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a b s t r a c t

Uncertainty relations based on information theory for both discrete
and continuous distribution functions are briefly reviewed.We ex-
tend these results to account for (differential) Rényi entropy and
its related entropy power. This allows us to find a new class of
information-theoretic uncertainty relations (ITURs). The potency
of such uncertainty relations in quantum mechanics is illustrated
with a simple two-energy-levelmodelwhere they outperformboth
the usual Robertson–Schrödinger uncertainty relation and Shan-
non entropy based uncertainty relation. In the continuous case the
ensuing entropy power uncertainty relations are discussed in the
context of heavy tailed wave functions and Schrödinger cat states.
Again, improvement over both the Robertson–Schrödinger uncer-
tainty principle and Shannon ITUR is demonstrated in these cases.
Further salient issues such as the proof of a generalized entropy
power inequality and a geometric picture of information-theoretic
uncertainty relations are also discussed.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Quantum-mechanical uncertainty relations place fundamental limits on the accuracy with which
one is able to measure the values of different physical quantities. This has profound implications
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not only on the microscopic but also on the macroscopic level of physical systems. The archetypal
uncertainty relation formulated by Heisenberg in 1927 describes a trade-off between the error of a
measurement to know the value of one observable and the disturbance caused on another comple-
mentary observable so that their product should be no less than a limit set by h̄. Since Heisenberg’s
intuitive, physically motivated deduction of the error-disturbance uncertainty relations [1,2], a num-
ber of methodologies trying to improve or supersede this result have been proposed. In fact, over the
years it have became steadily clear that the intuitiveness of Heisenberg’s version cannot substitute
mathematical rigor and it came as no surprise that the violation of the Heisenberg’s original relation
was recently reported a number of experimental groups, e.g., most recently by the Vienna group in
neutron spin measurements [3]. At present there exists number of alternatives to Heisenberg’s error-
disturbance relation, e.g., Ozawa’s universally valid error-disturbance relation [4,5] or Dressel–Nori
inequalities [6], with many pros and cons [6–9].

Yet, already at the end of 1920s Kennard and independently Robertson and Schrödinger refor-
mulated the original Heisenberg (single experiment, simultaneous measurement, error-disturbance)
uncertainty principle in terms of a statistical ensemble of identically prepared experiments [10–12].
Among other things, this provided a rigorous meaning to Heisenberg’s imprecisions (‘‘Unge-
nauigkeiten’’) δx and δp as standard deviations in position and momenta, respectively, and entirely
avoided the troublesome concept of simultaneous measurement. The Robertson–Schrödinger ap-
proach has proven to be sufficiently versatile to accommodate other complementary observables
apart from x and p, such as components of angularmomenta, or energy and time. Because in the above
cases the variance is taken as a ‘‘measure of uncertainty’’, expressions of this type are also known
as variance-based uncertainty relations (VUR). Since Robertson and Schrödinger’s papers, a multi-
tude of VURs has been devised; examples include the Fourier-type uncertainty relations of Bohr and
Wigner [13,14], the fractional Fourier-type uncertainty relations ofMustard [15], mixed-states uncer-
tainty relations [16], the angle-angularmomentumuncertainty relation of Lévy-Leblond [17] and Car-
ruthers and Nietto [18], the time–energy uncertainty relation of Mandelstam and Tamm [19], Luisell’s
amplitude–phase uncertainty relation [20], and Synge’s three-observable uncertainty relations [21].

Many authors [22–27] have, however, remarked that even VURs have many limitations. In fact,
the essence of a VUR is to put an upper bound to the degree of concentration of two (or more)
probability distributions, or, equivalently impose a lower bound to the associated uncertainties.While
the variance is often a good measure of the concentration of a given distribution, there are many
situations where this is not the case. For instance, variance as a measure of concentration is a dubious
concept in the case when a distribution contains more than one peak. Besides, variance diverges in
many distributions even though such distributions are sharply peaked. Notorious examples of the
latter are provided by heavy-tail distributions such as Lévy [28,29], Weibull [29] or Cauchy–Lorentz
distributions [29,30]. For instance, in the theory of Bright–Wigner shapes it has been known for a long
time [31] that the Cauchy–Lorentz distribution can be freely concentrated into an arbitrarily small
region by changing its scale parameter,while its standard deviation remains very large or even infinite.

Another troublesome feature of VURs appears in the case of finite-dimensional Hilbert spaces, such
as the Hilbert space of spin or angular momentum. The uncertainty product can attain zero minimum
even when one of the distributions is not absolutely localized, i.e., even when the value of one of the
observables is not precisely known [24]. In such a case the uncertainty is just characterized by the
lower bound of the uncertainty product (i.e., by zero) and thus it only says that this product is greater
than zero for some states and equal to zero for others. This is, however, true also in classical physics.

The previous examples suggest that it might be desirable to quantify the inherent quantum unpre-
dictability in a different, more expedient way. A distinct class of such non-variance-based uncertainty
relations are the uncertainty relations based on information theory. In these the uncertainty is quanti-
fied in terms of various information measures—entropies, which often provide more stringent bound
on concentrations of the probability distributions. The purpose of the present paper is to give a brief
account of the existing information-theoretic uncertainty relations (ITUR) and present some new re-
sults based on Rényi entropy. We also wish to promote the notion of Rényi entropy (RE) which is not
yet sufficiently well known in the physics community.

Our paper is organized in the following way: In Section 2, we provide some information-theoretic
background on the Rényi entropy (RE). In particular, we stress distinctions between the RE for discrete
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probabilities and RE for continuous probability density functions (PDF)—the so-called differential RE.
In Section 3 we briefly review the concept of entropy power both for Shannon and Rényi entropy. We
also prove the generalized entropy power inequality. With the help of the Riesz–Thorin inequality
we derive in Section 4 the RE-based ITUR for discrete distributions. In addition, we also propose a
geometric illustration of the latter in terms of the condition number and distance to singularity. In
Section 5 we employ the Beckner–Babenko inequality to derive a continuous variant of the RE-based
ITUR. The result is phrased both in the language of REs and generalized entropy powers. In particular,
the latter allows us to establish a logical link with the Robertson–Schrödinger VUR. The advantage
of ITURs over the usual VUR approach is illustrated in Section 6. In two associated subsections we
first examine the rôle of a discrete generalized ITUR on a simple two-level quantum system. In the
second subsection the continuous ITUR is considered for quantum-mechanical systems with heavy-
tailed distributions and Schrödinger cat states. An improvement of the Rényi ITUR over both the
Robertson–Schrödinger VUR and Shannon ITUR is demonstrated in all the cases discussed. Finally
in Section 7 we make some concluding remarks and propose some generalizations. For the reader’s
convenience we relegate to Appendix some of the detailed mathematical steps needed in Sections 3.1
and 5.

2. Brief introduction to Rényi entropy

The basic notion that will be repeatedly used in the following sections is the notion of Rényi
entropy. For this reason we begin here with a brief review of some of its fundamental properties.

REs constitute a one-parameter family of information entropies labeled by Rényi’s parameter
α ∈ R+ and fulfill additivity with respect to the composition of statistically independent systems.
The special case with α = 1 corresponds to the familiar Shannon entropy. It can be shown that Rényi
entropies belong to the class of mixing homomorphic functions [32] and that they are analytic for α’s
which lie in I ∪ IV quadrants of the complex plane [33]. In order to address the uncertainty relations
issue it is important to distinguish two situations.

2.1. Discrete probability distribution case

Let X = {x1, . . . , xn} be a random variable admitting n different events (be it outcomes of some
experiment or microstates of a given macrosystem), and let P = {p1, . . . , pn} be the corresponding
probability distribution. Information theory then ensures that themost general informationmeasures
(i.e. entropy) compatible with the additivity of independent events are those of Rényi [34]:

Iα(P ) =
1

(1 − α)
log2


n

k=1

pαk


. (1)

Form (1) is valid even in the limiting case when n → ∞. If, however, n is finite then Rényi entropies
are bounded both from below and from above: − log2(pk)max ≤ Iα ≤ log2 n. In addition, REs are
monotonically decreasing functions in α, so Iα1 < Iα2 if and only if α1 > α2. One can reconstruct
the entire underlying probability distribution knowing all Rényi distributions via theWidder–Stieltjes
inverse formula [33]. In this case the leading order contribution comes fromI1(P ), i.e. fromShannon’s
entropy. Some elementary properties of Iα are as follows:

1. RE is symmetric: Iα(p1, . . . , pn) = Iα(pk(1), . . . , pk(n)).
2. RE is nonnegative: Iα(P ) ≥ 0.
3. RE is decisive: Iα(0, 1) = Iα(1, 0).
4. For α ≤ 1 RE is concave; for α > 1 RE in neither convex nor concave.
5. RE is bounded, continuous and monotonic in α.
6. RE is analytic in α ∈ CI∪IV ⇒ for α = 1 it equals to Shannon’s entropy, i.e. limα→1 Iα = H .

Among a myriad of information measures REs distinguish themselves by having a firm operational
characterization in terms of block coding and hypotheses testing. Rényi’s parameter α is then directly
related to so-called β-cutoff rates [35]. RE is used in coding theory [36,37], cryptography [38–40],
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finance [41,42] and in theory of statistical inference [34]. In physics one often uses Iα(P ) in the
framework of quantum information theory [40,43,44].

2.2. Continuous probability distribution case

Let M be a measurable set on which is defined a continuous probability density function (PDF)
F (x). We will assume that the support (or outcome space) is a smooth but not necessarily compact
manifold. By covering the support with the mesh M(l) of d-dimensional (disjoint) cubes M(l)

k (k =

1, . . . , n) of size ld we may define the integrated probability in k-th cube as

pnk =


M(l)k

dxF (x) = F (xi)ld, xi ∈ M(l)
k , (2)

where the second equality follows from the first mean-value theorem of integral calculus [45].
Prescription (2) defines the mesh probability distribution Pn = {pn1, . . . , pnn}. The continuous (i.e.,
l → 0) limit corresponds to the situation when events in M can be resolved (measured) to arbitrary
precision, and it often yields infinite information [34]. For that reason it is more judicious to consider
the large-n limit of the relative entropy (say between Pn and the uniform distribution En) rather than
the absolute one. This line of reasoning was originally proposed by Rényi in Ref. [34] and further
elaborated in [33,46]. Resulting renormalizedRényi entropy, often knownalso as differential RE entropy,
reads

Ĩα(F ) ≡ lim
n→∞

(Iα(Pn)− Iα(En)) =
1

(1 − α)
log2


M dxF α(x)
M dx 1/V α


. (3)

Here V is the volume of M . Eq. (3) can be viewed as a generalization of the Kullback–Leibler relative
entropy [47]. WhenM is compact it is possible to introduce a simpler alternative prescription as

Iα(F ) ≡ lim
n→∞

(Iα(Pn)− Iα(En)|V=1) = lim
n→∞

(Iα(Pn)+ D log2 l)

=
1

(1 − α)
log2


M
dxF α(x)


. (4)

In both previous cases D represents the Euclidean dimension of the support. Rényi entropies (3) and
(4) are defined if (and only if) the corresponding integral


M dxF α(x) exists. Eqs. (3) and (4) indicate

that the asymptotic expansion for Iα(Pn) has the form:

Iα(Pn) = −D log2 l + Iα(F )+ O(1) = −D log2 l + Ĩα(F )+ log2 Vn + O(1).

This means that the differential entropy is not a limit of the Rényi entropy for n → ∞ limit. Here Vn is
the covering volume and the symbol O(1) is the residual error which tends to 0 for l → 0. In contrast
to the discrete case, Rényi entropies Iα(F ) are not generally positive. In particular, a distribution
which is more confined than a unit volume has less RE than the corresponding entropy of a uniform
distribution over a unit volume and hence yields a negative Iα(F ). A paradigmatic example of this
type of behavior is the δ-function PDF in which case Iα = − log2 δ(0) = −∞, for all α. Information
measures Ĩα(F ) and Iα(F ) are often applied in theory of statistical inference [48–51] and in chaotic
dynamical systems [52–55].

3. Entropy power and entropy power inequalities

The mathematical underpinning for most uncertainty relations used in quantummechanics lies in
inequality theory. For example, thewave-packet uncertainty relations are derived from the Plancherel
inequality, and the celebrated Robertson–Schrödinger’s VUR is based on the Cauchy–Schwarz
inequality (and ensuing Parseval equality) [11]. Similarly, Fourier-type uncertainty relations are based
on the Hausdorff–Young inequality [56], etc.

In information theory the key related inequalities are (a) Young’s inequality that implies the
entropy power inequalities, (b) the Riesz–Thorin inequality that determines the generalized entropic



P. Jizba et al. / Annals of Physics 355 (2015) 87–114 91

uncertainty relations and (c) the Cramér–Rao and logarithmic Sobolev inequalities that imply Fisher’s
information uncertainty principle. In this section we will briefly review the concept of the entropy
power and the ensuing entropy power inequality. Both concepts were developed by Shannon in his
seminal 1948 paper in order to bound the capacity of non-Gaussian additive noise channels [57]. The
connectionwith quantummechanics was established by Stam [58], Lieb [59] and others who used the
entropy power inequality to prove standard VUR.

In the second part of this section we show how the entropy power can be extended into the RE
setting. With the help of Young’s inequality we find the corresponding generalized entropy power
inequality. Related applications to quantum mechanics will be postponed to Section 6.2.

3.1. Entropy power inequality—Shannon entropy case

Suppose that X is a random vector in RD with the PDF F . The differential (or continuous) entropy
H(X) of X is defined as

H(X) = I1(F ) = −


RD

F (x) log2 F (x) dx. (5)

The discrete version of (5) is nothing but the Shannon entropy [57], and in such a case it represents
an average number of binary questions that are needed to reveal the value of X. Actually, (5) is not
a proper entropy but rather information gain [33,34] as can be seen directly from (4) when the limit
α → 1 is taken. We shall return to this point in Section 5. The entropy power N(X) of X is the unique
number such that [57,60]

H (X) = H (XG) , (6)

where XG is a Gaussian random vector with zero mean and variance equal to N(X), i.e., XG ∼

N (0,N(X)1D×D). Eq. (6) can be equivalently rewritten in the form

H (X) = H


N(X) · ZG


, (7)

with ZG representing a Gaussian random vector with the zero mean and unit covariance matrix. The
solution of both (6) and (7) is then

N(X) =
2

2
D H(X)

2πe
. (8)

Let X1 and X2 be two independent continuous vector valued random variables of finite variance.
In the case when the Shannon differential entropy is measured in nats (and not bits) we get for the
entropy power

N(X) =
1

2πe
exp


2
D

H(X)


. (9)

The differential entropy (8) (as well as (9)) satisfies the so-called entropy power inequality

N(X1 + X2) ≥ N(X1)+ N(X1), (10)

where the equality holds iff X1 and X2 are multivariate normal random variables with proportional
covariance matrices [57]. In general, inequality (10) does not hold when X1 and X2 are discrete ran-
dom variables and the differential entropy is replaced with the discrete entropy. Shannon originally
used this inequality to obtain a lower bound for the capacity of non-Gaussian additive noise chan-
nels. Since Shannon’s pioneering paper several proofs of the entropy power inequality have become
available [61,62,58,63].

3.2. Entropy power inequality—Rényi entropy case

In the following we will show how it is possible to extend the entropy power concept to REs. To
this end we first define Rényi entropy power (for simplicity we use nats as units of information).
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Definition 3.1. Let p > 1 and let X be a random vector in RD with probability density F ∈ ℓp(RD).
The p-th Rényi entropy power of X is defined as

Np(X) =
1
2π

p−p′/p
∥F ∥

−2p′/D
p =

1
2π

p−p′/p exp

2
D

Ip(F )


, (11)

where p′ is the Hölder conjugate of p.

It should be stressed that in contrast to Shannon’s case, the literature on the Rényi entropy power
is rather scarce and incoherent. The above form of Np(X)was probably firstly stated by Gardner [64]
who, however, did not dwell int its properties. It will be this form that will prove instrumental in our
subsequent reasoning. Plausibility ofNp(X) as the entropy power comes from the following important
properties:

Theorem 3.1. The p-th Rényi entropy power Np(X) is a unique solution of the equation

Ip (X) = Ip


Np(X) · ZG


. (12)

With ZG representing a Gaussian random vector with zero mean and unit covariance matrix. In addition,
in the limit p → 1+ one has Np(X) → N(X).

Let X1 and X2 be two independent continuous random vectors in RD with probability densities
F (1)

∈ ℓq(RD) and F (2)
∈ ℓp(RD), respectively. Suppose further that λ ∈ (0, 1) and r > 1, and let

q =
r

(1 − λ)+ λr
, p =

r
λ+ (1 − λ)r

.

Then the following inequality holds:

Nr(X1 + X2) ≥


Nq(X1)

1 − λ

1−λ Np(X2)

λ

λ
. (13)

Additionally, in the limits r, p, q → 1+ the inequality (13) reduces to the Shannon entropy power
inequality (10) and N1(X) = N(X).

Proof of Theorem 3.1. That Np(X) from Definition 3.1 is the only solution of (12) follows from the
scaling property of Ip, namely

Ip(aX) = Ip(X)+ D log2 |a|, (14)

where a ∈ R. The above scaling relation follows directly from the definition of Ip and from a change
of variable argument. We can further use the simple fact that

Ip(ZG) =
D
2
log2(2πp

p′/p), (15)

to see that (12) leads to the equation

Ip(X) =
D
2
log2


2πpp

′/pNp(X)

. (16)

This yields

Np(X) =
1
2π

p−p′/p 2
2
D Ip(X), (17)

which, for Ip measured in nats, coincides with (11).
To prove the inequality (13) we first realize that p, q and r represent Hölder’s triple, i.e.

1
q

+
1
p

= 1 +
1
r
. (18)
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This allows us to use Young’s inequality (q.v. Appendix), which for the case at hand reads

∥F (1)
∗ F (2)

∥r ≤ CD
∥F (1)

∥q∥F (2)
∥p, (19)

where C is a constant defined in Appendix. The left-hand-side of (19) can be explicitly written as

∥F (1)
∗ F (2)

∥r =


RD

dx


RD
dyF (1)(x − y)F (2)(y)

r1/r
. (20)

The probability F (1)(x − y)F (2)(y) is nothing but the joint probability that X1 = x − y and X2 = y.
The quantity inside (. . .) thus represents the density function for the sum of two random variables
X1 + X2 = x. With the help of (11) we can rewrite (20) as

∥F (1)
∗ F (2)

∥r = [2πNr(X1 + X2)]
−D/2r ′ r−D/2r . (21)

On the other hand, the right-hand-side of (19) is

∥F (1)
∥q∥F (2)

∥p = [2πNq(X1)]
−D/2q′

[2πNp(X2)]
−D/2p′

q−D/2qp−D/2p. (22)

Plugging (21) and (22) into the Young inequality (19) we obtain

Nr(X1 + X2) ≥ |r ′
|
−1

|q′
|
−r ′/q′

|p′
|
−r ′/p′

[Nq(X1)]
r ′/q′

[Np(X2)]
r ′/p′

=


Nq(X1)

1 − λ

1−λ Np(X2)

λ

λ
. (23)

This completes the proof of the inequality (13).
It remains to show that in the limits r, p, q → 1+ we regain the Shannon entropy power inequality.

Firstly, the above limits directly give the inequality

N(X1 + X2) ≥


N(X1)

1 − λ

1−λ N(X2)

λ

λ
, (24)

which holds without restrictions on λ ∈ (0, 1). The best estimate (the highest lower bound) is
obtained for λ that extremizes the right-hand-side. Assuming that the right-hand-side is for fixed
X1 and X2 a smooth function of λ, we can take its derivative with respect to λ. This equals zero when

N(X1) =


1 − λ

λ


N(X2) ⇔ λ =

N(X2)

N(X1)+ N(X2)
. (25)

Positivity of N(. . .) then ensures that λ, which extremizes the right-hand-side of (24), belongs to the
interval (0, 1). In addition, the extremum is actually a maximum because the second derivative is
−[N(X1) + N(X2)]

3/N(X1)N(X2) which is clearly negative. By inserting (25) into (24) we regain
the Shannon entropy power inequality.

To prove that N(X) is a limiting case of Np(X) for p → 1+, we just realize that p−p′/p
→ 1/e

and ∥F ∥
−2p′/D
p → exp

 2
D I1(F )


. Thus indeed in the p → 1+ limit we regain the original Shannon

entropy power N(X) as well as the usual entropy power inequality (10). �

In passing we may observe that from the definition (11) and Eqs. (14)–(15) it follows that
Np(σZG) = σ 2, i.e. the power entropy coincides for Gaussian processes with the variance σ 2. In
case when ZG represents a random Gaussian vector of zero mean and covariance matrix K, then
Np(ZG) = |K|

1/D. Note that these statements are p-independent and hence valid also for the original
Shannon entropy power.
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Fig. 1. Riesz convexity triangle. Riesz’s inequality in Theorem 1 holds only when α and β belong to the shaded region.

4. Information theoretic uncertainty relations and Rényi entropy—discrete distributions

4.1. The Riesz–Thorin inequality

To prove the information uncertainty relation based on RE we need to prove a particular variant
of the Riesz–Thorin inequality [65–67] upon which our considerations will be based. For this purpose
we first state the Riesz convexity theorem.

Theorem 4.1 (Riesz Convexity Theorem). Let L be a linear operator (i.e., (Lx)j =


i aijxj) and ∥y∥p =
i |yi|

p
1/p. Let, in addition, Mαβ be the least number ‘‘k’’ satisfying

∥Lx∥1/(1−β) ≤ k∥x∥1/α.

Then log(Mαβ) is convex in triangle 0 ≤ α;β ≤ 1, α + β ≥ 1.

The convexity triangle is depicted in Fig. 1. Detailed exposition of the proof can be found for exam-
ple in [67].

Corollary 4.1. Let (α1, β1) and (α2, β2) be two points in the above convex triangle. If we define

α = α1s + α2(1 − s), β = β1s + β2(1 − s); s ∈ [0, 1],

then clearly

log(Mαβ) ≤ s log(Mα1β1)+ (1 − s) log(Mα2β2),

or equivalently

Mαβ ≤ Ms
α1β1

M(1−s)
α2β2

.

Theorem 4.2 (Riesz–Thorin Inequality). Suppose that (Lx)j =


i ajixi and that
j

|(Lx)j|2 ≤


j

|xj|2.

Then for p ∈ [1, 2] and c ≡ maxi,j |aij|

∥Lx∥p′ ≤ c(2−p)/p
∥x∥p = c1/pc−1/p′

∥x∥p ⇔ c1/p
′

∥Lx∥p′ ≤ c1/p∥x∥p,

holds. Here p and p′ are Hölder conjugates, i.e., 1/p + 1/p′
= 1.
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Proof of Theorem 4.2. We shall use the notation α = 1/p, β = 1/q (and the Hölder conjugates
p′

= p/(p − 1), q′
= q/(q − 1)). Consider the line from (α1, β1) = (1/2, 1/2) to (α2, β2) = (1, 1) in

the (α, β) plane. This line lies entirely in the triangle of concavity (see Fig. 1). Let us now define

α = α1s + α2(1 − s)
= s/2 + (1 − s)
= −s/2 + 1,

implying s = 2(1 − α), and define

β = β1s + β2(1 − s)
= −s/2 + 1,

implying β = α. Hence

Mα,α ≤ Ms
α1β1

M(1−s)
α2β2

= M2(1−α)
1/2,1/2 M2α−1

1,1 . (26)

Note particularly that because s ∈ [0, 1] then α ∈ [1/2, 1] and p ∈ [1, 2]. To estimate the right hand
side of (26) we first realize that M1/2,1/2 ≤ 1. This results from the very assumption of the theorem,
namely that

∥Lx∥2
2 =


j

|(Lx)j|2 ≤


j

|xj|2 = ∥x∥2
2 .

Hence, M1/2,1/2 ≤ k = 1. To find the estimate for M11 we realize that it represents the smallest k in
the relation

∥Lx∥∞ ≤ k∥x∥1.

Thus

M11 = max
x≠0

∥Lx∥∞

∥x∥1
= max

x≠0

max
j

|(Lx)j|
i

|xi|
≤ max

i,j
|aij| ≡ c. (27)

So finally we can write that

Mα,α = M1/p,(1−1/p′) ≤ c2α−1
= c(2−p)/p

= c1/pc−1/p′

. �

4.2. Generalized ITUR

To establish the connection with RE let us assume that X is a discrete random variable with n
different values, Pn is the probability space affiliated with X and P = {p1, . . . , pn} is a sample
probability distribution from Pn. Normally the geometry of Pn is identified with the geometry of a
simplex. For our purpose it is more interesting to embed Pn in a sphere. Because P is non-negative
and summable to unity, it follows that the square-root likelihood ξi =

√
pi exists for all i = 1, . . . , n,

and it satisfies the normalization condition
n

i=1

(ξi)
2

= 1.

Hence ξ can be regarded as a unit vector in the Hilbert space H = Rn. Then the inner product

cosφ =

n
i=1

ξ
(1)
i ξ

(2)
i = 1 −

1
2

n
i=1


ξ
(1)
i − ξ

(2)
i

2
, (28)

defines the angle φ that can be interpreted as a distance between two probability distributions. More
precisely, if Sn−1 is the unit sphere in the n-dimensional Hilbert space, then φ is the spherical (or
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Fig. 2. A statistical system can be represented by points ξ on a positive orthant (Sn−1)+ of the unit sphere Sn−1 in a real Hilbert
space H . The depicted example corresponds to n = 3.

geodesic) distance between the points on Sn−1 determined by ξ(1) and ξ(2). Clearly, the maximal
possible distance, corresponding to orthogonal distributions, is given by φ = π/2. This follows from
the fact that ξ(1) and ξ(2) are non-negative, and hence they are located only on the positive orthant of
Sn−1 (see Fig. 2). The geodesic distance φ is called the Bhattacharyya distance. The representation of
probability distributions as points on a sphere also has an interesting relation to Bayesian statistics.
If we use a uniform distribution on the sphere as the prior distribution then the prior distribution on
probability vectors in Pn is exactly the celebrated Jeffrey’s prior that has found new justification via
the minimum description length approach to statistics [68].

Now, letP (1) andP (2) denote a pair of probability distributions and ξ(1) and ξ(2) the corresponding
elements in Hilbert space. Because ξ(1) and ξ(2) are non-negative, they are located only on the positive
orthant of Sn−1. The transformation Lξ(1) = ξ2 then corresponds to a rotation with aij ∈ SO(n).

To proceed, we set p′
= 2(1 + t) and p = 2(1 + r) (remembering that 1/p + 1/p′

= 1). Then the
Riesz–Thorin inequality reads (with ξ (1)i ↔ xi)

i

(ξ
(2)
i )p

′

1/p′

≤ c(2−p)/p


i

(ξ
(1)
i )p

1/p

, (29)

which is equivalent to
j

(p(2)j )
(1+t)

1/2(1+t) 
k

(p(1)k )
(1+r)

−1/2(1+r)

≤ c−r/(1+r).

We raise both sides to the power 2 (1 + t) /t and get
j

(p(2)j )
(1+t)

1/t 
k

(p(1)k )
(1+r)

−(1+t)/t(1+r)

≤ c−2r(1+t)/t(1+r). (30)

The parameters are limited due to the condition p ∈ [1, 2] and 1/p + 1/p′
= 1 implying

t = −r/(2r + 1). (31)
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This implies that r ∈ [−1/2, 0] and t ∈ [0,∞). Combining (30) and (31) we get
j

(p(2)j )
(1+t)

1/t 
k

(p(1)k )
(1+r)

1/r

≤ c2. (32)

By applying the negative binary logarithm on both sides of (32) we get the following theorem.

Theorem 4.3. Suppose that (Lx)j =


i aijxj ≡ (Ax)j and that
j

|(Lx)j|2 ≤


j

|xi|2, for all xi.

Define c ≡ maxi,j |aij|. If r ∈ [−1/2, 0] and t = −r/(2r + 1) and the probability distributions P (1) and
P (2) are related by Lξ(1) = ξ(2) where ξi =

√
pi, then

I1+t(P
(2))+ I1+r(P

(1)) ≥ −2 log2 c. (33)

Two immediate comments are in order. Firstly, one can extend the domain of validity of both r and
t by noticing that P (1) and P (2) are interchangeable in the above derivation without altering [69] the
actual value of c . This has the consequence that one may phrase both resultant inequalities as a single
inequality where both r and t belong to the interval [−1/2,∞) with t = −r/(2r + 1). Secondly,
because the information measure Iα(P ) is always non-negative, the inequality (33) can represent
a genuine uncertainty relation only when c < 1. Note that for A ∈ SO(n) or SU(n) (i.e. for most
physically relevant situations) one always has that c ≤ 1. This is because for such A’s

c = max
i,j

|aik| = ∥A∥max ≤ ∥A∥2 =


λmax(AĎA) = 1. (34)

The last identity results from the fact that all of eigenvalues ofA ∈ SO(n) or SU(n) have absolute value
1.

It needs to be stressed that in the particular case when r = 0 (and thus also t = 0) we get

H(P (2))+ H(P (1)) ≥ −2 log2 c. (35)

This Shannon entropy based uncertainty relationwas originally found by Kraus [70] andMaassen [25].
A weaker version of this ITUR was also earlier proposed by Deutsch [24].

The reader can see that ITUR (33) which is based on RE provides a natural extension of the Shannon
ITUR (35). In Section 6 we shall see that there are quantum mechanical systems where Rényi’s ITUR
improves both on Robertson–Schrödinger’s VUR and Shannon’s ITUR.

4.3. Geometric interpretation of inequality (33)

Let us close this section by providing a useful geometric understanding of the inequality (33). To
this end we invoke two concepts known from error analysis. These are, the condition number and
distance to singularity (see, e.g., Refs. [71,72]).

The condition number κα,β(A) of the non-singular matrix A is defined as

κα,β(A) = ∥A∥α,β∥A−1
∥β,α, (36)

where, the corresponding (mixed) matrix-valued norm ∥A∥α,β is defined as

∥A∥α,β = max
x≠0

∥Ax∥β
∥x∥α

. (37)

So, in particular M11 = c from (27) is nothing but ∥A∥1,∞. Note also that ∥A∥α,α = ∥A∥α , which is
the usual α-matrix norm. Justification for calling κα,β a condition number comes from the following
theorem:
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Theorem 4.4. Let Ax = y be a linear equation and let there be an error (or uncertainty) δy in representing
the vector y, and let x̂ = x + δx solve the new error-hindered equation Ax̂ = y + δy. The relative
disturbance in x in relation to δy fulfills

∥δx∥α
∥x∥α

≤ κα,β(A)
∥δy∥β
∥y∥β

. (38)

Proof of Theorem 4.4. The proof is rather simple. Using the fact that Ax = y and Ax̂ = y + δy we
obtain δx = A−1δy. Taking α-norm on both sides we can write

∥δx∥α = ∥A−1δy∥α ≤ ∥A−1
∥β,α∥δy∥β . (39)

On the other hand, the β-norm of Ax = y yields

∥y∥β = ∥Ax∥β ≤ ∥A∥α,β∥x∥α ⇔
1

∥x∥α
≤

∥A∥α,β

∥y∥β
. (40)

Combining (39) with (40) we obtain (38). �

From the previous theoremwe see that κα,β(A) quantifies a stability of the linear equation Ax = y,
or better the extent to which the relative error (uncertainty) in y influences the relative error in x. A
system described by A and y is stable if κα,β(A) is not too large (ideally close to one). It is worth of
stressing that κα,β(A) ≥ 1. The latter results from the fact that

∥x∥β = ∥AA−1x∥β ≤ ∥AA−1
∥β,β∥x∥β ≤ ∥A∥α,β∥A−1

∥β,α∥x∥β . (41)

In the last step we have used the submultiplicative property of mixed matrix norms.
The second concept—the distance to singularity for a matrix A, is defined as

distα,β(A) ≡ min

∥1A∥α,β; A +1A singular


. (42)

In this connection an important theorem states that the relative distance to singularity is the reciprocal
of the condition number.

Theorem 4.5. For a non-singular matrix A, one has

distα,β(A)
∥A∥α,β

= κα,β(A)−1. (43)

Proof of Theorem 4.5. If A +1A is singular then there is a vector x ≠ 0, such that (A +1A)x = 0.
Because A is non-singular, the latter is equivalent to x = −A−11Ax. By taking the α-norm we have

∥x∥α = ∥A−11Ax∥α ≤ ∥A−1
∥β,α∥1Ax∥β ≤ ∥A−1

∥β,α∥1A∥α,β∥x∥α, (44)

which is equivalent to

∥1A∥α,β

∥A∥α,β
≥ κα,β(A)−1. (45)

To show that κα,β(A)−1 is a true minimum of the left-hand side of (45) and not mere lower bound
we must show that there exists such a suitable perturbation 1A which saturates the inequality.
Corresponding ∥1A∥α,β will then clearly represent distα,β(A). Consider y such that ∥y∥β = 1 and
∥A−1y∥α = ∥A−1

∥β,α , and write z = A−1y. Define further a vector ẑ such that

max
∥ζ∥α=1

|ẑ∗
· ζ |

∥z∥α
=

ẑ∗
· z

∥z∥α
= 1. (46)
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We now introduce the matrix Bi,j = −yiẑ∗

j , which implies Bz/∥z∥α = −y. Note that B thus defined
fulfills

∥B∥α,β = max
∥ζ∥α=1

∥y(ẑ∗
· ζ)∥β

∥z∥α
= ∥y∥β max

∥ζ∥α=1

|ẑ∗
· ζ |

∥z∥α
= 1. (47)

Let us set1A = B/∥z∥α . This directly implies that

(A +1A)A−1y = y +
Bz

∥z∥α
= 0. (48)

So the matrix A +1A is singular with A−1y being the null vector. Finally note that

∥1A∥α,β

∥A∥α,β
=

∥B∥α,β

∥z∥α∥A∥α,β
=

1
∥A−1y∥α∥A∥α,β

= κα,β(A)−1. �

The connection with the ITUR (33) is established when we observe that the smallest value of c is (see,
Eqs. (27) and (43))

c = ∥A∥1,∞ = dist1,∞(A)κ1,∞(A). (49)
Since c ≤ 1, this shows that the ITUR (33) restricts the probability distributions more the smaller the
distance to singularity and/or the lower the stability of the transformation matrix A is. In practical
terms this means that the rotation/transformation within the positive orthant introduces higher
ignorance or uncertainty in the ITUR the more singular the rotation/transformation matrices are.

5. Information theoretic uncertainty relations and Rényi entropy—continuous distributions

Before considering quantum-mechanical implications of Rényi’s ITUR (33), we will briefly touch
upon the continuous-probability analogue of (33). This issue is conceptually farmore delicate than the
discrete one namely because it is difficult to find norms for the correspondent (integro-)differential
operators L. This in particular does not allow one to calculate explicitly the optimal bounds in many
relevant cases. Fortunately, there is one very important class of situations, where one can proceed
with relative ease. This is the situation when the linear transform is represented by a continuous
Fourier transform, in which case the Riesz–Thorin inequality is taken over by the Beckner–Babebko
inequality [73,74].

Theorem 5.1 (Beckner–Babebko’s Theorem). Let

f (2)(x) ≡ f̂ (1)(x) =


RD

e2π ix.y f (1)(y) dy,

then for p ∈ [1, 2] we have

∥f̂ ∥p′ ≤
|pD/2|1/p

|(p′)D/2|1/p
′
∥f ∥p, (50)

or, equivalently

|(p′)D/2|1/p
′

∥f (2)∥p′ ≤ |pD/2|1/p∥f (1)∥p.

Here, again, p and p′ are the usual Hölder conjugates. For any F ∈ ℓp(RD) the p-norm ∥F∥p is defined as

∥F∥p =


RD

|F(y)|p dy
1/p

.

Due to symmetry of the Fourier transform the reverse inequality also holds:

∥f ∥p′ ≤
|pD/2|1/p

|(p′)D/2|1/p
′
∥f̂ ∥p. (51)
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Fig. 3. Dependence of the RHS of (54) on t provided we substitute for r = −t/(2t +1). Theminimum is attained for t = −1/2
and t = ∞ (and hence r = ∞ and r = −1/2, respectively) while maximum is at t = 0+ (and hence for r = 0−).

The proof of this theorem can be found in the Appendix. Lieb [75] proved that the inequality (50)
is saturated only for Gaussian functions. In the case of discrete Fourier transforms the corresponding
inequality is known as the (classical) Hausdorff–Young inequality [67,56].

Analogous manipulations that have brought us from Eq. (29) to Eq. (32) will allow us to cast (50)
in the form

RD
[F (2)(y)](1+t) dy

1/t 
RD

[F (1)(y)](1+r) dy
1/r

≤ [2(1 + t)]D |t/r|D/2r , (52)

where we have defined the square-root density likelihood as |f (y)| =
√

F (y).
When the negative binary logarithm is applied to both sides of (52), then

I1+t(F
(2))+ I1+r(F

(1)) ≥ −D +
1
r
log2(1 + r)D/2 +

1
t
log2(1 + t)D/2. (53)

Because 1/t + 1/r = −2, we can recast the previous inequality in the equivalent form

I1+t(F
(2))+ I1+r(F

(1)) ≥
1
r
log2[2(1 + r)]D/2 +

1
t
log2[2(1 + t)]D/2. (54)

This can be further simplified by looking at the minimal value of the RHS of (53) (or (54)) under the
constraint 1/t + 1/r = −2. The minimal value is attained for t = −1/2 and equivalently t = ∞, see
Fig. 3, and it is 0 (note t cannot be smaller than −1/2). This in particular implies that

I1+t(F
(2))+ I1+r(F

(1)) ≥ 0. (55)

Inequality (53) is naturally stronger than (55), but the latter is usually much easier to implement in
practical calculations. In addition the RHS of (53) is universal in the sense that it is t and r independent.
The reader should also notice that the zero value of the right-hand side of (55) does not yield a trivial
inequality since Iα are not generally positive for continuous PDFs (q.v. Section 4.2). In fact, from the
coarse probability version of (55) (cf. Eq. (4)) follows

I1+t(P
(2)
n )+ I1+r(P

(1)
n ) ≥ −2D log2 l, (56)

which is clearly a non-trivial ITUR.
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Also, notice that in the limit t → 0+ and r → 0− the inequalities (53)–(54) take the form1

H(F (2))+ H(F (1)) ≥ log2
 e
2

D
, (57)

which coincides with the classical Hirschman conjecture for the differential Shannon entropy based
ITUR [22]. In this connection it should be noted that among all admissible pairs {r, t}, the pair {0−, 0+}

gives the highest value of the RHS in (54). This can be clearly seen from Fig. 3.
Let us finally observe that when (53)–(54) is rewritten in the language of Rényi entropy powers it

can be equivalently cast in the form

N1+t(F
(2))N1+r(F

(1)) ≡ N1+t(X)N1+r(Y) ≥
1

16π2
, (58)

or equivalently as

Np/2(X)Nq/2(Y) ≥
1

16π2
, (59)

with p and q being Hölder conjugates and the RE measured in bits. Note that in the case when both X
and Y represent random Gaussian vectors then (59) reduces to

|KX|
1/D

|KY|
1/D

=
1

16π2
. (60)

Here, |KX| and |KY| are determinants of the respective covariance matrices. The equality follows from
the Lieb condition on the saturation of the Beckner–Babenko inequality. It is also interesting to notice
that when we define the variance per component, i.e.,

σ 2
X = Var(X)/D = Tr[(KX)ij]/D, (61)

σ 2
Y = Var(Y)/D = Tr[(KY)ij]/D, (62)

then, from (60), these satisfy

σ 2
Xσ

2
Y ≥

1
16π2

. (63)

The proof is based on the identity

log(detA) = Tr(logA), (64)

which is certainly valid for any diagonalizable matrix A, and more generally for all matrices since
diagonalizable matrices are dense. With this we have

log |KX|
1/D

= Tr

1
D
(KX)ij


=

D
i=1


1
D

log(KX)ii



≤ log


D

i=1

1
D
(KX)ii


= log


Tr[(KX)ij]/D


= log σ 2

X. (65)

The inequality follows from Jensen’s inequality for the logarithm. An analogous result holds also for
the random vector Y. The equality in (65) holds only when X is white, i.e., if its covariance matrix is
proportional to the identitymatrix. If the components of the randomGaussian vector are independent,

1 Note that these limits do not contradict the constraint 1/t + 1/r = −2. To see this we go back to the defining equation
1/[2(1 + t)] + 1/[2(1 + r)] = 1 which is clearly satisfied for the simultaneous limits t → 0+ and r → 0− .
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it makes sense (in view of the additivity of the RE) to speak about the RE (and ensuing entropy power)
of a given random component. In that case (60) boils down to

σ 2
Xi
σ 2

Yi
=

1
16π2

, (66)

where the subscript i denotes the i-th component of the random vector.
Inequalities (58)–(59) make the connection of the continuous ITUR with the VUR. This is because

when the distributions in question have finite covariance matrices then the following theorem holds:

Theorem 5.2. Let X be a random vector in RD with the finite covariance matrix (KX)ij. Then

N(X) ≤ |KX|
1/D

≤ σ 2
X, (67)

with equality in the first inequality if and only if X is a Gaussian vector, and in the second if and only if X
is white.

The proof of this theorem is based on the non-negativity of the relative Shannon entropy (or Kull-
back–Leibler divergence) and can be found, e.g., in Refs. [76,77]. An important upshot of the previous
theorem is that also for non-Gaussian distributions one has

σ 2
Xσ

2
Y ≥ |KX|

1/D
|KY|

1/D
≥ N(X)N(Y) ≥

1
16π2

, (68)

which saturates only for Gaussian (respective white) random vectors X and Y. This is just one exam-
ple where a well-known inequality can be improved by replacing variance by a quantity related to
entropy. In certain cases the last inequality in (68) can be improved by using Rényi’s entropy power
rather than Shannon’s entropy power. In fact, the inequality

N(X)N(Y) ≥ Np/2(X)Nq/2(Y) ≥
1

16π2
, (69)

(with p and q being Hölder conjugates) is fulfilled whenever

H(X)− Ip/2(X) ≥ Iq/2(Y)− H(Y), (70)

(q ∈ [1, 2] and p ∈ [2,∞)). Note that both sides in (70) are positive (cf. Eq. (4)). Inequality (70) can be
satisfied by a number of PDFs. This is often the case when the PDF F (1) associated with Y is substan-
tially leptokurtic (peaked) while F (2) (which is related to X) is platykurtic heavy-tailed PDF. A simple
example is the Cauchy–Lorentz distribution [29], for which we have

f (x) =


c
π


1

c2 + x2
, (71)

f̂ (y) =


2c
π2

K0(c|y|), (72)

F (2)(x) =
c
π

1
c2 + x2

, (73)

F (1)(y) =
2c
π2

K 2
0 (c|y|). (74)

Here F (2)(x) is the Cauchy–Lorentz PDF. In Fig. 4 we graphically represent the LHS and the RHS of
the inequality of (70) for PDFs (73)–(74). There we can see that the inequality becomes strongest if
we choose p → ∞ and q = 1. On the basis of our numerical simulations it seems that the behavior
depicted in Fig. 4 is quite common for heavy-tailed Lévy stable distributions.

Of course, in cases when the covariance matrices are infinite, Theorem 5.2 does not hold and the
continuous ITUR remains the only sensible quantifier of the inherent QM uncertainty. We shall delve
more into the quantum mechanics implications of the above (continuous PDF) ITUR inequalities in
Section 6.2.
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Fig. 4. Graphical representation of the LHS (blue) and the RHS (red) of the inequality of (70). In particular, ∆ denotes
H(X) − Ip/2(X) (blue curve) and Iq/2(Y) − H(Y) (red curve). The q variable appearing in Iq/2 is phrased in terms of p
via duality relation q = p/(p − 1). Because the PDF’s involved have no fundamental scale, the ensuing entropies (and hence
∆) are c independent. Note in particular that the inequality (70) is strongest for p → ∞ and q = 1. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

6. Applications in quantummechanics

The connection of the information theoretic inequalities (33) and (53) with quantum mechanics
is established when we consider two quantum-mechanical observables, say Â and B̂, written through
their spectral decompositions

Â =


a|a⟩⟨a| da, B̂ =


b|b⟩⟨b| db. (75)

Here the integral-summation symbol schematically represents summation over a discrete part of the
spectra and integration over a continuous part of the spectra. States |a⟩ and |b⟩ are proper (for discrete
spectrum) and improper (for the continuous spectrum) eigenvectors of Â and B̂, respectively.

According to the quantummeasurement postulate, the probability of obtaining a result a in amea-
surement of observable Â on a system prepared in the state |φ⟩ is given by the (transition)probability
density

F (a) = |⟨a|φ⟩|
2. (76)

When ai belongs to a discrete spectrum, then the (transition) probability for the result ai is

p(ai) = |⟨ai|φ⟩|
2. (77)

Similarly for the observable B̂.

6.1. Discrete probabilities

For the discrete-spectrum the conditions assumed in the Riesz–Thorin inequality (cf. Theorem 4.2)
are clearly fulfilled by setting xi = ⟨xi|φ⟩, (Lx)j = ⟨bj|φ⟩ and aij = ⟨bj|ak⟩. We will now illustrate the
utility of Rényi’s ITURwith a toy-model example. To this endwe consider a two-dimensional state |φ⟩

of a spin- 12 particle, and let Â and B̂ be spin components in orthogonal directions, i.e.

|A⟩ ≡


|Sx; +⟩

|Sx; −⟩


, |B⟩ ≡


|Sz; +⟩

|Sz; −⟩


. (78)



104 P. Jizba et al. / Annals of Physics 355 (2015) 87–114

Because
|Sx; +⟩

|Sx; −⟩


=

1
√
2


1 1

−1 1


|Sz; +⟩

|Sz; −⟩


, (79)

we can immediately identify c with 1/
√
2 (cf. Eq. (35)). Let us now define probability P = (p, (1 −

p)) ≡ (|⟨Sx; +|φ⟩|
2, |⟨Sx; −|φ⟩|

2). Without loss of generality we may assume that p = maxi P . The
question we are interested in is how the knowledge ofP restricts the distributionQ = (q, (1−q)) ≡

(|⟨Sz; +|φ⟩|
2, |⟨Sz; −|φ⟩|

2)? Both distribution cannot be independent as Shannon’s ITUR
H(P )+ H(Q) ≥ −2 log2 c = 1, (80)

clearly indicates. In fact, inequality (80) can be equivalently phrased in the form

pp(1 − p)1−p
≤

1
2
q−q(1 − q)q−1. (81)

The graphical solution of this equation can be seen on Fig. 5. In case of Rényi’s ITUR we can take
advantage of the fact that the RE is a monotonically decreasing function of its index and hence the
most stringent relation between p and q is provided via Rényi’s ITUR

I∞(P )+ I1/2(Q) ≥ −2 log2 c = 1. (82)
The latter is equivalent to

√
q

1 − q + 1/2 ≥ p. (83)

This inequality can be again treated graphically, see Fig. 6. The comparison with the ordinary
Schrödinger–Robertson’s VUR, can easily be made. In fact, we have

⟨(△Sx)2⟩φ⟨(△Sz)2⟩φ ≥
h̄2

4
|⟨Sy⟩φ |2 ⇔ p(1 − p) ≥

1
4
sin2(ϕ+ − ϕ−), (84)

where the phase ϕ± is defined as

eiϕ± ≡
⟨φ|Sz; ±⟩

|⟨φ|Sz; ±⟩|
. (85)

In deriving this we have used the relation
|Sy; +⟩

|Sy; −⟩


=

1
√
2


1 i
1 −i


|Sz; +⟩

|Sz; −⟩


. (86)

Note, that by symmetry the VUR inequality can also equally be written as

q(1 − q) ≥
1
4
sin2(ϕ̃+ − ϕ̃−), (87)

with

eiϕ̃± ≡
⟨φ|Sx; ±⟩

|⟨φ|Sx; ±⟩|
. (88)

From (84) and (87) we see that the VUR does not pose any strong restriction between P and
Q. Since the phase factors ϕ± (or ϕ̃±) do not enter the definition of Q (or P ), then for a fixed (but
otherwise arbitrary) q the VUR (84) can be in principle fulfilled by any p ∈ [0.5, 1]. Of course, if
the relative phase is known the restriction between P and Q is less trivial. On the other hand, the
ITURs discussed above are far more specific in their constrains on values of P and Q, see Table 1.
From the table we see that for given P , Rényi’s ITUR improves on Shannon’s ITUR. This is because
the Rényi ITUR considered is more restrictive than Shannon’s case. For instance, the marginal case
P = (0.8, 0.2) and Q = (0.951, 0.049) that is allowed by Shannon’s ITUR explicitly violates Rényi’s
ITUR and hence it cannot be realized (ITURs represent necessary conditions). Both Shannon’s ITUR
and Rényi’s ITUR improve on VUR—unless some extra information about the relative wave-functions
phase is provided. In Table 1 we find that when the relative phase is known, e.g., ϕ̃+ − ϕ̃− = π/6,
Rényi’s ITUR still improves on VUR for values p = 0.9 and p = 0.8 while Shannon’s ITUR improves
over VUR only for p = 0.9.
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Fig. 5. Graphical representation of the inequality (81). For fixed value of p the inequality is fulfilled for all q’s that lie inside
the q-function, i.e., function y(q) =

1
2 q

−q(1− q)q−1 . On the vertical axis is also denoted the function z(p) = pp(1− p)1−p for 5
fixed values of p.

Fig. 6. Graphical representation of the inequality (83). For fixed value of p the inequality is fulfilled for all q’s that lie inside the
q-function, i.e., function y(q) =

√
q
√
1 − q + 1/2. On the vertical axis is also denoted the function z(p) = p for 5 fixed values

of p.

Table 1
Comparison of three uncertainty relations: variance-based uncertainty relation (VUR) with ϕ̃+ − ϕ̃− = π/6, Shannon’s
information uncertainty relation (S-ITUR) and Rényi’s information uncertainty relation (R-ITUR) for different values of p. In
the respective columns one can see the peakedness of the distribution Q = (q, (1 − q)).

p VUR q ∈ S-ITUR q ∈ R-ITUR q ∈

0.5 [0.067, 0.933] [0, 1] [0, 1]
0.6 [0.067, 0.933] [0.003, 0.997] [0.010, 0.990]
0.7 [0.067, 0.933] [0.017, 0.983] [0.042, 0.958]
0.8 [0.067, 0.933] [0.049, 0.951] [0.1, 0.9]
0.9 [0.067, 0.933] [0.121, 0.879] [0.2, 0.8]

6.2. Continuous probabilities

In view of the (continuous) ITUR from Section 5 the most prominent example of the Fourier trans-
form is that between configuration and momentum space wave functions (analogously one can treat
also other Fourier transform duals, such as the angular momentum and angle). For some earlier work
on this topic see Ref. [78]. In particular between ψ(x) and ψ̂(p) hold two reciprocal relations

ψ(x) =


RD

eip·x/h̄ψ̂(p)
dp

(2π h̄)D/2
,

ψ̂(p) =


RD

e−ip·x/h̄ψ(x)
dx

(2π h̄)D/2
. (89)
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The Plancherel (or Riesz–Fischer) equality [67,79] then implies that ∥ψ∥2 = ∥ψ̂∥2 = 1. Let us define
new functions in (89), namely

f (2)(x) = (2π h̄)D/4ψ(
√
2π h̄x),

f (1)(p) = (2π h̄)D/4ψ̂(
√
2π h̄p). (90)

The factor (2π h̄)D/4 ensures that also the new functions are normalized (in sense of ∥ . . . ∥2) to unity.
With these we will have the same structure of the Fourier transform as in the Beckner–Babenko the-
orem in Section 5. Consequently we can write the associated ITURs (53)–(54) in the form

I1+t(|ψ |
2)+ I1+r(|ψ̂ |

2) ≥ D log2(π h̄)+
1
r
log2(1 + r)D/2 +

1
t
log2(1 + t)D/2

=
1
r
log2


1 + r
π h̄

D/2

+
1
t
log2


1 + t
π h̄

D/2

, (91)

or in the weaker form with the universal RHS

I1+t(|ψ |
2)+ I1+r(|ψ̂ |

2) ≥ log2(2π h̄)
D. (92)

In particular for Shannon’s entropy the Hirschman inequality (57) acquires the form

H(|ψ |
2)+ H(|ψ̂ |

2) ≥ log2(eπ h̄)
D. (93)

In both (91) and (92) use was made of the mathematical identities

Iα(|f (1)|2) = Iα(|ψ̂ |
2)−

D
2
log2(2π h̄),

Iα(|f (2)|2) = Iα(|ψ |
2)−

D
2
log2(2π h̄). (94)

These two identities just state that the scaled PDFs |f (1)|2 and |f (2)|2 obtained from (90) are less peaked
(and hence less informative) than the original PDFs |ψ̂ |

2 and |ψ |
2, respectively. Consequently, we in-

crease our ignorance when passing from ψ̂ to f (1), and from ψ to f (2).
The inequality (92) (and similarly (91)) should be understood in the sense that by no quantum

mechanical measurements it is possible to reduce the joint entropy in two canonically conjugate
distributions F (1)(p) = |ψ̂(p)| and F (2)(x) = |ψ(x)| below the level of log2(2π h̄)D bits.

Let us observe that in terms of the Rényi entropy power one can cast (91) into an equivalent form
(cf. Eq. (59))

N1+t(|ψ |
2)N1+r(|ψ̂ |

2) ≥
h̄2

4
. (95)

6.2.1. Heavy tailed distributions
If we wish to improve over the Shannon–Hirschman ITUR (57) we should find such a pair {r, t}

which provides a stronger restriction on the involved distributions than Shannon’s case. In Section 5
we have already seen that this can indeed happen, e.g., for heavy tailed distributions. This fact will be
now illustrated with Paretian or Lévy (stable) distributions. Such distributions represent, in general,
a four parametric class of distributions that replace the rôle of the normal distribution in the central
limit theorem in caseswhere the underlying single event distributions do not have one of the first two
momenta. For computational simplicity (results can be obtained in a closed form)wewill consider one
of the Lévy stable distributions, namely the Cauchy–Lorentz distribution [29] which can be obtained
from the wave function

ψ̂(x) =


c
π


1

c2 + (x − m)2
. (96)
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The corresponding Fourier transform and respective PDFs are

ψ̂(p) = e−imp/h̄


2c
π2h̄

K0(c|p|/h̄), (97)

F (2)(x) =
c
π

1
c2 + (x − m)2

, (98)

F (1)(p) =
2c
π2h̄

K 2
0 (c|p|/h̄), (99)

and the ensuing Shannon and Rényi entropies are

H(F (1)) = log2(π
2h̄/2c)−

8
π2

2.8945, H(F (2)) = log2(4cπ),

I1/2(F
(1)) = log2(2h̄/c), I∞(F

(2)) = log2(cπ). (100)
With these results we can immediately write the associated ITURs, namely

H(F (1))+ H(F (2)) = log2(2π
3h̄)−

8
π2

2.8945 > log2(eπ h̄), (101)

I1/2(F
(1))+ I∞(F

(2)) = log2(2π h̄). (102)
So what can be concluded from these relations? First we notice that the ITUR (102) saturates the in-
equality (91)while the Shannon ITUR (101) does not saturate the correspondingHirschman inequality
(93). In fact, if we rewrite (101)–(102) in the language of Rényi entropy powers, we obtain

N(F (1))N(F (2)) >
h̄2

4
, (103)

N1/2(F
(1))N∞(F

(2)) =
h̄2

4
. (104)

Since the Rényi ITUR puts a definite constraint between F (2) and F (1) it clearly improves over the
Shannon ITUR (which is less specific). In addition, while (103) indicates that one could still find an-
other F (2) for a given fixed F (1) that would lower the LHS of the Shannon entropy power inequality,
the relation (104) forbids such a situation to happenwithout increasing uncertainty in the Rényi ITUR.
By increasing the uncertainty, however, the definite constraint between F (2) and F (1) will get lost.

It should be stressed, that in general the Rényi ITUR is not symmetric. However, in the case at hand
the situation is quite interesting. One can easily check that I1/2(F

(2)) = ∞ and I∞(F
(1)) = −∞,

and so the Rényi ITUR is indeterminate. This result deserves two comments. First, the extremal values
of I1/2(F

(2)) and I∞(F
(1)) can be easily understood. From the very formulation of the RE one can see

that for α > 1 the non-linearly nature of the RE tends to emphasize the more probable parts of the
PDF (typically the middle parts) while for α < 1 the less probable parts of the PDF (typically the tails)
are accentuated. In other words, I1/2 mainly carries information on the rare events while I∞ on the
common events. In particular, if one starts from a strongly leptokurtic distribution (such asF (1)) then
I∞ effectively works with the PDF that is sharply (almost δ-function) peaked. In this respect igno-
rance about the peak is minimal, which in turn corresponds to the minimal RE which for continuous
distributions is −∞. For heavy tailed distributions (such as F (2)) the RE I1/2 works effectively with
a very flat (almost equiprobable) PDF which yields maximal ignorance about the tail. For continuous
distributions the related information of the order α = 1/2 is thus ∞.

Second, one can make sense of the indeterminate form of the Rényi ITUR by putting a regulator
on the real x axis. In particular we can assume that


∞

−∞
dx · · · →

 R
−R dx · · · . With this we obtain to

leading order in R

I1/2(F
(2)) = 2 log2


c
π

log(4R2/c2)

,

I∞(F
(1)) = − log2


2c
h̄π2

K 2
0 (c/R)


. (105)
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In the associated ITUR the unwanted divergent terms cancel and we end up with the final result

I1/2(F
(2))+ I∞(F

(1))
R→∞
= log2(2π h̄), (106)

which again, rather surprisingly, saturates the information bound.
It is also interesting to observe that while the variance in momentum ⟨(△p)2⟩ψ = h̄2 π/16c2, the

variance in position ⟨(△x)2⟩ψ = ∞ (which is symptomatic of Lévy stable distributions) and hence
the Schrödinger–Robertson VUR is completely uninformative. Similar conclusions can be also reached
with the Lévy–Smirnov distribution which is used in fractional QM [80,81] andwhich can be obtained
from the wave function

ψ(x) =

 c
2π

1/4
exp


−

c
4
(x − m)−1

+
i
h̄
p0x

/(x − m)3/4. (107)

Let us finally note that the meaning of the ITUR (91) (and (92)) is rather different from the
momentum-position VUR. The difference is due to the fact that the two measures of uncertainty
(namely variance and Rényi’s entropy) are left unaltered by very different types of PDF modifi-
cations. While both the variance of a probability distribution and Rényi entropy are translation
invariant (i.e., invariant under the shift of the mean value of the distribution by a constant), Rényi
entropy is, in addition, invariant under the piecewise reshaping of the wave function. Particularly
PDF’s ϱ(2)(x) = |ψ (1)(x)|2 and ϱ̄(2)(x) = |ψ̄ (2)(x)|2 with the wave function

ψ̄ (2)(x) =


n∈N

χ[ndx,(n+1)dx]ψ
(2)(xσ(n)), (108)

(χ[a,b] is the indicator function of the interval [a, b] inR and σ(n) is an arbitrary permutation of the set
of all n ∈ N) yield the same Rényi entropy. In other words, Rényi entropy is invariant under cutting up
the original PDF ϱ(2)(x) into infinitesimal pieces under the original curve and reshuffling or separat-
ing them in an arbitrary manner. Also the Rényi entropy for corresponding Fourier transformed wave
functions are unchanged when passing from ϱ(1)(p) to ϱ̄(1)(p). This indicates that the corresponding
ITUR will not change under such a reshuffling. This fact will be illustrated in the following subsection.

6.2.2. Schrödinger cat states
Another relevant situation when the continuous ITUR improves on the VUR occurs for coherent

state superpositions (CSS), also called Schrödinger cat states. These states have the form

|CSS±(β)⟩ = N±

β (|β⟩ ± |−β⟩) (109)

where |β⟩ is the ordinary Glauber coherent state with the amplitude β and

N±

β = 1/

2(1 ± e−2β2), (110)

is the normalization factor. Such states have been created in the laboratory [82] and are of interest in
studies of the quantum to classical transition as well as quantum metrology [83,84]. For definiteness
we shall consider only the |CSS+(β)⟩ state, though the qualitative statements will equally hold also
for |CSS−(β)⟩. The operator corresponding to different phase quadratures of this state is

X̂θ = (b̂e−iθ
+ b̂Ďeiθ )/2, (111)

where b̂Ď and b̂ are respectively the creation and annihilation operators for a photon in the coherent
state mode. Note that the eigenvalues of these operators are unitless and do not depend on h̄ as was
the case with the other examples. We shall be concerned with the orthogonal quadratures X̂0 and
X̂π/2, which form a pair of conjugate observables with the commutation relation [X̂0, X̂π/2] = i/2. If
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we take |x0⟩ and |xπ/2⟩ to be eigenstates of X̂0 and X̂π/2 we can represent (109) in these bases as

⟨x0|CSS+(β)⟩ = N+

β (⟨x0|β⟩ + ⟨x0| − β⟩)

=
2N+

β

π
1
4

cosh
√

2βx0

exp


−

1
2
x20 − β2


, (112)

⟨xπ/2|CSS+(β)⟩ = N+

β


⟨xπ/2|β⟩ + ⟨xπ/2| − β⟩


=

2N+

β

π
1
4

cos
√

2βxπ/2

exp


−

1
2
x2π/2


. (113)

The corresponding probability distributions

F (2)(x0) = ⟨x0|CSS+(β)⟩⟨CSS+(β)|x0⟩ (114)

F (1)(xπ/2) = ⟨xπ/2|CSS+(β)⟩⟨CSS+(β)|xπ/2⟩ (115)

can be experimentally accessed with homodyne detections.
The ensuing values of Shannon and Rényi entropies are depicted in Fig. 7(a) as functions of β .

Curve (i) is the Shannon ITUR,H(F (2))+H(F (1)), and the dashed curve (ii) depicts the bound for the
Shannon ITUR, i.e. log2(eπ).We see that the bound is saturated for smallβ (as should be expected for a
single Gaussianwave packet) and gets worse as β is increased (and information about the localization
worsens), but eventually saturates at some value above the bound (when two Gaussian wave packets
no longer overlap). The plateau is a consequence of the mentioned fact that the RE is immune to
piecewise rearrangements of the distributions. Namely, a PDF consisting of two well separated wave
packets has the same RE irrespective of the mutual distance. This holds true also for the associated
F (1) PDF.

The other curves are for the Rényi ITURs: (iii) is I1/2(F
(1)) + I∞(F

(2)) where the qualitative
behavior is similar as in the Shannon case. In this situationwe see that the plateau forms earlier, which
indicates that information about the peak part (i.e. I∞) starts to saturate earlier than in the Shannon
entropy case, which democratically takes into account all parts of the underlying PDF. The dashed
curve (iv) is the other way round, i.e. I1/2(F

(2))+I∞(F
(1)). The faint solid line overlapping with the

dashed line (iv) is the Rényi entropy bound, log2(2π). We see that both configurations saturate the
bound for small β , but the dashed one saturates the bound for all β . The saturation of the information
bound can be attributed to the interplay between the degradation of information on the ail parts
of F (2) carried by I1/2(F

(2)) and the gain of information on the central part of F (2) conveyed by
I∞(F

(1)). Interestingly enough, the rate of change (in β) for both REs is identical but opposite in sign
thus yielding a β-independent ITUR.

For the same reasons as in the previous subsection the R-ITUR outperforms the S-ITUR. In addition,
we again note that while the variance (1xπ/2)2 is finite for arbitrary β ,

⟨CSS+(β)|(△xπ/2)2|CSS+(β)⟩ = (N+

β )
2

1 + e−2β2(1 − 4β2)


, (116)

the variance of the conjugate quadrature

⟨CSS+(β)|(△x0)2|CSS+(β)⟩ = (N+

β )
2

1 + e−2β2

+ 4β2

, (117)

can be arbitrary large subject to the value ofβ (see Fig. 7(b)). In this respect the Schrödinger–Robertson
VUR again tends to be uninformative for large values of β (i.e., for a large wave-packet
separation). Fig. 7(b) shows the product of the quadrature variances (solid curve) along with the
Robertson–Schrödinger bound (dashed curve). We see that the bound is saturated for small coherent
state amplitudes (β) but gets progressively worse as β is increased.
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Fig. 7. (a) Plot of different entropies for |CSS+(β)⟩ as a function of β . (i) Shannon ITUR, H(F (2))+ H(F (1)), (ii) bound for the
Shannon ITUR, log2(eπ) (iii) Rényi ITUR, I1/2(F

(1)) + I∞(F
(2)), and (iv) the other way round, I1/2(F

(2)) + I∞(F
(1)). Also

shown as a faint solid line overlapping with (iv) is the Rényi ITUR bound, log2(2π). (b) Plot of the Robertson–Schrödinger VUR
for |CSS+(β)⟩ as a function of β (solid curve) and its bound (dashed curve).

7. Conclusions and outlook

In this paper we have generalized the information theoretic uncertainty relations that have been
previously developed in Refs. [22–24] to include generalized information measures of Rényi and RE-
based entropy powers. To put some flesh on the bones we have applied these generalized ITURs to a
simple two-level quantum system (in the discrete-probability case) and to quantum-mechanical sys-
tems with heavy-tailed distributions and Schrödinger cat states (in the continuous-probability case).
An improvement of the Rényi ITUR over both the Robertson–Schrödinger VUR and the Shannon ITUR
was demonstrated in all the aforementioned cases.

In connection with the discrete-probability ITUR we have also highlighted a geometric interpreta-
tion by showing that the lower bound on information content (or uncertainty) inherent in the ITUR is
higher, the smaller is the distance to singularity of the transformation matrix connecting eigenstates
of the two involved observables.

The presented ITURs hold promise precisely because a large part of the structure of quantum the-
ory has an information theoretic underpinning (see, e.g., Refs. [38,85]). In this connection it should be
stressed that, ITURs in general should play a central rôle, for instance, in quantum cryptography or in
the theory of quantum computers, particularly in connection with quantum error-correcting codes,
communication and algorithmic complexities. In fact, information measures such as Rényi’s entropy
are used not because of intuitively pleasing aspects of their definitions but because there exist vari-
ous (classical and quantum) coding theorems [36,41] which endow themwith an operational (that is,
experimentally verifiable) meaning.While coding theorems do exist for Shannon, Rényi or Holevo en-
tropies, there are (as yet) no such theorems for Tsallis, Kaniadakis, Naudts and other currently popular
entropies. The information theoretic significance of such entropies is thus not obvious, though in the
literature one can find, for instance, a Tsallis entropy based version of the uncertainty relations [86].
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Though our reasoning was done in the framework of the classical (non-quantum) information
theory, it is perhaps fair to mention that there exist various generalizations of Rényi entropies to
the quantum setting. Most prominent among these are Petz’s quasi-entropies [87] and Renner’s
conditional min-, max-, and collision entropy [88]. Nevertheless, the situation in the quantum context
is much less satisfactory in that these generalizations do not have any operational underpinning and,
in addition, they are incompatible with each other in number of ways. For instance, whereas the
classical conditional min-entropy can be naturally derived from the Rényi divergence, this does not
hold for their quantumcounterparts. At present there is no obvious generalization of theRényi entropy
power in the quantum framework and hence it is not obvious in what sense one should interpret the
prospective ITUR. All these aforementioned issues are currently under active investigation.

Let us finally make a few comments concerning the connection of the entropy power with Fisher
information. Fisher information was originally employed by Stam [58] in his proof of the Shan-
non entropy power inequality. Interestingly enough, one can use either the entropy power inequal-
ity or the Cramér–Rao inequality and logarithmic Sobolev inequality to re-derive the usual Robert-
son–Schrödinger VUR. While the generalized ITUR presented here can be derived from the general-
ized entropy power inequality (as both are basically appropriate restatements of Young’s theorem),
the connection with Fisher information (or some of its generalizations) is not yet known. The corre-
sponding extension of our approach in this direction would be worth pursuing particularly in view of
the natural manner in which RE is used both in inference theory and ITUR formulation.

Last, but not least, the Riesz–Thorin and Beckner–Babebko inequalities that we have utilized in
Sections 4 and 5 belong to a set of inequalities commonly known as Lp-interpolation theorems [89].
It would be interesting to see whether one can sharpen our analysis from Section 4 by using the
Marcinkiewicz interpolation theorem [89], which in a sense represents the deepest interpolation
theorem. In particular, the latter avoids entirely the Riesz convexity theorem which was key in our
proof. Work along these lines is presently in progress.

Acknowledgments

P.J. would like to gratefully acknowledge stimulating discussions with H. Kleinert, P. Harremoës
and D. Brody. This work was supported by GAČR Grant No. P402/12/J077.

Appendix

In this appendix we introduce the (generalized) Young inequality and derive some related
inequalities. Since the actual proof of Young’s inequality is rather involved we provide here only its
statement. The reader can find the proof together with further details, e.g., in Ref. [59].

Theorem A.1 (Young’s Theorem). Let q, p, r > 0 represent Hölder triple, i.e.,

1
q

+
1
p

= 1 +
1
r
,

and let F ∈ ℓq(RD) and G ∈ ℓp(RD) are two non-negative functions, then

∥F ∗ G∥r ≥ CD
∥F ∥q∥G∥p, (A.1)

for q, p, r ≥ 1 and

∥F ∗ G∥r ≤ CD
∥F ∥q∥G∥p, (A.2)

for q, p, r ≤ 1. The constant C is

C = CpCq/Cr with C2
x =

|x|1/x

|x′|1/x
′
.

Here x and x′ are Hölder conjugates. Symbol ∗ denotes a convolution.
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Young inequality allows to prove very quickly the Hausdorff–Young inequalities which are
instrumental in obtaining various Fourier-type uncertainty relations. In fact, the following chain of
reasons holds

∥F ∗ δ∥r ≥ CD
∥F ∥q∥δ∥p = CD

∥F ∥qV
(p−1)/p
R . (A.3)

Here we have used the fact that for the δ function

∥δ∥p =


RD

dxδp(x)
1/p

=


RD

dxδ(x)δp−1(0)
1/p

= V (p−1)/p
R .

In the derivation we have utilized that

δ(0) =


RD

dxeip·0
= VR.

Subindex R indicates that the volume is regularized, i.e., we approximate the actual volume ofRD with
aD-dimensional ball of the radius R, where R is arbitrarily large but fixed. At the end of calculationswe
send R to infinity.We should also stress that in (A.3) an implicit assumptionwasmade that q, p, r ≥ 1.

The norm ∥F ∗ δ∥r fulfills yet another inequality, namely

∥F ∗ δ∥r =


RD

dx


RD
dpe−ip·xF̂ (p)

r 1/r
≤ ∥F̂ ∥nV

1/n′
+1/r

R , (A.4)

where we have used the Hölder inequality
RD

dpe−ip·xF̂ (p) =


RD

dpe−ip·xF̂ (p)
 ≤ ∥F̂ ∥n∥e−ip·x

∥n′ = ∥F̂ ∥nV
1/n′

R ,

with n and n′ being Hölder’s conjugates (n ≥ 1).
Comparing (A.3) with (A.4) gives the inequality

∥F̂ ∥nV
1/n′

+1/r
R ≥ CD

∥F ∥qV
(p−1)/p
R . (A.5)

The volumes will mutually cancel provided 1/n′
+ 1/r + 1/p = 1, or equivalently, when 1/n′

=

1/q − 2/r . With this we can rewrite (A.5) as

∥F̂ ∥n ≥ CD
∥F ∥q ≥ CD

∥F ∥n′ . (A.6)

The last inequality results from Hölder’s inequality:

∥F ∥a ≥ ∥F ∥b when a ≤ b. (A.7)

In fact, in the limit r → ∞ the last inequality in (A.6) is saturated and C
r→∞
→ 1. Consequently we get

the Hausdorff–Young inequality in the form

∥F̂ ∥n ≥ ∥F ∥n′ . (A.8)

This inequality holds, of course, only when q ≥ n′ (cf. Eq. (A.7)), i.e., when n ≥ q/(q − 1). Since q ≥ 1
we have that n ∈ [1, 2]. Should we have started in our derivation with F̂ instead of F wewould have
obtain the reverse inequality

∥F ∥n ≥ ∥F̂ ∥n′ . (A.9)

Inequalities, (A.8) and (A.9) are known as classical Hausdorff–Young inequalities [67]. Note that in the
spacial case when n = 2 we have also n′

= 2 and Eqs. (A.8)–(A.9) together imply equality:

∥F ∥2 = ∥F̂ ∥2. (A.10)

This is known as the Plancherel (or Riesz–Fischer) equality [67,79].
It should be noted that the Beckner–Babenko inequality from Section 5 improves upon the Haus-

dorff–Young inequalities. This is because Cx ≤ 1 for x ∈ [1, 2], see Fig. 8. The Beckner–Babenko
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Fig. 8. Dependence of the constant Cx on the Hölder parameter x. When x is between points B and C , i.e., when x ∈ [1, 2] than
Cx ≤ 1. For x ≤ A is Cx also smaller than 1 but such x are excluded by the fact that xmust be ≥ 1.

inequality follows easily from Young’s inequality. Indeed, assume that there exists a (possibly p-
dependent) constant k(p) ≤ 1, such that

k(p)∥F ∥p ≥ ∥F̂ ∥p′ and k(p)∥F̂ ∥p ≥ ∥F ∥p′ . (A.11)

The constant k(p) can be easily found by writing

k(r)∥F ∗ G∥r ≥ ∥F̂ Ĝ∥r ′ ≥ ∥F̂ ∥q′∥Ĝ∥p′ ≥ [k(q′)]−1
∥F ∥q[k(p′)]−1

∥G∥p, (A.12)

which gives

∥F ∗ G∥r ≥ [k(r)]−1
[k(q′)]−1

[k(p′)]−1
∥F ∥q∥G∥p. (A.13)

The middle inequality in (A.12) is the Hölder inequality that is valid for 1/r ′
= 1/p′

+ 1/q′ (i.e., for
1/p + 1/q = 1/r + 1). Comparison of (A.13) with (A.1) gives the equation

[k(r)]−1
[k(q′)]−1

[k(p′)]−1
= CD

= [CqCp/Cr ]
D

= [1/Cq′Cp′Cr ]
D. (A.14)

This is clearly solved with k(p) = CD
p . By choosing p ∈ [1, 2] we get improvement over the Haus-

dorff–Young inequalities.
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