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We study the high-temperature behavior of quantum-mechanical path integrals. Starting from the Feynman-Kac
formula, we derive a functional representation of the Wigner-Kirkwood perturbation expansion for quantum
Boltzmann densities. As shown by its applications to different potentials, the presented expansion turns out to be
quite efficient in generating analytic form of the higher-order expansion coefficients. To put some flesh on the
bare bones, we apply the expansion to obtain basic thermodynamic functions of the one-dimensional anharmonic
oscillator. Further salient issues, such as generalization to the Bloch density matrix and comparison with the
more customary world-line formulation, are discussed.
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I. INTRODUCTION

The Wigner-Kirkwood (WK) expansion was originally
presented in two seminal papers [1,2], and since its very
inception it has had two important implications. On the one
hand, it has been used for studying the equilibrium statistical
mechanics of a nearly classical system of particles obeying
Maxwell-Boltzmann statistics. WK expansion is in its essence
an expansion of the quantum Boltzmann density in powers of
Planck’s constant �, or equivalently of the thermal de Broglie
wavelength λ = �

√
β/M , where β is the inverse temperature

and M is the mass of a particle. On the other hand, it has
paved a way for new alternative mathematical techniques
and practical calculational schemes that are pertinent to the
high-temperature regime in quantum systems.

In this paper, we pursue the study of the WK perturbation
method by means of the path-integral (PI) calculus. The
relevance of the PI treatment in a high-temperature context
is due to several reasons: PI’s allow us to connect evolutionary
equations (Bloch equation or Fokker-Planck equation) with
the underlying stochastic analysis [3,4], they are tailor-made
for obtaining quasiclassical asymptotics [5,6], they allow us to
utilize some powerful transformation techniques to simplify
the original stochastic process [5,7], etc. Besides, PI’s also
provide an excellent tool for direct numerical simulations
of the underlying stochastic dynamics including many-body
systems [8,9]. One of the key advantages of the PI approach
is, however, the fact that the techniques and methodologies
used can efficiently bypass the explicit knowledge of the exact
energy spectrum, the point that hindered earlier attempts to
go beyond few leading orders in the expansion (see, e.g.,
Refs. [10–14]). In particular, one can progress without relying
on the explicit use of approximate expressions or interpolation
formulas for the energy eigenvalues which are often difficult
to judge due to lack of reliability in their error estimates.

The idea to use PI’s as a means of producing various
WK-type expansions and related thermodynamic functions
is clearly not new. Indeed, the first systematic discussions
and analyses of these issues emerged already during the
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early 1970s. Among these belong the early attempts of
PI treatments of the high-temperature behavior of partition
functions for anharmonic oscillators [15–17] and gradient
expansions of free energy [5]. These approaches belong in
the class of the so-called analytic perturbation schemes which
account for explicit analytic expressions of the coefficient
functions. For many practical purposes it is desirable to
have explicit analytical expressions for coefficients in the
WK perturbation expansion. This is so, for instance, when
the symmetry (Lorentz, gauge, global) is supposed to be
broken by quantum or thermal fluctuations. Although these
issues are more pressing in quantum field theories, they have
in the recent two decades entered also in the realm of a
few-body finite-temperature quantum mechanics. The catalyst
has been theoretical investigations and ensuing state-of-the-art
experiments in condensed Bose gases, degenerate Fermi gases,
quantum clusters, or strongly coupled Coulomb systems. It is
not only the zero-temperature regime that is of interest in these
systems. Many issues revolve also around finite-temperature
or “high”-temperature questions. These include thermal and
thermoelectric transport of ultracold atomic gases [18,19],
hydrogen, helium, and hydrogen and helium mixtures and
their astrophysical implications [20,21], Lennard-Jones 3He
and 4He gases [22], etc.

Apart from the aforementioned group of PI methods, there
are also various nonanalytic methods among which the most
prominent are computational methods, such as PI Monte Carlo
and molecular dynamics simulations [23,24], accompanied by
a host of PI reweighted techniques [25]. Another important
type of nonanalytic method are the approximative schemes,
to which belong variational approaches [5,26,27] and ergodic
approximations [28]. Nice summaries of both analytic and
nonanalytic PI approaches can be found, e.g., in Refs. [5,9].

A serious weakness of existent analytic WK expansions
and their various disguises (be they based on PI’s or not)
resides in their inability to progress very far with the expansion
order. This makes it difficult to address thermodynamically
relevant intermediate-temperature regions that are particularly
pertinent in molecular and condensed matter chemistry (bind-
ing energies, self-dissociation phenomena, order-disorder
transitions, etc.). The best analytic expansions are presently
available within the framework of the world-line path-integral

1539-3755/2014/89(1)/012135(12) 012135-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.89.012135
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method (known also as the string inspired method) [29]. In
this approach, the expansion coefficients are available up
to order O(β12), subject to the actual interaction potential
(cf. Refs. [29–31]). Other more conventional approaches,
such as the recursive or nonrecursive heat-kernel calcula-
tions [32,33] or higher derivative expansions by Feynman
diagrams [34–36], achieve at best the order O(β7). The key
problem is a rapid escalation in the complexity of higher-order
terms which is difficult to handle without some type of
resummation. In this paper, we derive a resummation formula
that provides a rather simple and systematic way of deriving
the coefficient functions. Its main advantages rely on both
an analytic control of the high-temperature behavior and on
an accurate description over a wide temperature range via
numerical calculations that can be simply carried out at the
level of an undergraduate exercise.

The structure of the paper is as follows. To set the stage,
we recall in the next section some fundamentals of PI
formulations of the Bloch density matrix and the ensuing
partition function and Boltzmann density. With the help of the
space-time transformation that transforms the Wiener-process
sample paths to the Brownian-bridge sample paths we obtain
the PI that represents a useful alternative to the original
Feynman-Kac representation. Consequently, we arrive at a
functional representation of the Boltzmann density which is
more suitable for tackling the high-temperature regime than the
genuine Wigner-Kirkwood formulation (see Secs. II A, II B,
and III). While the method resembles in principle the
Wentzel-Kramers-Brillouin (WKB) solution for the transition
amplitude, its details are quite different. In two associated sec-
tions, we examine some salient technical issues related to the
low-order high-temperature expansion in one dimension. To
illustrate the potency of our approach, we consider in Sec. III
the high-temperature expansion of the one-dimensional
anharmonic oscillator. In particular, we perform the Boltzmann
density and ensuing partition function expansions and compute
the related thermodynamic quantities. The expansions
obtained improve over the classic results of Schwarz [14]
and Padé-approximation-based expansion of Gibson [37].
In Sec. IV, we proceed by extending our expansion to the
whole Bloch density matrix. The expansion thus obtained is
compared with the more conventional Wick’s theorem based
perturbation expansion based on the Onofri-Zuk Green’s
functions. There we show that our prescription comprises sub-
stantially less (in fact, exponentially less) terms contributing to
higher perturbation orders. Also, the algebraic complexity of
the coefficient functions involved is substantially lower in our
approach. Various remarks and generalizations are proposed
in the concluding section. For the reader’s convenience, the
paper is supplemented with two appendices which clarify
some finer technical details. The paper is also accompanied
by MATHEMATICA code that generates the higher-order
expansion terms for arbitrary smooth local potentials up to
18th order in β.

Let us add a final note. Most of the presented mathematical
derivations are of a heuristic nature, as it should be expected
from the mathematical analysis based on the path-integral
calculus. For example, it is assumed throughout that the
expansions such as (7) or (14) have meaning and represent,
at least asymptotically, convergent series. Further, in a number

of places, we assume that integration and summation may be
interchanged. The basic purpose of this paper is to find explicit
formulas for the coefficient functions Q(m1, . . . ,mn), and in
doing so to reveal the elaborate algebraic and combinatorial
structure present in these functions. A more rigorous treatment
of the aforementioned mathematical aspects is possible, but
would involve different language and techniques than are
employed in this paper.

II. WIGNER-KIRKWOOD EXPANSION

In this section, we derive the Wigner-Kirkwood expansion
by means of path-integral techniques. To this end, we consider
a D-dimensional nonrelativistic quantum-mechanical system
described with the Hamiltonian

Ĥ =
D∑

j=1

p̂2
j

2Mj

+ V (x̂), (1)

where V (x) is a generic smooth potential, and p̂j = −i� ∂
∂xj

.

We define the Gibbs operator e−βĤ , where β = 1/(kBT ) is
the inverse temperature and kB the Boltzmann constant. The
partition function Z(β) is defined as the trace of the Bloch (or
canonical) density matrix, i.e., in the position representation
we have the formula

Z(β) =
∫
RD

dx〈x|e−βĤ |x〉 =
∫
RD

dx �(x,β). (2)

For brevity, we use here and throughout the convention dx ≡
dDx. The un-normalized probability density �(x,β) is also
known as the Boltzmann density.

Matrix elements of the Bloch density matrix can be
represented by the path integral as [5,38]

〈xb|e−βĤ |xa〉

=
∫ x(β�)=xb

x(0)=xa

Dx(τ )

× exp

⎧⎨⎩−1

�

∫ β�

0
dτ

⎡⎣ D∑
j=1

Mj

2
ẋ2

j (τ ) + V [x(τ )]

⎤⎦⎫⎬⎭ ,

(3)

which can be viewed as the Wick-rotated quantum-mechanical
transition amplitude. Indeed, if one changes the time τ in
iτ , one recovers the usual transition amplitude 〈xb,τb|xa,τa〉
satisfying the Schödinger equation with the Hamiltonian Ĥ

(cf., e.g., Refs. [5,6]). In the literature on stochastic processes
is the path-integral representation of the Bloch density matrix
also known as the Feynman-Kac formula [39].

For the purpose of the density matrix computation, we
shall primarily consider here only diagonal matrix elements,
i.e., the case when xb = xa . We shall briefly return to the
off-diagonal matrix elements in Sec. IV. To proceed, we
perform a change of space and time variables x → xa + �ξ ,
τ → β�s, where � is a diagonal matrix diag(λ1, . . . ,λD)
with entries λj = √

β�2/Mj (corresponding to the thermal
de Broglie wavelength of the j th degree of freedom). The
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ensuing path integral

〈xa|e−βĤ |xa〉

= 1

det�

∫ ξ (1)=0

ξ (0)=0
Dξ (s)

× exp

{
−

∫ 1

0
ds

[
1

2
ξ̇

2
(s) + βV [xa + �ξ (s)]

]}
(4)

is formulated in terms of dimensionless time s and position ξ .
Note that the size of quantum fluctuations is now controlled
by the parameters λj , i.e., the only place (apart from the
overall PI normalization factor) where the measure of quantum
fluctuations � is present. Since β and �

2 appear in (4) on
the same footing, the small regime allows us to treat in a
unified manner both the semiclassical (small �) and/or high-
temperature (small β) approximations. By assuming small �,
the potential term can be Taylor expanded as

V [xa + �ξ (s)] = V (xa) +
∑
m �=0

V (m)(xa)

m!
[�ξ (s)]m, (5)

where the D-dimensional index m = (m1, . . . ,mD) runs
through all choices of mj ’s ∈ {0, . . . ,∞} except for
(m1, . . . ,mD) = (0, . . . ,0). The multiderivative (m) is defined
through the identity

V (m)(xa) = ∂ |m|V (x)

∂xm

∣∣∣∣
x=xa

≡ ∂m1+···+mD

V (x)

∂xm1

1 . . . ∂xmD

D

∣∣∣∣
x=xa

, (6)

with |m| = m1 + · · · + mD . Finally, the multifactorial m! ≡
m1! . . . mD!, and the multipower of a D-dimensional vector
v is defined componentwise as vm ≡ vm1

1 . . . vmD

D . Expanding
the exponential, followed by some rearrangement, allows us
to cast (4) in the form

〈xa|e−βĤ |xa〉 = e−βV (xa )

det�

∞∑
n=0

(−β)n
∑

m1,...,mn �=0

×
D∏

j=1

λ
m

j

1+···+m
j
n

j

V (m1)(xa) . . . V (mn)(xa)

m1! . . . mn!
Q̄.

(7)

At this point, we have introduced the dimensionless quantity

Q̄(m1, . . . ,mn)

= 1

n!

∫ 1

0
ds1 . . . dsn

∫ ξ (1)=0

ξ (0)=0
Dξ (s)ξ m1 (s1) . . . ξ mn(sn)

× exp

[
−

∫ 1

0
ds

1

2
ξ̇

2
(s)

]
= 1

n!

∫ 1

0
ds1 . . . dsn〈ξ m1 (s1) . . . ξ mn (sn)〉 (8)

that does not depend on physical constants or parameters of the
system. Q̄ is also manifestly symmetric under any permutation
of its arguments. Let us stress that the n = 0 term in the
expansion (7) equals 1.

In (8) we have denoted with 〈· · · 〉 the (|m1| + · · · +
|mn|)-point correlation function. It can be evaluated using a

diagrammatic approach based on the so-called Onofri-Zuk (or
“world-line”) Green’s function [6,29,40,41]

�ij (t,u) = − 1
2δij [|t − u| − (t + u − 2tu)] . (9)

We shall briefly sketch this approach in Sec. IV in connection
with the off-diagonal density matrix elements. At any rate,
the procedure based on Green’s function (9) proves rather
impractical when higher-order terms are to be calculated.
Inasmuch, we shall follow a different route. To this end,
we rewrite expression (8) as a sum of n! integrals over
time-ordered sets s1 < · · · < sn, slice the path integral at
corresponding time instances, and replace the free-particle
path integrals by more compact bra-ket notation by virtue
of (3). We obtain

Q̄(m1, . . . ,mn) = 1

n!

∑
σ∈Sn

Q(mσ (1), . . . ,mσ (n)) , (10)

where the sum runs over all permutations of n indices, and

Q(m1, . . . ,mn)

=
∫

0<s1<···<sn<1
ds1 . . . dsn

∫
RD

d y1 . . . d yn

×
n∏

ν=0

〈 yν+1| exp

[
−(sν+1 − sν)

q̂2

2

]
| yν〉 ymν

ν . (11)

In the preceding we have defined m0 = 0, s0 = 0, sn+1 =
1, y0 = yn+1 = 0, and the momentum q̂ = (q̂1, . . . ,q̂D),
conjugated to the (dimensionless) position operator ŷ =
(ŷ1, . . . ,ŷD). Here and throughout, we use the standard
convention q̂j = −i ∂

∂yj
and 〈 y|q〉 = eiq y/(2π )D/2.

Combinatorial complexity can be reduced significantly by
observing that for any function F (m1, . . . ,mn), the following
identity holds: ∑

m1,...,mn �=0

1

n!

∑
σ∈Sn

F (mσ (1), . . . ,mσ (n))

=
∑

m1,...,mn �=0

F (m1, . . . ,mn). (12)

This statement is not trivial since F is not supposed to be
invariant under permutations of the m’s. When applied to (7)
for

F (mσ (1), . . . ,mσ (n)) =
D∏

j=1

λ
m

j

1+···+m
j
n

j

V (m1)(xa) . . . V (mn)(xa)

m1! . . . mn!

×Q(mσ (1), . . . ,mσ (n)), (13)

the expansion can be then reduced to

〈xa|e−βĤ |xa〉 = e−βV (xa )

det�

∞∑
n=0

(−β)n
∑

m1,...,mn �=0

×
D∏

j=1

λ
m

j

1+···+m
j
n

j

V (m1)(xa) . . . V (mn)(xa)

m1! . . . mn!
Q.

(14)

In addition, in the Appendix we derive an explicit expres-
sion for the coefficients Q which prove to be very useful in the
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determination of the higher-order terms. In particular, there we
show that

Q(m1, . . . ,mn) = K

∫
RD

dq
(2π )D

(
i|mn|

1 + q2

2

∂ |mn|

∂qmn

)
· · ·

×
(

i|m1|

1 + q2

2

∂ |m1|

∂qm1

)
1

1 + q2

2

, (15)

where the multiplicative constant has the form

K = 1


(
n + 1 − D

2 + |m1|+···+|mn|
2

) . (16)

From Appendix B we can observe that the integral (15) suffers
the infrared divergencies precisely in those instances when
the  function in K has pole. Consequently, in practical
applications, one should appropriately regularize (e.g., via
dimensional regularization) both K and the integral in (15)
in order to resolve the indeterminate form of the product.

In passing, we may note that because Q is real, it must
be equal to zero when |m1| + · · · + |mn| together with all
partial sums m

j

1 + · · · + m
j
n (j = 1, . . . ,D) is an even number

(cf. also Sec. IV and Appendix B). So, the expansion of the
density matrix (14) can be reorganized as an expansion in �

2.
This is emblematic of the Wigner-Kirkwood expansion [1]
for systems with differentiable potentials. In the case of
the nondifferentiable potentials (cavities, billiards, etc.), the
generalized derivative of Schwartz must be used instead [42].

Result (14) might be used for calculating higher-order
terms beyond the �

2 correction (terms up to order �
6 have

been already determined in the literature [43]). Moreover, the
structure of (14) clearly emphasizes that expansion is appro-
priate only when the involved thermal de Broglie wavelengths
are much smaller than the typical length of variation of the
potential.

A. Calculation of low-order terms in D dimensions

In order to get further insight into structure of (14), we will
now calculate the first few terms in the expansion. To this end,
we notice that a typical term in (15) has the generic structure∫

RD

dq
(2π )D

q
2r1
1 . . . q

2rD

D(
1 + q2

2

)s
=

∫ ∞

0
dσ

σ s−1

(s − 1)!
e−σ

×
∫
RD

dq
(2π )D

q
2r1
1 . . . q

2rD

D e−σ
q2

2

= 
(
s − D

2 − |r|)
(s − 1)!(2π )D/22|r|

D∏
j=1

(2rj )!

rj !
,

(17)

where r1, . . . ,rD,s ∈ N. If the power of any qj is odd, the
above integral obviously vanishes. For the sake of simplicity,
the discussion here will be restricted to the orders in O(β3), but
it can be naturally extended to higher orders (cf. next section).
At this level, we need to know (15) for n = 1 and 2.

Case n = 1. Here, the lowest-order nontrivial contri-
bution comes from |m1| = 2, with mi

1 = δij + δik . After
differentiating

∂2

∂qj ∂qk

1

1 + q2

2

= − δjk(
1 + q2

2

)2 + 2qjqk(
1 + q2

2

)3 , (18)

we can use the formulas (15) and (17) to find

Q(m1) = 1

(2π )D/2

δjk

6
. (19)

Case n = 2. Here, the lowest-order nontrivial contribution
comes from |m1| = |m2| = 1, with mi

1 = δij , mi
2 = δik . Con-

sequently, we need to estimate

∂

∂qk

(
1

1 + q2

2

∂

∂qj

1

1 + q2

2

)
= − δjk(

1 + q2

2

)3 + 3qjqk(
1 + q2

2

)4 ,

(20)

which gives

Q(m1,m2) = 1

(2π )D/2

δjk

24
. (21)

By gathering the results (19) and (21) together we can write
the expansion (14) in the n = 2 approximation as

〈xa|e−βĤ |xa〉 ∼ e−βV (xa )

(2π )D/2det�

⎛⎝1 − β

12

D∑
j=1

λ2
j

∂2V (xa)

∂x2
j

+ β2

24

D∑
j,k=1

λjλk

∂V (xa)

∂xj

∂V (xa)

∂xk

⎞⎠ . (22)

This agrees, for λj = λ (i.e., for equal-mass particles), with
the usual low-order Wigner-Kirkwood expansion (see, e.g.,
Refs. [5,44]).

B. Expansion for D = 1

Here, we show that the form of the coefficients
Q(m1, . . . ,mn) can be substantially simplified in one dimen-
sion (D = 1). It is rather interesting that the simplification
basically involves only arithmetic operations. To see what is
involved, we denote

I (m1, . . . ,mn|r,s) =
∫
R

dq

2π

(
imn

1 + q2

2

∂mn

∂qmn

)
· · ·

(
im1

1 + q2

2

∂m1

∂qm1

)(
1(

1 + i√
2
q
)r

1(
1 − i√

2
q
)s

)
, (23)

so that [cf. Eq. (15)] Q(m1, . . . ,mn) = K(m1, . . . ,mn)I (m1, . . . ,mn|1,1). By the m1-fold differentiation of the last bracket, we
obtain the recurrence relation

I (m1, . . . ,mn|r,s) = (−1)m1

2m1/2
m1!

m1∑
k1=0

(−1)k1

(
r − 1 + k1

r − 1

)(
s − 1 + m1 − k1

s − 1

)
I (m2, . . . ,mn|r + 1 + k1,s + 1 + m1 − k1), (24)
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with the initial condition

I (∅|r,s) =
∫
R

dq

2π

1(
1 + i√

2
q
)r

1(
1 − i√

2
q
)s = 23/2

2r+s

(
r + s − 2

r − 1

)
. (25)

The latter identity is a straightforward consequence of Cauchy’s integral theorem where the contour integration is taken at either
the pole i

√
2 or −i

√
2. Repeated use of (24), with (25) as the last step, leads to an explicit form for Q(m1, . . . ,mn), namely,

Q = (m1+···+mn

2 + n)!√
2π2(m1+···+mn)/2

m1∑
�1=0

· · ·
mn∑

�n=0

n∏
k=1

(−1)�k
(
mk

�k

)
(�1 + · · · + �k + k)(m1 − �1 + · · · + mk − �k + k)

. (26)

In deriving we have used the duplication formula [45]
√

π21−2z(2z) = (z)(z + 1/2). The resulting one-dimensional
expansion takes the form

〈xa|e−βĤ |xa〉 = e−βV (xa )

λ

∞∑
n=0

(−β)n
∞∑

m1,...,mn=1

λm1+···+mn
V (m1)(xa) . . . V (mn)(xa)

m1! . . . mn!
Q. (27)

Apart from the initial constant term β0
�

0, the latter expansion contains terms proportional to βi(�2)j , where i,j ∈ N and
i/3 � j � i − 1 (or, equivalently, j + 1 � i � 3j ).

For the first few orders, the coefficients of the expansion can be found rather straightforwardly. In Table I, we list the coefficients
of the series eβV (x)

√
2πλ〈x|e−βĤ |x〉. To order β8 these can be obtained without any excessive hardship (for further comments,

see [46]). The higher orders in fixed β can now be simply obtained by grouping terms with equal order of β and performing a
number of multidifferentiations for V (xa) which can be easily done with MAPLE or MATHEMATICA. To this end, we supplement
the paper with MATHEMATICA code that allows us to generate the higher-order expansion terms (up to 18th order) for arbitrary
smooth local potentials.

III. EXAMPLE: ANHARMONIC OSCILLATOR IN D = 1

In the previous section, we have seen in some detail how the coefficient functions in the Wigner-Kirkwood expansion can be
resolved in an explicit form. The basic results there were the formulas (14)–(16). The expressions found are quite general, valid for
any smooth potential and in D = 1 are analytically accessible up to order β18. Nevertheless, for consistency reasons, it is useful
to examine a problem possessing an exact solution in which it is possible to find closed expressions for the expansion coefficients.
The D = 1 harmonic oscillator provides us with just such an exactly solvable example. Rather than starting directly with a simple
harmonic oscillator, it is instructive to start with an anharmonic oscillator first and then regain the harmonic oscillator solution
in the limit of vanishing coupling constant (i.e., zero anharmonicity limit). In addition, the anharmonic oscillator, which can be
regarded as a field theory in one dimension, has long served as a testing ground for new ideas for solving field theories and
hence is bolstered by a large body of literature. In this respect, it is a natural model which any new approximation scheme should
address. For definiteness, we start with the anharmonic potential

V (x) = M

2
ω2x2 + g

4!
x4, (28)

for which the high-temperature expansion (27) yields

〈x|e−βĤ |x〉 = exp
[−β

(
M
2 ω2x2 + g

4!x
4
)]

√
2πλ

[
1 − β2

�
2(gx2 + 2Mω2)

24M
+ β3(5Mx2

�
2(gx2 + 6Mω2)2 − 18g�

4)

4320M2

+ β4
�

4(17g2x4 + 84gMx2ω2 + 36M2ω4)

5760M2
+ O(β5)

]
. (29)

The higher-order corrections can be explicitly obtained with the help of Table I (up to order β8) or with the enclosed MATHEMATICA

code quoted in [46] (up to order β18).
In the case of zero anharmonicity (g = 0), we can check our results against the exact solution of the harmonic oscillator

problem. The expansion (29) reduces to

〈x|e−βĤ |x〉g=0 = exp
(−β M

2 ω2x2
)

√
2πλ

[
1 − 1

12
β2ω2

�
2 + 1

24
β3Mx2ω4

�
2 + 1

160
β4ω4

�
4 + O(β5)

]
, (30)

which, indeed, coincides with the corresponding expansion of the well-known analytic form of the Bloch density matrix for
harmonic oscillator (see, e.g., Refs. [5,6])

〈x|e−βĤ |x〉g=0 = exp
(−β M

2 ω2x2
)

√
2πλ

√
βω�

sinh(βω�)
exp

[
−Mx2ω

�

(
tanh

βω�

2
− βω�

2

)]
. (31)
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TABLE I. Coefficients of the series eβV (x)
√

2πλ〈x|e−βĤ |x〉, at terms βi(�2)j , calculated according to formulas (26) and (27). Here, 0 � i � 8
and 0 � j � 7, which allows us to determine the series up to the eighth order in β. Coefficients of terms (�2)j , which are polynomials in β,
can be read off completely only for j � 2. (For instance, the �

6 term is lacking a contribution from β9.)

�
0

�
2

�
4

�
6

�
8

�
10

β0 1 0 0 0 0 0

β1 0 0 0 0 0 0

β2 0 − V ′′(x)
12M

0 0 0 0

β3 0 V ′(x)2

24M
− V (4)(x)

240M2 0 0 0

β4 0 0
V ′′(x)2

160M2

+ V ′(x)V (3)(x)
120M2

− V (6)(x)
6720M3 0 0

β5 0 0 − 11V ′(x)2V ′′(x)
1440M2

23V (3)(x)2

40320M3

+ 19V ′′(x)V (4)(x)
20160M3

+ V ′(x)V (5)(x)
2240M3

− V (8)(x)
241920M4 0

β6 0 0 V ′(x)4

1152M2

− 61V ′′(x)3

120960M3

− 43V ′(x)V (3)(x)V ′′(x)
20160M3

− 5V ′(x)2V (4)(x)
8064M3

23V (4)(x)2

483840M4

+ 19V (3)(x)V (5)(x)
241920M4

+ 11V ′′(x)V (6)(x)
241920M4

+ V ′(x)V (7)(x)
60480M4

− V (10)(x)
10644480M5

�
6

�
8

�
10

�
12

�
14

β7
V (3)(x)V ′(x)3

2016M3

+ 83V ′′(x)2V ′(x)2

80640M3

− V (6)(x)V ′(x)2

32256M4

− V (3)(x)V (4)(x)V ′(x)
4480M4

− V ′′(x)V (5)(x)V ′(x)
6720M4

− 31V ′′(x)V (3)(x)2

161280M4

− 5V ′′(x)2V (4)(x)
32256M4

71V (5)(x)2

21288960M5

+ 61V (4)(x)V (6)(x)
10644480M5

+ 19V (3)(x)V (7)(x)
5322240M5

+ 17V ′′(x)V (8)(x)
10644480M5

+ V ′(x)V (9)(x)
2128896M5

− V (12)(x)
553512960M6 0

β8 − 17V ′(x)4V ′′(x)
69120M3

1261V ′′(x)4

29030400M4

+ 227V ′(x)V (3)(x)V ′′(x)2

604800M4

+ 527V ′(x)2V (4)(x)V ′′(x)
2419200M4

+ 659V ′(x)2V (3)(x)2

4838400M4

+ 17V ′(x)3V (5)(x)
483840M4

− 71V (8)(x)V ′(x)2

63866880M5

− 3067V (4)(x)V (5)(x)V ′(x)
159667200M5

− 13V (3)(x)V (6)(x)V ′(x)
950400M5

− 109V ′′(x)V (7)(x)V ′(x)
15966720M5

− 6353V ′′(x)V (4)(x)2

319334400M5

− 7939V (3)(x)2V (4)(x)
319334400M5

− 13V ′′(x)V (3)(x)V (5)(x)
394240M5

− 3001V ′′(x)2V (6)(x)
319334400M5

3433V (6)(x)2

16605388800M6

+ 1501V (5)(x)V (7)(x)
4151347200M6

+ 2003V (4)(x)V (8)(x)
8302694400M6

+ 5V (3)(x)V (9)(x)
41513472M6

+ 73V ′′(x)V (10)(x)
1660538880M6

+ V ′(x)V (11)(x)
92252160M6

− V (14)(x)
33210777600M7

In passing, we may note that the expansion of the single-particle partition function Z(β) associated with (29) can be phrased
in terms of the parabolic cylindric function and its derivatives which, after reexpansion, give

Z(β) = 1√
2πλ

4

√
3

2βg

⎡⎣

(
1

4

)
+

√
3
2

√
βMω2

(− 1
4

)
2
√

g
+ 3βM2ω4

(
5
4

)
g

− β3/2
[

(

3
4

)
(g2

�
2 + 18M4ω6)

]
4(

√
6g3/2M)

− β2
[

(− 3

4

)
(2g2ω2

�
2 + 45M4ω8)

]
128g2

+ O(β5/2)

]
. (32)
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This, when combined with appropriate thermodynamic formulas, yields the following expressions for entropy S, the heat capacity
CV , and internal energy U :

S

kB

= − 1

kB

(
∂F

∂T

)
V

= ln Z(β) − β

Z(β)

(
∂Z(β)

∂β

)
V

= 3

4
+ ln

(
2

(
5
4

)
λ

4

√
6

π2βg

)
−

√
3
2

√
βMω2

(
3
4

)
√

g
(

1
4

) + β3/2
(
πg2

�
2

(
5
4

) + 3
√

2M4ω6
(

3
4

)3)
√

3g3/2M
(

1
4

)3 + O(β2),

CV

kB

= T

kB

(
∂S

∂T

)
V

= − β

kB

(
∂S

∂β

)
V

= 3

4
+

√
3
2

√
βMω2

(
3
4

)
2
√

g
(

1
4

) − β3/2
(√

3πg2
�

2
(

5
4

) + 3
√

6M4ω6
(

3
4

)3)
2g3/2M

(
1
4

)3 + O(β2),

U = −T 2

(
∂F/T

∂T

)
V

=
(

∂Fβ

∂β

)
V

= 3

4β
+

√
3
2Mω2

(
3
4

)
√

β
√

g
(

1
4

) − 3M2ω4
(

(

1
4

)2 − 4
(

3
4

)2)
4g

(
1
4

)2 +
√

β
(
2
√

3πg2
�

2
(

9
4

) + 15
√

6M4ω6
(

3
4

)3)
320g3/2M

(
5
4

)3 + O(β). (33)

[F = −kBT ln Z(β) is the Helmholtz free energy.] These expansions are not only in excellent agreement with the classic
(spectral-theorem based) expansions of Schwarz [14] and Gibson [37], but they also go beyond these expansions by providing
explicit forms for higher-order terms not present in Refs. [14,37].

Unfortunately, when M in (28) is negative (i.e., we would have a double-well potential) the WK approach would fail. Indeed,
the WK expansion can not accommodate nonperturbation effects such as multi-instanton contribution and ensuing tunneling,
as by its very construction it is basically a perturbation expansion around a free solution. From this point of view, a tunneling
in a double-well potential seems to be beyond reach in our expansion. Of course, tunneling could be included by considering
some sort of a hybrid approach in which the “phase part” of the transition probability would be calculated via WKB (possibly
including multi-instanton contribution), while the fluctuating factor would be evaluated perturbatively via the WK method. One
of the potential bonuses would be the fact that one could bypass the notorious problems with the Van Vleck determinant on
caustics. Such a hybrid approach would, however, clearly go beyond the simple WK approach that is used in our paper. In our
future investigation, we will touch more upon this issue.

IV. OFF-DIAGONAL BLOCH
DENSITY MATRIX ELEMENTS

So far, we have almost exclusively been dealing with the
diagonal elements of the Bloch density matrix: Boltzmann
density. This was well justified by expected applications in
statistical physics, where typically only the partition function
is required and hence only diagonal elements of the density
matrix are relevant (of course, only as long as the Maxwell-
Boltzmann statistics is considered). This is also the linchpin
of the original Wigner-Kirkwood work.

Expansion and the formula for the Bloch density matrix (14)
can be straightforwardly generalized beyond the original
Wigner-Kirkwood analysis by considering the off-diagonal
form of the density matrix (also called the heat kernel or
Euclidean Feynman amplitude). This would be particularly
pertinent in cases when one would like to incorporate the

exchange effects that are a consequence of fermion or boson
statistics or when the linear response theory would be in
question. By following the same train of thought as in Sec. II,
we can phrase the path-integral representation of the full Bloch
density matrix in terms of the sum over the Brownian bridge
sample paths. The path transformation that transforms the
Wiener process �W = {x(. . .)} to the Brownian bridge process
�BB = {ξ (. . .)} is

x(τ ) = xa(1 − s) + xbs + �ξ (s). (34)

Let us recall that the “Euclidean time” variable τ is connected
with s via the relation τ = β�s.

The Brownian bridge sample paths fulfill the Dirichlet
boundary conditions ξ (0) = ξ (1) = 0. With this, the Feynman-
Kac formula for the Bloch density matrix (3) acquires the form

〈xb|e−βĤ |xa〉 = exp
{− 1

2 [�−1(xb − xa)]2
}

det�

∫ ξ (1)=0

ξ (0)=0
Dξ (s) exp

{
−

∫ 1

0
ds

[
1

2
ξ̇

2
(s) + βV [xa(1 − s) + xbs + �ξ (s)]

]}
, (35)

where the surface term in the action got canceled due to boundary conditions of the Brownian bridge. We can expand the potential
V (. . .) around the free-particle classical solution as

V [xa(1 − s) + xbs + �ξ (s)] = V [xa(1 − s) + xbs] +
∑
m �=0

V (m)[xa(1 − s) + xbs]

m!
[�ξ (s)]m, (36)
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and write the density matrix in the form

〈xb|e−βĤ |xa〉 = exp
{− 1

2 [�−1(xb − xa)]2 − βṼ (xb,xa)
}

det�

×
∞∑

n=0

(−β)n
∑

m1,...,mn �=0

D∏
j=1

λ
m

j

1+···+m
j
n

j

[
Ṽ (m1)

s1
(xb,xa) . . . Ṽ (mn)

sn
(xb,xa) ∗ Q̄s1···sn

]
(t = 1)

m1! . . . mn!
. (37)

In the preceding we have introduced the abbreviations

Ṽ (xb,xa) =
∫ 1

0
ds V [xa(1 − s) + xbs], Ṽ (mk)

si
(xb,xa) = V (mk)[xb − si(xb − xa)]. (38)

The multidimensional convolution appearing in (37) is a straightforward extension of the one-dimensional convolution

[X(si) ∗ Y (si)](t) = [Y (si) ∗ X(si)](t) =
∫ t

0
dsiX(t − si)Y (si). (39)

It is the above definition of the convolution which dictates the (seemingly strangely appearing) form of the right-hand side of (38).
Subindices si appearing in Q̄ in (37) just indicate the integration variables in the convolution. We see again that the key object is
the coefficient function Q̄ [cf. Eq. (8)] or better the ensuing (|m1| + · · · + |mn|)-point correlator Q̄s1...sn

:∫ ξ (1)=0

ξ (0)=0
Dξ (s)ξ m1 (s1) . . . ξ mn(sn) exp

[
−

∫ 1

0
ds

1

2
ξ̇

2
(s)

]
= δ|m1|+···+|mn|

δ j (s1)m1 . . . δ j (sn)mn

×
∫ ξ (1)=0

ξ (0)=0
Dξ (s) exp

[
−

∫ 1

0
ds

1

2
ξ̇

2
(s) +

∫ 1

0
ds j (s) · ξ (s)

]∣∣∣∣
j=0

= N δ|m1|+···+|mn|

δ j (s1)m1 . . . δ j (sn)mn
exp

[
1

2

∫ 1

0
ds du ji(s)�ij (s,u)jj (u)

]∣∣∣∣
j=0

.

(40)

The normalization constant N denotes the path integral for
a simple Brownian bridge. The summation convention is
automatically utilized in the argument of the exponent on the
last line. The Green’s function �ij (s,u) is chosen so that it
satisfies the equations

∂2

∂t2
�ij (t,u) = −δij δ(t − u),

(41)
�ij (0,u) = �ij (1,u) = 0.

The solution is the world-line Green’s function of Onofri and
Zuk [40,41]

�ij (s,u) = − 1
2δij [|t − u| − (t + u − 2tu)]. (42)

As a result, we can write Q̄(m1, . . . ,mn) in the form

Q̄ = N
n!

∫ 1

0
ds1 . . . dsn

δ|m1|+···+|mn|

δ j (s1)m1 . . . δ j (sn)mn

× exp

[
1

2

∫ 1

0
dt du ji(t)�ij (t,u)jj (u)

]∣∣∣∣
j=0

. (43)

The former can be further simplified with the help of
Coleman’s identity:

F (−i∂/∂x)G(x) = G(−i∂/∂ y)F ( y)ei y·x | y=0, (44)

which is valid for any (sufficiently smooth) functions F and
G. After some additional algebra, one verifies that

Q̄ = N i|m1|+···+|mn|

n!

× exp

[
−1

2

∫ 1

0
dt du

δ

δzi(t)
�ij (t,u)

δ

δzj (u)

]
×

∫ 1

0
ds1 . . . dsnz(s1)m1 . . . z(sn)mn

∣∣∣∣
z=0

. (45)

For similar reasons, as in ordinary quantum field theory,
i.e., namely for the Wick theorem application, it might
be convenient to formulate the Q̄ function in the Fourier
picture. In this case, the Fourier transform is discrete due to
the Dirichlet boundary conditions for ξ . In addition, when
we periodically extend the shape of the potential V from
the interval s ∈ [0,1] to the whole R and take the Fourier
transform, the calculations of (37) will substantially simplify
due to the convolution theorem [42].

Form (45) indicates that Q can be calculated via Wick’s
theorem with world-line Green’s functions (42) (cf. also
Refs. [5,29,47,48]). In fact, it is not difficult to list
the corresponding Feynman-type diagrammatic rules for
Q̄(m1, . . . ,mn). On the other hand, the number of terms
involved in evaluating Q̄ via (45) grows as (2m − 1)!! =
(2m)!/2mm! where m = (|m1| + · · · + |mn|) (see, for in-
stance, Ref. [49]). This should be contrasted with (15) where
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the number of terms grows as (see Appendix B)

D∏
j=1

[(
m

j

1 + · · · + mj
n

)
/2 + 1

]
. (46)

Our prescription comprises substantially less terms and this
is even more pronounced at high values of mj ’s (i.e., at
high derivative orders). In Appendix B, we prove that the
inequality

(2m − 1)!! �
D∏

j=1

[(
m

j

1 + · · · + mj
n

)
/2 + 1

]
(47)

always holds whenever m � 2. There, we also show that the
number of terms is in our case exponentially lower than in
Wick’s theorem based approaches.

Note also that the number of s integrations in (45)
matches the perturbation order, i.e., n, while the number of
integrations in our formula (15) equals to the dimension of
particle configuration space. In this respect, the presented
method is less complex with the increasing perturbation order
than other methods in use. As a matter of fact, with the
method based on the world-line Green’s function, a complete
calculation of all coefficients was achieved to order O(β12)
(see Ref. [50]). Closely related gradient expansion calcula-
tions (with the same order of precision) were performed in
Ref. [51].

Finally, note that Q̄ from (45) is nonzero only when
|m1| + · · · + |mn| together with all partial sums m

j

1 + · · · +
m

j
n (j = 1, . . . ,D) is even. In fact, also all partial sums

m
j

1 + · · · + m
j
n (j = 1, . . . ,D) must be zero. This fact was

already pointed out in Sec. II in connection with the coefficient
Q. Again, the evenness is true only for smooth potentials. In
the general case, the space derivatives must be substituted
with the generalized derivative of Schwartz [42] which can
bring about also odd terms, i.e., odd powers of �. Also, other
nonanalytical behavior can emerge, e.g., it was shown in [52]
that exchange contributions to the free energy of the jellium
vanish exponentially fast with � as a consequence of the
Coulomb repulsion between identical charges which diverge
at zero separation.

V. CONCLUSIONS AND PERSPECTIVES

In this paper, we have presented a PI-based high-
temperature expansion of the Boltzmann’s density �(x,β)
and partition function Z(β). Ensuing generalizations to the
full Bloch density matrix were also discussed and explicitly
compared with the Onofri-Zuk world-line approach. It was
found that our prescription comprises substantially less terms
contributing to higher perturbation orders than the more
conventional Wick’s-theorem-based perturbation expansions.
Also, the algebraic complexity of the coefficient functions
involved is markedly lower in our approach.

The expansions obtained are valid for an arbitrary number
of particles and provide an analytic control of the high-
temperature behavior. In addition, the implementation is
sufficiently general for any system described by smooth
potential energy functions. Because of its analytic form,
the presented high-temperature expansion can be further

conveniently used, e.g., to analyze the breakdown of symmetry,
generate a gradient expansion for the free energy for a wide
class of potentials, calculate ground-state energies, set up
the extended Thomas-Fermi approximations, or serve as the
starting point for a numerical evaluation of various thermo-
dynamical quantities (e.g., virial coefficients, specific heat,
or entropy). As a demonstration, we have briefly discussed
the high-temperature thermodynamics of the anharmonic
oscillator.

We would like to remark that the compactness of our
form for the coefficient function Q might be deceptive with
regard to applications requiring the use of nonlocal potentials.
In the genuine Wigner-Kirkwood method, the single-particle
density is expressed as a functional of the one-body potential
V (x). Although our treatment can accommodate also few-
body potentials, it is intrinsically formulated only for local
potentials. Since nonlocal potentials are an integral part of
statistical quantum theory, e.g., in cases when the exchange
part of the Hartree-Fock self-consistent potential is considered,
the corresponding generalization of Eqs. (15) and (37) to
nonlocal potentials would be desirable. The situation is simple
only for two-particle systems with potentials of the form
V (x1,x2) = V (x1 − x2). There, the transformation to the
center of mass frame allows us to reduce the problem to a single
particle in an external potential V (x). For other cases, the
formula (15) for the coefficient functions Q could be derived
in the same spirit as in Sec. II, but the appealing simplicity of
Q would be clearly lost.

The versatility of the method developed in this paper
together with a renewed interest in the study of the high-
temperature asymptotic expansions of the Bloch density
matrix suggest several extensions of this work. A pertinent
extension could address spin-dependent potentials, such as
the spin-orbit interaction whose interest in nuclear physics is
well known. Also, the case of momentum dependent terms
which are relevant in charged particle systems interacting
with electromagnetic field or in Brueckner’s theory used in
nuclear physics would be desirable to include. Important
limitation of our method lies in the fact that our discussion
was confined only to cases where Hamiltonians did not include
fermionic degrees of freedom. Similarly as the original WK
method, also our approach is inherently formulated within
the framework of Boltzmann statistics and so it does not
incorporate the exchange effects (which are relevant, e.g., in
a hot fermionic plasma). There exist various generalizations
of the WK formalism to include the effects of magnetic
field [53] or exchange corrections (see, e.g., Refs. [54,55]) and
the corresponding extension of our approach in this direction
would be also worth pursuing particularly in view of a natu-
ralness with which PI’s handle fermionic particle systems [5].
All these aforementioned issues are currently under active
investigation.

It appears worthwhile to stress that the WK expansion is
not the WKB expansion. For instance, the leading asymptotic
behaviors are different; while the WK expansion starts with
exp[−βV (x)], the WKB starts with exp(−βS[xcl,x]) [here the
action functional S is evaluated along the classical solutions
xcl with the boundary conditions x(0) = x(�β) = x]. Even
starting points for both these expansions were historically
different. WK started with the Wigner transform approach
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to statistical physics [1,2], while WKB (in PI’s) started with
the expansion (in terms of moments of Gaussian fluctuations)
around classical trajectory [5,6]. It is also clear that in the
WK one does not organize the expansion in terms of orders
of fluctuations around classical solution (as the WKB does).
Naturally, both approaches share many common features and
there is a bulk of the literature comparing both methods and
their respective pros and cons. The interested reader can see,
e.g., Refs. [56,57].

Let us finally make a few comments concerning the
low-temperature regime. It is clear that when the tem-
perature decreases, the de Broglie wavelength increases,
and the Wigner-Kirkwood perturbation expansion becomes
unwarranted. This happens whenever the involved thermal
de Broglie wavelength is comparable with a typical length
over which the potential varies. So, the low-temperature
expansion is normally beyond reach of the WK method.
Nevertheless, with the high-temperature expansion at one’s
disposal, one can tackle also the low-temperature expansion
(at least numerically) provided the sufficient number of
the coefficient functions in the high-temperature series is
available. To this end, one is free to employ some of the
existent duality approaches. Among these, a particularly
powerful nonperturbative approximation scheme is called
variational or optimized perturbation theory [5,58–60]. There,
the basic idea is to combine the renormalization-group concept
known as the principle of minimal sensitivity [60] with
the techniques of perturbation theory and the variational
principle to convert the divergent weak-coupling power series
into a convergent strong-coupling power series (and vice
versa).

Last but not least, recently Paulin et al. [28] employed
the concept of the occupation time for Wiener processes to
formulate the so-called ergodic local-time approximation to
PI’s. The ergodic approximation is particularly well suited for
the low-temperature regime. In the high-temperature domain,
it performs less satisfactorily since the nontrivial correlations
between occupation times must be taken into account [28].
Finding the dictionary that would allow a simple passage
between our approach and that of Paulin et al. in the high-
and intermediate-temperature regimes would be particularly
desirable in light of a similar mathematical structure [namely,
Eq. (4)] that both approaches share. Work along these lines is
presently in progress.
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APPENDIX A: SIMPLIFICATION
OF COEFFICIENTS Q(m1, . . . ,mn)

Here, we employ a convenient trick that will allow us to
carry out the s integrations in (11) explicitly. We first formally
promote the upper limit of the s integrations (i.e., 1) to a
new variable sn+1, and Laplace transform Q with respect

to sn+1, i.e.,

Q̃(E) =
∫ ∞

0
dsn+1e

−Esn+1

∫
0<s1<···<sn<sn+1

ds1 . . . dsn

×
∫
RD

d y1 . . . d yn

×
n∏

ν=0

〈 yν+1| exp

[
−(sν+1 − sν)

q̂2

2

]
| yν〉 ymν

ν . (A1)

Change of variables s ′
ν = sν+1 − sν , ν = 0, . . . ,n, then leads

to

Q̃(E) =
∫ ∞

0
ds ′

0 . . . ds ′
n

∫
RD

d y1 . . . d yn

n∏
ν=0

〈 yν+1|

× exp

[
−s ′

ν

(
E + q̂2

2

)]
| yν〉 ymν

ν . (A2)

The s integrations can now be done easily,

Q̃(E) =
∫
RD

d y1 . . . d yn

n∏
ν=0

〈 yν+1|
1

E + q̂2

2

| yν〉 ymν

ν . (A3)

In order to further simplify (A3), we perform the rescaling
yν → yν/

√
E, and use the fact that〈

yν+1√
E

∣∣∣∣ 1

E + q̂2

2

∣∣∣∣ yν√
E

〉
=

∫
RD

dq
(2π )D

exp
(
iq yν+1− yν√

E

)
E + q̂2

2

q→√
Eq= ED/2−1〈 yν+1|

1

1 + q̂2

2

| yν〉.

(A4)

This explicitly decouples E, giving rise to

Q̃(E) = ED/2−n−1−(|m1|+···+|mn|)/2
∫
RD

d y1 . . . d yn

×
n∏

ν=0

〈 yν+1|
1

1 + q̂2

2

| yν〉 ymν

ν . (A5)

Now, the inverse Laplace transform can be performed
and evaluated at sn+1 = 1. With the help of the formula∫ ∞

0 ds sνe−sE = (ν + 1)E−ν−1, we obtain

Q = K

∫
RD

d y1 . . . d yn

n∏
ν=0

〈 yν+1|
1

1 + q̂2

2

| yν〉 ymν

ν , (A6)

where the multiplicative factor

K = 1


(
n + 1 − D

2 + |m1|+···+|mn|
2

) . (A7)

In the second step, we invoke a resolution of unity∫
RD d yν | yν〉〈 yν | = I, which brings Q to the form

Q = K〈 yn+1|
1

1 + q̂2

2

ŷmn
1

1 + q̂2

2

ŷmn−1 · · ·

× 1

1 + q̂2

2

ŷm1
1

1 + q̂2

2

| y0〉. (A8)
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With the use of the algebraic identity

[ŷj ,F (q̂)] = i
∂F (q)

∂qj

|q=q̂, (A9)

and the fact that ŷj | y0〉 = 0 (j = 1, . . . ,D), we can bring (A8)
to the form (recall the definition y0 = yn+1 = 0)

Q = K〈 yn+1|G(q̂)
∣∣ y0

〉 = K

∫
RD

dq
(2π )D

G(q), (A10)

with G(q) defined as

G(q) =
(

i|mn|

1 + q2

2

∂ |mn|

∂qmn

)
· · ·

(
i|m1|

1 + q2

2

∂ |m1|

∂qm1

)
1

1 + q2

2

.

(A11)

Note that we could arrive at the same conclusion by employing
in (A6) the spectral expansion of the position operator (or bet-
ter, its power) in both position and momentum representations,
i.e.,

ŷm =
∫
RD

d yν | yν〉 ym
ν 〈 yν | =

∫
RD

dqν |qν〉i|m| ∂
|m|

∂qm
ν

〈qν | .

(A12)

Ensuing lack of one δ function then causes the residual q
integration in (A10).

APPENDIX B: STRUCTURE OF Q(m1, . . . ,mn)

In this Appendix, we show that the number of terms
involved in evaluating Q(m1, . . . ,mn) via (15) grows as (46).
We start by observing that the function G(q) in (A11) can be
written as a sum

G(q) =
∑
r,s

ar,s
qr(

1 + q2

2

)s
, (B1)

with combinatorial factors ar,s whose explicit form is not
relevant for the arguments to follow. The components of multi-
index r satisfy 0 � rj � m

j

1 + · · · + m
j
n for all j = 1, . . . ,D

since each differentiation ∂/∂qj can produce at most one power
of qj .

The summation index s in (B1) is not an independent
variable but it is fully specified once r is known. To see this,
consider an elementary differentiation step

∂

∂qj

qr(
1 + q2

2

)s
= rj qr−ej(

1 + q2

2

)s
− sqr+ej(

1 + q2

2

)s+1 , (B2)

where ei
j = δij , and define � to be the difference between

the degree of the polynomial in the denominator and the
numerator. The derivative shifts � from 2s − |r| to 2s −
|r| + 1, and this is common to both terms on the right-hand
side. Hence, the nonzero terms in sum (B1) must satisfy the
condition 2s − |r| = |m1| + · · · + |mn| + 2n + 2. This is also
evident on the dimensional ground.

We also note that due to (B2) rj in (B1) has, for all j ,
the same even parity as the total degree of differentiation
m

j

1 + · · · + m
j
n because otherwise the integral in (A10) would

vanish. Altogether, we see that there are only

∑
r,s

1 =
D∏

j=1

m
j

1+···+m
j
n∑

rj =0

1 =
D∏

j=1

[(
m

j

1 + · · · + mj
n

)
/2 + 1

]
,

(B3)

nontrivially contributing terms in (B1).
Let us close this Appendix by proving the inequality (47).

To this end, we observe that one can write

(2m − 1)!! = 2m!

2mm!
= 1√

π


⎡⎣1/2 +
D∑

j=1

(
m

j

1 + · · · + mj
n

)⎤⎦
×

D∏
j=1

2m
j

1+···+m
j
n

�
D∏

j=1

2m
j

1+···+m
j
n �

D∏
j=1

[
1 + (

m
j

1 + · · · + mj
n

)
/2

]
.

(B4)

On the first line, we have used the duplication formula [45]
(z)(z + 1/2) = √

π(2z)21−2z. On the second line, the use
was made of the inequality (1/2 + z) � √

π (valid for z � 2)
and the convexity inequality 2z − 1 � z ln 2 > z/2 (valid for
z � 0).
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