0〉 for g ∈ G/H , (32)

or equivalently D̂(T a)|0〉 �= 0. Since the states |0(g)〉 are also the eigenstates of Ĥ with
the same eigenvalue as |0〉 (cf equation (28)), the ground state is degenerate and distinct
states are distinguished by different g’s from G/H. So the manifold of degenerate vacuum
states—vacuum manifold—can be identified with the quotient space G/H.

To proceed we note that (30) can be around a unit element written for all ‘a’ as

lim
V→∞

〈0|[Q̂a
V (t), 
̂i(0)]|0〉 =

n∑
j=1

Si j(T
a)
0

j �= 0. (33)

Here, Q̂a
V (t) is the regularized Noether charge associated with the generator T a:

Q̂a
V (t) =

∫
V

dx Ĵa
0 (x, t), (34)

where Ĵa
0 (x, t) is the conserved Noether current. In (33), we have used the translational

invariance of the vacuum, which allowed us to work with 
̂i(0). The regularization used in
equation (33) is necessary since Q̂a is not mathematically well defined—it is not unitarily
implementable [16]. Indeed, the translation invariance of the vacuum implies that

〈0|Q̂aQ̂a|0〉 =
∫

dx〈0|Ĵa
0 (x, t)Q̂a|0〉 (35)

is divergent. Inserting now a complete set of intermediate energy states and using again the
translational invariance of the vacuum, we obtain from (33)

lim
V→∞

∑
n

∫
V

dx
[〈0|Ĵa

0 (0)|n〉〈n|
̂i(0)|0〉e−ixpn − 〈0|
̂i(0)|n〉〈n|Ĵa
0 (0)|0〉eixpn

]
=

∑
n

(2π)Dδ(D)(pn)
[〈0|Ĵa

0 (0)|n〉〈n|
̂i(0)|0〉e−iEnt

−〈0|
̂i(0)|n〉〈n|Ĵa
0 (0)|0〉eiEnt

] �= 0. (36)

Here, pn = (En, pn) and D is the spatial dimension. As long as the theory satisfies the
microcausality condition, i.e. the commutator of any two local operators separated by a space-
like interval vanishes, we have
d

dt

[
Q̂a

V (t), 
̂i(0)
] =

∫
V

dx
[
∂μĴa

μ(x, t), 
̂i(0)
] −

∮
�

dSi
[
Ĵa

i (x, t), 
̂i(0)
] V→∞−→ 0. (37)

� denotes the surface bounding the volume V , i.e. the sphere SD−1. This indicates that after
the time derivative the last two lines of (36) give∑

n

(2π)Dδ(D)(pn)En
[〈0|Ĵa

0 (0)|n〉〈n|
̂i(0)|0〉e−iEnt + 〈0|
̂i(0)|n〉〈n|Ĵa
0 (0)|0〉eiEnt

] = 0. (38)

7
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Comparing (36) with (38) shows that there must exist a state |n〉, such that

〈0|
̂i(0)|n〉〈n|Ĵa
0 (0)|0〉 �= 0 for δ(D)(pn)En = 0. (39)

This state is a massless state with the same quantum number as Q̂a since it is generated by
Q̂a from the vacuum |0〉. In particular, the field excitations corresponding to this state (the
so-called NG excitations) must have the same Lorentz properties as the charge Q̂a. Because
the charge is related to internal symmetries, the NG field must be a Lorentz scalar (or pseudo-
scalar) and a boson. A similar argument for spontaneously broken supersymmetry implies
that the NG particles are spin-1/2 fermions, and they are spin-1 bosons (e.g., phonons) for
spontaneously broken translation invariance.

Let us define the vacuum state |0(π)〉 ≡ exp(iπ · Q̂)|0〉, where π · Q̂ = πaQ̂a. If we
consider in the neighborhood of the vacuum state |0(π)〉 an infinitesimal transformation θ, say
in the direction ‘a’, we obtain (no summation over ‘a’)

δθ |0(π)〉 = exp(iθaQ̂a)|0(π)〉 − |0(π)〉 = iθaQ̂a|0(π)〉. (40)

Because the argument leading to (39) could be repeated for any ground state |0(g)〉, g ∈ G/H,
equation (40) implies that δ|0(π)〉 ∝ |n〉 for any π. So, the NG state corresponds to a shift
within the vacuum manifold (shift along ‘flat energy directions’). In this respect, the NG fields
give a meaning to the fluctuations among degenerate ground states. Note that the field that
δθ -fluctuates in the ath energy flat direction can be associated with the group parameter θa. One
may thus identify the local group parameters θ with the NG multiplet. Since at every point π

of the vacuum manifold, there are dim(G/H) independent flat directions (namely independent
tangent directions of the local frame in π), there must be dim(G/H) distinct NG fields. So, θ

form a local coordinate system at π. Starting with a fixed π, one may extend the local domain
of θ globally on the whole G/H by applying the transformation rules for broken symmetries
in G/H on the parameters θ. The involved mathematical technicalities are most easily done
through the Maurer–Cartan one-forms [19]. The extension of the NG fields on the whole G/H
allows one to put in one-to-one connection the NG fields and points on G/H. In this way, the
NG fields coordinatize the quotient space G/H.

Alternatively, one may view the NG modes as representing the fluctuations in the order
parameter. Indeed, using (for simplicity of the argument) the vacuum state at π = 0, we can
write (no summation over ‘a’)

lim
V→∞

〈0|iθa [Q̂a
V (t), 
̂i(0)]|0〉 = δ
0

i = iθaSi j(T
a)
0

j . (41)

From our previous discussion follows that the local parameter θa coincides with the near-to-
origin NG field, and so δ
0

i is directly proportional to the NG field. The preceding equation is
often a reason why some people normalize the NG field in such a way that θaSi j(T a)
0

j itself
is considered as the definition of the NG field [19].

As shown in section 2, the group quotient G/H can be identified with a set of all generalized
CS corresponding to the group G. Connection with a vacuum manifold is then established
when as a fiducial vector one chooses any ground-state vector |0(g)〉.

Let us finally stress that the NG theorem is valid, with few qualifications, even for
non-Lorentz-invariant situations such as those that occur frequently in solid-state physics. The
caveat in the above proof is the use of translational invariance and microcausality. In particular,
the microcausality should be in the non-relativistic setting substituted with an absence of long-
range interactions [20]. Under assumption that the translational invariance is not broken, it
can be shown that the total number of NG bosons might be less than the number of broken
generators, in contrast to the naı̈ve expectation based on experience with Lorentz-invariant
systems. The precise rule for counting the NG modes can be found, e.g., in [20].
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Fortunately, the NG fields serve also in the non-relativistic framework as coordinates on
the vacuum manifold G/H. The point is that the number of NG fields still coincides with
the number of broken generators; it is only that the number of NG fields does not match the
number of NG bosons. The connection between broken generators and NG bosons depends
in a non-relativistic context on the dispersion relation. This will be explicitly illustrated in the
following section.

5. SU(2)/U(1)–σ model and Landau–Lifshitz ferromagnetic magnons

Because the functional integrals based on generalized CS are naturally phrased in terms of
coset-space variables, they are well suited to describe the effective low-energy dynamics of
theories with SSB. In particular, when G is the disordered-phase symmetry and H is the
broken-phase symmetry, the NG fields take values in the target space, which is a coset of
groups G/H. More details can be found, e.g., in [16]. Massless field theories where the target
space is the group coset space G/H are commonly known as G/H–σ models or also as
nonlinear σ models. With a suitable choice of the Hamiltonian H(ζ, ζ̇, t), the generalized CS
functional integrals (and the associated nonlinear σ models) will describe low-energy effective
field theories, in which only NG bosons, including their mutual interactions, will propagate.

NG bosons are true dynamical protagonists in many low-energy or low-temperature solid-
state systems. In this respect, it is instructive to consider some representative system where
one can explicitly see how the correct NG dynamics is reproduced via generalized CS path
integrals. Along these lines, we now derive the correct behavior of ferromagnetic magnons in
the Heisenberg model of ferromagnets. This problem was historically seriously difficult to deal
with. In particular, the usual mean-field approaches fail to provide the quadratic dispersion
behavior, which is typically observed in inelastic scattering of spin-polarized neutrons by
magnons. Since ferromagnetic materials are the paradigmatic examples of systems with SSB
[16]—the disordered-phase symmetry SU (2) is below the Curie temperature spontaneously
broken to the residual rotational symmetries U (1)—it is only natural to use the SU (2)/U (1)–σ

model to deal with the corresponding low-energy degrees of freedom. The resulting gapless
NG modes should then be identifiable with scalar bosonic excitations around the ground state
of the spin- j Heisenberg ferromagnets. The only experimentally viable candidates for such
excitations are the gapless spin waves known as magnons. By following this reasoning, we
show that in the long-wavelength limit one can obtain the Landau–Lifshitz nonlinear σ model
that describes the correct dynamics and dispersion relations for ferromagnetic magnons.

To see how all this comes about, we first rewrite the action in the path integral (27) in
terms of the unit-vector dynamical variables n(t). The first term can then be expressed as

i
j(ξ ∗dξ − dξ ∗ξ )

(1 + |ξ |2) = − 2 j sin2(θ/2)dϕ = − j

r(z + r)
(x dy − y dx)

= AB(x) · dx , (42)

where the vector potential

AB(x) = − j

r(z + r)
(−y, x, 0) (43)

corresponds to Berry’s connection. Since the vector x sweeps the surface of S2, we have that
x = n (n2 = 1). The first term in the action in (27) thus reads

i
∫ t f

ti

dt
j(ξ ∗ξ̇ − ξ̇ ∗ξ )

(1 + |ξ |2) =
∫ t f

ti

AB(n) · dn
dt

dt =
∫

�

BB · dσ. (44)

9
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With � denoting the area of S2 bounded by a closed loop traversed by n(t). Berry’s magnetic
induction BB has the explicit form

BB(x) = ∇ ∧ AB(x) = j

r3
x = j

r2
n = jn , (45)

which implies that∫
S2

BB · dσ = 4π j. (46)

Equation (45) together with (46) shows that there is a monopole of the magnetic charge j
located in the origin of our target space. We also note the following from (44) and (45):

i
∫ t f

ti

dt
(ξ ∗ξ̇ − ξ̇ ∗ξ )

(1 + |ξ |2) =
∫ 1

0
du

∫ t f

ti

dt n(t, u) · [∂tn(t, u) ∧ ∂un(t, u)]

≡ SWZ[n], (47)

where n(t, u) is an arbitrary extension of n(t) into the spherical rectangle defined by
the limits of integration and fulfilling conditions: n(t, 0) = n(t), n(t, 1) = (1, 0, 0) and
n(ti, u) = n(t f , u). The SWZ[n] is a special member of a wide class of actions known as the
Wess–Zumino actions [15]. Equation (47) then demonstrates a typical situation ubiquitous in
effective theories, namely that the Berry–Anandan phase gives rise to the Wess–Zumino action.
Examples include low-dimensional ferromagnets with local anisotropies [21] or non-Abelian
gauge theories with a topological angle (θ -term) [22].

Let us now turn to many-spin systems and consider a lattice of spins. We will concentrate
first on the Hamiltonian H(ξ ∗, ξ , t). To this end, we consider the Hamiltonian for the
ferromagnetic Heisenberg model, i.e.

Ĥ(J) = K
∑
{x,x′}

Ĵ(x) · Ĵ(x′), (48)

where K = −|K| is the Heisenberg exchange constant and {x, x′} denotes pairs of neighboring
lattice sites. According to the definition of H(ξ ∗

k , ξk−1, t), we have

H(ξ ∗
k , ξk−1, t) = H(nk, nk−1) = 〈0(nk)|Ĥ(J)|0(nk−1)〉

〈0(nk)|(nk−1)〉
≈ 〈0(nk)|Ĥ(J)|0(nk)〉 + O(	t). (49)

By taking the advantage of the identity 〈0(nk)|Ĵ(x)|0(nk)〉 = jnk(x), we obtain

H(nk, nk−1) ≈ −|K| j2
∑
{x,x′}

nk(x) · nk(x′) , (50)

so that action in the functional integral (27) reads

S[n] = j
∑

x

SWZ[n(x)] + |K| j2
∑

k

	t
∑
{x,x′}

nk(x) · nk(x′). (51)

Here, the first sum runs over all the sides of the lattice and thus represents the sum of the
Wess–Zumino terms of individual spins. Note, particularly, that the time derivative (and hence
dynamics) enters only through the Wess–Zumino term.

For the sake of definiteness, we now consider a D-dimensional hypercubic lattice and
restrict

∑
{x,x′} to nearest neighbors only. With this we can write∑

{x,x′}
nk(x) · nk(x′) = −1

2

∑
{x,x′}

[nk(x) − nk(x′)]2 + const. (52)

10



J. Phys. A: Math. Theor. 45 (2012) 244009 M Blasone and P Jizba

Consider now the long-wavelength limit, in which nk(x) are the smooth functions of x. By
denoting the lattice spacing a and taking the N → ∞ (i.e., continuous-time) limit, we obtain
an effective field theory described by the action

S[n] = j

aD

∫
RD

dDxSWZ[n(x)] − j2|K|
2aD−2

∫ t f

ti

dt
∫

RD

dDx ∂in(x, t) · ∂in(x, t). (53)

In this expression, we have dropped the constant term from (52), which is irrelevant for
dynamical equations. In order to deal with the non-trivial measure Dμ(n) in the functional
integral, we can rewrite it as Dμ(n)δ[n2 − 1], where the integration variables n are no longer
restricted to a target space S2. The functional δ-function can be elevated into the action via
the functional Fourier transform

δ[n2 − 1] = lim
N→∞

N∏
i=1

δ(n2(xi, ti) − 1)

=
∫

Dλ exp

(
i
∫ t f

ti

dt
∫

RD

dDxλ(x, t)(n2(x, t) − 1)

)
. (54)

The latter leads to a new total action

Stot[n] = S[n] +
∫ t f

ti

dt
∫

RD

dDxλ(x, t)(n2(x, t) − 1). (55)

Let us now look at the classical equation of motion whose solution should represent the
dominant field configuration in a semiclassical WKB approach to quantum ferromagnetism.
The variation δStot[n] = 0 implies three equations

j (n ∧ ∂tn) + 2aDλn = − a2|K| j2 ∇2n and n2 = 1. (56)

Here, we have employed that

δSWZ[n(x)] =
∫ 1

0
du

∫ t f

ti

dt ∂u{δn(x, t, u) · [n(x, t, u) ∧ ∂tn(x, t, u)]}

+ 3
∫ 1

0
du

∫ t f

ti

dt δn(x, t, u) · [∂tn(x, t, τ ) ∧ ∂un(x, t, u)]

=
∫ t f

ti

dt δn(x, t) · [n(x, t) ∧ ∂tn(x, t)] , (57)

where the term in the second line is zero because ∂tn ∧ ∂un is parallel to n and n · δn =
δn2/2 = 0. In the last line, we have used that n(t, 0) = n(t), n(t, 1) = (1, 0, 0). Employing
now the identity n · (n ∧ ∂tn) = 0, we find λ for the Lagrange multiplier:

λ = − |K| j2

2aD−2
n · ∇2n. (58)

By inserting this result back into equation (56) and applying the identity a ∧ (b ∧ c) =
(a · c)b − (a · b)c, we obtain

n ∧ [
∂tn − a2|K| j (n ∧ ∇2n)

] = 0. (59)

Note that both terms inside [· · ·] are orthogonal to n and so we can cast the previous equation
into a simpler (but equivalent) form, namely

∂tn = a2|K| j (n ∧ ∇2n). (60)

Equation (60) is known as the Landau–Lifshitz equation for quantum ferromagnet [18]. It
essentially describes the dynamics of a ferromagnetic spin wave. To see leading dispersion
behavior, we go to the linear regime and assume that the spins are aligned around a third axis
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around which they wobble, or precess, so in particular n3 will change with t and x much slower
that n1,2. By defining, n = (π1, π2, σ ) (π2 + σ 2 = 1), omitting derivatives of σ and setting
σ ≈ 1, we linearize the Landau–Lifshitz equations as

∂tπ1 ≈ −a2|K| j∇2π2 and ∂tπ2 ≈ a2|K| j∇2π1. (61)

The Fourier transform of (61) yields the dispersion relation ω(k) ∝ k2. The modes that
obey such behavior are ferromagnetic magnons. These are true (non-relativistic) NG bosons.
However, note that the fields π1 and π2 describe only one NG mode. This can be understood
by rewriting (61) equivalently as

∂tπ ≈ ia2|K| j∇2π and ∂tπ
† ≈ −ia2|K| j∇2π†, (62)

with π = π1 + iπ2. Since the fields satisfy first-order equations, π must contain only
annihilation operators and π† only creation operators. So, we need two NG fields for describing
a physical particle (the NG boson). With (61) and 62), we have recovered the well-known
experimental result (see, e.g., [23]) that the dispersion relation of ferromagnetic spin waves
has a non-relativistic form. Note that the Berry–Anandan phase was essential in obtaining the
right dispersion relation.

The functional integral (27) with the action (55) represents a particular class of nonlinear
σ models known as the Landau–Lifshitz σ models. In general, the Landau–Lifshitz σ models
are the models defined on a general coset space G/H, with H being a maximal stability sub-
group of G. These are non-relativistic models that have G-valued Noether charges, local H
invariance and are classically integrable.

A similar analysis can be performed also for anti-ferromagnets, e.g., along the lines
proposed in [24]. In this case, the classical lowest energy configuration is described by the
Néel state [23], where the neighboring lattice spins flip the sign, i.e. n(l) �→ (−1)ln(l).
The result of absorbing this sign flip is that H(x, ẋ, t) and every other SWZ[n(x)] (i.e. the
Wess–Zumino term of the individual spins) change sign. With this, one can show that the
dispersion relation of spin waves has the linear (relativistic-like) form ω(k) ∝ |k|. This
linear gapless dispersion describes the relativistic-like NG modes, which are in this case
called anti-ferromagnetic magnons. It is interesting to point out that in anti-ferromagnets the
corresponding Berry–Anandan phase does not play a dynamical role because in the Néel state
the Wess–Zumino term reduces to a topological charge [24].

6. Final notes

Let us end up with a few notes concerning the presented approach. We have shown that the
functional integrals for G/H–σ models, which account for quantum dynamics of NG bosons
(i.e. gapless excitations that live in the broken phase of spontaneously broken systems) can
be naturally phrased in terms of generalized CS functional integrals. As we have seen, this is
because the NG fields take their values in the target space, which is the group quotient space
G/H. Group G in the question is the symmetry of the original (disordered) phase, while H is
the residual symmetry after the SSB. State vectors that characterize such NG excitations are
then inevitably labeled by points from G/H. With a suitable choice of fiducial state, they can
be identified with a group-G related CS.

An interesting byproduct of the CS functional integrals is that they naturally generate
a Berry–Anandan phase. From equation (21) we have seen that the Berry–Anandan phase
is determined by the overlaps, i.e. by the inner products, between CS. In this case, it is
essential that representations of CS are square integrable. Mathematically, the Berry–Anandan
phase represents anholonomy with respect to the natural (Berry’s) connection along a closed
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loop in the projective Hilbert space [11]. For CS, such a non-trivial anholonomy reflects the
‘frustration’ of assigning a common phase to all of CS along a closed path in a parameter
space [16, 24]. Closed paths in a parameter space appear typically in the formulation of the
partition function. In cases when transition amplitudes are considered, one should work with
Pancharatnam’s phase instead [12]. Since the Berry–Anandan phase enters into the action of
the CS functional integral, it might affect the dynamical properties of the system. In particular,
it can (and often it does) change dynamical equations and dispersion relations of the associated
NG excitations.

We have illustrated the aforementioned connection between nonlinear σ models and
group-related CS with a spin- j Heisenberg ferromagnet in a broken phase. Apart from the
correct dynamical Landau–Lifshitz equations for quantum ferromagnet, we have also obtained
correct linear dispersion relation for ferromagnetic magnons. This was possible only because
the Berry–Anandan phase exemplified via the Wess–Zumino term furnished the dynamical
equations with the first time-derivative term. It should be further noted that the exact form
of the dispersion relation could not be specified by Goldstone’s theorem alone. Dispersion
relations are not determined merely by symmetry considerations, they also crucially depend
on the specifics of the system, namely on the choice of the Hamiltonian H(x, ẋ, t), which
specifies the actual interaction between NG fields and on the spin orientations in respective
sublattices, which determines the type of spin waves (ferromagnetic or anti-ferromagnetic)
and hence the type of NG field. It is also important to observe that even if we have the same
symmetry breaking pattern SU (2)→U (1), the ferromagnetic and anti-ferromagnetic systems
differ in their qualitative description of the dispersion relation. For instance, the number of
independent magnon states differs [23]; one for a ferromagnet and two for an anti-ferromagnet.
In fact, only the number of real NG fields turns out to be universal and equal to the dimension
of the coset space SU (2)/U (1), which is dim[SU (2)] − dim[U (1)] = 2 (for ferromagnets,
these are fields π1 and π2).

Let us also note that in the large j limit the SU (2) CS functional integral is dominated by
the stationary points of Stot[n], i.e. by solutions of equation (59). In fact, with increasing j the
semiclassical representation of the above SU (2) CS functional integral will approximate the
exact partition function. For this reason, one might arrange the semiclassical result as power
series in 1/ j in much the same way as the 1/N perturbation expansion is done, e.g., in O(N)

symmetric models. Such an expansion is known as the Holstein–Primakoff expansion [25].
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