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Abstract

We discuss basic statistical properties of systems with multifractal structure. This is possible

by extending the notion of the usual Gibbs–Shannon entropy into more general frame-

work—R�enyi�s information entropy. We address the renormalization issue for R�enyi�s entropy
on (multi)fractal sets and consequently show how R�enyi�s parameter is connected with multi-

fractal singularity spectrum. The maximal entropy approach then provides a passage between

R�enyi�s information entropy and thermodynamics of multifractals. Important issues such as

R�enyi�s entropy versus Tsallis–Havrda–Charvat entropy and PDF reconstruction theorem

are also studied. Finally, some further speculations on a possible relevance of our approach

to cosmology are discussed.
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1. Introduction

The past two decades have witnessed an explosion of activity and progress in both

equilibrium and non-equilibrium statistical physics. The catalyst has been the mas-

sive infusion of ideas from information theory, theory of chaotic dynamical systems,

theory of critical phenomena, and quantum field theory. These ideas include the
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generalized information measures, quasi-periodic and strange attractors, fully devel-

oped turbulence, percolation, renormalization of large-scale dynamics, and attrac-

tive, albeit speculative ideas about quark-gluon plasma formation and dynamics. It

is the purpose of this paper to proceed in this line of development. The issue at the

stake is what modifications in statistical physics one should expect when dealing with
systems with varied fractal dimension—multifractals. The view which we present here

hinges on two mutually interrelated concepts, namely on R�enyi�s information entropy

[3,4] and (multi)fractal geometry. In this connection we would like to stress that in

order to exhibit the link between R�enyi information entropies and (multi)fractal

systems as generally as possible we do not put much emphasize on the important

yet rather narrow class of (multi)fractal systems—chaotic dynamical systems.

One of the fundamental observations of information theory is that the most gen-

eral functional form for the mean transmitted information (i.e., information en-
tropy) is that of R�enyi. In Section 2 we briefly outline R�enyi�s proof and discuss

some fundamentals from information theory which will show up to be indispensable

in following sections. We show that with certain mathematical cautiousness Shan-

non�s entropy can be viewed as a special example of R�eny�s entropy in case when

R�enyi�s parameter a ! 1. We also address the question of the status of Tsallis–Hav-

rda–Charvat (THC) entropy [1,2] in the framework of information theory.

Although R�enyi�s information measure offers very natural—and maybe conceptu-

ally the cleanest—setting for the entropy, it has not found so far as much applicability
as Shannon�s (or Gibbs�s) entropy. The explanation, no doubt, lies in two facts; am-

biguous renormalization of R�enyi�s entropy for non-discrete distributions and little

insight into the meaning of R�enyi�s a parameter. Surprisingly little work has been

done towards understanding both of the former points. In Section 3 we aim to ad-

dress the first one. We choose, in a sense, a minimal renormalization prescription con-

forming to the condition of additivity of independent information. R�enyi�s entropy
thus obtained is then directly related to the information content (‘‘negentropy’’).

To clarify the position of R�enyi�s entropy in physics, or in other word, to find the
physical interpretation for a parameter, we resort in Section 4 to systems with a mul-

tifractal structure. Such systems are very important and highly diverse, including the

turbulent flow of fluids [5,6], percolations [7], diffusion-limited aggregation (DLA)

systems [8], DNA sequences [9], finance [10], and string theory [11]. Using the recon-

struction theorem we argue that in order to obtain a ‘‘full’’ information about a

(multi)fractal system we need to know R�enyi�s entropies to all orders. Still, for dis-

crete spaces and simple metric spaces (like Rd) we find that the contribution from

Shannon�s entropy dominates over all other R�enyi entropies. We further show that
from the maximal entropy (MaxEnt) point of view, extremizing the Shannon entropy

on a multifractal is equivalent to extremizing directly Renyi�s entropy without invok-

ing the multifractal structure explicitly. Application of this result to a cosmic strings

network will be presented elsewhere [12].

We close with Section 5 where we present some speculations on the relevance of

the outlined approach to string cosmology and quantum mechanics. For reader�s
convenience we supplement the paper with eight appendices which clarify some finer

mathematical manipulations.
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2. R�enyi’s entropy of discrete probability distributions

2.1. R�enyi’s entropy and information theory

We begin this section by summarizing the information theory procedure leading
to R�enyi�s entropy [3,4]. This is of course well known but it may be useful to repeat

it here in order to make our discussion self-contained. We will also need to generalize

it when considering THC entropy in Section 2.4 and axiomatization of R�enyi�s
entropy in Appendix B.

Let us start with a discrete probability distribution P ¼ fp1; p2; . . . ; png fulfilling

usual conditions
pk P 0;
X
k

pk ¼ 1: ð2:1Þ
We then assume three things about information. First, information should be ad-

ditive for two independent events. Second, information should purely depend on P.
These two conditions can be also formulated in the following way: if we observe the

outcome of two independent events with respective probabilities p and q, then the

total received information is the sum of two partial ones. Therefore the following

functional equality holds:
IðpqÞ ¼ IðpÞ þ IðqÞ: ð2:2Þ
The latter is well known modified Cauchy�s functional equation [13] which has
(under fairly broad assumptions [4,14]) unique class of solutions—j log2ð� � �Þ. The
constant j is then fixed via appropriate ‘‘boundary’’ condition. Setting Ið1=2Þ ¼ 1

we obtain the, so called, Hartley measure of information [15]. So the amount of

information received by learning that event of probability p took place equals
IðpÞ ¼ � log2ðpÞ: ð2:3Þ
The third assumption is that if different amounts of information occur with different

probabilities, the total amount of information is the average of the individual in-

formation weighted by the probabilities of their occurrences. In general, if the
possible outcomes of an experiment are A1;A2; . . . ;An with corresponding proba-

bilities p1; p2; . . . ; pn, and Ak conveys I k bits of information, then the total amount of

information conveyed would be
IðP;IÞ ¼
Xn
k¼1

pkI k; ð2:4Þ
where I ¼ fI 1; I 2; . . . ; I ng. However, the linear averaging implemented in (2.4) is
only a specific case of a more general mean. If f is a real function having an inverse

f �1 then the number
f �1
Xn
k

pkf ðxkÞ
 !

ð2:5Þ
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is called the mean value of x1; x2; . . . ; xn associated with f . As shown in [16–18], (2.5)

prescribes the most general mean compatible with postulates of probability theory

(see e.g. [3]). The function f is often referred to as Kolmogorov–Nagumo�s function.
Former analysis suggests that in the most general case the measure of the amount

of transmitted information should admit the form
IðP;IÞ ¼ f �1
Xn
k¼1

pkf � log2ðpkÞ
� � !

: ð2:6Þ
The natural question arises, what is the possible mathematical form of f , or in other

words, what is the most general class of functions f which will still provide a measure

of information compatible with the additivity postulate. Obviously for a given set of
outcomes, many possible means can be defined, depending on which features of the

outcomes are of interest. It comes therefore as a pleasant surprise to find that the

additivity postulate allows only for two classes of f �s—linear and exponential

functions. The proof of this statement is simple and clarifies a good deal about f so

for the future reference we sketch its main points. Alternative proof based on scaling

argumentation is presented in Appendix A.

Let an experiment K be a union of two independent experiments K1 and K2. Let

further assume that we receive Ið1Þ
k bits of information with probability pk connected

with K1 and Ið2Þ
l bits of information with probability ql connected with K2. As a re-

sult we receive Ið1Þ
k þ Ið2Þ

l bits of information with probability pkql. We assume fur-

ther that there is m possible outcomes in K1 experiment (i.e., k ¼ 1; 2; . . . ;m) and n
possible outcomes in K2 experiment (i.e., l ¼ 1; 2; . . . ; n). Invoking the postulate of

additivity we may write
f �1
Xm
k

Xn
l

pkqlf Ið1Þ
k þ Ið2Þ

l

� � !

¼ f �1
Xm
k

pkf Ið1Þ
k

� � !
þ f �1

Xn
l

qlf
�
Ið2Þ
l

� !
: ð2:7Þ
The former must hold completely generally irrespective of our choice of

P ¼ fp1; . . . ; pmg, Q ¼ fq1; . . . ; qng and irrespective of the actual choice of inde-
pendent experiments K1, K2. So if we choose Ið2Þ

l ¼ I independently of k we obtain

from (2.7)
f �1
Xm
k

pkf Ið1Þ
k þ I

� � !
¼ f �1

Xm
k

pkf Ið1Þ
k

� � !
þ I : ð2:8Þ
Let us denote fyðxÞ ¼ f ðxþ yÞ (so namely f �1ðxÞ � y ¼ f �1
y ðxÞ). Thus Eq. (2.8) may

be recast into the form
f �1
I

Xm
k

pkfI I ð1Þ
k

� � !
¼ f �1

Xm
k

pkf Ið1Þ
k

� � !
: ð2:9Þ



P. Jizba, T. Arimitsu / Annals of Physics 312 (2004) 17–59 21
So functions fI and f generate the same mean. It is well known in theory of means

(see e.g. [19]) that Eq. (2.9) holds only if fI is a linear function of f . So we have
fI ðzÞ ¼ f ðzþ IÞ ¼ aðIÞf ðzÞ þ bðIÞ: ð2:10Þ

Here að� � �Þ 6¼ 0 and bð� � �Þ are independent of z. Without loss of generality we shall

assume that f ð0Þ ¼ 0 (or otherwise we adjust b). As a result bðIÞ ¼ f ðIÞ. Therefore

f ðzþ IÞ ¼ aðIÞf ðzÞ þ f ðIÞ;
f ðzþ IÞ ¼ aðzÞf ðIÞ þ f ðzÞ;

ð2:11Þ
where the second line was obtained by a simple interchange z $ I . Subtraction of
both lines in (2.11) leads to the following separation of variables (z 6¼ 0, I 6¼ 0):
aðzÞ � 1

f ðzÞ ¼ aðIÞ � 1

f ðIÞ ¼ c: ð2:12Þ
(c is a constant independent both of z and I ). The solution of (2.12) has a simple

form
aðxÞ � 1 ¼ cf ðxÞ: ð2:13Þ

Note that (2.13) holds true also for x ¼ 0. In connection with (2.13) it is useful to

distinguish two cases; c ¼ 0 and c 6¼ 0. In the first case when c ¼ 0, aðxÞ ¼ 1 and we

get Cauchy�s functional equation [13]
f ðzþ IÞ ¼ f ðzÞ þ f ðIÞ; ð2:14Þ

which for z; I 2 R has the well known solution: f ðxÞ ¼ cx with the non-zero con-

stant c. This is in a sense the most elementary Kolmogorov–Nagumo function.

Plugging the latter into Eq. (2.6) the measure of transmitted information boils down

to Shannon�s measure
IðP;IÞ ¼ �
Xn
k¼1

pk log2ðpkÞ � H: ð2:15Þ
In the second case when c 6¼ 0, aðxÞ fulfills the modified Cauchy�s functional equation
[13]
aðzþ IÞ ¼ aðzÞaðIÞ; ð2:16Þ

which for continuous að� � �Þ and z; I 2 R has only exponential solutions. Thus we

may generally write: aðxÞ ¼ 2ð1�aÞx with a 6¼ 1 being some constants. As a result we

get f ðxÞ ¼ ½2ð1�aÞx � 1�=c. Plugging this into Eq. (2.6) the measure of transmitted

information will be
I aðP;IÞ ¼
1

ð1� aÞ log2
Xn
k¼1

pak

 !
: ð2:17Þ
The information measure (2.17) is usually called the generalized information measure

or information measure of order a, or simply R�enyi’s entropy. We will denote the

explicit order of R�enyi�s entropy as a subscript in Ið� � �Þ.
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Although the foregoing operational (pragmatic) way of arguing is quite robust,

some readers may find more justifiable to see R�enyi�s entropy properly axiomatized.

Actually, the Shannon entropy was firstly axiomatized by Shannon [20] and then la-

ter some axioms were weakened (or substituted) by Fadeev [21], Khinchin [22], and

several other authors [23]. The R�enyi entropy was axiomatized by R�enyi himself [3,4]
and afterwards sharpened by Dar�oczy [24] and others [25]. In further considerations

we will find, however, useful to use a slightly different set of axioms than those uti-

lized in [3,4,24,25]. In fact, in Appendix B we show that the information measures

(2.15) and (2.17) can be characterized by the following axioms:

1. For a given integer n and given P ¼ fp1; p2; . . . ; png (pk P 0,
Pn

k pk ¼ 1), IðPÞ is a
continuous with respect to all its arguments.

2. For a given integer n, Iðp1; p2; . . . ; pnÞ takes its largest value for pk ¼ 1=n
(k ¼ 1; 2; . . . ; n) with the normalization Ið1

2
; 1

2
Þ ¼ 1.

3. For a given a 2 R; IðA \ BÞ ¼ IðAÞ þ IðBjAÞ with
IðBjAÞ ¼ f �1

�X
k

.kðaÞf ðIðBjA ¼ AkÞÞ
�
;

and .kðaÞ ¼ ðpkÞa=
P

kðpkÞ
a
(distribution P corresponds to the experiment A).

4. f is invertible and positive in ½0;1Þ.
5. Iðp1; p2; . . . ; pn; 0Þ ¼ Iðp1; p2; . . . ; pnÞ, i.e., adding an event of probability zero

(impossible event) we do not gain any new information.

2.2. Some observations about R�enyi’s entropy

Before going further let us observe some key characteristics of Renyi�s entropy

which will prove essential in following sections.

(a) I aðBjAÞ appearing in the axiom 3 can be viewed as conditional information. In

fact, in Appendix C we show that I aðBjAÞ ¼ 0 iff outcome A uniquely determines

outcome B. We also show that when A and B are independent then

I aðBjAÞ ¼ I aðBÞ and hence I aðA \ BÞ ¼ I aðAÞ þ I aðBÞ, as expected. Alas the re-

verse implication (i.e., I aðBjAÞ ¼ I aðBÞ ) A and B are independent) generally holds

only when B has uniform distribution.
(b) It is interesting to note that we can write (with a bit of hindsight) in the

axiom 3  !

I aðBjAÞ ¼ f �1

X
k

.kðaÞf ðI aðBjA ¼ AkÞÞ :
Similarly, we can write Eq. (2.6) as
IðPÞ ¼ f �1
X
k

.kð1Þf ðI 1ðA ¼ AkÞÞ
 !

:

This indicates that when the constituent information of order a enter a mean value
calculation they must be weighted by .kðaÞ�s and not pk �s, and this should hold true
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whatever the Kolmogorov–Nagumo function is. The former result may be gen-

eralized in the following way: whenever outcomes of a measurement carry an in-

formation of order a they must be weighted with .kðaÞ. When outcomes actually

carry information of order a will be discussed in Section 4.2.

(c) Another important property of R�enyi�s entropy is its concavity for a < 1 (for
a > 1 R�enyi�s entropy is not purely convex nor purely concave). This is a simple con-

sequence of the fact that both log2ðxÞ and xa (a < 1) are concave functions (while xa is
convex for a > 1).

(d) A notable point which we will use in Section 4 is that I a is a monotonous de-

creasing function of a. This might be seen from the inequality
dI a

da
¼ 1

ð1� aÞ2
�
� log2 P1�a

� 	
a
þ log2 P1�a
� 	

a



6 0: ð2:18Þ
Here the expectation value h� � �ia is defined with respect to the distribution .kðaÞ. The
last line of (2.18) is due to Jensen�s inequality and due to concavity of log2ðxÞ. Note

that dI a=da ¼ 0 only when the Jensen inequality used in the derivation (2.18) is an

equality. This happen iff P ¼ const: (see e.g. [19]), or in other words when P is

uniform. Consequently, either I a is a strictly monotonous decreasing function of a or
all I a are identical. One never finds, for example, I a1 < I a2 ¼ I a3 for a1 > a2 > a3.

2.3. R�enyi’s entropy and Shannon’s entropy

Now we turn to the investigation of the information measure of order 1. An im-

portant element in this discussion is the fact that I a is analytic in a ¼ 1. This can be

seen by continuing the index a into the complex plane and inspecting the behavior of

log2ð
Pn

k¼1 p
z
kÞ for z 2 C. The former is analytic provided that

Pn
k¼1 p

z
k is not laying on

the negative real axis. Let us now consider the situation where z ¼ 1þ r eiu (i.e., we

draw a circle with the radius r centered at z ¼ 1). Thus log2ð
Pn

k¼1 p
z
kÞ is analytic

throughout the entire complex plane except the regions where the following two con-
ditions hold
Xn

k¼1

sin r sinu lnðpkÞð Þ ¼ 0;

Xn
k¼1

pr cosuþ1
k cos r sinu lnðpkÞð Þ6 0:

ð2:19Þ
Let us put r < jp=ð2 lnðpkÞminÞj. Then evidently for such r�s the conditions (2.19)

cannot be fulfilled together and we are safely in the analyticity region. Consider the

contour integral
I ¼
I

dz
log2

Pn
k¼1 p

z
k

� �
1� z

¼
I

dzI zðPÞ; ð2:20Þ
around a contour z ¼ 1þ r eiu, u 2 ½0; 2pÞ. The residue theorem assures then that
(2.20) vanishes and as a result R�enyi�s entropy is analytic everywhere inside the

contour (so also at z ¼ 1). This shows that the singularity of I aðPÞ at a ¼ 1 is only
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spurious and, in fact, R�enyi�s entropy is differentiable at a ¼ 1 to all orders. Using

the Cauchy formula we can directly write
I 1ðPÞ ¼
i

2p

I
dz

log2
Pn

k¼1 p
z
k

� �
ð1� zÞð1� zÞ

¼ 1

2pi

I
dz

d

dz
1

ðz� 1Þ

� �
log2

Xn
k¼1

pzk

 !

¼ i

2p

I
dz

Pn
k¼1 p

z
k log2ðpkÞ

ðz� 1Þ
Pn

k¼1 p
z
k

¼ �
Xn
k¼1

pk log2ðpkÞ ¼ HðPÞ; ð2:21Þ
where the contour of integration is the same as in the case (2.20). It is usually argued

that it is a matter of modification of one of Shannon�s axioms to get R�enyi�s entropy.
We, however, do not intend to follow this path simply because the Shannon entropy,

as we have just seen, can be uniquely determined from the behavior of (analytically
continued) R�enyi�s entropy in the vicinity of z ¼ 1. In fact, we even do not need to be

in the vicinity because the circle used in the contour integral (2.21) can be analytically

continued to any curve which lies in the first and fourth quadrant and which en-

circles the point z ¼ 1. View which we intend to advocate here is that the Shannon

entropy is not a special information measure deserving separate axiomatization but a

member of a wide class of entropies embraced by a single unifying axiomatics.

An important consequence of the fact that I a is a monotonous decreasing func-

tion of a is embodied in the following two inequalities:
H < I a < log2 n; 0 < a < 1; ð2:22Þ

I a < H < log2 n; a > 1: ð2:23Þ

Inequality (2.23) shows that H represents an upper bound for all R�enyi entropies
with a > 1. This finding will play an important role in the reconstruction theorem in
Section 4.2.

2.4. R�enyi’s entropy and THC entropy

Due to an increasing interest in long-range correlated systems and non-equilib-

rium phenomena there has been currently much discussed the, so-called, Tsallis

(or non-extensive) entropy. Although firstly introduced by Havrda and Charvat

[1] in the cybernetics theory context, it was Tsallis [2] who exploited its non-extensive
features and placed it in a physical setting. THC entropy reads
Sa ¼
1

ð1� aÞ
Xn
k¼1

ðpkÞa � 1

" #
; a > 0: ð2:24Þ
The most important properties of THC entropy can be easily read out of (2.24). For
instance, employing Jensen�s inequality we have for a > 1 that

P
k p

a
k 6 1 (while for

0 < a < 1 the reverse inequality holds) and hence Sa is non-negative. Similarly,

choosing any pair of distributions P and Q, and a real number 06 k6 1 we have
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SaðkP þ ð1� kÞQÞP kSaðPÞ þ ð1� kÞSaðQÞ; ð2:25Þ

and so THC entropy is a concave function of its probability distribution. Eq. (2.25)
results from Jensen�s inequality a concavity of xa=ð1� aÞ. In addition, by rule of

l�Hospital we get that
lim
a!1

Sa ¼ lim
a!1

I a ¼ H: ð2:26Þ
Thus in the a ! 1 limit THC entropy reduces to Shannon�s entropy.
Perhaps the most distinguished feature of THC entropy is the so-called pseudo-

additivity [2,27]
SaðA \ BÞ ¼ SaðAÞ þ SaðBjAÞ þ ð1� aÞSaðAÞSaðBjAÞ;

for two experiments A and B, SaðBjAÞ represents here the conditional THC entropy.

Remarkable, albeit not yet understood aspect of the pseudo-additivity is that in the
case of independent experiments THC entropy is not additive. Interested reader may

find further discussion of THC entropy, for instance, in [28].

Now we turn to the problem of finding the connection between R�enyi�s and THC

entropy. To this end we utilize the identity
I a ¼
1

ð1� aÞ log2½ð1� aÞSa þ 1�

¼ 1

k

Z Sa

0

dx
1

1þ xð1� aÞ : ð2:27Þ
Here k ¼ ln 2 is the scale factor. For jð1� aÞSaj < 1 we may expand the integrand in
(2.27). In such a case the (geometric) series is absolutely convergent and we can

integrate it term by term:
I a ¼
1

k
Sa �

1

2k
ð1� aÞS2

a þO ð1� aÞ2S3
a

h i
: ð2:28Þ
So apart from an unimportant factor k (which just sets the scale for entropy units) we
see that I a � Sa, provided
jð1� aÞSaj ¼
Xn
l

ðplÞa � 1

�����
������ 1: ð2:29Þ
It should be understood that the expansion (2.28) is not necessarily the expansion in

ð1� aÞ. In fact, condition (2.29) may be fulfilled in numerous ways. Obviously, for

a � 1 the inequality (2.29) is trivially satisfied. This should be expected because both

I a and Sa tend to the same limit value at a � 1. Thus the actual error estimate in this

instance can be written as
I a ¼
1

k
Sa þOðða� 1ÞH2Þ; ð2:30Þ
and so the true inaccuracy in dealing with Sa and not I a is of order ða� 1Þ. There is,
however, possible to pinpoint other very important classes of systems with a 6� 1 still

obeying (2.29). Clearly, various improved estimates can be devised if some additional
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assumptions are made about the system. One particularly important case which is

pertinent to a < 1 region, namely the case of large deviations will be briefly discussed

now.

Systems with large deviations prove fruitful in many areas of physics and math-

ematics ranging from fluid dynamics and weather forecast to population breeding.
To proceed we will appeal to Lo�eve (or basic) inequality of probability theory

[29]. Let X be an arbitrary random variable and let g be an even function on R

and non-decreasing on ½0;1Þ. Then for 8aP 0
1 O

always
hgðX Þi � gðaÞ6 sup gðX ÞP ½jX jP a�: ð2:31Þ

Upon taking the distribution .ðqÞ ¼ fðpkÞq=

P
kðpkÞ

qg; q 2 ½0; 1� and gðxÞ ¼ jxja�q
;

a 2 ½0; 1� we get from (2.31)
jX ja�qh iq � aa�q
6 supðjX ja�qÞP ½jX jP a�: ð2:32Þ
Here h� � �iq is the mean with respect to .ðqÞ. We can now set jX j ¼ P ¼ fpkg and fix q
so to fulfill a > q. Taking
1

a
¼

Xn
k

ðpkÞq
 !1=ða�qÞ

� ZðqÞ1=ða�qÞ
; ð2:33Þ
we obtain the probability theory variant of (2.29), namely
Xn
k

ðpkÞa � 16 supðPa�qÞ P ½PP a�ZðqÞ6 P ½PP a�ZðqÞ: ð2:34Þ
To proceed we realize that for q 2 ½0; 1� we have 16 ZðqÞ6 n1�q and hence
1P aP
1

n

� �ð1�qÞ=ða�qÞ

: ð2:35Þ
Note particularly that ð1� qÞ=ða� qÞ > 1. Thus if for most of i�s the inequality

pi 6 ð1=nÞð1�qÞ=ða�qÞ
holds (rare events) then P ½PP a� of (2.34) can be made arbitrarily

small.1 Besides, because ZðqÞ is bounded by n1�q irrespective of a particular choice of
P and a we may use this freedom to fix RHS of (2.34) to be very small. So for ex-

ample when most pi � 1=n2 then the choice q ¼ 1=2 and a ¼ 3=4 assure that

ZðqÞ6 ffiffiffi
n

p
while P ½PP a� � 1=n and hence RHS of (2.34) is smaller than 1=

ffiffiffi
n

p
. It

should be recognized that in this case the inequality (2.29) holds not because a ! 1

but because n is large.

It is interesting to consider now the situation when jð1� aÞSaj > 1. Such a case is

undoubtedly more intriguing than the previous one as it represents a wider class of

physically relevant situations. Let us start first with the situation jð1� aÞSaj � 1.
There are two cases of interest here. The case when ð1� aÞSa � 1 is the simpler

one. Here a < 1 due to positivity of Sa and we may rewrite (2.27) as
f course, due to normalization condition
Pn

i pi ¼ 1, P ½PP a� cannot be zero since there must be

a very small probability for large (i.e., > 1=n) pi�s. Hence name large deviations.
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kI a ¼
Z 1=ð1�aÞ

0

þ
Z Sa

1=ð1�aÞ

!
dx

1

1þ xð1� aÞ

 

¼ k
ð1� aÞ þ

Sa � 1=ð1� aÞ
2

þO ½ð1� aÞSa � 1�2

ð1� aÞ

 !

� Sa

2
þ 1

ð1� aÞ k � 1

2

� �
: ð2:36Þ
On the other hand, the case when ð1� aÞSa � �1 is very important as it corresponds

to the large a limit. Since for high a, Sa asymptotically approaches

f ¼ ½ðpkÞamax � 1�=ð1� aÞ from above we can write
kI a ¼
Z f

0

�
þ
Z Sa

f

�
dx

1

1þ xð1� aÞ

¼ a lnðpkÞmax

ð1� aÞ þ Sað1� aÞ þ ð1� ðpkÞamaxÞ
ð1� aÞðpkÞamax

þO ½I a þ log2ðpkÞmax�
2

� �

� Sa

ðpkÞamax

þ
1þ ðpkÞamax½a lnðpkÞmax � 1�
� �

ð1� aÞðpkÞamax

: ð2:37Þ
In both previous cases we have seen that the leading orders yielded a linear rela-

tionship between R�enyi�s and THC entropy. As already recognized by Schr€odinger
[30], statistical entropy is defined up to a linear transformation. This, in turn, one

could view as a conceptual backing for THC entropy in the respective situations.

Ones pleasure is short-lived, however, when one starts to consider the case

ð1� aÞSa � 1. This corresponds, for example, to the situation when a ! 0. Writing

(2.27) as
kI a ¼
Z 1=ð1�aÞ

0

þ
Z Sa

1=ð1�aÞ

!
dx

1

1þ xð1� aÞ

 

¼ k
ð1� aÞ þ

X1
n¼0

ð�1Þn
Z Sa

1=ð1�aÞ
dx

1

xð1� aÞ

� �nþ1

� lnðSað1� aÞÞ
ð1� aÞ þ 1

Sað1� aÞ2
; ð2:38Þ
we see that there is a logarithmic singularity at large Sa. Hence, no linear mapping

between RHC and R�enyi�s entropy exists in this region. One may thus expect that for

ð1� aÞSa � 1 both entropies have qualitatively different behavior and the concep-

tual grounding for THC entropy must be sought out of the scope of information

theory.

Let us add two more comments. It is often argued that concavity of THC entropy

with respect to probability distribution makes it better suited, say, for thermody-
namic considerations. It is, however, concavity with respect to extensive variables

rather than probability distribution which ensures stability of thermodynamic
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equilibrium [14]. The first does not necessarily implies the second. Needless to say

that there is no general concavity requirement for entropy in non-equilibrium sys-

tems. Second, from Eq. (2.27) we see that THC entropy and R�enyi�s entropy are

monotonic functions of each other and, as a result, both must be maximized by

the same probability distribution. However, while R�enyi�s entropy is additive,
THC entropy is not, so that it appears that the additivity property is not important

for entropies required for maximization purposes.
3. Rényi’s entropy of continuous probability distributions

While in the previous section we dealt with the R�enyi�s entropy of discrete prob-

ability distributions we will now discuss the corresponding continuous counterpart.
We shall see that in the latter case a host of new properties will emerge. As a byprod-

uct we get a consistent extension of THC entropy for continuous distributions.

Let us first assume that FðxÞ is an arbitrary continuous, positive density function

(PDF) defined, say, in the interval [0, 1]. By defining the integrated probability
2 F
pnk ¼
Z ðkþ1Þ=n

k=n
dxFðxÞ; k ¼ 0; 1; . . . ; n� 1;
we generate the discrete distribution Pn ¼ fpnkg. It might be then shown [3,4] that
I aðFÞ � lim
n!1

ðI aðPnÞ � log2 nÞ ¼
1

1� a
log2

Z 1

0

dxF aðxÞ
� �

; ð3:1Þ
provided that
R 1

0
dxF aðxÞ exists.2 Here log2 n must be subtracted to ensure a correct

measure in the integral. Defining the uniform distribution En ¼ 1
n; . . . ;

1
n


 �
then

log2 n ¼ I aðEnÞ. From this we may interpret �I aðFÞ � I aðEnÞ � I aðPnÞ as the gain

of information obtained by replacing the uniform distribution En (having maximal

uncertainty) by distribution Pn or, in other words, �I aðFÞ represents the decrease of
uncertainty when En is replaced by Pn. In the case of Shannon�s entropy the quantity

�HðFÞ is usually called the informative content or ‘‘negentropy’’ and states how

much uncertainty is still left unresolved after a measurement (for discussion see, e.g.

[33,34]).

Relation (3.1) can be viewed as a renormalized R�enyi�s information content. This

may be understood from the asymptotic expansion of I aðPnÞ, namely
I aðPnÞ ¼ divergent in nþ finiteþ oð1Þ; ð3:2Þ

the oð1Þ symbol means that the residual error tends to 0 for n ! 1. The finite part

(¼ I aðFÞ) is fixed by requirement (or by renormalization prescription) that it

should fulfill the postulate of additivity in order to be identifiable with an infor-

mation measure. Incidentally, the latter uniquely identifies the divergent part as

log2 n. The above renormalization procedure is somehow analogous to that in
or 0 < a < 1 this is always the case as
P

kðpnkÞ
a
6 n1�a )

R 1
0 dxF aðxÞ6 1.
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quantum field theory where one renormalizes energy by subtracting the ground-

state contribution. It should be, however, noted that the information log2 n is

usually greater than I aðPnkÞ and consequently I aðFÞ is not positive. The former

should be contrasted with the discrete case where I a is by construction non-

negative.
Extension of (3.1) into d-dimensional situations is straightforward. Having a

d-dimensional random variable (i.e., experiment) AðdÞ we can discretize it in the

following way: AðdÞ
n ¼ ð½nA1�

n ; ½nA2�
n ; . . . ; ½nAd �

n Þ, where ½. . .� denotes integral part. This

divides the d-dimensional volume V of the outcome (or sample) space into

boxes labelled by an index k which runs from 1 up to ½Vnd �. The size of the kth
box is l ¼ 1=n and its probability distribution PðdÞ

n ¼ fpðdÞnk g is generated via

prescription
pðdÞnk ¼
Z
kth box

ddxFðxÞ; k ¼ 1; 2; . . . ½Vnd �:
It can be shown then (see e.g. [3] and Appendix D) that
IðdÞ
a ðFÞ � lim

n!1
ðI aðPðdÞ

n Þ � d log2 nÞ ¼
1

ð1� aÞ log2
Z
V
ddxF aðxÞ

� �
; ð3:3Þ
provided that
R
V d

dxF aðxÞ exists.
Question now stands whether we get unique IðdÞ

a ðFÞ by mimicking the previous

recipe, i.e., performing the asymptotic expansion of I aðPðdÞ
n Þ and pinpointing the cor-

rect finite part by the renormalization condition—additivity of information. In the

non-unit volume, however, one more fixing condition is required. To see that we
define the uniform distribution EðdÞ

n ¼ 1
Vnnd

; . . . ; 1
Vnnd

n o
with Vn � ½Vn�

n !n!1
V . R�enyi�s

entropy then reads
I aðEðdÞ
n Þ ¼ log2 Vn þ d log2 n;
and so
~IðdÞ
a ðFÞ � lim

n!1
ðI aðPðdÞ

n Þ � I aðEðdÞ
n ÞÞ ¼ 1

ð1� aÞ log2
R
V d

dxF aðxÞR
V d

dx1=V a

 !
: ð3:4Þ
Alike in (3.3) the RHS of (3.4) represents the finite part in the asymptotic expansion

of I aðPðdÞ
n Þ, the part which fulfils the additivity of information condition. To ensure

the uniqueness of R�enyi entropy in the case of continuous distributions we must, in

addition, fix the value of the finite part at F ¼ ð1=V Þ. It is then matter of taste and/or

a particular problem at hand which convention should be used. In this paper we will

use the renormalization prescription where IðdÞ
a ð1=V Þjfinite ¼ log2 V (i.e., the one

which implies Eq. (3.3)). The latter merely means that we define R�enyi�s entropy with

PDF F as
IðdÞ
a ðFÞ � lim

n!1
ðI aðPðdÞ

n Þ � I aðEðdÞ
n ÞjV¼1Þ: ð3:5Þ
In Section 4 we generalize results (3.4) and (3.5) into fractal and multifractal systems.
A comment is in order. It may be shown (see Appendix E) that the form (3.4) is,
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in fact, a better candidate for the information measure than (3.3) as it is an invariant

under a transformation of AðdÞ. However, difference between (3.3) and (3.4) is often

only a constant which ensures that for the questions we address here it is quite

adequate to use the simpler form (3.3). It should be, however, clear that there are

system of physical interest where the ground-state entropy plays a central role
(e.g., frustrated spin systems or quantum liquids). In such cases the form (3.4) is

obligatory.

Let us now examine the implications of (3.1)–(3.4) for THC entropy with contin-

uous distributions. For this we will use the convention introduced before Eq. (3.3).

First, from (2.27) and (3.3) follows that ½I aðPnÞ � d log2 n� is finite at large n (pro-

vided
R
V d

dxF aðxÞ exists) and so
3 It

instanc

limit w

meanin
ð1� aÞSaðPnÞ þ 1

ndð1�aÞ ¼
Z
V
ddxF aðxÞ þ oð1Þ: ð3:6Þ
In order to obtain the correct THC entropy with PDF F it is conceptually simplest

to follow the same route as before, i.e., asymptotically expand SaðPnÞ=ndð1�aÞ and

look for the finite part which conforms to certain renormalization prescription.3

Unlike the R�enyi entropy case we do not have now any first principle renormal-

ization prescription (�a la additivity of information) which we could impose. As a
matter of fact, one could be tempted to use the THC pseudo-additivity condition to

isolate the proper finite part in the SaðPnÞ=ndð1�aÞ expansion, but such a renormal-

ization condition would be clearly ad hoc as there is no a priori reason to assume

that the non-extensivity condition obeys the same prescription in the continuous

case. It is fairly safer to follow the analogy with Eqs. (3.4) and (3.5) demanding, for

instance, the consistency for a�s in the complex vicinity of a ¼ 1 (i.e., values at which

R�enyi and THC entropies coincide). If the consistency is reached then the validity of

the result can be analytically continued to the whole domain of analyticity of Sa—so
particularly to a 2 Rþ.

Using the asymptotic expansions:
SaðPðdÞ
n Þ

ndð1�aÞ ¼ � 1

ð1� aÞndð1�aÞ þ
1

ð1� aÞ

Z
V
ddxF aðxÞ þ oð1Þ;

SaðEðdÞ
n Þ

ndð1�aÞ ¼ � 1

ð1� aÞndð1�aÞ þ
1

ð1� aÞ

Z
V
ddx1=V a þ oð1Þ;

ð3:7Þ
is indeed SaðPnÞ=ndð1�aÞ rather than SaðPnÞ which should be asymptotically expanded. For

e, for 0 < a < 1 the asymptotic expansion of SaðPnÞ would be oð1Þ and so the corresponding large n
ould be trivial. It is not difficult to see that it is only the fraction SaðPnÞ=ndð1�aÞ which has a senseful

g in the large n limit.
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we may immediately write
~SðdÞ
a ðFÞ � lim

n!1

 
SaðPðdÞ

n Þ
ndð1�aÞ � SaðEðdÞ

n Þ
ndð1�aÞ

!

¼ 1

ð1� aÞ

Z
V
ddxF aðxÞ � 1

� �
� 1

ð1� aÞ

�Z
V
ddx1=V a � 1

�
;

SðdÞ
a ðFÞ � lim

n!1

SaðPðdÞ
n Þ

ndð1�aÞ � SaðEðdÞ
n ÞjV¼1

ndð1�aÞ

 !

¼ 1

ð1� aÞ

Z
V
ddxF aðxÞ � 1

� �
:

ð3:8Þ
It is not difficult to check that for jaj 2 ½1� �; 1þ ��, e � 1; (3.8) is consistent with
(3.4) and (3.5).

Let us note at the end that from the asymptotic expansion of I aðPðdÞ
n Þ, i.e., from
I aðPðdÞ
n Þ ¼ d log2 nþ IðdÞ

a ðFÞ þ oð1Þ; ð3:9Þ

we find, in return, that the dimension d is identified with
dðaÞ ¼ lim
n!1

I aðPðdÞ
n Þ

log2 n
: ð3:10Þ
For simple metric (outcome) spaces (like Rd) we will prove in the following section

that dðaÞ ¼ d for all a and it coincides with the usual topological dimension. This

situation is however not generic. In the next section we shall see what modifications

should be done when (multi)fractal systems are in question.
4. Rényi’s parameter and (multi)fractal dimension

Fractals, objects with a generally non-integer dimension exhibiting the scaling

property and property of self-similarity have had a significant impact not only on

mathematics but also on such distinctive fields as physical chemistry, astrophysics,

physiology, and fluid mechanics. The key characteristic of fractals is fractal dimen-

sion which is defined as follows: consider a set M embedded in a d-dimensional

space. Let us cover the set with a mesh of d-dimensional cubes of size ld and let
NlðMÞ is a minimal number of the cubes needed for the covering. The fractal dimen-

sion (or similarity dimension) of M is then defined as [35,36]
D ¼ � lim
l!0

lnNlðMÞ
ln l

: ð4:1Þ
In most cases of interest the fractal dimension (4.1) coincides with the Hausdorff–

Besicovich fractal dimension used by Mandelbrot [35].

Multifractals, on the other hand, are related to the study of a distribution of phys-

ical or other quantities on a generic support (be it or not fractal) and thus provide a

move from the geometry of sets as such to geometric properties of distributions. An

intuitive picture about an inner structure of multifractals is obtained by introducing
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the f ðaÞ spectrum [5,37]. To elucidate the latter let us suppose that over some

support (usually a subset of a metric space) is distributed a probability of a certain

phenomenon, be it, e.g., probability of electric charge, magnetic momenta, hydrody-

namic vorticity or mass. If we cover the support with boxes of size l and denote

the integrated probability in the ith box as pi, we may define the local scaling
exponent ai by
piðlÞ � lai ; ð4:2Þ

where ai is called the Lipshitz–H€older exponent. Here and throughout the symbol �
indicates an asymptotic relation, e.g., (4.2) should read:
ai ¼ lim
l!0

ln piðlÞ
ln l

:

The proportionality constant (say cðaiÞ) in (4.2) can be weakly dependent on l. By
‘‘weakly’’ we mean that
lim
l!0

ln cðai; lÞ
ln l

¼ 0:
Note that PDF of each of small pieces is
qi ¼
pi
ld

� lai�d ; ð4:3Þ
and so ai controls the singularity of qi. Inasmuch ai is also known as the singularity

exponent.

Counting number of boxes dNðaÞ where pi has singularity exponent between a and
aþ da, then f ðaÞ defines the fractal dimension of the set of boxes with the singularity

exponent a by
dNðaÞ � l�f ðaÞda: ð4:4Þ

Here f ðaÞ is called singularity spectrum. Multifractal can be then viewed as the

ensemble of intertwined (uni)fractals each with its own fractal dimension f ðaÞ.
So f ðaÞ describes how densely the subsystems with the singularity exponent a are

distributed. It should be noted that power law behaviors (4.2) and (4.4) are the

fundamental assumptions of the multifractal analysis.

The convenient way how to keep track with pi�s is to examine the scaling of
the corresponding moments. For this purpose one can define a ‘‘partition function’’

as
ZðqÞ ¼
X
i

pqi ¼
Z

da nðaÞl�f ðaÞlqa; ð4:5Þ
(nðaÞ is (weakly l dependent) proportionality function having its origin in relations

(4.2) and (4.4)). In the small l case the asymptotic behavior of the partition function

can be evaluated by the method of steepest descents. As a result we get the scaling
ZðqÞ � ls; ð4:6Þ
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with
sðqÞ � min
a
ðqa� f ðaÞÞ ¼ qa0ðqÞ � f ða0ðqÞÞ;

) f 0ða0ðqÞÞ ¼ q and a0ðqÞ ¼ s0ðqÞ:
ð4:7Þ
These are precisely the Legendre transform relations. Scaling function sðqÞ is called
correlation exponent or mass exponent of the qth order. So for the purpose of

multifractal description we may use either of the conjugated couples f ða0Þ; a0 or

sðqÞ; q. For the future reference we will need to know that sð0Þ ¼ �D and sð1Þ ¼ 0

(see, e.g. [35]). Let us finally stress that if not stated otherwise, we will often ‘‘abuse’’

notation and write simply a instead of a0.

4.1. Generalization of Eqs. (3.4) and (3.5) to fractal sample spaces and multifractals

With the definitions of (multi)fractal dimensions at hand we may now generalize

Eqs. (3.4) and (3.5). Let us assume first that we have a fractal support M on which is

defined a continuous PDF FðxÞ. Following the renormalization prescription of Sec-

tion 3 we know that in order to obtain the renormalized R�enyi�s entropy we have to

know I aðEnÞ. This can be done by realizing that the uniform distribution is now

En ¼ 1
Nl
; . . . ; 1

Nl

n o
. Here Nl is the minimal covering (with cubes of size ld) of the fractal

set in question and n ¼ 1=l. Due to scaling law (4.1) the (pre)fractal volume

Vl ¼ NllD converges to the actual (finite) fractal volume V in the l ! 0 limit. As a

result En ¼ lD

Vl
; . . . ; l

D

Vl

n o
, and hence
I aðEnÞ ¼ log2 Vl � D log2 l: ð4:8Þ

In the n ! 1 (i.e., l ! 0) limit we prove in Appendix D that either
~I aðFÞ � lim
n!1

ðI aðPnÞ � I aðEnÞÞ ¼
1

ð1� aÞ log2
R
M dlF aðxÞR
M dl1=V a

� �
; ð4:9Þ
or
I aðFÞ � lim
n!1

ðI aðPnÞ � I aðEnÞjV¼1Þ ¼ lim
n!1

ðI aðPnÞ þ D log2 lÞ

¼ 1

ð1� aÞ log2
Z
M
dlF aðxÞ

� �
; ð4:10Þ
in conformity with the chosen renormalization prescription. The measure l is the

Hausdorff measure. Note that the RHS�s of (4.9) and (4.10) are finite provided the

integral
R
M dlF aðxÞ exists. From (4.10) the asymptotic expansion (3.9) for I aðPnÞ reads
I aðPnÞ ¼ D log2 nþ I aðFÞ þ oð1Þ: ð4:11Þ

This means that dðaÞ defined in (3.10) boils down to
dðaÞ ¼ lim
n!1

I aðPnÞ
log2 n

¼ D; for 8a: ð4:12Þ
We remark that the information measure D log2 n appearing in (3.3) and (4.10) is

nothing but an information-theoretical analogue of the Boltzmann entropy:
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S ¼ kB lnW (kB is the Boltzmann constant and W is the number of accessible mi-

crostates). This is so because both I aðEnÞ (¼ HðEnÞ for 8 a) and the Boltzmann

entropy S describe systems where all possible outcomes (or accessible microstates)

have assigned equal probabilities (constant PDF). Thus I aðEnÞ alike S are both

maximal attainable entropies compatible with a given set of all possible outcomes (or
accessible microstates).

Foregoing analysis can be also utilized to multifractals. In fact, by employing the

multifractal measure [36]
lðaÞ
P ðd; lÞ ¼

X
kth box

pank
ld

!l!0 0 if d < sðaÞ;
1 if d > sðaÞ;

�
ð4:13Þ
we prove in Appendix F that
I aðlPÞ � lim
l!0

I aðPnÞð � I aðEnÞjV¼1

�
¼ lim

l!0
I aðPnÞ þ

sðaÞ
ða� 1Þ log2 l

� �

¼ 1

ð1� aÞ log2
Z
a
dlðaÞ

P ðaÞ
� �

: ð4:14Þ
Eq. (4.14) implies the asymptotic expansion
I aðPnÞ ¼
sðaÞ

ða� 1Þ log2 nþ I aðlPÞ þ oð1Þ: ð4:15Þ
Consequently we note that dðaÞ of (3.10) reads
dðaÞ ¼ lim
n!1

I aðPnÞ
log2 n

¼ sðaÞ
ða� 1Þ : ð4:16Þ
Unlike in fractal sample spaces, in multifractals dðaÞ depends on a. Note that in the

case of smooth PDF�s the integrated probability piðlÞ scales as lf ðaÞ and so we have a
unifractal characterized by a single dimension a ¼ f ðaÞ � D. This implies that

s=ða� 1Þ ¼ D and hence for smooth PDF�s we naturally recover the result (4.12). It

should be emphasized that when the outcome space is a simple metric space (like Rd)

then it is known that the fractal dimension D coincides with the usual topological

dimension [35,36] and so, for instance, D ¼ d in the case of Rd .
4.2. Generalized dimensions and reconstruction theorem

After this brief intermezzo we now turn back to the question whether there is

any connection of R�enyi�s entropy with (multi)fractal systems. At present it

seems to us that there are at least two such connections. The first, more formal

connection, is associated with the so-called generalized dimensions of the qth
order defined as:
Dq � lim
l!0

1

ðq� 1Þ
ln Zq

ln l

� �
¼ sðqÞ

ðq� 1Þ : ð4:17Þ
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In passing the reader should notice that Dq is nothing but dða ¼ qÞ introduced in

(4.16). A complete knowledge of the collection of generalized dimensions Dq is

equivalent to a complete physical characterization of the fractal [39]. It should be

noted in this connection that the fractal dimension, the information dimension, and

the correlation dimension (all frequently used in the deterministic chaotic systems
[40]) are, respectively, D0, D1, and D1. In fact, all Dq are necessary to describe un-

iquely general fractals, e.g., strange attractors [39]. This is analogous to statistical

physics where one needs all cumulants to get the full density matrix. Mathematically

this corresponds to Hausdorff�s moment problem [41].

While the proof in [39] is based on a rather complicated self-similarity argumen-

tation we can understand the core of this assertion using a different angle of view. In

fact, employing the information theory we will show that the assumption of a self-

similarity is not really fundamental and that the conclusion of [39] has more general
applicability. For this purpose let us define the information-distribution function of

P (see e.g. [4]) as
FPðxÞ ¼
X

� log2 pk<x

pk: ð4:18Þ
The latter represents the total probability carried out by events with information
contents I k ¼ � log2 pk < x. Note also that for x < 0 the sum in (4.18) is empty and

so FPðxÞ ¼ 0. Realizing that
2ð1�aÞx dFPðxÞ �
X

x6 I k<xþdx

2ð1�aÞI k pk ¼
X

x6 Ik<xþdx

pak ;
we may write
I aðPÞ ¼
1

ð1� aÞ log2
Z 1

x¼0

2ð1�aÞx dFPðxÞ
� �

: ð4:19Þ
The former integral should be understood in the Stieltjes sense (FPðxÞ is generally

discontinuous). Taking the inverse Laplace–Stiltjes transform of (4.19) we obtain
FPðxÞ ¼
1

2pi

Z i1þr

�i1þr
dp

epxe�pIaðPÞ

p
¼
X
l

pl
2pi

Z i1þ0þ

�i1þ0þ

dp
epðxþlog2 plÞ

p
; ð4:20Þ
with p ¼ ða� 1Þ ln 2. The constant r is dictated by requirements that it should be

positive and that all singularities of e�pIa=p should lie to the left of the vertical line

RðpÞ ¼ r in the complex p–plane. As e�pIa is basically
P

k p
a
k it means that e�pIa=p is

analytic on the half-plane fpjRðpÞ > 0g. As a result we may choose r ¼ 0þ. For

ðxþ log2 pkÞ < 0 we may close the contour by a semicircle in the right half of the
plane. In this region integrand is analytic and so FPðxÞ ¼ 0 as it should be. For

ðxþ log2 pkÞ > 0, the semicircle must be placed in the left half plane, which yields

then correct FPðxÞ of Eq. (4.18).
Disadvantage of the inverse formula (4.20) is that p (and so a) gets its values from

C, or more specifically, one needs (at best) all complex p�s belonging to the small cir-

cle around p ¼ 0 to reconstruct the underlying distribution. It is however clear that
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in order to determine how many a�s are really needed to fully reconstruct P one must

resort to the real inverse Laplace transform instead. Such a reversal indeed exists and

is provided by, the so called, Widder–Stieltjes inverse formula [41]:
FPðxÞ �
XK
n¼0

� K
x

� �n
n!

exp �K
x
I K= lnð2Þxþ1ð Þ

� �� �ðnÞ
;

or (after setting K
x ¼ z)
FP
K
z

� �
�
XK
n¼0

�zð Þn

n!

�
exp �zI z= lnð2Þþ1ð Þ

� ��ðnÞ
; ð4:21Þ
here K is a regulator which has to be set to þ1 at the end of calculations. It is

important to recognize that the RHS of (4.21) depends on all a 2 ½1;1Þ. Other, more

intuitive, proof of the same fact is provided in Appendix G. In addition, in Appendix

H we show that a similar ‘‘reconstruction’’ theorem holds also for THS entropy Sa.

As a result, when working with I a of different orders we receive more information

than restricting our consideration to only one a. In this connection it is illuminating

to rewrite the complex integral in (4.20) as
Z i1þ0þ

�i1þ0þ

dp
epðxþlog2 pkÞ

p
¼ PP

Z 1

�1
dp

eipðxþlog2 pkÞ

p
þ ip: ð4:22Þ
Here PP stands for the principal part (associated to the pole at p ¼ 0). The term ip is

the sole contribution from p ¼ 0 (i.e., a ¼ 1), while PPð� � �Þ part corresponds to the

contribution from the (imaginary axis) neighborhood of p ¼ 0. In the case when

ðxþ log2 pkÞ > 0 then PPð� � �Þ ¼ ip and when ðxþ log2 pkÞ < 0 then PPð� � �Þ ¼ �ip,
so the a ¼ 1 contribution has precisely 50% dominance. It should be also realized
that PPð� � �Þ is ruled for most pk �s by p�s from the close proximity of p ¼ 0. In fact,
PP

Z 1

�1
dp

eipðxþlog2 pkÞ

p
¼ PP

Z d

�d
dp

eipðxþlog2 pkÞ

p
� 2i siðdyÞ

� PP

Z d

�d
dp

eipðxþlog2 pkÞ

p
þ 2ieðyÞ p=2� djyj þ OððdjyjÞ3Þ

� �
;

ð4:23Þ
with d being the d-neighborhood of p ¼ 0, siðxÞ being the sine integral and

y ¼ ðxþ log2 pkÞ. Hence we see that when the outcome space is a discrete set we need

generally all I a�s with a 2 ½1;1Þ to determine P albeit the most dominant contri-

bution comes from the relatively small neighborhood of I 1 ¼ H. The latter state-

ment is the discrete-space variant of the conclusion in [39].

Let us now briefly comment on the reconstruction theorem for the cases when the

outcome space is a d-dimensional subset of Rd . By covering the subset with the mesh
of d-dimensional cubes of size ld ¼ 1=nd we obtain similarly as in Section 3 the inte-

grated distributions Pn ¼ fpnkg and En ¼ fEnkg. The corresponding information–

distribution function now reads



P. Jizba, T. Arimitsu / Annals of Physics 312 (2004) 17–59 37
FPn=EnðxÞ ¼
X

� log2ðpnk=EnkÞ<x

pnk=Enkð Þ
�X

k

pnk=Enkð Þ

¼
X

� log2ðpnk=EnkÞ<x

pnk=Enkð Þ 1

Vnd
: ð4:24Þ
This implies (for V ¼ 1) that
Z 1

x¼�d log2 n
2ð1�aÞx dFPn=EnðxÞ ¼

P
k p

a
nkP

k E
a
nk

;

and so in accord with (3.3)
IðnÞ
a ðFÞ ¼ 1

ð1� aÞ log2
Z 1

x¼�d log2 n
2ð1�aÞx dFPn=EnðxÞ

 !
;

I aðFÞ ¼ lim
n!1

IðnÞ
a ðFÞ:

ð4:25Þ
Using the Widder–Stiltjes inverse formula we may re-create FPn=EnðxÞ (and hence

F ) in terms of IðnÞ
a ðFÞ�s. But the important moral here is that in the continuous

limit (large n) x 2 ð�1;1Þ and so a 2 ð�1;1Þ. Unlike in discrete sample

spaces, all I a, including those with a < 1, are needed now to pinpoint the un-
derlying PDF.

It should be born in mind that from a purely mathematical point of view the

reconstruction procedure presented here is by no means the proof which extends

easily to (multi)fractal systems—there is no obvious analogue of the Widder–Stilt-

jes inverse formula there. It should be rather taken as an indication that in general

systems all I a with a 2 ð�1;1Þ are needed to determine uniquely the probability

distribution. This is basically a weak version of the celebrated moment problem of

Hausdorff [41]. The latter resonates with the finding that for deterministic chaotic
systems the multifractal scaling function sðqÞ often exists even for negative values

of q. In those cases the partition function (4.5) is dominated by very small values

of pi. Hence one may be skeptical about the real existence of such a negative-q
scaling behavior since the latter can be easily disrupted by fluctuations. In fact,

if we explore the stability of Renyi�s entropy for negative a by adding a small

imaginary part into a we obtain Fig. 1. As p goes closer to zero there is a violent

proliferation of branch cuts in the left half of the complex a-plane. So information

conveyed by R�enyi�s entropy with negative a starts to be highly unreliable. Be-
cause R�enyi�s entropy is connected with the generalized dimensions via relation

(4.17) such a breakdown of scaling for negative q�s (and hence a�s) should be in-

evitable in various deterministic chaotic systems. This is indeed the case, see e.g.

[46].

The former reasonings may, to a certain extent, vindicate the use of aP 0 in usual

information theory. The bound aP 0 can be hence merely understood as a reliability

bound imposed on the conveyed information.



Fig. 1. A plot of Renyi�s entropy I aðPÞ for 2 dimensional P ¼ ðp1; p2Þ ¼ ðp; 1� pÞ. We choose p ¼ 0:01.
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4.3. Thermodynamic formalism and MaxEnt

The second connection which we intend to advocate and progress here is the con-

nection with the maximal entropy principle (MaxEnt). We will show that from the
MaxEnt point of view, extremizing Shannon�s entropy on (multi)fractals is equiva-

lent to extremizing directly R�enyi�s entropy without invoking the (multi)fractal struc-

ture explicitly. An explicit illustration of this point on the network of cosmic strings

will be given elsewhere.

Consider a support paved with boxes of size l and let the integrated probability in

the kth box is denoted as pk. Shannon�s entropy of such a process is then
I ¼ �
X
k

pkðlÞ log2 pkðlÞ:
The important observation of the multifractal theory is that for q ¼ 1
að1Þ ¼ dsð1Þ
dq

¼ lim
l!0

P
k pkðlÞ log2 pkðlÞ

log2 l
: ð4:26Þ
It can be shown that the number að1Þ ¼ f ðað1ÞÞ describes the Hausdorff–Besicovich

dimension of the set on which the probability is concentrated (see e.g. [36]). This

means that the probability distribution Pn is cumulated on the l-mesh cubes with

pkðlÞ � lað1Þ. In fact, the relative probability of the complement set approaches zero

in the l ! 0 limit [36]. This statement goes also under the name Billingsley theorem

[42] or curdling [35]. The corresponding subset M is known as the measure theoretic

support. Let us thus write
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dH ðMÞ � f ðað1ÞÞ ¼ lim
l!0

1

log2 l

X
k

pkðlÞ log2 pkðlÞ

� 1

log2 e

X
k

pkðeÞ log2 pkðeÞ: ð4:27Þ
Here e corresponds to a cutoff (or coarse graining) scale of the grid. For the further

convenience we will keep e ¼ lcut finite throughout all our calculations and set e ! 0

only at the end.

In the case of multifractal systems one is often interested in entropy of only

certain (uni)fractal subsets. For such a purpose it is useful to introduce a one-

parametric family of normalized distributions (zooming or escort distributions)

.ðqÞ as
.iðq; lÞ ¼
½piðlÞ�qP
j½pjðlÞ�

q � lqai�s ¼ lf ðaiÞ:
Because the distribution .ðq; lÞ alters the scaling of the original distribution
Pn, the corresponding measure theoretic support will change. As a mater of fact,

distribution .ðq; lÞ enables to form an ensemble of measure theoretic supports

MðqÞ parametrized by q. Parameter q provides a ‘‘zoom in’’ mechanism to probe

various regions of a different singularity exponent. Indeed, from (4.7) we

have
df ðaÞ ¼ 6 da if q6 1;
P da if qP 1:

�
ð4:28Þ
Integrating (4.28) from aðq ¼ 1Þ to a we obtain
f ðaÞ ¼ 6 a if q6 1;
P a if qP 1;

�
ð4:29Þ
and so for q > 1 .ðqÞ puts emphasis on the more singular regions of Pn, while for

q < 1 the accentuation is on the less singular regions (see also Fig. 2). The corre-

sponding fractal dimension of the measure theoretic support MðqÞ of .ðqÞ is
dH ðMðqÞÞ ¼ lim
l!0

1

log2 l

X
k

.kðq; lÞ log2 .kðq; lÞ

� 1

log2 e

X
k

.kðq; eÞ log2 .kðq; eÞ: ð4:30Þ
We can now use (4.30) to find the promised connection between multifractals and

R�enyi�s entropy. To do this let us observe that the curdling (4.30) mimics the situ-

ation occurring in equilibrium statistical physics. There in canonical formalism one
works with (usually infinite) ensemble of identical macroscopic systems with all

possible energy configurations. Notwithstanding only the configurations with

Ei ¼ hEi dominate in thermodynamic limit.



Fig. 2. A plot of the zooming distribution for two-dimensional P: .ðqÞ ¼ pq=ðpq þ ð1� pÞqÞ.
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In fact, defining the ‘‘micro-canonical’’ partition function
Zmic ¼
X

ak2ðai ;aiþdaiÞ
1

 !
¼ dNðaiÞ;
one gets for ai � log2ðpiÞ= log2 e [cf. (4.2)]
haimic ¼
X

ak2ðai ;aiþdaiÞ

ak
Zmic

� ai; hf ðaÞimic ¼
X

ak2ðai;aiþdaiÞ

f ðakÞ
Zmic

� f ðaiÞ: ð4:31Þ
Because in the micro-canonical approach the distribution is uniform

(EðaiÞ ¼ f1=dNðaiÞg), the corresponding Shannon–Gibbs entropy boils down to the

micro-canonical (or Boltzmann) entropy
HðEðaiÞÞ ¼ log2 dNðaiÞ ¼ log2 Zmic; ð4:32Þ

and hence
HðEðaiÞÞ
log2 e

� �hf ðaÞimic: ð4:33Þ
Interpreting Ei ¼ �ai log2 e as ‘‘energy’’ we may define the ‘‘inverse temperature’’

1=T ¼ b= ln 2 (note that kB ¼ 1= ln 2 here) as
1=T ¼ oH
oE

����
E¼Ei

¼ � 1

ln eZmic

oZmic

oai
¼ f 0ðaiÞ ¼ q:
Legendre transform then allows to determine the conjugate function sðqÞ via

hf ðaÞimic � qhaimic � sðqÞ: ð4:34Þ
On the other hand, defining the ‘‘canonical’’ partition function as
Zcan ¼
X
i

piðeÞq ¼
X
i

e�bEi ;
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where the identifications b ¼ q ln 2 and Ei ¼ � log2ðpiðeÞÞ are made, the corre-

sponding means are
aðqÞ � haican ¼
X
i

ai
Zcan

e�bEi �
P

i .iðq; eÞ log2 piðeÞ
log2 e

;

f ðqÞ � hf ðaÞican ¼
X
i

f ðaiÞ
Zcan

e�bEi �
P

i .iðq; eÞ log2 .iðq; eÞ
log2 e

:

ð4:35Þ
Let us observe two things. First, the fractal dimension of the measure theoretic
support dH ðMðqÞÞ is simply f ðqÞ. If q is a solution of the equation ai ¼ s0ðqÞ then in

the ‘‘thermodynamic’’ limit (e ! 0) we can identify
aðqÞ ¼ haican ¼ haimic � ai;

f ðqÞ ¼ hf ðaÞican ¼ hf ðaÞimic � f ðaiÞ:
ð4:36Þ
Eqs. (4.35) then provide a parametric relationship between f ðqÞ and the sin-
gularity exponent aðqÞ. When the parameter q is eliminated one recovers the

usual singularity spectrum f ðaÞ. Eqs. (4.35) imply that hf ican ¼ qhaican � s,
haican ¼ ds=dq, and so again the Legendre transform applies. Second, because

the micro-canonical and canonical entropies coincide in the thermodynamic

limit
HðEðaÞÞ � �
X
k

.kðq; eÞ log2 .kðq; eÞ � HðPnÞjf ðqÞ:
Here we have used the subscript f ðqÞ to emphasize that the Shannon entropy HðPnÞ
is basically the entropy of an unifractal specified by the fractal dimension f ðqÞ de-
fined in (4.35). Because of relations (4.36) and the Legendre transform (4.7) we
obtain after a short algebra
HðPnÞjf ðqÞ
log2 e

þ f ¼ I q

log2 e
þ s
q� 1

� q
�
~a:� haican

�
þ ð~s� sÞ

1� q

�
;

�
ð4:37Þ
with q determined by the condition s0ðqÞ ¼ a and
~a ¼
P

i .iðq; eÞ log2 piðeÞ
log2 e

; ~s ¼ log2
P

i p
q
i ðeÞ

log2 e
:

Applying l�Hospital�s rule we find that
lim
e!0

�
~a:

h
� haican

�
þ ð~s� sÞ

1� q

�
log2 e ¼ 0: ð4:38Þ
Multiplying (4.37) by log2 e, taking the small e limit and employing the renormal-

ization prescriptions (4.10) and (4.14) we finally receive that
I r
q ¼ Hrjf ðqÞ: ð4:39Þ
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The superscript r indicates the renormalized quantities. To understand (4.39) let us

note that HðPnÞjf ðqÞ can be alternatively written as
HðPnÞjf ðqÞ �
XdNðaÞ

k¼1

pkðeÞPdNðaÞ
l¼1 plðeÞ

log2
pkðeÞPdNðaÞ

l¼1 plðeÞ

 !
¼ log2 dNðaÞ: ð4:40Þ
Denoting the incomplete distribution
PdNðaÞ

k¼1 pkðeÞ <1 as S and the conditional dis-

tribution fpkðeÞ=S; k ¼ 1; . . . ; dNðaÞg as P0
n then
HðPnÞjf ðqÞ � HðP0
nÞ ¼

PdNðaÞ
k¼1 pkðeÞ log2 pkðeÞPdNðaÞ

l¼1 plðeÞ
� log2

1

S : ð4:41Þ
So the RHS of (4.39) equals to Shannon�s information of an incomplete distribution

[3,4] minus information corresponding to the total probability of the incomplete

system (i.e., unifractal).

In passing we can observe that for q ¼ 1 the LHS of (4.39) represents the Shan-

non entropy of the entire multifractal system, while the RHS stands for the Shannon

entropy of the unifractal with the fractal dimension að1Þ ¼ f ðað1ÞÞ ¼ D. It is of

course Billingsley�s theorem which makes sure that both sides match in the contin-

uous limit. Now, the passage from multifractals to single-dimensional statistical sys-
tems is done by assuming that the a-interval gets infinitesimally narrow and that

PDF is smooth. In such a case both a and f ðaÞ collapse to a ¼ f ðaÞ � D and

q ¼ f 0ðaÞ ¼ 1. So, for instance, for a statistical system with a smooth measure

and the support space Rd Eq. (4.39) constitutes a trivial identity. We believe that this

is the primary reason why Shannon�s entropy plays such a predominant role in phys-

ics of single-dimensional sets.

Let us make finally one more observation. If we apply the MaxEnt approach to a

single unifractal (say that with the dimension f ðqÞ) and try to infer the most prob-
able incomplete distribution which complies with whatever macroscopic constraints

we know about the unifractal subsystem, we have to look for a conditional extre-

mum of Shannon�s entropy HðPnÞjf ðqÞ. This can be done, at least in principle, in

two ways. We can either extremize HðPnÞjf ðqÞ with the incomplete distribution keep-

ing S fixed, or extremize HðPnÞjf ðqÞ directly with respect to the zooming distribution

.ðq; eÞ. The second way is often more manageable. As a result we obtain that the

least biased incomplete probability distribution on the unifractal characterized by

the dimension f ðqÞ is obtained via extremizing R�enyi�s entropy I qðPnÞ with respect
to the zooming distribution .ðq; eÞ. So by changing the q parameter at R�enyi�s en-
tropy one can ‘‘skim over’’ all unifractal Shannon�s entropies. If, additionally, the

macroscopic constraints correspond to state variables then MaxEnt approach natu-

rally allows for a thermodynamic description of multifractals.
5. Final remarks

It was the aim of this paper to present a self-contained discussion of R�enyi�s
entropy. Apart from formal information theory aspects of R�enyi�s entropy we
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have studied its bearing on various topics of current interest in physics. These

include the THC non-extensive entropy, fractal and multifractal systems, PDF

reconstruction theorem, chaotic dynamical systems, and MaxEnt approach to

thermodynamics.

It should be noted that the thermodynamical or statical concept of entropy,
though deeply rooted in physics, is rigorously defined only for equilibrium systems

or, at best, for adiabatically evolving systems. In fact, the very existence of the en-

tropy in thermodynamics is attributed to Carath�eodory�s inaccessibility theorem

[43] and the statistical interpretation behind the thermodynamical entropy is then

usually provided via the ergodic hypothesis [14,44]. When one moves away from

equilibrium there are very few clues left of how one should proceed to define entropy.

In particular, there is no general concept of ergodicity which could come into our

rescue. But just what is entropy then? It is frequently said that entropy is a measure
of disorder, and while this needs many qualifications and clarifications it is generally

believed that this does represent something essential about it. Insistence on the for-

mer interpretation however naturally begs for an operational prescription. To tackle

this issue we have resorted to information theory. Here disorder is quantified in

terms of missing information and the corresponding information entropy is a mea-

sure of our ignorance about a system in question. We feel that the latter is a natural

and conceptually very clean extension of the equilibrium concept of entropy. This

might be further reinforced by the fact that the information entropy stands a full
mathematical rigor. Actually, the information theory provides a whole hierarchy

od information entropies each of which is compatible with basic axioms of informa-

tion theory and theory of probability. Such information entropies are mutually dis-

tinguished by their order (R�enyi�s parameter). It is well known [32] that the

information entropy of order 1 (Shannon�s entropy) can successfully reproduce the

usual equilibrium statistical physics and hence thermodynamics on a simple metric

spaces. It was one of the aims of this paper to show that when dealing with

(multi)fractal systems one needs to use also information entropies of orders
a 6¼ 1—R�enyi entropies. In fact, because the concept of information does not hinge

on the notion of equilibrium or non-equilibrium, one may go even further and apply

information entropies into various non-equilibrium situations (for a ¼ 1 case, see

e.g. [45] and citations therein).

Because of this versatile nature of R�enyi�s entropy we are rather tempted to be-

lieve that THC entropy is only derived (i.e., not fundamental) concept in physics.

We substantiate the latter by arguing that in certain instances—e.g., rare events

systems—THS entropy is the leading order approximation to R�enyi�s entropy.
In addition, because R�enyi�s entropy is a monotonous function of THS entropy

all stability conditions in thermodynamics are identical in both cases and so from

thermodynamical point of view both entropies are indistinguishable. In those cases

it is a matter of taste and/or technical convenience which one will be applied [6]. It

should be also noted that in this light an apparent non-extensivity of THS entropy

could be possibly viewed as an artificial (local) feature of much the same origin

as is a non-periodicity of leading (i.e., local) contributions to (globally) periodic

functions.
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It should be, however, admitted that the authors see a possible loophole for THC

entropy to play a more pivotal role—i.e., to be an autonomous (not derived) and

conceptually clean construct, similarly as, for example, Fisher�s entropy4 is. The

loophole seem to be provided by the quantum non-locality. The point is that in order

to obtain some breathing space for THC entropy some of the axioms of R�enyi�s en-
tropy must be bypassed or at least soften. The authors feel that only plausible pos-

sibility is to violate the axiom 3 of Section 2.1 with its additivity of independent

information. In fact, we have derived the additivity of entropies for independent ex-

periments with the hidden assumption that experiments are independent if (and only

if) they are uncorrelated. In quantum mechanics, however, the relationship between

independent and uncorrelated is more delicate. At present it seems that the feasible

mechanism which questions, although in a very subtle way, the equivalence between

being independent and being uncorrelated is attributed to the quantum non-locality
and, in particular the quantum entanglement. Bohm–Aharonov effect, Berry phase,

EPR paradox, Wheeler�s delayed choice experiment or quantum teleportation being

the most paramount examples of the aforementioned. Indeed, one can go even so far

as to claim that because the whole Universe is inherently quantum correlated one

should refrain from using R�enyi�s entropy altogether. Whether or not these ideas

are viable and whether or not the affiliated entropy is connected with THC entropy

remains yet to be seen.

As we have shown R�enyi�s entropy has a build-in predisposition to account for
self-similar systems and so it naturally aspires to be an effective tool to describe phase

transitions (both in equilibrium and non-equilibrium). It is thus a challenging task to

find some connection with such typical tools of critical phenomena physics as are

conformal and renormalization groups. The latter could in turn bring about a better

understanding of the role of a parameter for systems away from equilibrium. An in-

teresting application of the former observation is in the cosmic string physics. In cos-

mology, unified gauge theories of particle interactions allow for a sequence of phase

transitions in the very early universe some of which may lead to defect formation via
the so called Kibble–Zurek mechanism [50]. Cosmic strings as the most pronounced

example of such defects, could have important relevance on the large-scale structure

formation of the universe or on cosmic microwave background radiation anisotro-

pies. In astrophysics, for instance, cosmic strings could play an important role in dy-

namics of neutron stars and in the galaxy astrophysics. In usual cases when the

grand-canonical approach is applied it is argued that at the critical (phase transition)

temperature at which strings tend to fragment into smallest allowed loops, while

large loops become exponentially suppressed—i.e., at Hagedorn temperature [51],
the correspondence between the canonical and micro-canonical ensembles breaks

down as the grand-canonical partition function diverges [52]. Various viewpoints

with different remedies were lately proposed in the literature. It seems, however, that
4 Fisher�s entropy (or information) is an important concept in parametric statistics as it represents a

measure of the amount of information a given statistical sample contains about the parameter which

parametrizes PDF. It is well known that there is and intimate connection between Fisher�s and Shannon�s
[49] (and Reny�s [4]) entropy, yet both concepts are completely autonomous.
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none of the treatments has accommodated the well known fact that the string

state-space acquires approximately self-similar structure which is exact at critical

temperature [51,52]. From this standpoint R�eny�s statistics appears to be particularly

suitable for generalization of the Hagedorn theory as it could better grasp the vital

features near the critical point. In addition, R�enyi�s theory can be applied to con-
struct the generalized grand-canonical partition function for the string network.

Our current results suggest that the new phase transition temperature should be low-

er than the one predicted by Hagedorn�s theory. It would be definitely interesting to

exploit this further and contrast our way with the more customary conformal theory

approach. Work along those lines is presently in progress [53].

Let us finally mention that because symmetry breaking phase transitions with

string-like defects occur in a variety of physical systems ranging from 3He and
4He superfluids to the early Universe, with superconductors and liquid crystals in be-
tween, one can hope that predictions based on R�enyi�s entropy could be directly

tested in laboratory. In this connection, the analysis of vortex tangle [54] (turbulence

of vortex loops in superfluid phase of 4He) is one such particularly promising systems

with the room-size experimental setting, (see e.g. [55]).
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Appendix A

In this appendix we present an alternative way of finding the unique class of the

Kolmogorov–Nagumo functions. Let us start with Eq. (2.10) which we rewrite in the

form
f ðfxÞ ¼ aðxÞf ððf� 1ÞxÞ þ f ðxÞ; ðA:1Þ
with f being an arbitrary real constant (fP 0). The latter is equivalent to the

equation
f ðfxÞ ¼ 1� afðxÞ
1� aðxÞ f ðxÞ: ðA:2Þ
Note that when f ! 0 then f ð0Þ ¼ 0. The latter should be imposed as a boundary

condition on prospective solutions. The solution of the functional Eq. (A.2) can be

easily found, indeed realizing that functions fulfilling the scaling condition (A.2)

obey the Euler-type equation
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x
o

ox
f ðxÞ ¼ � aðxÞ ln aðxÞ

1� aðxÞ f ðxÞ; ðA:3Þ
we may directly write that
f ðxÞ ¼ c exp

�
�
Z

dx
aðxÞ ln aðxÞ
xð1� aðxÞÞ

�
: ðA:4Þ
Shortly we will see that function (A.4) is the only one fulfilling the functional

Eq. (A.1). Let us, however, first determine the function aðxÞ. From (A.1) follows

that
aðxÞ ¼ f ðfxÞ � f ðxÞ
f ððf� 1ÞxÞ : ðA:5Þ
Because the latter should be true for any fP 0 we may safely assume that

f ¼ 1þ e=x with e being an infinitesimal. Then with a help of �l Hospital rule we

obtain
aðxÞ ¼ f 0ðxÞ
f 0ð0Þ ; ) f ðxÞ ¼ f 0ð0Þ

Z x

0

dyaðyÞ: ðA:6Þ
Note that að0Þ ¼ 1. On the other hand (A.5) may be equivalently written as
aððf� 1ÞxÞ ¼ f ðfxÞ � f ððf� 1ÞxÞ
f ðxÞ : ðA:7Þ
Taking now derivative o=oðf� 1Þ, using (A.1) and setting successively f ¼ 2 we get
a0ðxÞ ¼ ðaðxÞ � 1Þ ln f ðxÞð Þ0 ¼ aðxÞ ln aðxÞ
x

; ) ln aðxÞ ¼ cx: ðA:8Þ
If the integration constant c 6¼ 0 then aðxÞ ¼ expðcxÞ and hence [see (A.4) and (A.6)]
f ðxÞ ¼ cðexpðcxÞ � 1Þ: ðA:9Þ

In the latter the condition f ð0Þ ¼ 0 was used. We have defined that c ¼ f 0ð0Þ=c.
In case that c ¼ 0, we have from (A.8) that aðxÞ ¼ const: ¼ 1 and so
f ðxÞ ¼ f 0ð0Þx: ðA:10Þ

So we see that the compatible Kolmogorov–Nagumo functions are only linear and

exponential ones. We should also note that the linear f ðxÞ is retrieved from the

exponential f ðxÞ in the limit c ! 0.

Let us now turn to the point of uniqueness of f ðxÞ. For that purpose let us assume

that there are two different functions f1ðxÞ and f2ðxÞ both fulfilling Eq. (A.1) with an

identical aðxÞ and arbitrary fP 0, i.e.,
f1ðfxÞ ¼ aðxÞf1ððf� 1ÞxÞ þ f1ðxÞ; f2ðfxÞ ¼ aðxÞf2ððf� 1ÞxÞ þ f2ðxÞ: ðA:11Þ
Because the latter should hold for any fP 0 the following must be true
a0ðxÞ ¼ ðaðxÞ � 1Þ ln f1ðxÞð Þ0 ¼ ðaðxÞ � 1Þ ln f2ðxÞð Þ0: ðA:12Þ
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As a result we have that ðln f1ðxÞÞ0 ¼ ðln f2ðxÞÞ0 and so f1ðxÞ ¼ const: 	 f2ðxÞ, which
confirms that only linear and exponential functions are compatible with the addi-

tivity of information.
Appendix B

Here we present a proof that the five postulates of Section 2.1 determine uniquely

both Shannon�s and R�enyi�s entropies. Our proof consists of four steps:

(a) Let us denote first Ið1=n; . . . ; 1=nÞ ¼ LðnÞ. Then from the second and fifth

axiom follows that
LðnÞ ¼ Ið1=n; . . . ; 1=n; 0Þ6 Ið1=ðnþ 1Þ; . . . ; 1=ðnþ 1ÞÞ ¼ Lðnþ 1Þ; ðB:1Þ

i.e., L is a non-decreasing function.

(b) To find the explicit form of L we employ the third postulate. For this purpose

we will assume that we have m mutually independent experiments Að1Þ; . . . ;AðmÞ each

with r equally probable outcomes, so
IðAðkÞÞ ¼ Ið1=r; . . . ; 1=rÞ ¼ LðrÞ; ð16 k6mÞ: ðB:2Þ

Because experiments are independent IðAðkÞjAðlÞ ¼ AðlÞ

i Þ ¼ IðAðkÞÞ for k 6¼ l and 8i,
axiom 3 (generalized to the case of m experiments) implies that
IðAð1Þ \ Að2Þ \ � � � \ AðmÞÞ ¼
Xm
k¼1

IðAðkÞÞ ¼ mLðrÞ: ðB:3Þ
On the other hand, the experiment Að1Þ \ Að2Þ \ � � � \ AðmÞ consists of rm equally

probable outcomes, and so
LðrmÞ ¼ mLðrÞ: ðB:4Þ

This is nothing but Cauchy�s functional equation [13]. It might be shown [13,22] that

for non-decreasing functions (B.4) has a unique solution; LðrÞ ¼ j lnðrÞ. The con-

stant j can be determined from the axiom 2 which then directly implies that

LðrÞ ¼ log2ðrÞ.
(c) We now determine IðPÞ using axiom 3. To this extent we will assume that the

experiment A ¼ ðA1;A2; . . . ;AnÞ is described by the distribution P ¼ fp1; p2; . . . ; png
with pkð16 k6 nÞ being rational numbers, say
pk ¼
gk
g
;
Xn
k¼1

gk ¼ g; gk 2 N: ðB:5Þ
Let us have further an experiment B ¼ ðB1;B2; . . . ;BgÞ and let Q ¼ fq1; q2; . . . ; qgg is

the associated distribution. We split ðB1;B2; . . . ;BgÞ into n groups containing

g1; g2; . . . ; gn events, respectively. Consider now a particular situation in which
whenever event Ai in A happens then in B all the gk events of kth group occur with

the equal probability 1=gk and all the other events in B have probability zero. Hence
IðBjA ¼ AkÞ ¼ Ið1=gk; . . . ; 1=gkÞ ¼ log2 gk; ðB:6Þ
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and so
IðBjAÞ ¼ f �1
Xn
k¼1

.kðaÞf ðlog2 gkÞ
 !

: ðB:7Þ
On the other hand, IðA \ BÞ can be directly evaluated. Realizing that the joint

probability distribution corresponding to A \ B is
R ¼ frkl ¼ pkqljkg ¼
(
p1
g1

; . . . ;
p1
g1

;|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
g1	

p2
g2

; . . . ;
p2
g2

;|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
g2	

. . . ;
pn
gn

; . . . ;
pn
gn|fflfflfflfflfflffl{zfflfflfflfflfflffl}

gn	

)

¼ f1=g; . . . ; 1=gg; ðB:8Þ
we obtain that IðA \ BÞ ¼ LðgÞ ¼ log2 g. Applying axiom 3 then
IðPÞ ¼ log2 g � f �1
Xn
k¼1

.kðaÞf ðlog2 gkÞ
 !

¼ log2 g � f �1
Xn
k¼1

.kðaÞf ðlog2 pk þ log2 gÞ
 !

¼ LðgÞ � f �1
Xn
k¼1

.kðaÞf ðlog2 pk þ LðgÞÞ
 !

: ðB:9Þ
Let us define fyðxÞ ¼ f ð�x� yÞ () f �1ðxÞ þ y ¼ �f �1
y ðxÞ). Then
IðPÞ ¼ f �1
LðgÞ

Xn
k¼1

.kðaÞfLðgÞðI kÞ
 !

: ðB:10Þ
By axiom 4 f ðxÞ is invertible in ½0;1Þ and so both fLðgÞ and f �1
LðgÞ are continuous on

½0;1Þ. Applying now the postulate 1 (axiom of continuity) we may extend the result

(B.10) from rational pk �s to any real valued pk �s defined in [0, 1].

Let us consider now the case of independent events (i.e., IðBjAÞ ¼ IðBÞ).
From Section 2.1 (and/or Appendix A) we already know that in this case
the only candidate for fLðgÞ is a linear function or a linear function of an

exponential function. Bearing in mind that two functions which are linear func-

tions of each other give the same mean (see Section 2.1) we may choose

either fLðgÞðxÞ ¼ x or fLðgÞðxÞ ¼ 2ðk�1Þx; k 6¼ 1. Consequently from (B.10) we may

write
IðPÞ ¼ 1

ðk� 1Þ log2
Xn
k¼1

pa�kþ1
k

 !
þ 1

ð1� kÞ log2
Xn
k¼1

pak

 !
: ðB:11Þ
It should be also noticed that from axiom 5 follows that ða� kþ 1Þ > 0 and a > 0.

Within the scope of previous inequalities Eq. (B.11) is valid for any k. It should be
particularly noticed that IðPÞ is continuous at k ¼ 1 as both the left and right limit

coincide. It can be easily checked that k ¼ 1 corresponds precisely to the case of
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fLðgÞðxÞ ¼ x. Quantity (B.11) was firstly proposed by Kapur [56] and named the en-

tropy of order 2� k and type a.
Finally, it should be born in mind that because the mean (B.7) is unchanged under

linear transformation of function f ðxÞ we could, from the very beginning, restrict

ourselves to only positive invertible functions on ½0;1Þ.
(d) In the last step we will specify the relationship between a and k. Using the fact

that the experiment A \ B has the (joint) probability distribution R ¼ frkl ¼ pkqljkg
we have
IðA \ BÞ ¼ 1

ðk� 1Þ log2
X
k;l

ðpkqljkÞa�kþ1

 !
þ 1

ð1� kÞ log2
X
k;l

ðpkqljkÞa
 !

;

ðB:12Þ

and
IðBjAÞ ¼ 1

ðk� 1Þ log2
X
k

pak

 !
þ 1

ð1� kÞ log2
X
k

pak

P
lðqljkÞ

aP
lðqljkÞ

a�kþ1

 !
:

ðB:13Þ

Eq. (B.13) is a result of the fact that
2ð1�kÞIðBjA¼AkÞ ¼
P

lðqljkÞ
aP

lðqljkÞ
a�kþ1

;

and that fLðgÞðxÞ ¼ 2ðk�1Þx ) f ðxÞ ¼ 2ð1�kÞx. Combining axiom 3 and Eqs. (B.12) and

(B.13) we obtain for k 6¼ 1 the identity
P
k p

a�kþ1
k

P
lðqljkÞ

a�kþ1P
k p

a
k

P
lðqljkÞ

a ¼
P

k p
a�kþ1
kP

k p
a
k

P
l
ðqljkÞaP

l
ðqljkÞa�kþ1

: ðB:14Þ
Introducing the random variable
QðakÞ ¼
X
l

ðqljkÞa�kþ1

( )
;

we may equivalently rewrite (B.14) as
P
k;l r

a�kþ1
klP

k;l r
a
kl

¼
P

k;l r
a�kþ1
kl =QðakÞ

kP
k;l r

a
kl=Q

ðakÞ
k

; () h1=QðakÞia ¼ h1=QðakÞia�kþ1: ðB:15Þ
Here h� � �ix is defined with respect to the distribution
P ¼
X
l

ðrklÞx
�X

k;l

ðrklÞx
( )

:

Because pk �s are arbitrary, equality (B.15) happens if and only if QðakÞ is a constant

[19]. The latter implies that
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X
l

ðqljkÞa�kþ1 ¼ const:; for 8k and 8qljk: ðB:16Þ
It is easy to see that Eq. (B.16) is satisfied only when a ¼ k. Substituting k ¼ a into

(B.11) we find
IðPÞ ¼ IðAÞ ¼ 1

1� a
log2

X
k

ðpkÞa: ðB:17Þ
The proof for k ¼ 1 follows the analogous route. This proves our assertion.
Appendix C

In this appendix we derive some basic properties of the information measure

I aðBjAÞ.
From Appendix B we know that f ðxÞ compatible with axioms 1–5 is (up to a lin-

ear combination) either x or 2ð1�aÞx. Then IðBjAÞ appearing in axiom 3 turns out to

have the form
I aðBjAÞ ¼ 1

ð1� aÞ log2
P

k;lðrklÞ
aP

k p
a
k

� �
; ðC:1Þ
with PðA \ BÞ ¼ frkl ¼ pkqljk ¼ qlpkjlg. We have reintroduced the sub-index

a to emphasize the parametric dependence of I . It results from (C.1) that for

every a
06 I aðBjAÞ6 log2 n; ðC:2Þ

where n is the number of outcomes in the experiment B. Indeed, 06 I aðBjAÞ holds
due to a simple fact that for a fixed k and a > 1
X

l

ðrklÞa ¼ pak
X
l

ðqljkÞa 6 pak ; ðC:3Þ
realize that
P

l qljk ¼ 1. Equality in (C.3) is clearly valid if and only if for any k there

exists just one l ¼ lðkÞ such that qlðkÞjk ¼ 1 and 0 otherwise. The latter means that

outcomes of A uniquely determine outcomes of B and hence we do not learn any new

information about B by knowing A. In such a case (C.1) gives I aðBjAÞ ¼ 0. This is
what one would naturally expect from a conditional information.

Similarly, for 0 < a < 1 the reverse inequality in (C.3) holds and henceP
lðrklÞ

a P pak (former comments about the equality apply here as well). This proves

our assertion about the LHS inequality in (C.2).

On the other hand, the RHS inequality in Eq. (C.2) holds because for a > 1,P
lðqljkÞ

a
is a convex function which has its minimum at qljk ¼ 1=n (for 8l; k). So
X
l

ðqljkÞa P n1�a;
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while for 0 < a < 1 the opposite inequality holds. Thus
I aðBjAÞ ¼ 1

ð1� aÞ log2
P

k p
a
k

P
lðqljkÞ

aP
k p

a
k

� �
6 log2 n: ðC:4Þ
Inequality (C.4) may be viewed as a weak version of the well known a ¼ 1 case where

HðBjAÞ6HðBÞ with equality if and only if B andA are independent experiments [22]

(i.e., knowing outcomes ofA does not have any effect on the distribution of outcomes

of B). However, aforesaid does not generally hold for a 6¼ 1. This is because
I aðBÞ � I aðBjAÞ ¼ 1

ð1� aÞ log2
P

l;k p
a
kq

a
lP

l;kðpkqljkÞ
a

 !
; ðC:5Þ
and the identity
X
k;l

ðpkqlÞa
 !1=ð1�aÞ

¼
X
k;l

ðpkqljkÞa
 !1=ð1�aÞ

; ðC:6Þ
can be fulfilled for a 6¼ 1 in numerous ways [26] without assuming that qljk ¼ qk (for
example, in the a ¼ 2 case we may chose; P ¼ f1=ng; Q ¼ f1=ng, and

PðBjAÞ ¼ f1; 0; 0; . . . ; 0g). However, in the limiting case a ! 1 Eq. (C.6) turn out to

be
2
�
P

k;l
pkql log2ðpkqlÞ ¼ 2

�
P

k;l
rkl log2ðrklÞ; ðC:7Þ
which has the solution if and only if qljk ¼ ql, i.e., in the case of independent events

[22]. Yet still, I aðBjAÞ, a 6¼ 1 can be, in a sense, viewed as conditional information.

This is so because when B and A are independent then from (C.5) follows that

I aðBÞ ¼ I aðBjAÞ. Opposite implication, as we have seen, is not valid in general. The

opposite implication is, however, valid when B has an equiprobable distribution. The

latter is a simple consequence of Jensen�s inequality because for a > 1
pak ¼
X
l

ql
rkl
ql

 !a

6

X
l

ql
rkl
ql

� �a

¼
X
l

qlðpkjlÞa;
and so for PðBÞ ¼ Q ¼ fql ¼ 1=ng
P
l;k q

a
l p

a
kP

k;lðrklÞ
a 6

P
l q

a
l

P
j;k qjðpkjjÞ

aP
l;k q

a
l ðpkjlÞ

a ¼ 1; ) I aðBÞ � I aðBjAÞP 0; ðC:8Þ
with equality if and only if the equality in Jensen�s inequality holds. This happens

only when pkjl is a constant for 8l, i.e., when A and B are independent. Counterpart

with 0 < a < 1 can be proved in exactly the same way.
Appendix D

In this appendix we derive relations (3.4) and (3.5). We begin with the notion of

the integration of continuous functions defined on fractal sets [47,48]. Consider a
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fractal set M embedded in a d-dimensional space. Let us cover the set with a mesh

M ðlÞ of d-dimensional (disjoint) cubes M ðlÞ
i of size ld and let NlðMÞ is a minimal num-

ber of the cubes needed for the covering. Functions with the support in the mesh are

called simple if they can be decomposed in the following way:
5 It

measur
GðlÞðxÞ ¼
XNl

i

GðlÞ
i vðlÞi ðxÞ: ðD:1Þ
Here vðlÞi are characteristic functions, i.e.,
vðlÞi ¼ 1 if x 2 M ðlÞ
i ;

0 if x 62 M ðlÞ
i :

�
ðD:2Þ
Then the integral
R
M dlGðlÞ is defined as
Z

M
dlðxÞGðlÞðxÞ ¼

XNl

i

GðlÞ
i lðlÞ M ðlÞ

i

� �
; ðD:3Þ
where the measure lðlÞ is the measure on the covering mesh. The precise form of the

measure will be specified shortly. On the covering mesh M ðlÞ we can build a r-
structure in a usual way. As a result, if G is a non-negative lðlÞ measurable function

then GðxÞ ¼ liml!0 GðlÞðxÞ for all x 2 M ðlÞ, for some sequence fGðlÞ
i g of monotonic

increasing non-negative simple functions. Owing to this fact we may define
Z
M
dlðxÞGðxÞ ¼ lim

l!0

XNl

i¼1

GðlÞ
i lðlÞðM ðlÞ

i Þ: ðD:4Þ
In this connection it is important to notice that due to the scaling prescription (4.1)
log lD ¼ � logNl þ oðl0Þ ) lDNl ¼ Vl ! V : ðD:5Þ

Here Vl is the pre-fractal volume which in the small l limit converges to the true

fractal volume V . Natural candidate for lðlÞðM ðlÞ
i Þ is the fraction V ðM ðlÞÞ=Nl which in

the small l limit behaves as:5 lD ¼ n�D. So particularly when F is a continuous PDF

we have
Z
M
dlðxÞ FðxÞ ¼ lim

l!0

XNl

i¼1

FðlÞ
i lD: ðD:6Þ
The integrated probability of the k-th cube is thus pnk ¼ FðlÞ
k lD. A simple consistency

check can be demonstrated on pnk ¼ Enk. Indeed, from Section 4.1 we know that

Enk ¼ lD=Vl and so may write
1 ¼ lim
l!0

XNl

k¼1

Enk ¼ lim
l!0

XNl

k¼1

lD

Vl
¼
Z
M
dl

1

V
¼ 1: ðD:7Þ
should be noted that the measure just defined basically coincides with the D-dimensional Hausdorff

e.
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We thus see that the integral prescription (D.6) applies correctly in the case of

uniform distributions.

Using now the renormalization prescription (3.4)
~I aðFÞ � lim
l!0

I aðPnÞð � I aðEnÞÞ

¼ lim
l!0

1

1� a
log2

XNl

i¼1

FðlÞ
i lD

� �a ,XNl

i¼1

lDa

V a
l

! !

¼ lim
l!0

1

1� a
log2

XNl

i¼1

FðlÞ
i

� �a
lD

 ,XNl

i¼1

lD

V a
l

! !

¼ 1

1� a
log2

R
M dlF aR

M dl1=V a

� �
: ðD:8Þ
If we use the renormalization prescription (3.5) (or equivalently when we set V ¼ 1

for I aðEnÞ in (D.8)) we easily see that
I aðFÞ � lim
l!0

I aðPnÞð � I aðEnÞjV¼1

�
¼ lim

l!0
I aðPnÞð þ D log2 lÞ

¼ 1

1� a
log2

Z
M
dlF a

� �
: ðD:9Þ
Our renormalization prescription is obviously consistent only when integrals on

the RHS of (D.8) and (D.9) exist.
Appendix E

We show here that R�enyi�s entropy IðdÞ
a ðFÞ is not invariant under a transforma-

tion of the continuous random variable AðdÞ while Î ðdÞ
a ðFÞ is. Note first that in a dis-

crete case, outcomes A1; . . . ;An have the same probability distribution p1; . . . ; pn as
outcomes hðA1Þ; . . . ; hðAnÞ, where hð� � �Þ is an arbitrary ‘‘well behaved’’ function.

Hence R�enyi�s entropy for such a system is invariant under the h-transformation.
However, in the continuous case even the simplest linear transformation

AðdÞ ! cAðdÞ does not leave IðdÞ
a ðFÞ invariant, indeed after rescalling AðdÞ to cAðdÞ

we obtain
ðcAðdÞÞn � ~AðdÞ
n ¼ c

ðncÞA1½ �
ðncÞ ; c

ðncÞA2½ �
ðncÞ ; . . . ; c

ðncÞAd½ �
ðncÞ

� �
¼ cAðdÞ

ðncÞ;
and so
IðdÞ
a cAðdÞ
� �

¼ lim
n!1

I a
~AðdÞ
n

� �
� d log2 n

� �
¼ lim

ðncÞ!1
I a cAðdÞ

ðncÞ

� �
� d log2ðncÞ þ d log2 c

� �
¼ IðdÞ

a ðAðdÞÞ þ d log2 c: ðE:1Þ
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So IðdÞ
a ðcAðdÞÞ 6¼ IðdÞ

a ðAðdÞÞ. Situation becomes, however, different when we consider
~IðdÞ
a ðcAðdÞÞ. This is because we can rewrite ~IðdÞ

a ðcAðdÞÞ as

~IðdÞ
a cAðdÞ
� �

¼ lim
n!1

I a
~AðdÞ
n

� �
� d log2 n

� �
� lim

n!1
I a EðdÞ

ðncÞ

� �
� d log2 n

� �
: ðE:2Þ
Here we have used EðdÞ
ðncÞ instead of EðdÞ

n because the rescalling changes also the volume

V of the outcome space into cV . A simple consequence of Eq. (E.2) is that
~IðdÞ
a ðcAðdÞÞ ¼ ~IðdÞ

a ðAðdÞÞ. In fact, when h ¼ ðh1; . . . ; hdÞ is an invertible and differen-

tiable (vector) function it is simple to rewrite ~IðdÞ
a ðFÞ in a fully covariant manner.

Indeed, realizing that scalar density transforms as
FðxÞ ¼ oy

ox

����
����F̂ ðyÞ: ðE:3Þ
(here y ¼ hðxÞ) we also know that
1=V ¼ oy

ox

����
����mðyÞ; ðE:4Þ
(here mðyÞ denotes the h-transformed uniform PDF). Then we see that
~IðdÞ
a AðdÞ
� �

¼ 1

ð1� aÞ log2
Z
V
ddxF aðxÞV a�1

� �

¼ 1

ð1� aÞ log2
Z
hðV Þ

ddy
F̂ ðyÞ
mðyÞ

 !a

mðyÞ
 !

¼ ~IðdÞ
a hðAðdÞÞ
� �

: ðE:5Þ
If h1 and h2 are any two invertible and differentiable vector functions so is their

composition h2 
 h1 and then
~IðdÞ
a AðdÞ
� �

¼ ~IðdÞ
a h1ðAðdÞÞ
� �

¼ 1

ð1� aÞ log2
Z
h1ðV Þ

ddy
F 1ðyÞ
m1ðyÞ

� �a

m1ðyÞ
 !

¼ 1

ð1� aÞ log2
Z
h2
h1ðV Þ

ddz
F 2ðzÞ
m2ðzÞ

� �a

m2ðzÞ
 !

¼ ~IðdÞ
a h2 
 h1ðAðdÞÞ
� �

; ðE:6Þ
with
F 1ðyÞ
oy

ox

����
���� ¼ FðxÞ; F 2ðzÞ

oz

oy

����
���� ¼ F 1ðyÞ;

m1ðyÞ
oy

ox

����
���� ¼ 1=V ; m2ðzÞ

oz

oy

����
���� ¼ m1ðyÞ;

ðE:7Þ
and y ¼ h1ðxÞ; z ¼ h2ðyÞ ¼ h2 
 h1ðxÞ. Thus ~IðdÞ
a ðFÞ is invariant under the outcome-

space reparametrization. In addition, if we restrict our consideration only to the class
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of transformations which have also differentiable inverse, i.e., diffeomorphisms, we

see from (E.6) and (E.7) that the information measure ~IðdÞ
a is invariant with respect to

the group of diffeomorphisms. This fact was first realized by E.T. Jaynes in the

context of Shannon�s entropy [32]. As a matter of fact, when setting a ¼ 1 we obtain

from (E.6) that
~HðFÞ ¼ lim
a!1

1

ð1� aÞ log2
Z
hðV Þ

ddy
F̂ ðyÞ
mðyÞ

 !a

mðyÞ
 !

¼ �
Z
hðV Þ

ddyF̂ ðyÞ log2
F̂ ðyÞ
mðyÞ

 !
; ðE:8Þ
which precisely coincides with Jaynes�s finding [31,32]. Entropy (E.8) is also known

as the Kullback–Leibler relative entropy.
Appendix F

In this appendix we derive relation (4.14). To start we must first identify En. If
we denote NlðaiÞ as the number of boxes of size l needed to cover the unifractal

with the singularity exponent ai then En ¼ fEnkðaiÞ; k 2 NlðaiÞ; i 2 Ng. Because of

the scaling property we must set EnkðaiÞ ¼ ckðaiÞlai with ckðaiÞ weakly l dependent.
In order to I aðEnÞ represent the ‘‘ground-state’’ information we must require

ckðaiÞ to be a constant (i.e., ckðai; lÞ ¼ cðlÞ). This is so because in such a case

our lack of information about the multifractal system (provided we comply with

the scaling of probability) is clearly highest. This implies that c ¼ 1=
P

i NlðaiÞlai
as indeed
X
l

Enl ¼
X
i

XNlðaiÞ

k¼1

EnkðaiÞ ¼
X
i

NlðaiÞclai ¼ 1: ðF:1Þ
Notice that c is weakly l dependent since
P

i NlðaiÞlai � lsð1Þ ¼ 1. To proceed further

we employ the multifractal measure (4.13). There Pn ¼ fpnkg is the discrete (inte-

grated) probability distribution on the covering mesh. In case that the limit in (4.13)

exists we may define the increment of lðaÞ
P ðd; lÞ between a and aþ da in the small l

limit as
dlðaÞ
P ðaÞ ¼ lim

l!0

X
laþda K pnk K la

pank
ls

: ðF:2Þ
Eq. (F.2) then implies that
lim
l!0

log2
X
i

XNlðaiÞ

k

pankðaiÞ
 !

� log2

Z
a
dlðaÞ

P ðaÞ þ sðaÞ log2 l; ðF:3Þ
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and so especially
~I aðlPÞ � lim
l!0

I aðPnÞð � I aðEnÞÞ ¼
1

ð1� aÞ log2
R
a dl

ðaÞ
P ðaÞR

a dl
ðaÞ
E ðaÞ

 !
: ðF:4Þ
Under the condition that the integrals exist relation (F.4) represents a well

defined (and finite) information measure. From the same reasons as in Section 3
we may conclude that ~I aðlPÞ represents negentropy. Notice that similarly as

before
Z
a
dlðaÞ

E ðaÞ
����
V¼1

¼ 1: ðF:5Þ
This results from the fact that
P

i NlðaiÞlaai�sðaÞ is a independent in the small l limit.

Actually,
d

da
KðaÞ � d

da

X
i

NlðaiÞlaai�sðaÞ ¼ d

da

Z
danðaÞl�f ðaÞþaa�sðaÞ

¼ ln l
Z

daða� a0ÞnðaÞl�f ðaÞþaa�sðaÞ ¼ 0þO 1

ðln lÞ3=2

 !
; ðF:6Þ
On the last line of (F.6) we have applied Laplace�s formula of the asymptotic calculus

[38]. Eq. (F.6) confirms our previous assertion as it assures that the vanishing of

dKðaÞ=da at l ! 0 is at least as large as that of 1=ðln lÞ3=2. The consequence of this is
that
lim
l!0

P
i NlðaiÞlaai�sðaÞP

i NlðaiÞlai
� �a ¼ KðaÞ

ðKð1ÞÞa ¼ ðKð1ÞÞ1�a ¼ Kð0Þ
ðKð1ÞÞa ¼

V
ðKð1ÞÞa

¼ 1

ðKð1ÞÞa : ðF:7Þ
The latter implies that Kð1Þ ¼ 1 and ergo (F.5) holds.
Appendix G

We show here an alternative way to obtain the real inverse formula for Eq. (4.19).

Let us start with the following observation:
FPðxÞ ¼
X

� log2 pk<x

pk ¼
X
l

plhðlog2 pl þ xÞ: ðG:1Þ
Using the limit representation of the step function hðxÞ;
hðxÞ ¼ lim
e!0þ

exp ð � 2�
x
e
�
;
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together with the functional relation
hðlog2 pl þ xÞ ¼ hðxÞh log2 pl
x

þ 1

� �
þ hð�xÞh � log2 pl

x
� 1

� �

¼ hðxÞ � eðxÞh � log2 pl
x

� 1

� �
; ðG:2Þ
we may rewrite (G.1) as!
FPðxÞ ¼ hðxÞ � lim
e!0þ

eðxÞ
X1
n¼0

ð�1Þn2n
e

n!
2�

n
exIðn=exþ1Þ : ðG:3Þ
or equivalently
F c
PðxÞ � eðxÞ

X1
n¼0

ð�1Þn2Kn
n!

2�
nK
x IðKn=xþ1Þ : ðG:4Þ
Here the complementary information-distribution function of P
F c
PðxÞ � hðxÞ � FPðxÞ ¼

X
� log2 pk P xP 0

pk;
was defined. The regulator K � 1=e. Note that because x 2 ½0;þ1Þ we have that

a 2 ½1;þ1Þ. This is in the agreement with the analysis based on the Widder–Stiltjes
inverse formula.
Appendix H

In this appendix we derive the reconstruction theorem for THC entropy. Starting

with Eq. (4.20) we may write
FPðxÞ ¼
1

2pi

Z i1þr

�i1þr
dp

epxe�pIaðPÞ

p
¼ � 1

lnð4Þpi

Z i1þr

�i1þr
dpepxSaðPÞ þ hðxÞ ðH:1Þ
where the step function hðxÞ was added and subtracted and the Bromwich repre-

sentation
hðxÞ ¼ 1

2pi

Z i1þr

�i1þr
dp

epx

p
;

was used. As a result we obtain
F c
PðxÞ ¼

1

lnð4Þpi

Z i1þr

�i1þr
dpepxSaðPÞ: ðH:2Þ
The inverse Laplace–Stiltjes transformation then gives
SaðPÞ ¼
1

ða� 1Þ

Z 1

x¼0

2ð1�aÞx dF c
PðxÞ: ðH:3Þ
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