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ABSTRACT

We study properties of β-numeration systems, where β > 1 is the real root of the
polynomial x3 −mx2 −x−1, m ∈ N, m ≥ 1. We consider arithmetic operations on the
set of β-integers, i.e. on the set of numbers whose greedy expansion in base β has no
fractional part. We show that the number of fractional digits arising under addition of
β-integers is at most 5 for m ≥ 3 and 6 for m = 2, whereas under multiplication it is at
most 6 for all m ≥ 2. We thus generalize the results known for Tribonacci numeration
system, i.e. for m = 1. We summarize the combinatorial properties of infinite words
naturally defined by β-integers. We point out the differences between the structure of
β-integers in cases m = 1 and m ≥ 2.

Keywords: beta-expansion, numeration system, Pisot number.

1. Introduction

In this paper we study the properties of a non-standard numeration system related
to an irrational base β for a class of cubic numbers β.
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The definition of a numeration system based on a real number β > 1 is given by the
fact that every non-negative x has a unique expression in the form of its β-expansion,

x =

k∑

i=−∞

aiβ
i ,

where the coefficients ai are non-negative integers and

0 ≤ x −
k∑

i=n

aiβ
i < βn for all n ∈ Z, n ≤ k . (1)

A real number x for which the β-expansion of |x| is of the form |x| =
∑k

i=0 aiβ
i is

called a β-integer. The set of β-integers is denoted by Zβ . We say that a real x has
a finite β-expansion, if x is an element of the set

Fin(β) :=

∞⋃

n=0

1

βn
Zβ .

If β = 10, then the β-expansion of x is the ordinary decimal expansion of x and
Zβ = Z. An equality Zβ = Z holds for every rational integer β ∈ Z, β > 1.

If β /∈ Z, the condition (1) implies that the coefficients ai of the β-expansion satisfy
ai ∈ {0, 1, . . . , bβc} for all i ≤ k. However, not all power series with such coefficients
corresponds to a β-expansion of some real x. For the characterization of admissible
sequences of coefficients one needs to introduce the so-called Rényi expansion of 1,

dβ(1) = t1t2t3 · · · , where t1 = bβc and
∞∑

n=2

tn
βn

is the β-expansion of 1 −
t1
β

.

A number β, for which dβ(1) is eventually periodic is called a Parry number. If
moreover dβ(1) = t1t2t3 · · · has only a finite number of non-zero entries ti, then β is
called a simple Parry number and the vanishing coefficients at the end of dβ(1) are
omitted. Expansions of β-integers are characterized by the Parry condition [18]:

∑k
i=0 aiβ

i with ai ∈ {0, 1, 2, . . .} is a β-expansion of some x > 0 if and only if
aiai−1 · · · a0 ≺ t1t2t3 · · · , i.e. aiai−1 · · · a0 is lexicographically strictly smaller than
t1t2t3 · · · for any i = k, k − 1, . . . , 0.

Unlike numeration systems with an integer base, the set Zβ of β-integers is not
closed under addition and multiplication if β /∈ Z. However, this does not exclude
that Fin(β) is a ring. A necessary condition so that Fin(β) is closed under addition
and multiplication is that β is a Pisot-Vijayaraghavan (PV) number and a simple
Parry number [1, 12]. Recall that PV numbers are defined as real algebraic integers
greater than 1 such that their conjugates are inside the unit complex circle. It is
known that every PV number is a Parry number.

Some sufficient conditions on a simple Parry number β so that Fin(β) is a ring are
also known1. In [12] it is shown that if dβ(1) = t1t2 · · · tm satisfies t1 ≥ t2 ≥ · · · ≥

1We say that the number β has Property (F) if the set Fin(β) is a ring
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tm > 0 then Fin(β) is a ring. Hollander [15] has shown that t1 > t2 + t3 + · · · tm is
a sufficient condition so that Fin(β) is a ring. For cubic PV units β Akiyama [1] has
shown that Fin(β) is a ring if and only if β is a simple Parry number, i.e. dβ(1) is
finite. A weaker form of the condition (F) is the so-called weak finiteness property,
studied in [4].

For performing the arithmetic operations in the numeration system based on β it
is important not only to know that the result has a finite fractional part, but to know
the length of the fractional part. We therefore study the quantities

L⊕ = L⊕(β) := min{n ∈ N0 | ∀x, y ∈ Zβ , x + y ∈ Fin(β) ⇒ x + y ∈ β−nZβ} ,

L⊗ = L⊗(β) := min{n ∈ N0 | ∀x, y ∈ Zβ , xy ∈ Fin(β) ⇒ xy ∈ β−nZβ} .

In [2] it is shown that for β a PV number, one has L⊕ < +∞. In [14] the same
result is given for L⊗. First known values for L⊕, L⊗ have been provided in [9] for
quadratic PV units. Article [14] states exact values and estimates on L⊕, L⊗ for
arbitrary quadratic PV numbers. The first cubic case was studied by Messaoudi.
In [16] he shows for the so-called Tribonacci numeration system, i.e. for the base β
with minimal polynomial x3 − x2 − x − 1, that L⊗ ≤ 9, and states the conjecture of
Arnoux that L⊗ = 3. In [17] he improves the upper bound to L⊗ ≤ 6. In [6] it is
shown that 4 ≤ L⊗ ≤ 5 and 5 ≤ L⊕ ≤ 6. Final exact value L⊕ = 5 has been given
with an elegant proof by Bernat [8].

In this paper we study a class of cubic units β > 1, roots of

x3 = mx2 + x + 1 , m ∈ N .

We call such base β the generalized Tribonacci number, since the Tribonacci case is
obtained for m = 1. The equation x3 = mx2 + x + 1 has a unique real solution β.
It satisfies m < β < m + 1. The other two roots β′ and β′′ are mutually complex
conjugates |β′| = |β′′| < 1. Obviously, we have

ββ′β′′ = 1 , β + β′ + β′′ = m .

The Rényi expansion of 1 is dβ(1) = m11. Therefore the digits in a β-expansion take
values in {0, 1, . . . , m} and the Parry condition implies for a0, a1, . . . , ak ∈ N0 that

k∑

i=0

aiβ
i is a β-expansion ⇐⇒ aiai−1ai−2 ≺ m11 for all i = 2, 3, . . . , k .

Due to the results of Frougny and Solomyak [12] or Akiyama [2] the set Fin(β) is a
ring for all m.

Our aim is to provide estimates on the quantities L⊕(β), L⊗(β) for these general-
ized Tribonacci numbers β. Since the Tribonacci case m = 1 has been already solved,
we consider m ≥ 2.

Lower bounds on L⊕(β), L⊗(β) can be clearly obtained as the length of the frac-
tional part of the sum, respectively product of some elements x, y ∈ Zβ .
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Proposition 1.1 Let β be the real root of x3 = mx2 + x + 1. Then

L⊕(β) ≥







5 for m = 2 ,

4 for m ≥ 3 ,
L⊗(β) ≥ 4 , for m ≥ 2 .

Proof. We have for m = 2,

(β4 + β2 + 2β) − (β3 + 2) = 2β3 + 2 + β−3 + β−4 + β−5 ,

2 × (β6 + 2β5 + 2β3 + β2 + 2) = β7 + β6 + 2β4 + 2β + β−2 + 2β−3 + β−4 ,

and for m ≥ 3,

(mβ3 + m) + (mβ3 + m) = 2 × (mβ3 + m) =

= β4 + (m − 1)β3 + (m − 1)β2 + 2β +

+ (m − 3)β−1 + (m − 1)β−2 + 2β−3 + β−4 .

2

The main result of this paper is providing the upper bounds on L⊕(β) and L⊗(β).
Using a specific method of estimation, which will be explained in the next section,
we obtain 5 ≤ L⊕ ≤ 6, for m = 2, and 4 ≤ L⊕ ≤ 5, for m ≥ 3, (Theorem 3.1). Let
us mention that for two special m the exact value of L⊕(β) is known [8], namely for
m = 2 is L⊕(β) = 5 and for m = 3 is L⊕(β) = 4. Further, we study L⊗(β). We
establish 4 ≤ L⊗ ≤ 6 for m ≥ 2, (Theorem 3.2). Note that the exact value of L⊗(β)
is not known even in Tribonacci case m = 1.

The proofs of Theorems 3.1 and 3.2 use real quadratic forms and their differences.
It is noteworthy that the similar computation was the bottleneck of [5] and [13] in
studying topology of Thurston-Rauzy fractals associated with β-expansions.

Although we study the numeration systems mainly from the arithmetical point of
view, its combinatorial properties are also very interesting. At the end of the paper
we present some combinatorial properties of the set of β-integers which can be derived
from general results in the literature for the class of generalized Tribonacci numbers.

2. Methods of upper estimation of L⊕(β), L⊗(β)

Let us present the methods for finding upper estimates of L⊕, L⊗ and the one chosen
for the class of generalized Tribonacci numbers explain in detail. Two methods for
estimation of L⊕, L⊗ are known. First of them uses the so-called Meyer property of
the set of β-integers, namely that

Zβ + Zβ ⊂ Zβ + F , for a finite set F .

In [3] one studies the question of minimizing the finite set F . For multiplication, one
has a similar property [14]: If β is a PV number, then

Zβ · Zβ ⊂ Zβ + G , for a finite set G .
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This method is used in [6] to find values of L⊕(β), L⊗(β) where β is a PV number,
solution of the equation x3 = 25x2 + 15x + 2.

The second much more used method for estimation of L⊕, L⊗ is based on the
following theorem. Several versions of this method are employed in [6, 8, 14, 16, 17].

Theorem 2.1 ([14]) Let β > 1 be an algebraic number, and let β ′ be its conjugate.
For z ∈ Q(β) we denote by z′ the image of z under the field isomorphism ′ : Q(β) →
Q(β′). If

H := sup
{
|z′|

∣
∣ z ∈ Zβ

}
< +∞ ,

K := inf
{
|z′|

∣
∣ z ∈ Zβ \ βZβ

}
> 0 ,

then
(

1

|β′|

)L⊕

<
2H

K
and

(
1

|β′|

)L⊗

<
H2

K
.

In the above theorem we require existence of at least one conjugate of β such that
the constant H is finite and K is positive. The former is ensured if |β′| < 1. To decide
whether K > 0 or K = 0 is much more complicated. In the paper [6] there is given
a sufficient condition for a number β so that K = 0. An example for such number β
is the already mentioned solution of the equation x3 = 25x2 + 15x + 2. Indeed, for
such β one cannot employ Theorem 2.1. A sufficient condition for β so that K > 0
was given by Akiyama [1]. Akiyama proved that for β PV unit such that Fin(β) is a
ring, the origin is an inner point of the central tile in the conjugated plane, i.e. of the
closure of the set {z′ | z ∈ Zβ}. This implies K is positive for all conjugates of β. In
such a case one chooses the conjugate which provides the best estimates on L⊕, L⊗.

Our aim is to provide estimates on the quantities L⊕(β), L⊗(β) for the generalized
Tribonacci numbers β. We use the method based on Theorem 2.1. Recall that one
has to choose a suitable conjugate of β. However, in the case of generalized Tribonacci
numbers, both conjugates of β have the same modulus < 1, and thus both of them
will provide the same values of constants H, K. Moreover, since β is a cubic PV unit
with finite Rényi expansion of 1, set Fin(β) is a ring anf therefore constant K in
Theorem 2.1 is positive.

It is a difficult problem to determine the exact values of H and K. However, in
order to obtain bounds on L⊕ and L⊗ it suffices to find some “reasonable” upper
estimate on H and lower estimate on K.

Upper estimate on H. For a given p ∈ N, every z ∈ Zβ can be written as

z = (a0 + a1β + · · · + ap−1β
p−1) + βp(ap + · · · + a2p−1β

p−1) + . . . ,

with the integer coefficients satisfying the admissibility condition aiai−1ai−2 ≺ m11.
Using triangular inequality, the modulus of the conjugate z ′ can be estimated by

|z′| ≤
(
1 + |β′|p + |β′|2p + . . .

)
Maxp =

Maxp

1 − |β′|p
=: Hp , (2)
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where

Maxp := max
{
|z′|

∣
∣ z ∈ Zβ , |z| < βp

}
. (3)

We therefore have

H ≤ Hp , for all p ∈ N.

Lower estimate on K. For a given p ∈ N, and for all z ∈ Zβ we have

|z′| ≥ |a0 + a1β + · · · + ap−1β
p−1| − |β′|p|ap + ap+1β

′ + . . . | .

Note that the last term on the right hand side is a modulus of a β-expansion of a
conjugate of some x ∈ Zβ and therefore it is bounded by H (or Hq for some q ∈ N).
With the notation

Minp := min
{
|z′|

∣
∣ z ∈ Zβ \ βZβ , |z| < βp

}
, (4)

we obtain an estimate

K ≥ Kp,q := Minp − |β′|pHq , for all p, q ∈ N. (5)

We see that the problem of the upper bounds on L⊕ and L⊗ has been reduced
to the problem of finding Maxp and Minp for a suitable value of p. Recall from the
definition of Maxp and Minp (equations (3) and (4)) that both of them are calculated
using the modulus |z′| of the image of β-integers |z| < βp under the field morphism.
It turns more convenient to study the square of this quantity.

Let us consider a β-integer z, such that |z| < βp, i.e. z is of the form z =
a0 + a1β + a2β

2 + · · ·+ ap−1β
p−1, where the integer coefficients ai satisfy the admis-

sibility condition aiai−1ai−2 ≺ m11. Since the conjugates of β are mutually complex
conjugated we have

|z′|2 = z′z′′ =

p−1
∑

i=0

aiβ
′i

p−1
∑

j=0

ajβ
′′j =

p−1
∑

i=0

p−1
∑

j=0

aiajβ
′iβ′′j .

We use the relation ββ′β′′ = 1 to derive for j > i,

aiajβ
′iβ′′j + ajaiβ

′jβ′′i = aiajβ
′j−i 1

βi
+ aiajβ

′′j−i 1

βi
=

aiaj

βi
2<(β′j−i

) .

Substituting this to the expression for |z′|2, we obtain

|z′|2 =

p−1
∑

k=0

a2
k

βk
+

∑

0≤i<j≤p−1

aiaj

βi
2<(β′j−i

) . (6)

Therefore, |z′|2 is a real quadratic form of integer variables a0, a1, . . . , ap−1. In order

to express it in a simpler form, we need to determine the coefficients 2<(β ′j−i
). Let

us denote ck := 2<(β′k). For calculation of ck we find a recurrent formula,

ckc1 = (β′k + β′′k)(β′ + β′′) = β′k+1 + β′kβ′′ + β′′kβ′ + β′′k+1

= ck+1 + β′β′′(β′k−1 + β′′k−1)

= ck+1 +
1

β
ck−1 .
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Let us enumerate several initial coefficients,

c0 = 2 , (7a)

c1 = −

(
1

β
+

1

β2

)

, (7b)

c2 = −

(
2

β
−

1

β2
−

2

β3
−

1

β4

)

, (7c)

c3 =
3

β2
+

2

β3
−

3

β4
−

3

β5
−

1

β6
, (7d)

c4 =
2

β2
−

4

β3
−

7

β4
+

6

β6
+

4

β7
+

1

β8
. (7e)

Note that for m ≥ 3 the coefficients satisfy c1 < 0, c2 < 0, c3 > 0 and c4 > 0.
Our aim is to find Maxp and Minq for suitable p, q so that the bounds on L⊕, L⊗

obtained by Theorem 2.1 are best possible. Computer experiments show that optimal
constants are H3, K5,3, that is to say the values of Hn and Km,n change too little
with increasing n, m and do not provide better estimates on the values of L⊕ and L⊗.
Thus we need to calculate Max3 and Min5.

Since we are interested in Max3, the real quadratic form |z′|2 to be examined
simplifies to

Q1(a2, a1, a0) := |z′|2 = a2
0 +

a2
1

β
+

a2
2

β2
+ a0a1c1 + a0a2c2 +

a1a2

β
c1 . (8)

In order to calculate the value of Max3 we have to find the maximum of the quadratic
form Q1(a2, a1, a0) on the set

S1 := {(a2, a1, a0) ∈ Z3 | 0 ≤ ai ≤ m, a2a1a0 ≺ m11} . (9)

Similarly, for calculation of Min5, we use the quadratic form

Q2(a4, a3, a2, a1, a0) := |z′|2 = a2
0 +

a2
1

β
+

a2
2

β2
+

a2
3

β3
+

a2
4

β4
+ a0a1c1 + a0a2c2+

+a0a3c3 +a0a4c4 +
a1a2

β
c1 +

a1a3

β
c2 +

a1a4

β
c3 +

a2a3

β2
c1 +

a2a4

β2
c2 +

a3a4

β3
c1 .

(10)

We have to find a minimum of this quadratic form on the set

S := {(a4, a3, a2, a1, a0) ∈ Z5 | m ≥ ai ≥ 0, a0 > 0 and ak+2ak+1ak ≺ m11} .(11)

The condition a0 6= 0 in the definition of set S corresponds to the condition z ∈
Zβ \ βZβ in the definition of Minp.

For finding the extremal values of the quadratic forms, we inspect the first differ-
ences of the quadratic form for each variable ai, each time fixing all yet appointed
values of the variables. The difference in a variable ai will be denoted

∆ai := Q(. . . , ai + 1, . . . ) − Q(. . . , ai, . . . ) ,

where ai ≤ m − 1 and the variables aj , j 6= i take values at most m. Using this
method we further prove the following result.
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Proposition 2.2 Let β > 1 be the real root of the equation x3 = mx2 + x + 1 for
m ∈ N, m ≥ 2. Then

Max3 = max
{
|z′|

∣
∣ z ∈ Zβ , |z| < β3

}
= m ,

Min5 = min
{
|z′|

∣
∣ z ∈ Zβ \ βZβ , |z| < β5

}
=







β−2(β + 1) for m ≥ 3

|1 + 2β′2 + 2β′4| for m = 2 .

Since the proof of this proposition mainly consists of a rather technical analysis of
the behavior of the quadratic forms Q1, Q2, we postpone it to a separate Section 4.

3. The main result

In the preceding sections we have found the values of Max3 and Min5. According to
the definitions (2) and (5) we have for m ≥ 3,

H3 =
Max3

1 − |β′|3
=

mβ3/2

β3/2 − 1

and

K5,3 = Min5 − |β′|5H3 =
β + 1

β2
−

m

β(β3/2 − 1)
.

Now, we will use these values to obtain upper estimates on the value of L⊕.

Theorem 3.1 Let β > 1 be the real root of the equation x3 = mx2 +x+1 for m ∈ N.
Then

4 ≤ L⊕(β) ≤ 5 for m ≥ 3 ,

5 ≤ L⊕(β) ≤ 6 for m = 2 .

Proof. The upper bound L⊕ ≤ 6 for m = 2 can be easily checked numerically. Since

2H

K
<

2H3

K5,3
' 18.4596 <

(
1

|β′|

)7

' 26.3628 ,

according to the Theorem 2.1 we have L⊕ ≤ 6.
Let us assume m ≥ 3. Again according to the Theorem 2.1 we have

(
1

|β′|

)L⊕

<
2H

K
≤

2H3

K5,3
.

We will prove the inequality

2H3

K5,3
=

2mβ3/2

β3/2 − 1

1
β+1
β2 − m

β(β3/2−1)

< β3 =
1

|β′|6
, (12)

which implies L⊕ ≤ 5.
After a few simple operations the inequality (12) is transformed into

2mβ1/2 + mβ < (β + 1)(β3/2 − 1) . (13)
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For m ≥ 4 the proof of the inequality (13) will be based on the fact that β > β1/2+2,
which holds since

β > β1/2 + 2 ⇔ (β − 2)2 > β ⇔ mβ + 1 +
1

β
− 4β + 4 > β .

Now we estimate the left hand side of (13)

mβ1/2(2 + β1/2) < β1/2mβ < β1/2

(

mβ +
1

β

)

= β1/2(β2 − 1) =

= β1/2(β − 1)(β + 1) = (β + 1)(β3/2 − β1/2) < (β + 1)(β3/2 − 1) ,

which proves (13).
In the omitted case m = 3, the inequality (13) can be proved directly. 2

The following theorem yields the main result for multiplication – the estimates of
the value of the coefficient L⊗.

Theorem 3.2 Let β > 1 be the real root of the equation x3 = mx2 +x+1 for m ∈ N,
m ≥ 2. Then

4 ≤ L⊗(β) ≤ 6 .

Proof. Let us assume m ≥ 3. According to the Theorem 2.1 it suffices to show

H2

K
≤

H2
3

K5,3
=

m2

(1 − β−3/2)2
1

β+1
β2 − β−5/2 m

1−β−3/2

<
1

|β′|7
,

which can be transformed into

(1 + m)β3 + β2 + (m + 2)β + 1 >
(
(m + 2)β + m2 + 2

)
β3/2 . (14)

By m ≤ β < m + 1 we can estimate the left hand side of (14) as

(1 + m)β3 + β2 + (m + 2)β + 1 ≥

(1 + m)m3 + m2 + (m + 2)m + 1 ≥ m3(1 + m) + m2 ,

whereas the right hand side as

(
(m + 2)β + m2 + 2

)
β3/2 <

((m + 2)(m + 1) + m2 + 2)(m + 1)3/2 ≤ 3m2(m + 1)3/2 ,

where the last inequality holds for m ≥ 4. The omitted cases will be treated separately
at the end of the proof.

Using last two estimates we have

3m2(m + 1)3/2 ≤ m2 + m3(1 + m) .

It is easy to check that this inequality holds for m ≥ 10.
Since our estimates were too rough to check the validity of (14) for m ≤ 9, we

verified the proposition numerically for these cases as well as for the case m = 2
which was omitted at the beginning of the proof. 2
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Let us mention that computer experimetns support the hypotesis that L⊗(β) = 4
for m ≥ 2.

4. Proof of Proposition 2.2

In this section we provide the proof of Proposition 2.2. For that we will use the
notions of quadratic forms introduced in Section 2. We start with determining the
value of Min5, since the results will be used in the other part of the proof for Max3.

Determining Min5. In the case m = 2 the set S2 defined in (11) has only 79
elements. It is easy to enumerate them one by one and to find the value of Min5.
Therefore, from now we will consider m ≥ 3.

1) Difference ∆a0
. The inspected first difference of the quadratic form Q2 is

∆a0
= 2a0 + 1 + c1a1 + c2a2 + c3a3 + c4a4 .

Since a0 ≥ 1, c1 < 0, c2 < 0, c3 > 0, c4 > 0 and a1, . . . , a4 ∈ {0, . . . , m} we have

∆a0
≥ 3 + mc1 + mc2 = 3 − m

(
1
β + 1

β2

)

− m
(

2
β − 1

β2 − 2
β3 − 1

β4

)

≥ 3− 3m
β > 0 ,

where the last inequality follows from the fact that m = bβc.
Therefore, the form is increasing in the variable a0 and so the minimum is reached

at the smallest possible value of a0, i.e. at a0 = 1. From now on we will consider
a0 = 1.

2) Difference ∆a1
. The inspected difference is

∆a1
=

2a1 + 1

β
+ c1 + c1

a2

β
+ c2

a3

β
+ c3

a4

β
.

Since c1 < 0, c2 < 0, c3 > 0 we have

∆a1
≥

2a1

β
−

1

β2
−

m

β

(
1

β
+

1

β2

)

−
m

β

(
2

β
−

1

β2
−

2

β3
−

1

β4

)
2a1

β
−

3m + 1

β2
.

The right side of the inequality is strictly greater than zero for a1 ≥ 2. The minimum
is therefore reached for either a1 = 0, a1 = 1 or a1 = 2.

3) Difference ∆a2
. The inspected difference is

∆a2
=

2a2 + 1

β2
+ c2 + c1

a1

β
+ c1

a3

β2
+ c2

a4

β2
.

For the difference ∆a2
:= Q2(a4, a3, a2 + 1, a1, a0)−Q2(a4, a3, a2, a1, a0) one needs to

consider only a2 ≤ m − 1. Since c1, c2 < 0, we obtain

∆a2
≤

2m − 1

β2
+ c2 =

2m − 1

β2
−

2m− 1

β2
−

1

β4
= −

1

β4
< 0.

The quadratic form is decreasing in the variable a2 and the minimum is reached for
the highest possible (w.r.t. Parry’s condition) value of a2.
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4) Difference ∆a3
. The inspected difference is

∆a3
=

2a3 + 1

β3
+ c3 + c2

a1

β
+ c1

a2

β2
+ c1

a4

β3
.

We have shown that the minimum of the quadratic form is reached for a1 ∈ {0, 1, 2}.
It is suitable to discuss the cases a1 ∈ {0, 1} and a1 = 2 separately.

Let us assume a1 ∈ {0, 1}. Since a2, a4 ≤ m < β and c1, c2 < 0 we have

∆a3
≥

1

β3
+ c3 +

c2

β
+

c1

β
+

c1

β2
=

2(m − 1)

β4
+

1

β6
> 0 .

This means that for a1 ∈ {0, 1} the minimum of the form is reached for a3 = 0.
Moreover, we already know that the minimum is reached for the highest possible
value of a2 (w.r.t. Parry’s condition), therefore, we will inspect following candidates
for the minimum (a4, 0, m − 1, 1, 1) and (a4, 0, m, 0, 1).

The discussion for a1 = 2 will be postponed for this moment.

5) Difference ∆a4
. The inspected difference is

∆a4
=

2a4 + 1

β4
+ c4 + c3

a1

β
+ c2

a2

β2
+ c1

a3

β3
.

For the quintuple (a4, 0, m − 1, 1, 1) we obtain

∆a4
≥

1

β4
+ c4 + c3

1

β
+ c2

m − 1

β2
> 0 .

Hence we have the first candidate for the point where the form Q2(a4, a3, a2, a1, a0)
reaches its minimum

q1 := (0, 0, m− 1, 1, 1) .

For the quintuple (a4, 0, m, 0, 1) we obtain

∆a4
≤

2m + 1

β4
+ c4 + c2

m

β2
< 0 .

Second candidate for the point where the form Q2(a4, a3, a2, a1, a0) reaches its mini-
mum is

q2 := (m, 0, m, 0, 1) .

Here, we get back to the case a1 = 2. We inspect the difference ∆a4
for the

quintuple (a4, a3, a2, 2, 1). Note that due to the Parry’s condition a2 ≤ m − 1. We
can estimate

∆a4
≥

1

β4
+ c4 + c3

2

β
+ c2

m − 1

β2
+ c1

m

β3
=

2

β3
+

2m− 1

β4
−

3

β5
> 0 .

Hence we have to inspect the candidate (0, a3, a2, 2, 1).

We treat separately the the case a3 = m, which implies a2 = 0. So we have the
third candidate

q3 := (0, m, 0, 2, 1)
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and the cases a3 ≤ m − 1, where according to the negativity of ∆a2
the value of

corresponding variable is a2 = m−1. The difference ∆a3
for the quintuple (0, a3, m−

1, 2, 1) is

∆a3
=

2a3 + 1

β3
+ c3 + c2

2

β
+ c1

m − 1

β2
=

2a3 − 2m + 6

β3
+

1 − m

β4
−

2

β5
−

1

β6
.

It is easy to see that for a3 ≤ m−3 the ∆a3
< 0 and that for a3 ≥ m−2 the ∆a3

> 0.
Therefore the fourth candidate for the minimum is

q4 := (0, m − 2, m − 1, 2, 1) .

By computing the values of the quadratic form Q2 in the points q1, q2, q3 and q4

we obtain

(β + 1)2

β4
= Q2(q1) < min{Q2(q2), Q2(q3), Q2(q4)} .

Therefore, Min2
5 = β−4(β + 1)2 for m ≥ 3.

Determining Max3. Similarly as in the previous part of the proof we will now
inspect the first differences of the quadratic form Q1 in the individual variables.

From the definition of Max3 we need to determine the maximal value of Q1 over the
set S1, which allows the coefficients a0, a1, a2 take any values in {0, 1, . . . , m} with the
admissibility condition. However, it is sufficient to consider a0 > 0, since Q1 reaches
its maximum on such a point. Otherwise, we would have

Max3 = |0 + a1β
′ + a2(β

′)2| = |β′||a1 + a2β
′| ≤ |β′|Max2 < Max2 ,

which is in contradiction with Max2 ≤ Max3.

The inspection of the difference ∆a0
of the quadratic form Q1 is very similar to the

one of Q2 in the first part of the proof. We have

∆a0
= 2a0 + 1 + a1c1 + a2c2 ,

a0 ≥ 1, c1 < 0 and c2 < 0. Hence

∆a0
≥ 3 + mc1 + mc2 ≥ 3−

3m

β
> 0 ,

the form is increasing in the variable a0 and so the maximum is reached for the highest
possible value of a0 (w.r.t. Parry’s condition).

Since

∆a1
=

2a1 + 1

β
+ c1a0 + c1

a2

β

is a linear function in the variable a1 and the coefficient 2
β at a1 is positive, the

difference ∆a1
is either positive for all values of a1 or negative for all values of a1 or

negative for some initial values of a1 and then positive, regardless of the values of a0

and a2.
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Anyway, the maximum in the variable a1 is reached for some extremal value of a1.
The same reasoning works also for the maximum in the variable a2.

One can easily see that there are only six candidates fulfilling preceding conditions
on the values of the variables a2, a1 and a0:

a2 a1 a0

q1 0 0 m

q2 0 m − 1 m

q3 0 m 1

q4 m − 1 m − 1 m

q5 m − 1 m 1

q6 m 0 m

Finally, by computing the values of the quadratic form Q1(a2, a1, a0) in the points
q1, . . . , q6 we have

1. Q1(0, 0, m) = m2.

2. Q1(0, m − 1, m) = m2 + (m−1)2

β − m(m − 1)
(

1
β + 1

β2

)

< m2.

3. Q1(0, m, 1) = 1 + m2

β − m
(

1
β + 1

β2

)

< m2.

4. Q1(m − 1, m − 1, m) = m2 + (m−1)2

β + (m−1)2

β2 − m(m − 1)
(

1
β + 1

β2

)

−

− (m − 1)2
(

1
β2 + 1

β3

)

− m(m − 1)
(

2
β − 1

β2 − 2
β3 − 1

β4

)

< m2.

5. Q1(m − 1, m, 1) = 1 + m2

β + (m−1)2

β2 − m
(

1
β + 1

β2

)

− m(m − 1)
(

1
β2 + 1

β3

)

−

− (m − 1)
(

2
β − 1

β2 − 2
β3 − 1

β4

)

< m2.

6. Q1(m, 0, m) = m2 + m2

β2 − m2
(

2
β − 1

β2 − 2
β3 − 1

β4

)

< m2.

Therefore, Max2
3 = m2 and the proposition is proved.

5. Combinatorial properties of β-integers

It is known [19] that the set Zβ has no accumulation points and that the distances

between adjacent points in Zβ take values in the set {
∑∞

i=1
ti+k

βi | k ∈ N0} provided

that β is a Parry number. For β with the Rényi expansion dβ(1) = m11 the distances
between adjacent points of Zβ take three values, namely 1, 1

β + 1
β2 , 1

β . If we code
these distances by letters a, b, c, respectively, the tiling of the positive real line by the
non-negative elements of Zβ can be represented as an infinite word uβ := u0u1u2 · · ·
in a ternary alphabet {a, b, c}. An example of the tiling of the real line by Zβ for
m = 2, and the corresponding infinite word uβ is shown on Figure 5.
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0 1 2 β β+1 β+2 2β 2β+1 β2 β2+1 β2+2 β2+β

a a b a a b a c a a b

Figure 1: The set Zβ ∩ [0, +∞) for dβ(1) = 211 and the corresponding word uβ .

The infinite word uβ for dβ(1) = m11 is invariant under the primitive substitu-
tion [10]

a 7→ amb ,

b 7→ ac ,

c 7→ a ,

where am stands for aa · · · a
︸ ︷︷ ︸

m times

. (15)

For example, if m = 2, then we generate the fixed point of the substitution by

a 7→ aab 7→ aabaabac 7→ aabaabacaabaabacaaba 7→ · · ·

and we obtain the infinite word uβ from Figure 5.
For the description of combinatorial properties of an infinite word, crucial is the

notion of a factor. We say that a finite word w = w0w1 . . . wn−1 is a factor of
length n of the infinite word u = u0u1u2 · · · , if for some i we have w0w1 · · ·wn−1 =
uiui+1 · · ·ui+n−1. The function that to an integer n associates the number C(n) of
different factors of length n in the infinite word u is called the complexity of u. It is
known that the complexity of the infinite word uβ is C(n) = 2n+1 for all β such that
dβ(1) = m11. A proof can be found in [11].

For m = 1, the infinite word uβ is called the Tribonacci word. It is known [7] that
it is an Arnoux-Rauzy word, which means that for every length n ∈ N there exists
a unique factor w of uβ of length n, such that aw, bw and cw are factors of uβ, and
there exists a unique factor v of uβ of length n, such that va, vb and vc are factors of
uβ .

It is known that if an infinite word is Arnoux-Rauzy, then the set of its factors is
invariant under mirror image, i.e. with every factor w0w1 · · ·wn−1 the infinite word
contains the factor wn−1 · · ·w1w0. As a consequence, the infinite word uβ for m ≥ 2
cannot be Arnoux-Rauzy, because its set of factors is not stable under mirror image.
This can be seen easily from the substitution (15) under which uβ is invariant: camb
is a factor of uβ , while bamc is not.

Although the word uβ is for m ≥ 2 not Arnoux-Rauzy, it is still true that for every
length n ∈ N there exists a unique factor w of uβ of length n, such that aw, bw and
cw are factors of uβ. However, one does not have a word v which could be extended
with all the three letters to the right.

The invariance of the set of factors of the infinite word uβ decides about a property
of the image of Zβ under the field isomorphism ′ : Q(β) 7→ Q(β′), the so-called Rauzy
fractal. Figure 2 shows the set

Z′
β =

{
k∑

i=0

aiβ
′i

∣
∣
∣
∣

k∑

i=0

aiβ
i ∈ Zβ

}
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2.1: Tribonacci numeration system. 2.2: Numeration system with minimal
polynomial x3 − 2x2 − x − 1.

Figure 2: Central tiles in conjugated plane.

drawn in the complex plane, for the cases m = 1, m = 2. Bernat in [8] has shown
that if m = 1, the closure of Z′

β is a set centrally-symmetric with respect to the point

c = 1
2 (1 − β′)−1. As it can be seen from Figure 2, Z′

β for m = 2 does not have this
property.
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S. Kanemitsu (eds.), Number theory and its applications (Kyoto, 1997). Vol. 2
of Dev. Math., Kluwer Acad. Publ., 1999, 7–17.

[3] S. Akiyama, F. Bassino, and C. Frougny. Automata for arithmetic Meyer
sets. In: LATIN 2004: Theoretical informatics. LNCS 2976, Springer-Verlag,
2004, 252–261.

[4] S. Akiyama, H. Rao, and W. Steiner. A certain finiteness property of Pisot
number systems. J. Number Theory 107 (2004), 135–160.

[5] S. Akiyama and T. Sadahiro. A self-similar tiling generated by the minimal
Pisot number. Acta Math. Info. Univ. Ostraviensis 6 (1998), 9–26.



16
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