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Superstatistics permits the calculation of the Feynman propagator of a relativistic particle in a novel

way from a superstatistical average over nonrelativistic single-particle paths. We illustrate this for the

Klein-Gordon particle in the Feshbach-Villars representation, and for the Dirac particle in the

Schrödinger-Dirac representation. As a by-product we recover the worldline representation of Klein-

Gordon and Dirac propagators, and discuss the role of the smearing distributions in fixing the repar-

ametrization freedom. The emergent relativity picture that follows from our approach together with a

novel representation of the Lorentz group for the Feshbach-Villars particle are also discussed.
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I. INTRODUCTION

There has been a recent upsurge of interest in the so-
called superstatistics paradigm [1–11]. Superstatistics is a
branch of statistical physics devoted originally to the study
of nonequilibrium non-Gaussian systems. It is character-
ized by superpositions of different distribution functions
which usually operate on vastly different time scales with a
non-Gaussian distribution as an output. Such an approach
has a long tradition. There are many examples of nonlinear
or nonequilibrium systems that have been treated with such
methods [12–14]. The recent revival of interest in this field
has been caused by recognizing the ubiquitous character of
such a statistical behavior in the nature. This has in turn led
to a systematic classification of the various compound
distributions [6,11]. Particularly important is the realiza-
tion that there are only three major physically relevant
universality classes of smearing distributions: �2 supersta-
tistics, inverse �2 superstatistics, and lognormal supersta-
tistics. These three classes arise as universal limit statistics
in a majority of known superstatistical systems [6,11].

In an earlier paper [9], we have shed yet another light on
the superstatistics paradigm by addressing the following
question: Assume that a conditional probability distribu-
tion Pðxb; tbjxa; taÞ describing a particle to move from the
position xa in a D-dimensional Euclidean space at time ta
to the position xb at time tb satisfies the Chapman-
Kolmogorov equation for Markovian process, i.e.,

Pðxb; tbjxa; taÞ ¼
Z

dxPðxb; tbjx; tÞPðx; tjxa; taÞ;
tb � t � ta: (1)

This equation implies that Pðxb; tbjxa; taÞ possesses a path-
integral representation (see e.g. Ref. [15]). If we distin-
guish various distributions by a strength parameter v, then

Pvðxb; tbjxa; taÞ ¼
Z xðtbÞ¼xb
xðtaÞ¼xa

Dx
Dp

ð2�ÞD

� exp

�Z tb

ta

d�½ip � _x� vHðp; xÞ�
�
: (2)

Is it possible that also superpositions of such path integrals

�Pðxb; tbjxa; taÞ ¼
Z 1
0

dv!ðv; tbaÞPvðxb; tbjxa; taÞ (3)

satisfy the Chapman-Kolmogorov equation (1)? The an-
swer is affirmative, if the weight function !ðv; tÞ fulfills a
certain simple functional equation. In Ref. [9] we have
derived this equation as follows. We have first defined a
rescaled weight function

wðv; tÞ � !ðv=t; tÞ=t; (4)

and calculated its Laplace transform

~wðpv; tÞ �
Z 1
0

dve�pvvwðv; tÞ: (5)

The condition that the superposition (3) satisfies (1) can
then be recast as a simple factorization property

~wðpv; t1 þ t2Þ ¼ ~wðpv; t2Þ ~wðpv; t1Þ: (6)

Assuming continuity in t, the solution of (6) is unique
and can be written as an exponential of some real
‘‘Hamiltonian’’ HvðpvÞ:

~wðpv; tÞ ¼ e�tHvðpvÞ; (7)

where HvðpvÞ must increase monotonically for large pv,
and must satisfy the normalization condition Hvð0Þ ¼ 0.
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The Laplace inverse of ~wðpv; tÞ yields the desired smearing
function !ðv; tÞ. This allows for a rather large variety of
functions !ðv; tÞ to guarantee the Chapman-Kolmogorov
equation (1). Once this is satisfied, the smeared distribution
(3) possesses a path-integral representation on its own,
associated with a new Hamiltonian �Hðp; xÞ.

In Ref. [9] we have exploited this relationship in the
converse direction by observing that the path integral
representing of the Euclidean version of the probability
amplitude for a relativistic scalar particle to move from a
position xa at time ta to position xb at time tb,

Pðxb; tbjxa; taÞ ¼
Z xðtbÞ¼xb
xðtaÞ¼xa

Dx
Dp

ð2�ÞD

� exp

�Z tb

ta

d�½ip � _x� c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2c2

q
�
�
;

(8)

can be considered as a superposition of nonrelativistic free-
particle path integrals, namely,

Pðxb; tbjxa; taÞ ¼
Z 1
0

dv!ðv; tbaÞ
Z xðtbÞ¼xb
xðtaÞ¼xa

Dx
Dp

ð2�ÞD

� exp

�Z tb

ta

d�½ip � _x�vðp2c2þm2c4Þ�
�
:

(9)

Here p and x are vectors in D-dimensional Euclidean
space. The weight function !ðv; tÞ is the Weibull distribu-
tion [14,16] of order 1 (also known as the scaled inverse �2

distribution [17]). The Weibull distribution of order a is
defined by

!ðv; a; tÞ ¼ a expð�a2t=4vÞ
2
ffiffiffiffi
�
p ffiffiffiffiffiffiffiffiffiffi

v3=t
p ; a 2 Rþ; (10)

with !ðv; tÞ � !ðv; 1; tÞ. From the superstatistics
point of view, the relation (9) belongs to the inverse
�2-superstatistics universality class.

In the literature, the representation (8) is often referred
to as the Newton-Wigner propagator [18]. The name Klein-
Gordon kernel used in Ref. [19] is misleading since the
propagator of the Klein-Gordon field must include also
negative-energy spectrum, reflecting the existence of the
charge-conjugated solution—antiparticle.

It is the purpose of this paper to use the superstatistics
relationship to find the Feynman propagator of the Klein-
Gordon field in a novel way. Subsequently, the same
method will be applied to the Dirac field. The superstatis-
tics approach will allow us to circumvent the technically
involved procedure of constrained quantization [15,20–22]
that is inherent to any theory with reparametrization in-
variance. The result will be the worldline representations
for the two relativistic propagators.

For a better understanding of the upcoming result,
we begin by introducing, in Sec. II, the Feshbach-Villars

representation of a Klein-Gordon particle. After this we
present, in Sec. III, a derivation of the corresponding
Feynman Green function in Euclidean spacetime from
the superstatistics standpoint. It will be seen that one
must invoke the Stückelberg-Feynman interpretation of
antiparticles as particles of negative energy running in
the reverse time direction in order to make sense of the
Feshbach-Villars time evolution operator. On the mathe-
matical side, the Stückelberg-Feynman interpretation is
necessary to ensure that the Feshbach-Villars evolution
operator forms a strongly continuous semigroup. As a
by-product, we obtain the well-known worldline represen-
tation of the Klein-Gordon propagator [15,20]. The same
approach produces also the propagator of the Dirac
particle, due to a close analogy between Feshbach-Villars
diagonalization, which brings the Hamiltonian into a form
where the positive- and negative-energy parts are explicitly
separated, and the Foldy-Wouthuysen transformation of
Dirac’s Hamiltonian. This is demonstrated in some detail
in Sec. IV. In Sec. V, we discuss the role of smearing
distributions in fixing the reparametrization freedom.
In particular, we show that Weibull’s distribution parame-
ter a is closely related to the einbein characterizing the
worldline.
In Sec. VI, we briefly comment on the relation of our

superstatistical path integrals to the concept of ‘‘emergent
relativity.’’ Various remarks and generalizations are pro-
posed in the concluding Sec. VII. For the reader’s conve-
nience, we relegate some technical issues concerning the
Feshbach-Villars representation to two Appendices.

II. SPINLESS PARTICLE IN FESHBACH-VILLARS
REPRESENTATION

We start with the observation of Feshbach and Villars
[23] that the Klein-Gordon equation for a free spinless
charged particle can be rewritten in a Schrödinger-like
form as

i @t�ðx; tÞ ¼ HFVðp̂Þ�ðx; tÞ; (11)

where p̂ ¼ �i@=@x. The wave function �ðx; tÞ is a two-
component object

�ðx; tÞ ¼ �ðx; tÞ
�ðx; tÞ

� �
; (12)

and the Hamiltonian operator a 2� 2 matrix

HFVðp̂Þ ¼ ð�3 þ i�2Þ p̂
2

2m
þ �3mc2 � ĤFV: (13)

To see the equivalence with the Klein-Gordon equation, we
rewrite (11) for the to components as

i @tð�þ �Þ ¼ mc2ð�� �Þ; (14)

i @tð�� �Þ ¼ p̂2

m
ð�þ �Þ þmc2ð�þ �Þ; (15)
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from which we obtain

ðhþm2c2Þð�þ�Þ ¼ 0 and ðhþm2c2Þð���Þ ¼ 0;

(16)

showing that both � and � obey a Klein-Gordon equation
of mass m.

The physical role of the components � and � can be
understood by introducing the electromagnetic potential
Aðx; tÞ via the minimal substitution p̂! p̂� eAðx; tÞ=c,
and noting that the charge-conjugated wave function has
the form [23]

�cðx; tÞ ¼ �1�
�ðx; tÞ ¼ ��ðx; tÞ

��ðx; tÞ
� �

: (17)

Thus, the two-component form of the wave function re-
flects the presence of particles and antiparticles of opposite
charge.

If we define the conjugate Hamiltonian operator as

�̂H FV � �3Ĥ
y
FV�3; (18)

then we see from (13) that ĤFV is conjugate to itself, i.e.,
Hermitian under the scalar product in D spatial dimen-
sions:

ð�;�0Þ �
Z

dx�yðx; tÞ�3�
0ðx; tÞ; dx � dDx: (19)

The Hamiltonian HFVðpÞ can be diagonalized via the
similarity transformation

HFVðpÞ ¼ Up
Hp

0 �Hp

� �
U�1p ¼ Up�3U

�1
p Hp; (20)

with

Hp � c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2c2

q
; (21)

and Up denoting the nonunitary Hermitian matrix

Up ¼
ðmc2 þHpÞ�0 þ ðmc2 �HpÞ�1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mc2Hp

q
¼ ð1þ �vÞ�0 þ ð1� �vÞ�1

2
ffiffiffiffiffiffi
�v
p ¼ exp

�
� 1

2�1 ln�v

�

¼ exp

�
1

2
�1arcosh

�
1

2
ð�v þ 1=�vÞ

��
: (22)

Here �0 is Pauli’s two-dimensional unit matrix, and �v

the usual Lorentz factor of relativistic motion �v � ð1�
v2=c2Þ�1=2 ¼ Hp=mc2, where v ¼ c2p=Hp is the velocity

of the particle. Note that the similarity transformation Up

converts the non-Hermitian Hamiltonian matrix HFV into
the Hermitian Hamiltonian matrix �3Hp. In this form the

positive- and negative-energy solutions are decoupled.
We also observe that if � is a positive-energy eigenstate

of the operator ĤFV, then the associated charge-conjugated
wave function �c corresponds to a negative-energy

eigenstate of ĤFV, and vice versa. This is because a
positive-energy solution of momentum p can be written as

�pðxÞ ¼ uðpÞeipx � Up
1
0

� �
eipx; (23)

while the charge-conjugated solution reads

�c
pðxÞ ¼ �1�

�
pðxÞ ¼ �1Up�1

0

1

 !
e�ipx ¼ vðpÞe�ipx

� Up

0

1

 !
e�ipx; (24)

showing that it corresponds to the negative energies. The
two-component objects

�

�
þ 1

2

�
¼ 1

0

� �
; �

�
� 1

2

�
¼ 0

1

� �
; (25)

play the role of ‘‘pseudospinors’’ in a charge space.
From Eqs. (19), (23), and (24) we see that the wave

functions can be normalized according to

ð�;�Þ ¼ �1; (26)

where the plus/minus sign corresponds to particle/antipar-
ticle. Here we have used the relation Up�3Up ¼ �3.

Equation (23) suggests thatUp may be viewed as a boost

transformation that brings a ‘‘pseudospinor’’ of a spinless
particle at rest, �ð12Þ, to the pseudospinor up of a particle

with velocity v. As usual, the Lorentz boosts are, in con-
trast to rotations, nonunitary, as all finite-dimensional rep-
resentations of noncompact group transformations should
be. However, as in the case of Dirac spinors, they are
pseudounitary with respect to the conjugation operation

(18), namely, U�1p ¼ �3U
y
p�3 � �Up. More details will be

provided in Appendices A and B.

III. FEYNMAN GREEN FUNCTION

Let us calculate the Feynman Green function Gðx; yÞ
associated with the Schrödinger-like equation (11). It is
defined by

ði@t � ĤFVÞGðx; t; x0; t0Þ ¼ i�ðDÞðx� x0Þ�ðt� t0Þ: (27)

The solution has the Fourier decomposition

Gðx; t; x0; t0Þ ¼ i
Z
RDþ1

dp0

2�

dp

ð2�ÞD e�ipðx�x0Þ

�
�
p0c� ð�3 þ i�2Þ p

2

2m
� �3mc2

��1

¼ i
Z
RDþ1

dDþ1p
ð2�ÞDþ1

e�ipðx�x0Þ

p2c2 �m2c4 þ i	

�
�
p0cþ ð�3 þ i�2Þ p

2

2m
þ �3mc2

�
: (28)

The Feynman boundary conditions are ensured by
the usual i	 prescription with infinitesimal 	 > 0.
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Equivalently, we can perform a Wick rotation, which
makes the denominator regular, and the imaginary-time
Green function Gðx;�it; x0;�it0Þ � Pðx; tjx0; t0Þ satisfies
the Fokker-Planck-like equation:

ð@t þ ĤFVÞPðx; tjx; t0Þ ¼ �ðt� t0Þ�ð3Þðx� x0Þ: (29)

The solution is obtained from the local matrix element of

the time evolution operator e�tĤFV :

Pðx; tjx0; t0Þ ¼ hxje�ðt�t0ÞĤFV jx0i: (30)

Recalling the matrix relation (20), this is equal to

Pðx; tjx0; t0Þ ¼ hxjUp̂e
�ðt�t0Þ�3Hp̂U�1p̂ jx0i: (31)

Since Up̂ and Hp̂ are diagonal in the momentum basis jpi,
we use the completeness relation

Z
RD

dp

ð2�ÞD jpihpj ¼ 1 (32)

to rewrite (31) as

Pðx; tjx0; t0Þ ¼
Z
RD

dp

ð2�ÞD e
ip�ðx�xÞ0Uphpje�ðt�t0Þ�3Hp jpiU�1p :

(33)

Alternatively we may rewrite (31) as

Pðx; tjx0; t0Þ ¼ Up̂hxje�ðt�t0Þ�3Hp̂ jx0iðU p̂0 Þ�1; (34)

where the arrow on top of the operator indicates the direc-
tion in which the momentum operator p̂ acts.

Let us now express the amplitude in (34) as a path
integral. This is not straightforward, since the formal
expression

hx00je�ðt�t0Þ�3Hp̂ jx0i

¼
Z xðtÞ¼x00

xðt0Þ¼x0
Dx

Dp

ð2�ÞD e
R

t

t0 d�½ip� _x�c�3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þm2c2
p

� (35)

diverges for the lower components of the imaginary-time
evolution operator

e�t�3Hp ¼ e�tHp 0
0 etHp

� �
: (36)

This difficulty can be circumvented by using different
superpositions of Gaussian path integrals, written as in
Eq. (9), both with the same positive Hamiltonian, but
with different weight functions!ðv; tÞ for upper and lower
components of e�t�3Hp . In particular, we write

hx00je�t�3Hp̂ jx0i ¼
Z 1
0

dv!ðv; tÞ
Z xðtÞ¼x00

xð0Þ¼x0
Dx

Dp

ð2�ÞD

� e
R

t

0
d�½ip� _x�vðp2c2þm2c4Þ�; (37)

with a matrix weight function

!ðv; tÞ ¼ 1

2
ffiffiffiffi
�
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

v3=jtjp 
ðtÞe�t=4v 0
0 
ð�tÞet=4v

 !
: (38)

Here we have invoked the Feynman-Stuckelberg causality
condition [24–26] that negative-energy solutions propagate
backward in time.
Note that the amplitude (37) has the time-ordered form

hx00je�t�3Hp̂ jx0i ¼ 
ðtÞ 1þ �3

2
hx00je�tHp̂ jx0i

þ 
ð�tÞ 1� �3

2
hx00jetHp̂ jx0i

¼ 1þ sgnðtÞ�3

2
hx00je�jtjHp̂ jx0i

¼ 1

2

�
1�Hp̂00�3

@t

�
hx00je�jtjHp̂ jx0i: (39)

Representation (37) can be given a familiar relativistic
form by functionally integrating out Dp and changing
variables from v to � � 1=v. This gives (t > 0)

hx00je�tHp̂ jx0i ¼
Z 1
0

d�
e�m2c4t=�e�t�=4

2
ffiffiffiffi
�
p ffiffiffiffiffiffiffiffi

�=t
p

�
Z xðtÞ¼x00

xð0Þ¼x0
Dxe�

R
t

0
d�� _x2=4c2 : (40)

By setting � ¼ ���=2mc2, the right-hand side becomes

hx00je�tHp̂ jx0i ¼
Z 1
0

d�
e��mc2=2e�tv=4

ffiffiffiffiffiffiffiffiffiffiffi
2mc2
p

t

2
ffiffiffiffi
�
p ffiffiffiffiffiffi

�3
p

�
Z xð�Þ¼x00

xð0Þ¼x0
Dxe�

R
�

0
d ��m½x0ð ��Þ�2=2: (41)

We can now use a trivial Gaussian path integral for an
auxiliary zeroth component x0ð�Þ associated with the
path xð�Þ:
ffiffiffiffiffiffiffiffiffiffi
2��

m

s Z x0ð�Þ¼ct

x0ð0Þ¼0
Dx0e

�
R

�

0
d�m½x0

0
ð ��Þ�2=2¼e�mc2t2=2�¼e�tv=4;

(42)

whose time derivative is

� @t

� ffiffiffiffiffiffiffiffiffiffi
2��

m

s Z x0ð�Þ¼ct

x0ð0Þ¼0
Dx0e

�
R

�

0
d ��m½x0

0
ð ��Þ�2=2

�
¼ v

4
e�tv=4:

(43)

With (43) we can finally express (39) in the form

hx00je�t�3Hp̂ jx0i
¼ ð�3Hp�@tÞ
�
�Z 1

0
d�e��mc2=2

Z xð�Þ¼x

xð0Þ¼x0
Dxe�

R
�

0
d ��m½x0
ð ��Þ�2=2

�
; (44)
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where x
 ¼ ðct; xÞ, x2
 ¼ c2t2 þ x2, and x000 ¼ ct. The path

integral on the right-hand side describes a free nonrelativ-
istic particle in Dþ 1 dimensions.

The expression in brackets has a Fourier representation
(see, e.g. Chapter 19 in Ref. [15])Z 1

0
d�e��mc2=2

Z xð�Þ¼x00

xð0Þ¼x0
Dxe�

R
�

0
d ��ðm=2Þðdx
=d ��Þ2

¼
Z
RDþ1

dDþ1p
ð2�ÞDþ1

e�ipðx00�x0Þ

p2 þm2c2
: (45)

Inserting this into formula (44), and the result further into
(34), we find

Pðx; tjx0; t0Þ ¼
Z
RDþ1

dDþ1p
ð2�ÞDþ1 e

�ipðx�x0ÞUpðip0cþ �3HpÞ

�U�1p

1

p2 þm2c2

¼
Z
RDþ1

dDþ1p
ð2�ÞDþ1 e

�ipðx�x0Þ

�
�
ip0cþ ð�3 þ i�2Þ p

2

2m
þ �3mc2

�

� 1

p2 þm2c2
: (46)

It is straightforward to verify that (46) satisfies the differ-
ential equation (29). One could, of course, arrive at (45)
directly by comparing (33) and (44) with (28).

Note that by reading Eq. (45) from right to left we obtain
the well-known path-integral representation of the Klein-
Gordon propagator �ðx� x0Þ [15,27], also known as the
Feynman-Fock worldline representation. Normally this is
derived with the help of a spurious dynamical variable—
einbein, that makes the path integral manifestly reparamet-
rization invariant. Such a gauge freedom is then treated
with the usual methods of constrained quantization
[15,20,21]. Our use of Weibull’s distribution brought us
automatically to what is sometimes called Polyakov gauge
[20]—i.e., the gauge where the einbein variable is fixed to
be the velocity of light (for details see Ref. [15]). In Sec. V
we shall see how !ðv; tÞ must be modified to account for a
general gauge. By going back from Euclidean times to real
times, we can now recover the Green function associated
with the initial real-time Schrödinger equation (11).

IV. DIRAC PARTICLE AND FOLDY-
WOUTHUYSEN TRANSFORMATION

It is instructive to use the same procedure for calculating
the Green function of the Dirac particle. Here the role of
Feshbach-Villars diagonalization matrix Up in Eq. (22) is

played by the 4� 4 Foldy-Wouthuysen transformation in
spinor space [28],

Vp ¼ e�iSp ; Sp ¼ �i� � pjpj

p
2
; (47)

where � denotes the three-vector of the Hermitian spatial
Dirac matrices and

cos
p ¼ mcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2c2

p ¼ 1

�v

;

sin
p ¼ jpjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2c2

p ¼ jvj
c

:

(48)

The matrix Vp brings the Hermitian Dirac Hamiltonian

HDðpÞ ¼ c�0� � pþ �0mc2 ¼ mc p � �
p � � �mc

� �
c; (49)

to the diagonal form,

HdiagðpÞ ¼
c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2c2

p
�0 0

0 �c ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2c2

p
�0

0
@

1
A

¼ �0Hp; (50)

with the similarity transformation,

HDðpÞ ¼ VpHdiagðpÞV�1p : (51)

Here �0 is the Dirac matrix

�0 ¼ �0 0
0 ��0

� �
¼ �3 	 �0; (52)

composed of Pauli’s two-dimensional unit matrices �0 (	
denotes a tensor product).
Note that the matrix Vp is now unitary, in contrast to the

spinless case where it was nonunitary but Hermitian, since
there the Hamiltonian was non-Hermitian.
In the Dirac case, we may calculate the probability

Pðx; tjx0; t0Þ as a 4� 4 matrix following the same strategy

as in Sec. III. In particular, we write hxje�ðt�t0Þ�0Hp jx0i by
analogy with (37) as a superposition of nonrelativistic
single-particle path integrals,

hxje�t�0Hp̂ jx0i ¼
Z 1
0

dv!ðv; tÞ
Z xðtÞ¼x

xðt0Þ¼x0
Dx

Dp

ð2�ÞD
� e

R
t

t0 d�½ip� _x�vðp0c2þm2c4Þ�; (53)

with a matrix of Weibull distributions:

!ðv; tÞ ¼ 1

2
ffiffiffiffi
�
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

v3=jtjp 
ðtÞe�t=4v�0 0
0 
ð�tÞet=4v�0

 !
:

(54)

Applying the Foldy-Wouthuysen transformation (51) we

obtain for the matrix elements hxje�t�0HDðp̂Þjx0i the path
integral

SUPERSTATISTICS APPROACH TO PATH INTEGRAL FOR . . . PHYSICAL REVIEW D 82, 085016 (2010)

085016-5



hxje�t�0HDðp̂Þjx0i ¼
Z
RDþ1

dDþ1p
ð2�ÞDþ1 e

�ipðx�x0Þ

� Vpðicp0 þHp�0ÞV�1p

1

p2 þm2c2

¼ �0
E

c

Z
RDþ1

dDþ1p
ð2�ÞDþ1 e

�ipðx�x0Þ ipE þmc

p2 þm2c2
:

(55)

To obtain the last line we have used the simple
matrix identity Vpðicp0 þHp�0ÞV�1p ¼ icp0 þ c�0� �
pþ �0mc2, and introduced the Euclidean gamma matrices
�0
E � �0 and �E � i� fulfilling the Clifford algebra
f�


E ; �
�
Eg ¼ 2�
�. Similarly pE � �0

Ep
0 þ �E � p.

The Euclidean amplitude (55) satisfies the Fokker-
Planck-like equation analogous to (29):

ð@t þHDÞhxje�t�0HDðp̂Þjx0i ¼ �ðt� t0Þ�ðDÞðx� x0Þ: (56)

By multiplying this with �0
E, and defining ~Pðx; tjx0; t0Þ �

hxje�t�0HDðp̂Þjx0ic�0
E, we obtain the covariant expression

ð�0
E@ct þ c�1�0

EHDÞ ~Pðx; tjx0; t0Þ ¼ ðipE þmcÞ ~Pðx; tjx0; t0Þ
¼ �ðDþ1Þðx� x0Þ; (57)

showing that ~Pðx; tjx0; t0Þ is the Green function for the
Euclidean Dirac equation.

Let us finally emphasize the well-known fact that using
only the positive energies in relativistic path integrals such
as Eq. (8) leads immediately to pathologies, such as non-
conservation of probability, lack of Zitterbewegung [29],
loss of relativistic invariance [18], and, of course, the
inability to find the correct Klein-Gordon propagator.
These difficulties do not arise when the full matrix struc-
ture of the Weibull distribution is taken into account. Such
a matrix structure takes complete care of both particles
and antiparticles and it highlights the key role of the
Feynman-Stuckelberg boundary condition.

V. REPARAMETRIZATION FREEDOM

Let us now turn to the case of a general reparametriza-
tion invariance. In this connection it is instructive to ob-
serve various degrees of freedom in the representation (9)
of the conditional probability (8). First we note that by
substituting v � v=a2 we obtain the identityZ xðtÞ¼x00

xð0Þ¼x0
Dx

Dp

ð2�ÞD exp

�Z t

0
d�½ip � _x� c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2c2

q
�
�

¼
Z 1
0

dv!ðv; a; tÞ
Z xðtÞ¼x00

xð0Þ¼x0
Dx

Dp

ð2�ÞD

� exp

�Z t

0
d�½ip � _x� v

a2
ðp2c2 þm2c4Þ�

�
; (58)

where !ðv; a; tÞ is the Weibull distribution of order a in
Eq. (10). The right-hand side can be further integrated
functionally over p to become

Z 1
0

dv!ðv; a; tÞ
Z xðtÞ¼x00

xð0Þ¼x0
Dx

� exp

�
�
Z t

0
d�

�
a2

4c2v
_x2 þ c2v

a2
m2c2

��

¼
Z 1
0

dL
cte�c2t2=2Lffiffiffiffiffiffiffiffiffiffiffiffi

2�L3
p

Z xðtÞ¼x00

xð0Þ¼x00
Dx

� exp

�
�
Z �

0
d ��

�
1

2e
½x0ð ��Þ�2 þ e

2
m2c2

��
: (59)

Here we have defined a new variable �� � �2c2v=a2e, so
that the length of a particle orbit is L � R

�
0 d

��e. In this

expression, e may be viewed as a constant ‘‘einbein,’’ i.e.,
a square root of the intrinsic metric along the worldline.
As in Sec. III we can rewrite (59) in a relativistic form
by utilizing an auxiliary Gaussian path integral for x0
similar to (43), as

@t
Z x0ð�Þ¼ct

x0ð0Þ¼0
Dx0 exp

�
�
Z �

0
d ��

1

2e
½x00ð ��Þ�2

�

¼ �c2t
ffiffiffiffiffiffiffiffiffiffiffiffi
1

2�L3

s
e�c2t2=2L: (60)

With this we can rewrite the right-hand side of (58) as

� @t
c

Z 1
0

dL
Z xð�Þ¼x00

xð0Þ¼x0
Dx

� exp

�
�
Z �

0
d ��

�
1

2e
½x0
ð ��Þ�2 þ e

2
m2c2

��
: (61)

Analogous steps to those in Sec. III allow us to find for
the Klein-Gordon propagator (45) the worldline represen-
tation,Z 1

0
dL

Z xð�Þ¼x00

xð0Þ¼x0
Dx

� exp

�
�
Z �

0
d ��

�
1

2e
½x0
ð ��Þ�2 þ e

2
m2c2

��

¼
Z
RDþ1

dDþ1p
ð2�ÞDþ1

e�ipðx00�x0Þ

p2 þm2c2
: (62)

So the different choices of the parameter a of the
Weibull smearing distribution correspond to different
constant einbeins e in the worldline representations of
the Klein-Gordon propagator.
The freedom of choice of e in (62) can be generalized

further to a full gauge freedom, i.e., a freedom to change
the worldline parametrization. However, this cannot be
done straightforwardly just by assuming that a depends
on ��. This is because the Hamiltonian wewish to smear out
would become explicitly ‘‘time dependent’’ [see Eq. (58)],
and for such cases our superstatistics argument [9] is not
valid. It is, however, not difficult to tackle the problem
indirectly. To see this we use a simple identity for a func-
tional � function [30]: let eð ��Þ be a dynamical variable and
let F ��ðeÞ ¼ 0 be a system of equations that for each ��
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provides a constant solution es. Let, in addition, F �� ¼
F ��ðeÞ be a one-to-one map in some neighborhood of
F �� ¼ 0 which can be inverted to eð ��Þ � e �� ¼ e ��ðFÞ.
Any functional G½es� can be then written as

G½es� ¼
Z �Y

��

dF ���ðF ��Þ
�
G½eðFÞ�

¼
Z �Y

��

de ���ðF ��ðeÞÞ
�
J ðeÞG½e�

�
Z

De�½FðeÞ�J ðeÞG½e�; (63)

with the functional Jacobian

J ðeÞ ¼ detF �� ��0 ; F �� ��0 ¼
@F ��

@eð ��0Þ : (64)

By setting

G½es� ¼ exp

�
�
Z �

0
d ��

�
1

2es
½x0
ð ��Þ�2 þ es

2
mc2

��
; (65)

we can rewrite (62) in the formZ 1
0

dL
Z

De�½FðeÞ�J ðeÞ
Z xð�Þ¼x00

xð0Þ¼x0
Dx

� exp

�
�
Z �

0
d ��

�
1

2eð ��Þ ½x
0

ð ��Þ�2 þ eð ��Þ

2
m2c2

��

¼
Z
RDþ1

dDþ1p
ð2�ÞDþ1

e�ipðx00�x0Þ

p2 þm2c2
: (66)

The action in (66) is clearly reparametrization invariant
under �� � ��0 ¼ fð ��Þ, if we transform

x
ð ��Þ� ~x
ð ��Þ ¼ x
ðf�1ð ��ÞÞ;

eð ��Þ� e0ð ��Þ ¼ df�1ð ��Þ
d ��

eðf�1ð ��ÞÞ:
(67)

Here fð ��Þ is an arbitrary monotonically increasing func-
tion of ��. A general gauge fixing, say ~FðeÞ ¼ 0, can be
now implemented by performing the change of the einbein
variable e � e0 via e ¼ F�1 
 ~Fðe0Þ. As a consequence
of the rules of functional differentiation, we have

De�½FðeÞ�J ðeÞ ¼De0 det
�
@ðF�1 
 ~FÞ

@e0

�
�½ ~Fðe0Þ�

� det

�
@ðF 
 F�1 
 ~FÞ
@ðF�1 
 ~FÞ

�
¼De0�½ ~Fðe0Þ� ~J ðe0Þ; (68)

where �½ ~Fðe0Þ� ¼ Q
��0�ð ~F ��0 ðe0ÞÞ, and the functional

Jacobian ~J has the form

~J ðe0Þ ¼ det ~F �� ��0 ; ~F �� ��0 ¼
@ ~F ��

@e0ð ��0Þ : (69)

Note also that due to einbein identity, d ��eð ��Þ ¼ d ��0e0ð ��0Þ
(see, e.g., Refs. [15,31]), the action in (66) changes toZ �

0
d ��

�
1

2e0ð ��Þ ½~x
0

ð ��Þ�2 þ e0ð ��Þ

2
mc2

�
: (70)

We can now relabel e0 back to e and ~x
 back to x
, and
write the left-hand side of (66) in the gauge-fixed form

Z 1
0

dL
Z

De�½ ~FðeÞ� ~J ðeÞ
Z xð�Þ¼x00

xð0Þ¼x0
Dx

� exp

�
�
Z �

0
d ��

�
1

2eð ��Þ ½x
0

ð ��Þ�2 þ eð ��Þ

2
m2c2

��
; (71)

with a particle orbit length

L ¼
Z �

0
d ��eð ��Þ: (72)

The reader may notice that the gauge e � const is recov-
ered by setting ~F ��ðeÞ ¼ eð ��Þ � e.
Let us finally observe that (71) can be rewritten as

Z 1
0

dL
Z

De�½ ~FðeÞ� ~J ðeÞ exp½�ðx
00
0 � x00Þ=2L�ffiffiffiffiffiffiffi
2�
p

L

�
Z xð�Þ¼x00

xð0Þ¼x0
Dx

Dp

ð2�ÞD

� exp

�Z �

0
d ��

�
ip � x� eð ��Þ

2
ðp2 þm2c2Þ

��
; (73)

which indicates that the smearing-distribution functional
corresponding to the einbein eð ��Þ reads

%½e; x000 ; x00� ¼ �½ ~FðeÞ� ~J ðeÞ exp½�ðx
00
0 � x00Þ=2L�ffiffiffiffiffiffiffi
2�
p

L
: (74)

In deriving (73) we have used the fact that

Z x0ð�Þ¼x000
x0ð0Þ¼x00

D
�
x0ffiffiffi
e
p
�
exp

�
�
Z �

0
d ��

1

2eð ��Þ ½x
0
0ð ��Þ�2

�

¼ exp½�ðx000 � x00Þ2=2L�ffiffiffiffiffiffiffiffiffiffi
2�L
p ; (75)

with (see, e.g., Refs. [15,20])

D
�
x0ffiffiffi
e
p
�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2�� ��0e ��0

s Y
��i

dx0ð ��iÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�� ��ie ��i

q ; (76)

and the identity [19]

Z xð�Þ¼x00

xð0Þ¼x0
Dx

Dp

ð2�ÞD exp

�Z �

0
d ��

�
ip � _x�eð ��Þ

2
p2

��

¼
Z xð�Þ¼x00

xð0Þ¼x0
D
�

x

eD=2

�
exp

�
�
Z �

0
d ��

1

2eð ��Þ ½x
0ð ��Þ�2

�
: (77)

In the above definition the interval 0 � �� � � is split into
not necessarily equal slices � ��i in order to preserve the
integration measure under the reparametrization transfor-
mations (67). In particular, while � ��i are nonequal slices,
� ��ie ��i

is constant for all i because e2ð ��Þ is the one-

dimensional version of the metric ‘‘tensor’’ along the path.
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VI. CONNECTION WITH EMERGENT
RELATIVITY

The identity (58) can be interpreted in yet another
interesting way. To this end, we rewrite Eq. (58) as

Z xðtÞ¼x00

xð0Þ¼x0
Dx

Dp

ð2�ÞD exp

�Z t

0
d�½ip � _x� c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2c2

q
�
�

¼
Z 1
0

d ~m

ffiffiffiffiffiffiffiffiffiffiffi
c2t

2� ~m

s
e�tc2ð ~m�mÞ2=2 ~m

Z xðtÞ¼x00

xð0Þ¼x0
Dx

Dp

ð2�ÞD

� exp

�Z t

0
d�

�
ip � _x� p2

2 ~m
�mc2

��

¼
Z 1
0

d ~mf1=2ð ~m; tc2; tc2m2Þ
Z xðtÞ¼x00

xð0Þ¼x0
Dx

Dp

ð2�ÞD

� exp

�Z t

0
d�

�
ip � _x� p2

2 ~m
�mc2

��
; (78)

where

fpðz; a; bÞ ¼ ða=bÞp=2
2Kpð

ffiffiffiffiffiffi
ab
p Þ z

p�1e�ðazþb=zÞ=2 (79)

(with Kp ¼ modified Bessel function of the second kind)

is the generalized inverse Gaussian distribution [32]
(known also as Sichel’s distribution). From the form of
the Hamiltonian in (78) we see that the mass ~m plays the
role of the ordinary Newtonian mass which takes on
continuous values distributed according to distribution
f1=2ð ~m; tc2; tc2m2Þ with the expectation value h ~mi ¼ mþ
1=tc2. Relation (78) can then be given the following heu-
ristic interpretation: Single-particle relativistic theory
might be viewed as a single-particle nonrelativistic theory
whose Newtonian mass ~m (which is not invariant under
Lorentz transformations) is a fluctuating parameter whose
average approaches the true relativistic massm in the large
t limit. In view of the results of Ref. [9], we can more
formally state that a stochastic process described by the
Kramers-Moyal equation with the relativistic Hamiltonian

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2c2

p
is equivalent to a doubly stochastic process

in which the fast-time dynamics of a free nonrelativistic
particle (Brownian motion) is coupled with the long-
time dynamics describing fluctuations of the particle’s
Newtonian mass. On a more speculative vein, one can fit
the above observation into the currently much debated
‘‘emergent (special) relativity.’’ The emergent relativity
tries to view a special theory of relativity as a theory that
statistically emerges from a deeper (essentially nonrelativ-
istic) level of dynamics. It dates back to works of Bohm
[33,34] in the early 1950s, but it received a real boost with
the advancement of quantum-gravity approaches. In recent
years it has appeared under various disguises in quantum-
gravity models based on spacetime foam pictures [35], in
loop quantum-gravity models [36,37], in noncommutative
geometry models [38–41], or in black-hole physics [42].

At a strictly phenomenological level, one can understand
fluctuations of the Newtonian mass as originating from
the idea that the medium in which propagation occurs
(‘‘spacetime’’) involves some sort of ‘‘granularity’’ (usu-
ally considered in quantum-gravity models). On the basis
of experience with condensed-matter systems, one can
expect that granularity of the medium might lead to cor-
rections in the local dispersion relation and hence to mod-
ifications in local effective mass of a particle.
Suppose, now, that on the fast-time level a nonrelativ-

istic particle propagates through grains with a different
local ~m in each grain (e.g., crystalline grains with a differ-
ent local lattice structures or lattice spacings). Assume that
the probability of the distribution of ~m in various grains is
f1=2ð ~m; tc2; tc2m2Þ. Because the fast-time scale motion is

Brownian, the local probability density matrix (PDM)
conditioned on some fixed ~m in a given grain is Gaussian:

�̂ðp; tj ~mÞ / e�tp̂2=2 ~m: (80)

The joint PDM is then �̂ðp; t; ~mÞ ¼
f1=2ð ~m; tc2; tc2m2Þ�̂ðp; tj ~mÞ and the marginal PDM de-

scribing the mass-averaged (i.e. long-time) behavior of
the particle is

�̂ðp; tÞ ¼
Z 1
0

d ~mf1=2ð ~m; tc2; tc2m2Þ�̂ðp; tj ~mÞ: (81)

Local matrix element in the position basis, i.e. hxj�̂ðp; t�
t0Þjx0i, then corresponds to transition probability
Pðx; tjx0; t0Þ which has the Newton-Wigner path-integral
representation (8).
It should be noted that these conclusions extend also to

less trivial situations. One may, for instance, consider the
Klein-Gordon or Dirac particle coupled to an external
electromagnetic field A
ðx; tÞ and to a scalar potential

Vðx; tÞ. In such a case Dirac’s Hamiltonian is

HA;V
D ¼ c�0� � ðp� eA=cÞ þ �0ðmc2 þ VÞ þ eA0:

(82)

and the Feshbach-Villars Hamiltonian reads

HA;V
FV ¼ð�3þ i�2Þ 12m ðp�eA=cÞ2þ�3ðmc2þVÞþeA0:

(83)

For the purpose of illustrating our point we will focus on an
electron in a magnetostatic fieldB ¼ rotA with V ¼ 0. In
this case, there exists a 4� 4 Foldy-Wouthuysen-like
transformation [43,44] that brings Dirac’s Hamiltonian
(82) to a quasidiagonal form:

HA;V
D ðp; xÞ ¼ Vp;xH

A;V
diagðp; xÞV�1p;x; (84)

where
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HA;V
diagðp; xÞ ¼ �0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2ðp� eA=cÞ2 þm2c4 � eℏcB ��

q
;

� �i ¼ i

4
	ijk½�j; �k�; (85)

and

Vp;x ¼ e�iSp;x ; Sp;x ¼ � 1

2
arctan

�
i� � ðcp� eAÞ

mc2

�
: (86)

For A ¼ 0 this reduces to the Foldy-Wouthuysen trans-
formation (47) as one can easily check by comparing
respective Taylor series. Our analysis will further simplify
when the magnetic field is also spatially constant. In this
case the vector potential can be taken as Ax ¼ �By and
Ay ¼ Az ¼ 0 (the z axis is chosen to be in the B direction,

Bz � B) and then

HA;V
diagðp;xÞ
¼�0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2ðpxþeBy=cÞ2þc2p2

yþc2p2
zþm2c4�eℏcB�z

q
¼�3	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2p2þe2B2y2�ecBðℏ�3�2ypxÞþm2c4

q
: (87)

Let us observe that the latter is already in a diagonal form.
Following the procedure from Secs. III and IV, the key
object to be evaluated is the imaginary-time propagator,

hxje�ðt�t0ÞHA;V
diag
ðp;xÞjx0i

¼
Z 1
0

dv!ðv; tÞ 	
Z xðtÞ¼x

xðt0Þ¼x0
Dx

Dp

ð2�ÞD
� e

R
t

t0 d�fip� _x�v½p2c2þe2B2y2�ecBðℏ�3�2ypxÞþm2c4�g

¼
Z 1
0

d ~mf1=2ð ~m; tc2; tc2m2Þ 	
Z xðtÞ¼x

xðt0Þ¼x0
Dx

Dp

ð2�ÞD

� exp

�Z t

t0
d�½ip � _x�HSP �mc2�

�
; (88)

where HSP corresponds to the nonrelativistic Hamiltonian
for a particle in a constant uniform magnetic field
(Schrödinger-Pauli Hamiltonian)

HSP ¼ 1

2 ~m

��
px þ e

c
By

�
2 þ p2

y þ p2
z

�
�
BB�3; (89)

with 
B ¼ eℏ=2 ~mc representing the Bohr magneton.
Note, in particular, that the smearing distributions! and

f1=2 stay the same as in the free-particle case [cf. Eq. (38)

and (78)]. Diagonalization analogous to (84) and (85) can
be performed also for charged spin-0 particles, such as,
e.g., �� mesons [43].

Two points hinder this program to be carried further in a
full generality: first, general x dependence of A
 and V

leads to a notorious ordering problem. Second, and
most importantly, transformation that would bring the
Hamiltonian into a form where the positive and negative
parts are explicitly separated is no longer possible for a

general interaction. This last point makes it impossible to
carry over straightforwardly our reasonings from
Secs. III and IV.

VII. CONCLUDING REMARKS

In this paper we have extended an earlier paper [9] on
superstatistics to a calculation of the worldline representa-
tions of Feynman propagators for spin-0 an spin- 12 particles

via a superstatistical average of nonrelativistic single-
particle paths. For conceptual reasons we have found it
useful to describe the spin-0 particle by the less-known
Feshbach-Villars rather than the usual Klein-Gordon equa-
tion. The Feshbach-Villars representation casts the Klein-
Gordon equation into two equations, both of which are first
order in time. Because of this first-order nature we could
use the Feynman-Kac formula to set up the path-integral
representation for the corresponding Feynman’s propaga-
tor. The two-component nature of the wave function, in
addition, allowed one to treat the positive- and negative-
energy solutions on equal footing and easily accommo-
dated the Feynman-Stuckelberg boundary condition. This
considerably facilitated our calculations. Although we
have discussed only spin-0 and spin- 12 particles, the method

could have been also employed to discuss the Proca equa-
tion for spin-1 particle. This is because for Proca’s
Hamiltonian one can find an analogous diagonalization
as in spin-0 and spin- 12 cases [43].

From the superstatistics viewpoint, the relations (9) and
(58), as well as their matrix generalizations (37) and (53),
belong to the inverse �2-superstatistics universality class
[6,11]. This is a rather interesting result, in particular
when we realize that Weibull’s smearing distribution was
unambiguously forced upon us by requiring that the
smeared Gaussian Markovian process (i.e., nonequilibrium
Markovian processes) should be identical with the
Newton-Wigner Markovian process [9], i.e., a Markovian
process with the square-root Hamiltonian Hp. In fact, in

Ref. [9] we have shown that mere requirement that a
smeared Markovian process should be again a Markovian
process naturally resulted in both inverse �2- and
�2-superstatistics universality classes. In this view it is
plausible to conjecture that superstatistics equivalence
classes are closely related to smearing distributions in
nonequilibrium Markovian systems.
In passing we remark that our approach is instructive in

yet another respect, namely, that our smearing distribution
!ðv; a; tÞ is inevitably time dependent. Though supersta-
tistics does not prohibit per se time-dependent smearing
distributions, common practice is to assume (at least in first
approximation) that the fluctuation parameter (inverse tem-
perature, volatility, energy dissipation rate, etc.) as well as
its moments do not have explicit time dependence. This is
not the case here since hv�i / t� for �< 1=2. In our
considerations we have two well-separated time scales: a
short time scale of order �t which corresponds to the size
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of the time mesh, and a macroscopic time t (t� �t) over
which ! changes significantly—t is proportional to a
statistical dispersion (scale parameter) of ! (see, e.g.,
[16]). An explicit use of the macroscopic time t in ! is
mandatory and we should not ignore it if we want to
obtain correct relativistic propagators. Note also that be-
cause hv�i diverges for �> 1=2, one cannot apply any
form of truncated cumulant expansion (often used in per-
turbative superstatistics) to obtain, e.g., a nonrelativistic
limit. The path-integral identity (58) is fully nonperturba-
tive in v.

In the end we wish to add few more comments concern-
ing worldline path integrals. Worldline representations of
field-theoretic propagators, as considered here, are an as-
pect of the so-called ‘‘worldline quantization’’ of particle
physics. In this approach the process of second quantiza-
tion is reversed. Second quantization, or field quantization,
was introduced to represent a grand-canonical ensemble of
quantum particles by a single quantum field. Since each
quantum particle possesses a fluctuating worldline, quan-
tized field theory is the most efficient way of studying
grand-canonical ensembles of fluctuating lines. These can
be, for instance, worldlines of elementary particles as
emphasized by Feynman [27] and Schwinger [45], or lines
of a completely different physical nature, such as poly-
mers, vortices, or defect lines. In the latter case it is
possible to study the phase transitions caused by the pro-
liferation of such vortices or defect lines with the help of a
single quantum field. The associated quantum field theory
is known as disorder field theory [46]. In the first case, the
phase transitions in polymer ensembles become tractable
by the efficient methods of quantum field theory [15].
At a phase transition, an order or a disorder field can
acquire a nonzero expectation value. This phenomenon is
very hard to describe in a first-quantized worldline
approach [47].

In many recent works, this development has been turned
around. The motivation for this comes from the inability to
develop a second-quantized field theory for strings, whose
‘‘worldlines’’ are fluctuating surfaces (world sheets). In
string theory, calculations have so far remained restricted
to the first-quantized formulation [48]. In order to gain
more insight, people [20,49] have returned to well-
understood quantum field-theoretic problems of point par-
ticles and reconsidered them in the first-quantized formu-
lation in which fluctuating worldlines play the essential
role. This, so-called ‘‘string-inspired’’ approach has led to
a great number of publications initiated by Bern and
Kosower [49,50]. They shed an alternative light on calcu-
lations within quantum electrodynamics (QED) [51] and
quantum chromodynamics (QCD) [49,52], on calculations
of anomalies [53], and of index densities in the Atiyah-
Singer theorem [54]. Besides, worldline quantization
forms an integral part of the so-called operator regulariza-
tion scheme of McKeon et al. [55].
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APPENDIX A

Here we briefly discuss the Lorentz properties of the
two-component wave function,

�ðx; tÞ ¼ �ðx; tÞ
�ðx; tÞ

� �
: (A1)

We first observe that the components � and � can be
represented as

� ¼ 1ffiffiffi
2
p

�
c � 1

imc2
@c

@t

�
; � ¼ 1ffiffiffi

2
p

�
c þ 1

imc2
@c

@t

�
;

(A2)

where c is a Klein-Gordon field fulfilling

ðhþm2c2Þc ¼ 0: (A3)

Combining (A2) with (A3), one can easily check that �
satisfies the Schrödinger equation (11) with the
Hamiltonian HFV given by (13). Using the fact that c is
a Lorenzian scalar, one can deduce the transformation
properties of � under the Lorentz group as follows:
Under finite Lorentz transformation � the field � should
transform as

�ðxÞ!��0ðxÞ ¼ Sð�Þ�ð��1xÞ; (A4)

where Sð�Þ represents an operator of intrinsic field trans-
formations. Equation (A4) implies an infinitesimal Lorentz
transformation

�ðxÞ!��ðxÞ þ ���ðxÞ: (A5)

Here

���ðxÞ ¼ �0ðxÞ ��ðxÞ and

��x

 ¼ x0
 � x
 ¼ !


� x� ¼ � i

2
!
�ðS
�Þx;

(A6)

where the antisymmetric matrix !
� ¼ �!�
 collects

both rotation angles and rapidities, i.e., !ij ¼ 	ijk’
k and

!0i ¼ �i ¼ pi=mc, respectively. ðS
�Þ�� ¼ ið�
��
�
� �

����
�

Þ represent generators of the Lorentz group for

vectors.

We may now employ the fact that ��c ¼
� i

2!
�L̂

�c , where L̂
� ¼ iðx
@� � x�@
Þ represent

the generators of the Lorentz group for scalar fields, and
write

���ðxÞ ¼ 1ffiffiffi
2
p � i

2!
�L̂

�c � 1

imc ��@0c

� i
2!
�L̂


�c þ 1
imc ��@0c

 !
: (A7)
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If we now utilize the property

��@0c ¼ � i

2
!
�L̂


�@0c � i

2
ð!
�S


�Þ0�@�c ; (A8)

we can cast (A7) into a form

���ðxÞ
¼ � i

2
!
�

�
L̂
� þ 1

2mc
ðS
�Þ0�p̂�ð�3 þ i�2Þ

�
�ðxÞ;
(A9)

which identifies the generators of the Lorentz transforma-
tions on the two-component wave Feshbach-Villars wave
function �ðxÞ as

M̂ 
� ¼ L̂
� þ 1

2mc
ðS
�Þ0�p̂�ð�3 þ i�2Þ: (A10)

In particular, if � describes rotations, then !
� has only

spatial indices and ðS
�Þ0� � ðSijÞ0� ¼ 0. This implies

that M̂ij ¼ L̂ij ¼ iðxi@j � xj@iÞ, which are standard gen-

erators of rotation for scalar fields. If � corresponds to
boost transformations, then ðS
�Þ0� � ðS0jÞ0i � 0, and

the boost generators read

K̂ i � M̂0i ¼ L̂0i þ 1

2mc
S0ip̂ð�3 þ i�2Þ: (A11)

Here the product S0ip̂ is defined by the contraction
ðS0iÞk0p̂k.

Let us now show that the generators M̂
� close the

SOð3; 1Þ algebra. As for generators M̂ij, these clearly con-

stitute the rotational subalgebra SOð3Þ, i.e.,
½Ĵi; Ĵj� ¼ i	ijkĴk with Ĵi ¼ 1

2	ijkM̂
jk: (A12)

The generators K̂i � M̂0i yield commutators

½K̂i; K̂j� ¼
�
L̂0i þ 1

2mc
S0ip̂ð�3 þ i�2Þ; L̂0j

þ 1

2mc
S0jp̂ð�3 þ i�2Þ

�

¼ ½L̂0i; L̂0j� þ 1

2mc
ðS0iÞ0k½p̂k; L̂0j�ð�3 þ i�2Þ

þ 1

2mc
ðS0jÞ0k½L̂0i; p̂k�ð�3 þ i�2Þ

¼ ½L̂0i; L̂0j� þ i

2mc
ðS0iÞ0kp̂0�kjð�3 þ i�2Þ

� i

2mc
ðS0jÞ0kp̂0�ikð�3 þ i�2Þ

¼ ½L̂0i; L̂0j� ¼ �i	ijkĴk; (A13)

which is a familiar boost commutator. In the derivation we

have used the fact that ð�3 þ i�2Þ2 ¼ 0 and that L̂0i are
boost generators for scalar fields. Finally, the mixed com-
mutators read

½Ĵi; K̂j� ¼
�
Ĵi; L̂

0j þ 1

2mc
S0jp̂ð�3 þ i�2Þ

�

¼ ½Ĵi; L̂0j� þ 1

2mc
ðS0jÞ0k½Ĵi; p̂k�ð�3 þ i�2Þ

¼ i	ijkL̂
0k � i

2mc
ðS0jÞ0k	iklp̂lð�3 þ i�2Þ

¼ i	ijk

�
L̂0k þ 1

2mc
S0kp̂ð�3 þ i�2Þ

�
¼ i	ijkK̂k:

(A14)

Here we have utilized the identity ðS0jÞ0k	iklp̂l ¼
i�jk	iklp̂

l ¼ �i	ijlp̂l ¼ �ðS0kÞ0l 	ijkp̂l. As a result we

see the commutators (A12)–(A14) close the Lorentz
algebra SOð3; 1Þ.

APPENDIX B

In this Appendix we show that Up may be viewed as a

boost transformation that brings a wave function�ðx; tÞ of
a spinless particle at rest to the velocity v. To this end we
seek the positive- and negative-energy plane wave solu-
tions of the Schrödinger-like equation (11) in the form

�ðþÞðx; tÞ ¼ uðpÞe�ipx; �ð�Þðx; tÞ ¼ vðpÞeipx; (B1)

with

ðcp0 �HpUp�3U
�1
p ÞuðpÞ ¼ 0;

ðcp0 þHpUp�3U
�1
p ÞvðpÞ ¼ 0;

(B2)

where p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2c2

p
. For the rest momentum pR �

ðmc; 0Þ, these equations simplify and the respective ampli-
tudes uðpRÞ and vðpRÞ satisfy
ð�0 � �3ÞuðpRÞ ¼ 0; ð�0 þ �3ÞvðpRÞ ¼ 0: (B3)

The solutions are

uðpRÞ ¼ 1
0

� �
; vðpRÞ ¼ 0

1

� �
: (B4)

They are normalized to ensure the unit normalization (26),

ðu; uÞ ¼ uy�3u ¼ 1; ðv; vÞ ¼ vy�3v ¼ �1;
ðu; vÞ ¼ uy�3v ¼ 0;

(B5)

making positive- and negative-energy states orthogonal to
each other. Using the identity

ðcp0 �HpUp�3U
�1
p Þðcp0 
HpUp�3U

�1
p Þ

¼ c2p2
0 �H2

p ¼ 0; (B6)

we can write the amplitudes uðpÞ and vðpÞ at arbitrary
momentum [cf. Eqs. (B2)] as
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uðpÞ ¼ Npðcp0 þHpUp�3U
�1
p Þ

1

0

 !

¼ Np

cp0 þ p2=2mþmc2

�p2=2m

 !
; (B7)

and

vðpÞ ¼ Npðcp0 �HpUp�3U
�1
p Þ

0

1

 !

¼ Np

�p2=2m

cp0 þ p2=2mþmc2

 !
; (B8)

with some normalization constant Np. The normalization

conditions (B5) require

Np ¼
ffiffiffiffiffiffiffi
mc

p0

s
1

cp0 þmc2
; (B9)

so that Eqs. (B7) and (B8) become

uðpÞ ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffi
mcp0
p mcþ p0

mc� p0

� �
;

vðpÞ ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffi
mcp0
p mc� p0

mcþ p0

� �
:

(B10)

Equations (B10) define boost transformations

uðpÞ ¼ Up
1
0

� �
; vðpÞ ¼ Up

0
1

� �
: (B11)

Here we have denoted the boost matrix as Up because it

appears here in the form

Up ¼ p0 þmc

2
ffiffiffiffiffiffiffiffiffiffiffiffi
mcp0
p �0 � p0 �mc

2
ffiffiffiffiffiffiffiffiffiffiffiffi
mcp0
p �1; (B12)

which is identical to the diagonalization matrix Up as

defined by Eq. (22). If we introduce a parameter

�v � ln

ffiffiffiffiffiffiffi
p0

mc

r
¼ 1

2
ln�v; (B13)

which satisfies

cosh�v ¼ p0 þmc

2
ffiffiffiffiffiffiffiffiffiffiffiffi
mcp0
p and sinh�v ¼ p0 �mc

2
ffiffiffiffiffiffiffiffiffiffiffiffi
mcp0
p ; (B14)

then we can write the boost matrix (B12) as an exponential
[cf. also Eq. (22)]

Up ¼ expð��v�1Þ: (B15)

Connection of Up with boost generators (A11) can be

established when we rewrite (A9) for boost transformation
in the form

�0ðx0Þ ¼
�
1� i

2mc
�iðS0iÞp̂ð�3 þ i�2Þ

�
�ðxÞ: (B16)

For positive-energy plane wave solutions this can be
written as

uðp0Þ ¼
�
1� i

2mc
�iðS0iÞpð�3 þ i�2Þ

�
uðpÞ

¼ 1ffiffiffi
2
p 1þ p0=mcþ �ipi=mc

1� p0=mc� �ipi=mc

 !
~cþðpÞ: (B17)

Here, ~cþðpÞ stands for an amplitude of the positive-energy
plane wave solution of the Klein-Gordon equation. Term
p0 þ �ipi can be recognized as a first-order term in the
Lorentz boost transformation,

�ð� Þ0
p
 ¼ p0 cosh� þ ð�̂ � pÞ sinh� ¼ p00: (B18)

Here �̂ ¼ u=juj denotes the unit vector in the direction of
the boost velocity u (u � v ¼ v0). If we further employ the
identities,

cosh� ¼ �u and �̂ sinh� ¼ �u

u

c
; (B19)

we may cast (B17) into form

uðp0Þ ¼ 1ffiffiffi
2
p 1þ �u�vð1þ u � v=c2Þ

1� �u�vð1þ u � v=c2Þ

 !
~cþðpÞ

¼ 1ffiffiffi
2
p 1þ �u�v

1� �u�v

 !
~cþðpÞ; (B20)

which clearly shows that the original amplitude was
boosted from the velocity v to the amplitude with the
velocity v0 ¼ u � v.
In the particular case when the initial momentum is pr,

the relation (B20) acquires the form

uðpÞ ¼ 1ffiffiffi
2
p 1þ �u

1� �u

� �
~cþðprÞ: (B21)

By utilizing the normalization condition (B5) we have

that ~cþðprÞ ¼ 1=
ffiffiffiffiffiffiffiffi
2�u

p
, which finally gives

uðpÞ ¼ 1

2

1=
ffiffiffiffiffiffi
�u
p þ ffiffiffiffiffiffi

�u
p

1=
ffiffiffiffiffiffi
�u
p � ffiffiffiffiffiffi

�u
p

� �
¼ UuuðprÞ: (B22)

Analogous analysis applies for negative-energy plane
waves in which case we obtain

vðpÞ ¼ 1

2

1=
ffiffiffiffiffiffi
�u
p � ffiffiffiffiffiffi

�u
p

1=
ffiffiffiffiffiffi
�u
p þ ffiffiffiffiffiffi

�u
p

� �
¼ UuvðprÞ: (B23)

Results (B22) and (B23) establish the promised identifica-
tion between Uu and boost transformations from the rest
frame velocity v ¼ 0 to the velocity u.
Let us finally comment on a nonrelativistic limit of the

Feshbach-Villars wave function. To this end we approxi-

mate Hp ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2c2

p � mc2 þ p2=2m. With this the

positive- and negative-energy solution (B1) becomes
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�ðþÞðx; tÞ �c!1 1

�v2=4c2

 !
exp½iðp � x�HptÞ�

� �ðþÞðx; tÞe�imc2t;

�ð�Þðx; tÞ �c!1 �v2=4c2

1

 !
exp½iðHpt� p � xÞ�

� �ð�Þðx; tÞeimc2t: (B24)

In particular, we see that, for plane particle waves, the
upper components are much larger than the lower compo-
nents. The opposite holds for antiparticle waves. This is

analogous to the situation for Dirac wave function. For
particle waves, Eqs. (14) and (15) reduce to

i @t�
ðþÞ ¼ � r

2

2m
�3�

ðþÞ; i@t�
ð�Þ ¼ � r

2

2m
�3�

ð�Þ:

(B25)

By neglecting the small component in �ðþÞ, this implies
the Schrödinger equation for the large component in

�ðþÞ with Ĥ ¼ �r2=2m. An analogous situation holds

for �ð�Þ.
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