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We focus on Θ-rich and almost Θ-rich words over a finite alphabet A, where Θ is an
involutive antimorphism over A∗. We show that any recurrent almost Θ-rich word u is
an image of a recurrent Θ′-rich word under a suitable morphism, where Θ′ is also an
involutive antimorphism. Moreover, if the word u is uniformly recurrent, we show that
Θ′ can be set to the reversal mapping. We also treat one special case of almost Θ-rich
words: we show that every Θ-standard word with seed is an image of an Arnoux-Rauzy
word.
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1. Introduction

In this paper we deal with infinite words over a finite alphabet A. Given a word

u ∈ AN we are interested whether its language is saturated, in a certain sense, by

generalized palindromes, here called Θ-palindromes. We use the symbol Θ for an

involutive antimorphism, i.e., a mapping Θ : A∗ 7→ A∗ such that Θ2 = Id and

Θ(uv) = Θ(v)Θ(u) for all u, v ∈ A∗. Fixed points of Θ are called Θ-palindromes.

The notion of Θ-palindrome seems to have appeared independently on several places

in the literature, see [13, 17].

A strong impulse for study of palindromes came from outside of mathe-

matics. Physicists discovered a role of classical palindromes in the description

of the spectrum of Schrödinger operators with aperiodic potentials, see [16].

In genetics, the so-called Watson-Crick palindromes play, for instance, an im-

portant role in the description of unwanted bindings of nucleotides in a
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DNA strand (see [18]). In our terminology, the Watson-Crick palindromes are

Θ-palindromes where the involutive antimorphism Θ acts on a quaternary alphabet

and has no fixed point of length one.

The most common antimorphism used in combinatorics on words is the re-

versal mapping. We denote it by R. The reversal mapping assigns to every word

w = w1w2 . . . wn its mirror image R(w) = wnwn−1 . . . w1. In the case w = R(w),

we sometimes say that w is a palindrome or classical palindrome instead of

R-palindrome.

The set of distinct Θ-palindromes occurring in a finite word w is denoted by

PalΘ(w). Since the empty word ε is a Θ-palindrome for any Θ, we have a simple

lower bound #PalΘ(w) ≥ 1.

In 2001, Droubay et al. gave in [14] an upper bound for the reversal mapping

R. They deduced that #PalR(w) ≤ |w| + 1, where |w| denotes the length of the

word w. In [5], Blondin Massé et al. studied involutive antimorphisms with no fixed

points of length 1. For such Θ they decreased the upper bound, in particular, they

showed that #PalΘ(w) ≤ |w| for all non-empty word w. In [23], the upper bound is

more precise. The following estimate is valid for any involutive antimorphism Θ:

#PalΘ(w) ≤ |w|+ 1− γΘ(w), (1)

where γΘ(w) := #
{

{a,Θ(a)} | a ∈ A, a occurs in w, and a 6= Θ(a)
}

. Let us illus-

trate the mapping γΘ on the following example.

Example. Suppose A = {0, 1, 2} and Θ is the antimorphism determined by 0 7→

1, 1 7→ 0, 2 7→ 2. We have

γΘ(ε) = 0, γΘ(0) = 1, γΘ(2) = 0, γΘ(00) = γΘ(01) = γΘ(02) = γΘ(20) = 1.

Let us note that if Θ = R, then gR(w) = 0 for any finite word w, and the upper

bound in (1) is the same as for classical palindromes.

In [6], the authors deal with the case Θ = R and with words for which the

equality in (1) holds. They call such words full. According to the terminology for

classical palindromes introduced in [15] and for Θ-palindromes in [23], we say that a

finite word w is Θ-rich if the equality in (1) holds. An infinite word u ∈ AN is Θ-rich

if every factor w ∈ L(u) is Θ-rich, where by L(u) we denote the set of all factors of

u called the language of u. In [6], the authors introduce the palindromic defect of

a finite word w as the difference between the upper bound |w| + 1 and the actual

number of distinct palindromic factors. We define analogously the Θ-palindromic

defect of w as

DΘ(w) := |w|+ 1− γΘ(w)−#PalΘ(w).

We define for an infinite word u its Θ-palindromic defect as

DΘ(u) = sup{DΘ(w) | w ∈ L(u)},

which is again a generalization of the case of classical palindromes introduced

in [6]. Words with finite Θ-palindromic defect are referred to as almost Θ-rich.
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The notion of almost richness for classical palindromes was introduced and studied

in [15].

In [12], it is shown that rich words (i.e. R-rich words) can be characterized using

an inequality shown in [2] for infinite words with languages closed under reversal.

Results of both mentioned papers were generalized in [23] for an arbitrary involutive

antimorphism. In particular, it is shown that if an infinite word has its language

closed under Θ, the following inequality holds

C(n+ 1)− C(n) + 2 ≥ PΘ(n) + PΘ(n+ 1) for all n ≥ 1, (2)

where C(n) is the factor complexity defined by C(n) := #{w ∈ L(u) | n = |w|} and

PΘ(n) is the Θ-palindromic complexity defined by PΘ(n) := #{w ∈ L(u) | w =

Θ(w) and n = |w|}. Let us denote by TΘ(n) the difference between the left side and

the right side in (2), i.e., the quantity

TΘ(n) := C(n+ 1)− C(n) + 2− PΘ(n+ 1)− PΘ(n).

This quantity decides about Θ-richness: in [23], it is also shown that an infinite

word with language closed under Θ is Θ-rich if and only if

TΘ(n) = 0 for all n ≥ 1.

The list of infinite words which are R-rich is quite extensive. See for instance

[2, 9, 11, 15]. Examples of Θ-rich words can be found in the class of words called

Θ-episturmian words. A condition when such a word is Θ-rich can be found in [23].

In [1], the authors also deal with Θ-episturmian words (they are called pseudopalin-

dromic in the paper). However, the result of Theorem 2 in [1] is valid only for the

subset of Θ-rich Θ-episturmian words, not for all Θ-episturmian words as stated in

the paper.

Fewer examples of words with finite nonzero palindromic defect are known.

Periodic words with finite nonzero R-defect can be found in [6], aperiodic ones are

studied in [15] and [4]. To our knowledge, examples of words with 0 < DΘ(u) < +∞

and Θ 6= R have not yet been explicitly exhibited. As we will show, such examples

are Θ-standard words with seed defined in [10] and thus also their subset, standard

Θ-episturmian words, which can be constructed from standard episturmian words,

see [8].

The main aim of this paper is to show that among words with finite Θ-pa-

lindromic defect, Θ-rich words, i.e. words with DΘ(u) = 0, play an important role.

We will prove the following theorems.

Theorem 1. Let Θ1 : A∗ 7→ A∗ be an involutive antimorphism. If u ∈ AN is

a recurrent infinite word such that DΘ1
(u) < +∞, then there exist an involutive

antimorphism Θ2 : B∗ 7→ B∗, a morphism ϕ : B∗ 7→ A∗ and an infinite recurrent

word v ∈ BN such that

u = ϕ(v) and v is Θ2-rich.

A stronger statement can be shown if uniform recurrency is assumed.
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Theorem 2. Let Θ : A∗ 7→ A∗ be an involutive antimorphism. If u ∈ AN is

a uniformly recurrent infinite word such that DΘ(u) < +∞, then there exist a

morphism ϕ : B∗ 7→ A∗ and an infinite uniformly recurrent word v ∈ BN such that

u = ϕ(v) and v is R-rich.

One can conclude that rich words, using the classical notion of a palindrome, play

somewhat a more important role than Θ-rich words for an arbitrary Θ 6= R.

The proofs of the two stated theorems do not provide any relation between

the size of the alphabet B of the word v and the size of the original alphabet A.

Nevertheless, one can find a bound on the size of B using the factor complexity of

u, see Corollary 8. The following theorem is a special case of the last theorem. In

this case, the size of B can be bounded by the size of the alphabet A and the word

v is more specific, namely it is Arnoux-Rauzy. Let us recall that an infinite word v

is an Arnoux-Rauzy word if for every n we have C(n) = (#A− 1)n+1 and there is

exactly one factor w ∈ L(v) of length n which can be extended to the left in more

than one way, i.e., is left special. Ternary Arnoux-Rauzy words were first mentioned

in [22].

Theorem 3. If Θ : A∗ 7→ A∗ is an involutive antimorphism and u ∈ AN is a

Θ-standard word with seed, then there exist an Arnoux-Rauzy word v ∈ BN and a

morphism ϕ : B∗ 7→ A∗ such that

u = ϕ(v) and #B ≤ #A.

One of the reviewers of this paper pointed out to us that the last theorem is in

fact a particular case of Theorem 1 in [7]. We keep it here with a proof for the sake

of completeness in the context of Θ-richness.

All three mentioned theorems present an almost Θ1-rich word as an image of a

Θ2-rich word by a suitable morphism. The opposite question when a morphic image

of a Θ1-rich word is almost Θ2-rich is not tackled here. In [15], a type of morphisms

preserving the set of almost R-rich words is studied.

2. Properties of Words with Finite Θ-Defect

Let A be an alphabet : a finite set of symbols called letters. We say that w is a

finite word if w = w0w1 · · ·wn where wi ∈ A for all i such that 0 ≤ i ≤ n. The

length of w is denoted |w| and equals n + 1. The set of all finite words is the free

monoid A∗ which includes the empty word ε. We consider mainly infinite words

u = (un)n∈N ∈ AN. A finite word is a factor of a finite or infinite word u if there

exists an index j such that w = ujuj+1 · · ·uj+n. The index j is called an occurrence

of w in u. We deal mainly with infinite words having their language L(u) closed

under a given involutive antimorphism Θ, i.e., for any factor w ∈ L(u) we have

Θ(w) ∈ L(u).
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We say that a finite word p is a prefix of a (finite or infinite) word v if there

exists a word s such that v = ps. A finite word s is a suffix of a finite word v if

v = ps for some p ∈ A∗.

If each factor of u has infinitely many occurrences in u, the infinite word u is

said to be recurrent. It is easy to see that if the language of u is closed under Θ,

then u is recurrent. For a recurrent infinite word u, we may define the notion of

a complete return word of any w ∈ L(u). It is a factor v ∈ L(u) such that w is

a prefix and a suffix of v and w occurs in v exactly twice. By a return word of a

factor w we mean a word q ∈ L(u) such that qw is a complete return word of w. If

every factor w of a recurrent word u has only finitely many return words, then the

infinite word u is called uniformly recurrent.

An important role for the description of languages closed under Θ is played by

the so-called super reduced Rauzy graphs Gn(u), introduced in [12]. Before defining

them, we introduce some necessary notions.

We say that a factor w ∈ L(u) is left special (LS) if w has at least two left

extensions, i.e., if there exist two letters a, b ∈ A, a 6= b, such that aw, bw ∈ L(u).

A right special (RS) factor is defined analogously. A special factor is a factor which

is RS or LS. If a factor is LS and RS, we refer to it as bispecial. The fact that L(u)

is closed under Θ assures the following relation: a factor w is LS if and only if the

factor Θ(w) is RS.

An n-simple path e is a factor of u of length at least n + 1 such that the only

special factors of length n occurring in e are its prefix and suffix of length n. If w is

the prefix of e of length n and v is the suffix of e of length n, we say that the n-simple

path e begins with w and ends with v. We denote by Gn(u) an undirected graph

whose set of vertices is formed by unordered pairs {w,Θ(w)} such that w ∈ L(u),

|w| = n, and w is RS or LS. We connect two vertices {w,Θ(w)} and {v,Θ(v)} by

an unordered pair {e,Θ(e)} if e or Θ(e) is an n-simple path beginning with w or

Θ(w) and ending with v or Θ(v). Note that the graph Gn(u) may have multiple

edges and loops.

As first shown for classical palindromes in [12], the super reduced Rauzy graph

Gn(u) can be used to detect equality in (2). Let us cite Corollary 7 from [23].

Proposition 4. If n ∈ N and L(u) is closed under Θ, then TΘ(n) = 0 if and

only if

(1) all n-simple paths forming a loop in Gn(u) are Θ-palindromes and

(2) the graph obtained from Gn(u) by removing all loops is a tree.

In [4], various properties are shown for words with finite R-palindromic defect.

These properties and their proofs are valid even if we replace the antimorphism R

by an arbitrary Θ.

Proposition 5. If u is a recurrent infinite word such that DΘ(u) < +∞, then

there exists a positive integer H such that u has the following Properties:
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(i) every prefix of u longer than H has a unioccurrent Θ-palindromic suffix;

(ii) L(u) is closed under Θ;

(iii) for any factor w ∈ L(u) such that |w| > H, occurrences of w and Θ(w) in the

word u alternate;

(iv) for any w ∈ L(u) such that |w| > H, every factor v ∈ L(u) beginning

with w, ending with Θ(w), and with no other occurrences of w or Θ(w) is

a Θ-palindrome;

(v) TΘ(n) = 0 for any integer n > H.

In the case of the reversal mapping and DR(u) = 0, the listed properties are

generalizations of properties already shown in [15] and [12]. In this case we have

H = 0.

The main difference for an arbitrary Θ with comparison to R is that there can

be non-Θ-palindromic letters. However, this can be dealt with by a good choice of

the constant H . To prove Properties (i), (iii) and (iv), one can follow the proofs for

Θ = R in [4]. Property (ii) generalizes Proposition 4.4. in [15]. Proof of Property

(v) is the most intricate and is in fact a special case of a more general result from

[21] where we deal with words closed under all elements of a finite group generated

by involutive antimorphisms. Therefore, we give only a sketch of the proof.

Sketch of the proof.

(i): Take a prefix p of u such that all letters of A occur in it. Denote by p′

the word such that p = p′a with a ∈ A. Since all letters occur in p, we have

γΘ(p
′) = γΘ(p). Moreover, suppose p does not have a unioccurrent Θ-palindromic

suffix. If p has no Θ-palindromic suffix, then we have #PalΘ(p
′) = #PalΘ(p). If p

has a Θ-palindromic suffix, then again we have #PalΘ(p
′) = #PalΘ(p) as the suffix

is not unioccurrent. Thus, DΘ(p) > DΘ(p
′) which can happen for only finitely many

prefixes p because of DΘ(u) < +∞.

Let us denote by q such a prefix of u that DΘ(u) = DΘ(q). It is enough to set

H := max{|p|, |q|}.

(ii): Suppose that w is a factor of u such that Θ(w) 6∈ L(u). Since u is recurrent,

we can find two consecutive occurrences i and j of the factor w such that i, j > H

and i < j. Denote p the prefix of u ending with w occurring at j, i.e., |p| = j + |w|.

Since |p| > H , there exists a unioccurrent Θ-palindromic suffix of p. Denote s to be

such a suffix. If |s| ≤ |w|, then s is a factor of w and thus occurs at least twice in

p — a contradiction with the unioccurrence of s. If |s| > |w|, then w is a factor of

s which is a Θ-palindrome and thus contains Θ(w) as well — a contradiction with

the assumption that Θ(w) 6∈ L(u).

(iii): Suppose w ∈ L(u) such that Θ(w) 6= w and |w| > H . Take a factor v such

that it contains exactly 2 occurrences of w and no occurrence Θ(w). It is clear that

|v| > H . Take the shortest prefix p of u such that it contains exactly one occurrence
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of v or Θ(v). It is easy to see that p does not have a unioccurrent Θ-palindromic

suffix which is in contradiction with Property (i).

(iv): Suppose w ∈ L(u) such that |w| > H . Take a factor v, with |v| > |w|, such

that it contains w as its prefix, Θ(w) as its suffix, and no other occurrences of w or

Θ(w). Take the shortest prefix p of u such that it contains exactly one occurrence

of v or Θ(v). Since p has a unioccurrent Θ-palindromic suffix, one can deduce that

v is a Θ-palindrome.

(v): According to Property (ii) the language L(u) is closed under Θ. In order to

use Proposition 4, we need to prove that for all n > H

(1) all n-simple paths forming a loop in Gn(u) are Θ-palindromes and

(2) the graph obtained from Gn(u) by removing all loops is a tree.

To prove this, we use a more general result from [21]. The claim follows from

Property (iv) and Lemma 19 in [21] applied to the group G = {Θ, Id}.

As already mentioned, the first property stated in the previous proposition, in

fact, characterizes words with finite Θ-defect. We do not know whether this is the

case of the Properties (iii), (iv) and (v). If we restrict our attention to uniformly

recurrent words, only then can we show several characterizations of words with finite

Θ-defect. The next proposition states two of them that we use in what follows.

Proposition 6. If u is a uniformly recurrent infinite word with language closed

under Θ, then the following statements are equivalent:

(i) DΘ(u) < +∞;

(ii) there exists a positive integer H such that for any w ∈ L(u), |w| > H, the

longest Θ-palindromic suffix of w is unioccurrent in w;

(iii) there exists a positive integer K such that for any Θ-palindrome w ∈ L(u) of

length |w| ≥ K, all complete return words of w are Θ-palindromes.

The provided proposition was proved in [4] for the special case Θ = R . We give

again a sketch of the proof using more general results from [21].

Sketch of the proof.

We use results of [21] for words closed under all elements of the group G =

{Θ, Id}. According to Theorem 31 in [21], finite G-defect (in our case it coincides

with Θ-defect as defined above) is equivalent with almost G-richness of u. Using

Lemmas 16 and 19 from [21], we obtain equivalence with Property (ii). Lemmas 22

and 24 from [21] imply equivalence of Properties (ii) and (iii).

A Θ-standard word with seed is an infinite word defined using Θ-palindromic

closure, for details see [10]. Construction of such a word u guarantees that u is
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uniformly recurrent (cf. Proposition 3.5. in [10]). The authors of [10] showed (Propo-

sition 4.8) that any complete return word of a sufficiently long Θ-palindromic factor

is a Θ-palindrome as well. Therefore, Θ-standard words with seed serve as an ex-

ample of almost Θ-rich words.

Corollary 7. Let u be a Θ-standard word with seed. Then DΘ(u) < +∞.

3. Proofs

In this section we give proofs of all three theorems stated in the introduction.

Although Theorem 2 seems to be only a refinement of Theorem 1, constructions of

the morphisms ϕ in their proofs differ substantially because of stronger properties

that we can exploit for a uniformly recurrent word.

As already mentioned, the list of infinite words with finite but nonzero Θ-defect

is very modest. Moreover, if Conjecture 1 from [5] holds (and we believe so), no

fixed point of a primitive substitution has finite nonzero defect. Therefore, it is very

difficult to demonstrate validity of our Theorems 1 and 2 on reasonably described

examples of almost rich words. Instead of this, we accompany our proofs with graph-

ical presentation of the crucial idea for construction of suitable morphisms.

Our theorems convey that one method of construction of almost rich words is

via morphic images of rich words. From this point of view, it would be of great

importance to characterize morphisms under which the set of almost rich words is

invariant.

Proof of Theorem 1. Recall that according to Proposition 5 Property (ii) the

language L(u) is closed under Θ1.

Suppose u is eventually periodic. Since L(u) is closed under Θ1, u is recurrent.

This implies that u is purely periodic (see Proposition 4.3.2. in [19]). Any purely

periodic word is a morphic image of a word v over a one-letter alphabet under

the morphism which assigns to this letter a word w such that u = www . . . =

wω . Therefore, we may assume without loss of generality that u is not eventually

periodic.

Since DΘ1
(u) < +∞, according to Propositions 4 and 5, there exists an integer

H ∈ N such that

(1) for any w ∈ L(u), |w| > H , occurrences of w and Θ1(w) alternate;

(2) for any w ∈ L(u), |w| > H , every factor beginning with w, ending with Θ1(w)

and with no other occurrences of w or Θ1(w) is a Θ1-palindrome;

(3) for any n ≥ H , every loop in Gn(u) is a Θ1-palindrome and the graph obtained

from Gn(u) by removing all loops is a tree.

Fix n > H . If an edge {b,Θ1(b)} in Gn(u) is a loop, then, according to Prop-

erty 3, we have b = Θ1(b). If the edge {b,Θ1(b)} connects two distinct vertices

{w1,Θ1(w1)} and {w2,Θ1(w2)}, then there exist exactly two n-simple paths b and

Θ1(b) such that without loss of generality the n-simple path b begins with w1
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V1

V2 V3

V4

q

Θ1(q)

r

Θ1(r)

t = Θ1(t)

s Θ1(s)

u = Θ1(u)

Fig. 1. Example of a graph Gn(u) where an edge {e,Θ1(e)} is drawn as two directed
edges e and Θ1(e). Vi denotes the vertex {wi,Θ1(wi)} for a special factor wi. In this
case, there are exactly 8 n-simple paths and thus the alphabet B consists of 8 letters, i.e.,
B = {[q], [Θ1(q)], [r], [Θ1(r)], [s], [Θ1(s)], [t], [u]}.

and ends with w2 and the n-simple path Θ1(b) begins with Θ1(w2) and ends with

Θ1(w1).

We assign to every n-simple path b a new symbol [b], i.e., we define the alphabet

B as

B := {[b] | b ∈ L(u) is an n-simple path} .

See Figure 1 for an example of construction of B.

We define on B an involutive antimorphism Θ2 : B∗ 7→ B∗ in the following way:

Θ2([b]) := [Θ1(b)].

We are now going to construct a suitable infinite word v ∈ BN. Let (si)i∈N

denote a strictly increasing sequence of indices such that si is an occurrence of a

LS or RS factor of length n and every LS and RS factor of length n occurs at some

index si. We define v = (vi)i∈N by the formula

vi = [b] if b = usiusi+1usi+2 . . . usi+1+n−1.

This construction can be done for any n > H . Since infinitely many prefixes of

u are LS or RS factors, we can choose n > H such that the prefix of u of length n

is LS or RS, i.e., s0 = 0.
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According to Proposition 12 in [23], to prove that v is Θ2-rich we need to show

the following:

(i) for every non-empty factor w ∈ L(v), any factor v beginning with w

and ending with Θ2(w), with no other occurrences of w or Θ2(w), is a

Θ2-palindrome;

(ii) for every letter [b] ∈ B such that [b] 6= Θ2([b]), the occurrences of [b] and

Θ2([b]) in the word v alternate.

Let us first verify (i). Let e and f be factors of v such that e is a prefix of f and

Θ2(e) is a suffix of f and there are no other occurrences of e or Θ2(e) in f . In that

case there exist integers r ≤ k such that f = [b1][b2] . . . [bk] and e = [b1][b2] . . . [br].

The case r = k is trivial. Suppose r < k. Since v is defined as a coding of consecutive

occurrences of n-simple paths in u, factor f codes a certain segment of the word

u. Let us denote that segment by F = uj . . . ul where j = st for some t ∈ N and

l = st+k−1 + n − 1. Factor e codes in the same way a factor E = uj . . . uh where

h = st+r−1 + n− 1.

Due to the definition of Θ2, the fact that e is a prefix of f and Θ2(e) is a suffix

of f ensures that E is a prefix of F and Θ(E) is a suffix of F . Suppose f is not

a Θ2-palindrome. This implies that F is not a Θ1-palindrome which contradicts

Property 3.

Let us now verify (ii). Consider [b] ∈ B such that [b] 6= Θ2([b]). Moving

along the infinite word u = u0u1u2 . . . from the left to the right with a window

of width n corresponds to a walk in the graph Gn(u). The pair b and Θ1(b) of

n-simple paths in u represents an edge in Gn(u) connecting two distinct vertices.

Moreover, moving along the n-simple path b and moving along Θ1(b) can be viewed

as traversing that edge in opposite directions. Since the graph obtained from Gn(u)

by removing all loops is a tree, the only way to traverse an edge is alternately in

one direction and in the other. Thus, the occurrences of letters [b] and Θ2([b]) in v

alternate.

We have shown that v is Θ2-rich. It is now obvious how to define a morphism

ϕ : B∗ 7→ A∗. If an n-simple path b equals b = usiusi+1 . . . usi+1+n−1, then we set

ϕ([b]) := usiusi+1 . . . usi+1−1.

Corollary 8. Let B be the alphabet given by Theorem 1. If u is eventually periodic,

then #B = 1. If u is aperiodic, then

#B ≤ 3(C(n+ 1)− C(n)),

where n is the integer from the proof of Theorem 1.

Proof. If u is eventually periodic, then the claim follows from the previous proof.

Suppose u is aperiodic. The size of the alphabet B defined in the previous proof

equals the number of n-simple paths. Since any n-simple path starts in a special
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factor, we have

#B =
∑

w is LS or RS

#Rext(w),

where Rext(w) = {a ∈ A | wa ∈ L(u)}. Similarly, we denote Lext(w) = {a ∈ A |

aw ∈ L(u)}. Because of

C(n+ 1)− C(n) =
∑

w∈L(u)

(#Rext(w) − 1) =
∑

w∈L(u)

(#Lext(w)− 1),

we can estimate

#B ≤ C(n+ 1)− C(n) + #{w ∈ L(u) | w is RS}+#{w ∈ L(u) | w is LS}.

Trivially,

#{w ∈ L(u) | w is RS} ≤
∑

w∈L(u)

(#Rext(w) − 1) = C(n + 1)− C(n)

and

#{w ∈ L(u) | w is LS} ≤
∑

w∈L(u)

(#Lext(w)− 1) = C(n + 1)− C(n).

Proof of Theorem 2. Recall again that according to Proposition 5 Property (ii)

the language L(u) is closed under Θ.

Next, we show that infinitely many Θ-palindromes are also prefixes of u. Con-

sider an integer H whose existence is guaranteed by Proposition 5 and denote by w

a prefix of u longer than H . Since occurrences of factors w and Θ(w) in u alternate,

according to the same proposition, the prefix of u ending with the first occurrence

of Θ(w) is a Θ-palindrome.

Let us denote by p a Θ-palindromic prefix of u of length |p| > K where

K is the constant from Proposition 6. All complete return words of p are

Θ-palindromes. Since u is uniformly recurrent, there exist only finite number of

complete return words to p. Let r(1), r(2), . . . , r(M) be the list of all these complete

return words. Any complete return word r(i) has the form q(i)p = r(i) for some

factor q(i), usually called a return word of p. See Figure 2. Since r(i) and p are

Θ-palindromes, we have

pΘ(q(i)) = q(i)p for any return word q(i). (3)

u = p p p p p

︸ ︷︷ ︸

q
(1)

︸ ︷︷ ︸

q
(1)

︸ ︷︷ ︸

q
(2)

︸ ︷︷ ︸

q
(3)

. . .

Fig. 2. Example of occurrences of return words q(i) of a palindrome p in the word u.
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Let us define a new alphabet B = {1, 2, . . . ,M} and morphism ϕ : B∗ → A∗ by

the prescription

ϕ(i) = q(i), for i = 1, 2, . . . ,M .

First, we shall check the validity of the relation

Θ
(

ϕ(w)p
)

= ϕ
(

R(w)
)

p for any w ∈ B∗ . (4)

Let w = i1i2 . . . in. Then Θ
(

ϕ(i1i2 . . . in)p
)

is equal to

Θ(p)Θ
(

ϕ(in)
)

Θ
(

ϕ(in−1)
)

. . .Θ
(

ϕ(i1)
)

= pΘ
(

q(in)
)

Θ
(

q(in−1)
)

. . .Θ
(

q(i1)
)

and we may apply repeatedly n times the equality (3) to rewrite the right side as

q(in)q(in−1) . . . q(i1)p = ϕ(in)ϕ(in−1) . . . ϕ(i1)p = ϕ
(

R(i1i2 . . . in)
)

p.

This proves the relation (4).

An important property of the morphism ϕ is its injectivity. Indeed, in accordance

with the definition, the number of occurrences of the factor p in ϕ(w)p equals to the

number of letters in w plus one. Moreover, each occurrence of p in ϕ(w)p indicates

a beginning of an image of a letter under ϕ. Therefore, ϕ(w)p = ϕ(v)p necessarily

implies w = v.

Let us finally define the word v. As p is a prefix of u, the word u can be written

as a concatenation of return words q(i) and thus we can determine a sequence

v = (vn) ∈ BN such that

u = q(v0)q(v1)q(v2) . . .

Directly from the definition of v we have u = ϕ(v). See Figure 3.

u = p p p p p

︸ ︷︷ ︸

q
(1)

︸ ︷︷ ︸

q
(1)

︸ ︷︷ ︸

q
(2)

︸ ︷︷ ︸

q
(3)

. . .

v = 1 2 1 3 . . .

ϕ ϕ ϕ ϕ

Fig. 3. Idea for the definition of the morphism ϕ.

Since u is uniformly recurrent, the word v is uniformly recurrent as well. To

prove that v is an R-rich word, we shall show that any complete return word of

any R-palindrome in the word v is an R-palindrome as well. According to Theorem

2.14 in [15], this implies the R-richness of v.

If s is an R-palindrome in v and w its complete return word, then ϕ(w)p has

precisely two occurrences of the factor ϕ(s)p. Since s is an R-palindrome, we have ac-

cording to the equation (4) that ϕ(s)p is a Θ-palindrome of length |ϕ(s)p| ≥ |p| > K.
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P

q(1)

q(2)

q(3)

Fig. 4. Example of graph G|p|(u). There is only one vertex P = {p,Θ(p)} and all |p|-simple paths
are loops.

Therefore, ϕ(w)p is a complete return word of a long enough Θ-palindrome and ac-

cording to our assumption ϕ(w)p is a Θ-palindrome as well. Thus, by using (4) we

have

ϕ(w)p = Θ
(

ϕ(w)p
)

= ϕ
(

R(w)
)

p

and injectivity of ϕ gives w = R(w), as we claimed.

Theorem 6.1 in [8] states that every standard Θ-episturmian word is an image

of a standard episturmian word. Again, the role of R can be perceived as more

important. Also, compared to Theorem 2, it may be seen as a special case since

Θ-episturmian words, according to Corollary 7, have finite Θ-defect.

Proof of Theorem 3.

If u is periodic, then the claim is trivial. Suppose u is aperiodic.

We are going to repeat the proof of Theorem 2 with a more specific choice of p.

Theorem 4.4 in [10] implies that there exists L ∈ N such that any LS factor of u

longer than L is a prefix of u. Without loss of generality, we may assume that the

constant L is already chosen in such a way that all prefixes of u longer than L have

the same left extensions. Let us denote their number by M . According to the same

theorem, infinitely many prefixes of u are Θ-palindromes and thus bispecial factors

as well.

According to Corollary 7, u has finite Θ-palindromic defect. Let K be the

constant from Proposition 6. Altogether, there exists a bispecial factor p, |p| >

max{L,K}, such that it is a prefix of u and a Θ-palindrome. Since p is longer than

K, all complete return words to p are Θ-palindromes. As p is the unique left special

factor of length |p| in u, its return words (i.e., complete return words after erasing

the suffix p) end with distinct letters. This means that there are exactly M return

words of p, denoted again by q(i). Let us recall that by M we denoted the number

of left extensions of some factor, therefore M ≤ #A. See Figure 4.

The construction of the word v and the definition of the morphism ϕ over the

alphabet B = {1, 2, . . . ,M} can be done in exactly the same way as in the proof of

Theorem 2. It remains to show that v is an Arnoux-Rauzy word.
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According to Theorem 2 we know that v is R-rich and uniformly recurrent.

Applying Property (ii) from Proposition 5 we deduce that the language L(v) is

closed under reversal.

Suppose there exist v, w ∈ L(v), two LS factors such that |v| = |w| and v 6= w.

Since the words q(i) end with distinct letters, it is clear that ϕ(w)p is a LS factor

of u and it has the same number of left extensions as w. The same holds for ϕ(v)p.

Since both these factors have their length greater than or equal to |p| > L and are

both LS, one must be a prefix of the other. Let without loss of generality ϕ(w)p is

a prefix of ϕ(v)p, i.e., ϕ(v)p = ϕ(ww′)p. The injectivity of ϕ implies w′ = ε and

thus v = w — a contradiction.

Remark 9. Note that the proof of Theorem 3 is in fact a combination of methods

used in the preceding proofs of Theorems 1 and 2 in the sense that the set of complete

return words r(i) of the factor p and the set of |p|-simple paths in u coincide.

4. Open Problems and Remarks on Graphs Hidden in the

Structure of Rich Words

In this section, we list some related open problems and remarks.

The role of uniform recurrence

All presented results concern infinite words whose language is closed under one

involutive antimorphism. In particular, we proved that any uniformly recurrent

Θ-rich word u is a morphic image of an R-rich word, or equivalently, that the

reversal mapping R is more important than other involutive antimorphisms. The

question whether this statement is valid even in case when u is not uniformly

recurrent is still open. Infinite words whose languages are invariant under more

antimorphisms are not treated at all in the paper. The famous Thue-Morse word

is one such word. Recently the authors proved that aperiodic words with a larger

group of symmetries cannot be Θ-rich for any antimorphisms Θ from the group.

Therefore, a new definition of richness which respects all symmetries present in an

infinite word is suggested, see [20]. This definition is based on the notion of the

graph of symmetries of a given infinite word. The super reduced graph is its special

case, when the group of symmetries consists just from Θ and Θ2 = Id. As already

metioned, in [21], we generalize most of the known characterizations of richness

with respect to all symmetries, including the notion of defect. Despite many other

equivalent descriptions of (almost) rich words, we have chosen for generalization the

property of the super reduced graphs, since it seems to be crucial for deducing all

other characterization of (almost) rich words.

Graphs hidden in the structure of rich words

The main tool for proving Theorem 1 was the notion of the super reduced Rauzy

graph Gn(u). Richness of u implies for all n ∈ N that the graph obtained from
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Gn(u) by removing loops is a tree. In [3], other types of graphs are exploited for

characterizations of richness. To any bispecial factor w of an infinite word u with

language closed under reversal, we assign a graph Gw = (Vw, Ew). Its definition

differs for palindromic and non-palindromic factors w.

If w is non-palindromic then Gw is bipartite with the set of vertices {aw | aw ∈

L(u)} ∪ {wb | wb ∈ L(u)} and the set of edges Ew = {awb | awb ∈ L(u)}.

If w is palindromic, then Vw = {aw | aw ∈ L(u)} and two vertices aw and bw

are connected with an edge if awb belongs to L(u). In this case, the graph Gw may

have loops.

As follows from the proof of Theorem 11 in [3],

• an infinite word u is rich if and only if for any bispecial factor w ∈ L(u) the

graph obtained from Gw by removing loops is a tree;

• an infinite word u is almost rich if and only if there exists a constantM such that

for any bispecial factor w ∈ L(u) of length |w| ≥M the graph obtained from Gw

by removing loops is a tree.

The property of a graph Gw “to be a tree” can be reformulated by value of bilateral

order of w.

Morphisms fixing rich words

As we have already mentioned in the introduction, we do not discuss here the

question of morphisms preserving the set of (almost) rich words. A description of

such morphisms can be a tough problem. Our scepticism is supported by Example

5.6. from [4], in which we construct a primitive morphism ψ and two rich words

u and v, such that the palindromic defect of ψ(u) is infinite and the palindromic

defect of ψ(v) is zero.

We believe that a characterization of (almost) richness by the above mentioned

graphs Gw assigned to bispecial factors may serve to identify morphisms ϕ which

do not preserve the tree structure of Gw after applying ϕ on w.

Defect of aperiodic fixed points of primitive morphisms

Almost rich words which are preserved by a primitive morphism, i.e. fixed points of

primitive substitutions with finite defect, are studied in the article [5]. Its authors

conjectured:

Conjecture 10. Let u be a fixed point of a primitive morphism ϕ. If the defect is

such that 0 < D(u) <∞, then u is periodic.

In [5], the authors conclude that the conjecture holds for a special class of

morphisms (see Section 6 in [5]). A full verification of the conjecture remains an

open question.

In
t. 

J.
 F

ou
nd

. C
om

pu
t. 

Sc
i. 

20
12

.2
3:

10
67

-1
08

3.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 C

Z
E

C
H

 T
E

C
H

N
IC

A
L

 U
N

IV
E

R
SI

T
Y

 I
N

 P
R

A
G

U
E

 F
A

C
U

L
T

Y
 O

F 
E

L
E

C
T

R
IC

A
L

 E
N

G
IN

E
E

R
IN

G
 o

n 
10

/0
3/

12
. F

or
 p

er
so

na
l u

se
 o

nl
y.



September 19, 2012 16:59 WSPC/INSTRUCTION FILE
S012905411240045X

1082 E. Pelantová & Š. Starosta
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[2] P. Baláži, Z. Masáková, and E. Pelantová. Factor versus palindromic complexity of
uniformly recurrent infinite words. Theoret. Comput. Sci., 380(3):266–275, 2007.
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