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Abstract

We intend to review some basic notions in the representation the-
ory of Lie algebras and focus in particular on the notion of Casimir
operator and its generalization.

Outline:

1. representations of Lie algebras, reducibility, Schur’s Lemma,

2. universal enveloping algebra (UEA) of a given Lie algebra,

3. Casimir operators as nontrivial central elements of UEA, their
essential role in labelling of irreducible representations,

4. generalized Casimir invariants and when they can be expressed
in terms of Casimir operators (time permitting),

5. applications: irreducible representations of Lorentz group, hy-
drogen atom in quantum mechanics.
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1 Lie algebras and their representa-

tions

A Lie algebra g is a vector space over a field F equipped with a mul-
tiplication (also called a bracket), i.e. a bilinear map [ , ] : g× g→ g,
such that

[y, x] = −[x, y] (antisymmetry) (1)
0 =

[
x, [y, z]

]
+
[
y, [z, x]

]
+
[
z, [x, y]

]
(Jacobi identity)(2)

for all elements x, y, z ∈ g. In what follows we shall consider the fields
F = R, C and finite–dimensional Lie algebras only.

The structure of the Lie algebra g can be represented in any chosen
basis (ej)

dim g
j=1 by the corresponding structure constants cjk

l in the
basis (ej)

dim g
j=1

[ej , ek] =
dim g∑
l=1

cjk
lel. (3)

A fundamental theorem due to E. E. Levi [1, 2, 3] provides a general
scheme for the structure of Lie algebras.

Theorem 1 (Theorem of Levi) Let g be a finite-dimensional Lie
algebra over a field F and r = R(g) be its radical. Then there exists a
semisimple subalgebra p of g such that

g = p u r. (4)

The subalgebra p is isomorphic to the factor algebra g/r and is unique
up to automorphisms of g.

Because r is a solvable ideal and p a semisimple subalgebra we have

[p, p] = p, [p, r] ⊆ r, [r, r] ( r.

A representation ρ of a given Lie algebra g on a vector space V is
a linear map of g into the space gl(V ) of linear operators acting on V

ρ : g→ gl(V ) : x→ ρ(x)

such that for any pair x, y of elements of g

ρ([x, y]) = ρ(x) ◦ ρ(y)− ρ(y) ◦ ρ(x) (5)

holds. The field over which the vector space is defined must contain
F in order to have the representation well–defined, i.e. we may have
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representations of real algebras on complex vector spaces but not vice
versa. Dimension of the representation ρ is understood to be the same
as the dimension of the vector space V .

A subspace W of V is called invariant if

ρ(g)W = {ρ(x)w|x ∈ g, w ∈W} ⊆W.

A representation ρ of g on V is reducible if a proper nonvanishing
invariant subspace W of V exists.

A representation ρ of g on V is irreducible if no nontrivial invariant
subspace of V exists.

A representation ρ of g on V is fully reducible when every invariant
subspace W of V has an invariant complement W̃ , i.e.

V = W ⊕ W̃ , ρ(g)W̃ ⊆ W̃ . (6)

In particular, any irreducible representation is also fully reducible.
An important criterion for irreducibility of a given representations

is

Theorem 2 (Schur’s Lemma) Let g be a complex Lie algebra and
ρ its representation on a finite–dimensional vector space V .

1. Let ρ be irreducible. Then any operator A on V which commutes
with all ρ(x),

[A, ρ(x)] = 0, ∀x ∈ g,

has the form A = λ1 for some complex number λ.

2. Let ρ be fully reducible and such that every operator A on V
which commutes with all ρ(x) has the form A = λ1 for some
complex number λ. Then ρ is irreducible.

The adjoint representation of a given Lie algebra g is a linear map
of g into the space gl(g) of linear operators acting on g

ad: g→ gl(g) : x→ ad(x)

defined for any pair x, y of elements of g via

ad(x) y = [x, y]. (7)

When convenient we may also use an alternative notation adx = ad(x).
The image of ad is denoted by ad(g).
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2 Universal enveloping algebras and

Casimir operators

Universal enveloping algebra is an important object in the represen-
tation theory of Lie algebras. It is defined as a certain factoralgebra
of the tensor algebra of a given Lie algebra g.

The tensor algebra (or free algebra) of the vector space V over the
field F is the vector space

T (V ) = ⊕∞k=0V
⊗k = F⊕ V ⊕ V ⊗ V ⊕ . . .⊕ V ⊗k ⊕ . . .

equipped with the associative multiplication generated by the multi-
plication of decomposable elements

(v1⊗ v2⊗ . . .⊗ vk) · (w1⊗ . . .⊗wl) = v1⊗ v2⊗ . . .⊗ vk⊗w1⊗ . . .⊗wl.

When the vector space V is in addition a Lie algebra V = g,
one may consider a two–sided ideal J in the associative algebra T (g)
generated by the elements of the form x⊗ y − y ⊗ x− [x, y], i.e.

J = span {A⊗ (x⊗ y − y ⊗ x− [x, y])⊗B |x, y ∈ g, A,B ∈ T (g)} .

The factoralgebra
U(g) = T (g)/J (8)

is called the universal enveloping algebra of the Lie algebra g. It is
obvious that universal enveloping algebras are associative algebras,
i.e. the notion of a universal enveloping algebra allows us to construct
an infinite dimensional associative algebra out of any Lie algebra in a
canonical way.

The main reason why universal enveloping algebras are useful is
the following observation: any representation ρ of a Lie algebra g on
a (finite–dimensional, for simplicity) vector space V gives rise to a
representation ρ̃ of the tensor algebra T (g) defined by

ρ̃(x1 ⊗ x2 ⊗ . . .⊗ xk) = ρ(x1) · ρ(x2) . . . ρ(xk).

The definition of a representation ρ, equation (5), implies that ρ̃(J ) =
0. Consequently, ρ̃ defines also a representation ρ̂ of the universal
enveloping algebra U(g) on the vector space V

ρ̂(a) = ρ̃(A), a = Amod J ∈ U(g), A ∈ T (g).

Casimir operators are elements of the center of the universal en-
veloping algebra U(g) of the Lie algebra g [4, 5, 6], i.e. such c ∈ U(g)
that

c · a = a · c
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holds for all a ∈ U(g). A necessary and sufficient condition for c to be
a Casimir operator is

c · x = x · c, ∀x ∈ g ' g⊗1/J .

We shall consider nontrivial Casimir operators only, i.e. those
different from elements of F/J ' F. In order to avoid writing mod J
at all times we adopt a convention that Casimir operators shall be
written as totally symmetric expressions in the elements of g. This
can be always accomplished using the identity

x⊗ y mod J =
1
2

(x⊗ y + y ⊗ x) +
1
2

[x, y] mod J

as many times as needed, starting from the highest order terms and
proceeding order by order. Such a procedure also implies the unique-
ness of such totally symmetric representative of the equivalence class
mod J . We shall occasionally suppress the tensor product sign, i.e.
xy ≡ x⊗ y.

The importance of Casimir operators for the representation theory
of complex Lie algebras comes from the Schur’s lemma, Theorem 2.
In any representation ρ we have

[ρ̂(c), ρ(x)] = 0, ∀x ∈ g.

Consequently, if the representation ρ is irreducible, ρ̂(c) must be a
multiple of the identity operator, λ1. The number λ depends on the
choice of the representation ρ and the Casimir operator c. If two
irreducible representations ρ1 on V1 and ρ2 on V2 are equivalent, i.e.
if a linear transformation T : V1 → V2 exists such that

ρ2(x) = T ◦ ρ1(x) ◦ T−1, ∀x ∈ g,

then necessarily we have λ1 = λ2 for the given Casimir invariant c.
That means that the eigenvalues of ρ̂(c) can be used to distinguish
inequivalent irreducible representations.

If ρ is fully reducible but not irreducible then we may use the
knowledge of Casimir operators of g in the decomposition of ρ into irre-
ducible components. In particular, we construct common eigenspaces
of all known Casimir operators and we know that each of them is an
invariant subspace (not necessarily irreducible for general g).

The existence of nontrivial Casimir operators was established for
certain classes of Lie algebras only, e.g. for semisimple ones. Also
Lie algebras with nonvanishing center, including all nilpotent ones,
do possess nontrivial Casimir operators; namely, the elements of the
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center themselves. On the other hand some Lie algebras are known to
have no nontrivial Casimir invariants.

Let us consider a semisimple complex Lie algebra g and its Killing
form K. Let us take any basis (e1, . . . , edim g) of g and find the dual
basis (ẽ1, . . . , ẽdim g) such that

K(ek, ẽj) = δjk.

Let us assume that cijk are the structure constants (3) of the Lie
algebra g in the basis (e1, . . . , ek). By the invariance of the Killing
form K we have

K(ek, [ea, ẽj ]) = −K([ea, ek], ẽj) = −cakj = −K(ek,
dim g∑
m=1

cam
j ẽm)

which by nondegeneracy of K implies that

[ea, ẽj ] =
dim g∑
m=1

cma
j ẽm.

Let us construct an element of the universal enveloping algebra U(g)
of the form

C =
dim g∑
k=1

ẽk ⊗ ek =
dim g∑
k=1

ek ⊗ ẽk (9)

(its symmetry comes from the fact that the Killing form is symmetric).
Suppressing the tensor product signs and computing mod J , we

have for the commutator between ea ∈ g and C ∈ U(g)

[ea, C] =
dim g∑
k=1

(
ea ẽ

k ek − ẽk ek ea
)

=

=
dim g∑
k=1

(
(ea ẽk − ẽk ea) ek + ẽk (ea ek − ek ea)

)
=

=
dim g∑
k=1

([ea, ẽk] ek + ẽk [ea, ek]) =
dim g∑
k,l=1

(clakẽl ek + cak
lẽk el) = 0.

We conclude that C is a Casimir operator of g. It is called the quadratic
Casimir operator [4]. For its application in the proof of Weyl’s theo-
rem, see [5].

We remark that the quadratic Casimir operator does not exhaust
all independent Casimir operators of the semisimple Lie algebra g

when we have rank g > 1. It is known that any semisimple Lie algebra
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of rank l has l independent Casimir operators which generate the whole
center of the universal enveloping algebra U(g) through their products
and linear combinations. Their explicit form depends on the details
of the structure of the considered algebra g.

Casimir invariants are of primordial importance in physics. They
often represent such important quantities as angular momentum, el-
ementary particle mass and spin, Hamiltonians of various physical
systems etc.

Example 1 Let us consider the angular momentum algebra

so(3) = span{L1, L2, L3}

with

[Lj , Lk] =
3∑
l=1

εjklLl. (10)

The quadratic Casimir operator (9) is

C = −1
2

3∑
l=1

L2
l , (11)

i.e. it coincides up to a numerical factor 1/2 with the square of angular
momentum, familiar from the construction of irreducible representa-
tions of the angular momentum algebra in quantum mechanics.

Notice that the sign of the Casimir operator (11) is in fact the same
as used in physics: in quantum mechanics the operators of angular
momentum L̂j (measured in multiples of ~) satisfy the commutation
relations

[L̂j , L̂k] =
3∑
l=1

iεjklL̂l

which differ from the ones in equation (10) by an extra imaginary unit.
This extra i factor can be traced to the requirement that observables
are described by Hermitean operators; the generators of unitary rep-
resentations of Lie groups are, on the contrary, anti–Hermitean. An
obvious remedy is to formally introduce a “physical” basis of a given
real Lie algebra

êj = iej (12)

in which the original real structure constants

[ej , ek] =
∑
l

fjk
lel
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become explicitly purely imaginary

[êj , êk] =
∑
l

ifjklêl.

Example 2 Let us consider the Poincaré algebra iso(1, 3) (a.k.a. in-
homogeneous Lorentz algebra) spanned by Mµν , Pµ, µ, ν = 0, . . . , 3
with the nonvanishing commutation relations

[Mµν , P ρ] = ηνρPµ − ηµρP ν , (13)
[Mµν ,Mρσ] = ηµσMνρ + ηνρMµσ − ηµρMνσ − ηνσMµρ,

where η is the Minkowski metric ηµν = ηµν = diag(1,−1,−1,−1). We
shall use the metric η to move indices up and down, as is common
in the theory of relativity, and denote by εµνρσ the covariant totally
antisymmetric tensor.

The Poincaré algebra has a nontrivial Levi decomposition (4)

iso(1, 3) = so(1, 3) u r

with its semisimple factor being the Lorentz algebra

so(1, 3) = span{Mµν}µ,ν=0,1,2,3

and an Abelian radical

r = span{Pµ}µ=0,1,2,3.

There are two independent Casimir operators of this Lie algebra,
which are usually expressed as

P 2 =
3∑

µ=0

ηµνP
µP ν and W 2 =

3∑
µ=0

ηµνW
µW ν

where the quadruplet of quadratic elements of U(g)

Wµ = −1
2
εµνρσM

νρP σ

is called the Pauli–Lubanski vector. That means that in this case one
of the Casimir operators is of second order in generators whereas the
other is of fourth order.

These two Casimir operators are essential in the construction of
irreducible representations of the Poincaré algebra in relativistic quan-
tum field theory. Notice that in this case one constructs infinite–
dimensional unitary representations.
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2.1 Energy spectrum of hydrogen atom in quan-
tum mechanics

In order to further demonstrate the relevance of Casimir operators
to physics, let us review another application, namely an algebraic
determination of the hydrogen spectrum in quantum mechanics. This
computation is originally due to Wolfgang Pauli [7].

The Hamiltonian of an electron in hydrogen atom is

Ĥ =
1

2M

∑
j

P̂jP̂j −
Q

r
, (14)

where P̂j = −i~ ∂
∂xj

are operators of linear momenta in R3 with the co-

ordinates x1, x2, x3, r =
√
x2

1 + x2
2 + x2

3, M is the mass of the electron
and Q = e2

4πε0
in SI units.

The Hamiltonian (14) has three obvious integrals of motion, namely
the angular momenta

L̂j =
1
~
∑
k,l

εjklX̂kP̂l,

(chosen dimensionless for convenience) and three less obvious integrals
of motion, namely the components of the Laplace–Runge–Lenz vector

K̂i =
1

2MQ

∑
k

∑
j

εikj(P̂kL̂j + L̂jP̂k)−
1
~
xi
r
. (15)

The expression xi
r should be interpreted as the operator of multipli-

cation by the given function of coordinates. For future reference, let
us denote

L̂2 =
3∑
j=1

L̂jL̂j , K̂2 =
3∑
j=1

K̂jK̂j .

As it turns out, the knowledge of these integrals of motions and
their algebraic structure is enough to determine the spectrum of bound
states in the hydrogen atom.

The crucial ingredients are the commutators between various com-
ponents L̂j and K̂j . By a somewhat lengthy but straightforward cal-
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culation we find

[L̂j , L̂k] = i
3∑
l=1

εjklL̂l, (16)

[L̂j , K̂k] = i
3∑
l=1

εjklK̂l, (17)

[K̂j , K̂k] = − 2i
MQ2

3∑
l=1

εjklL̂lĤ. (18)

Another important observation is the operator identity

3∑
j=1

K̂jL̂j = 0. (19)

The commutator (18) prevents the operators L̂j , K̂j from forming a Lie
algebra. Nevertheless, this bothersome property can be circumvented
if we consider a given energy level, i.e. a subspace HE of the Hilbert
space H consisting of all eigenvectors of Ĥ with the given energy E.
Operators L̂j , K̂j can be all restricted to HE because they commute
with Ĥ. When such restriction is understood, the Ĥ in equation (18)
can be replaced by a numerical factor E and the algebra of L̂j , K̂j

closes. In particular, when E < 0 it is isomorphic to the Lie algebra
so(4) = so(3) ⊕ so(3). When E > 0 the difference in sign leads to a
different real form of the same complex Lie algebra, namely to so(1, 3).
We shall be interested in bound states here, i.e. we assume E < 0.

Once the energy is fixed we may introduce the operators

L̂(1)j =
1
2

(
L̂j +

√
−MQ2

2E
K̂j

)
and

L̂(2)j =
1
2

(
L̂j −

√
−MQ2

2E
K̂j

)
(notice that −MQ2

2E is by assumption a positive number). The com-
mutators of L̂(1)j and L̂(2)j now become

[L̂(1)j , L̂(1)k] = i
3∑
l=1

εjklL̂(1)l,

[L̂(2)j , L̂(2)k] = i
3∑
l=1

εjklL̂(2)l,

[L̂(1)j , L̂(2)k] = 0.
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That means that we have an explicit decomposition of our realization
of so(4) into the direct sum so(3)⊕so(3) and that the two independent
Casimir operators of so(4) can be expressed as

C1 =
3∑
j=1

L̂2
(1)j , C2 =

3∑
j=1

L̂2
(2)j ,

or equivalently as

C1 =
1
4

3∑
j=1

(
L̂j +

√
−MQ2

2E
K̂j

)2

, C2 =
1
4

3∑
j=1

(
L̂j −

√
−MQ2

2E
K̂j

)2

.

(20)
The sum of these two Casimir operators, i.e. C1 + C2, gives the
quadratic Casimir operator (9) of so(4).

From the theory of angular momentum, i.e. of representations of
the Lie algebra so(3), we know that in any irreducible representation
of so(4) we have

C1 = p(p+ 1)1, C2 = q(q + 1)1

for some nonnegative integer or half–integer values of p and q. The
irreducible representation of so(4) = so(3)⊕so(3) determined by these
values of the Casimir operators has dimension equal to (2p+1)×(2q+
1).

When we expand the expressions for the Casimir operators (20)
and subtract them, we find that

C1 − C2 =

√
−MQ2

2E

3∑
j=1

L̂jK̂j

which vanishes in our representation, as we already know (cf. (19)).
Therefore, only irreducible representations of so(4) with p = q arise
in our problem.

Let us now consider such a representation of so(4) with the given
values of E and p. The angular momentum L̂j can be expressed as

L̂j = L̂(1)j + L̂(2)j ,

i.e. we can employ the standard result concerning the composition
of two independent angular momenta and conclude that L̂2 takes all
integer values between |p − p| = 0 and p + p = 2p. In particular, the
s–state, i.e. the state with L̂2 = 0, exists in our representation and is
of interest to us. Let ψ be any s–state, i.e. a vector ψ ∈ H such that
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L̂jψ = 0. Obviously, ψ is a function of the radial coordinate r only.
We have

L̂2ψ = 0

and
K̂2ψ =

2
MQ2

Ĥψ +
1
~2
ψ

by inspection of both sides of the equation when expanded in terms
of X̂j , P̂j etc.

When ψ in addition belongs to our representation of so(4) deter-
mined by the values of E and p, we have the following value for the
quadratic Casimir operator (9) of so(4)

(C1 + C2)ψ = 2p(p+ 1)ψ =
1
2

∑
j

(
L̂2
jψ −

MQ2

2E
K̂2
jψ

)

= −MQ2

4E

(
2E
MQ2

+
1
~2

)
ψ. (21)

Thus we have arrived at the condition

8p(p+ 1) = −2− MQ2

~2E

which is just a different formulation of the celebrated Rydberg formula

E = −MQ2

2~2

1
(2p+ 1)2

(22)

where the potentially half–integer valued parameter p is traditionally
replaced by the integer n = 2p+1 > 0. Once we have established that
E is determined by the value of p by equation (22) we also see that
HE coincides with the representation space of the so(4) irreducible
representation labelled by p and q = p. On HE we may also write
equation (21) in the form

C1 + C2 = −
(
MQ2

4~2Ĥ
+

1
2

)
(23)

since both C1 + C2 and Ĥ take a constant value on HE . While it
may be tempting to consider this to be an operator identity valid
on the whole Hilbert space H, we don’t consider such interpretation
legitimate. In particular, on scattering states (E > 0) we even have
a different Lie algebra. Therefore, equation (23) should be considered
at most on the bound state sector of our Hilbert space H.

To sum up, we have seen that the spectrum of hydrogen atom can
be derived using the theory of Lie algebras, without explicit construc-
tion of eigenfunctions. More precisely, we have derived a necessary
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condition (22) that any energy eigenvalue must satisfy. That this for-
mula is physically relevant for all values of p ≥ 0 such that 2p ∈ Z
is not a consequence of the computation just shown and shall be es-
tablished by other means (e.g. by an explicit construction of s–states
introduced above). Once the existence of at least one state with the
energy En = −MQ2

2~2
1
n2 is shown, the degeneracy n2 of the energy level

En also follows directly from algebraic considerations.

3 Generalized Casimir invariants

As was shown by Kirillov in [8] and will be explained below, Casimir
operators are in one–to–one correspondence with polynomial invari-
ants characterizing orbits of the coadjoint representation of g. The
search for invariants of the coadjoint representation is algorithmic
and amounts to solving a system of linear first order partial differ-
ential equations [9, 10, 11, 12, 13, 14, 15, 16, 17]. Alternatively, global
properties of the coadjoint representation can be used [13, 18, 19, 20].
In general, solutions are not necessarily polynomials and we shall call
the nonpolynomial solutions generalized Casimir invariants.

For certain classes of Lie algebras, including semisimple Lie alge-
bras, perfect Lie algebras, nilpotent Lie algebras, and more generally
algebraic Lie algebras, all invariants of the coadjoint representation
are functions of polynomial ones [9, 10].

On the other hand, in the representation theory of solvable Lie
algebras their invariants are not necessarily polynomials, i.e. they can
be genuinely generalized Casimir invariants. In addition to their im-
portance in representation theory, they may occur in physics. Indeed,
Hamiltonians and integrals of motion of classical integrable Hamilto-
nian systems are not necessarily polynomials in the momenta [21, 22],
though typically they are invariants of some group action.

In order to calculate the (generalized) Casimir invariants we con-
sider some basis (e1, . . . , en) of g, in which the structure constants are
cij

k. The coadjoint representation ad∗ of g is the representation on g∗

obtained via transposition of the operators in the adjoint representa-
tion

〈ad∗(x)φ, y〉 = −〈φ, ad(x)y〉, ∀x, y ∈ g, φ ∈ g∗.

A basis for the coadjoint representation is given by the first order
differential operators acting on functions on g∗, i.e. vector fields,

Êk =
n∑

a,b=1

ebcka
b ∂

∂ea
, 1 ≤ k ≤ n. (24)
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In equation (24) the quantities ea are commuting independent vari-
ables – the coordinates in the basis of the space g∗, dual to the algebra
g. Using the relation (g∗)∗ ' g one can identify them with the basis
vectors of g.

The invariants of the coadjoint representation, i.e. the generalized
Casimir invariants, are solutions of the following system of partial
differential equations

ÊkI(e1, . . . , en) = 0, k = 1, . . . , n. (25)

The relation to Casimir operators, i.e. the 1–1 correspondence
between polynomial solutions of equation (25) and the elements of the
center of the enveloping algebra comes from the following observations.

Firstly, it is obvious that both the operation on U(g) of taking the
commutator with a fixed element ek ∈ g and the application of the
first order differential operator Êk satisfy Leibniz rule

[ek, a1a2] = [ek, a1]a2 + a1[ek, a2], a1, a2 ∈ U(g),

Êk(F1F2) = Êk(F1)F2 + F1Êk(F2), F1, F2 ∈ C∞(g∗).

Further ingredient of the proof is the fact that [ek, ·] and Êk give the
same answer when applied to el, namely

[ek, el] =
n∑

m=1

ckl
mem, Êk(el) =

n∑
m=1

ckl
mem, (26)

where it is understood that el ∈ g ⊂ U(g) in the first equality and
el ∈ (g∗)∗ in the second.

Now, let us consider a polynomial function F on g∗. We ex-
press it as a completely symmetric expression in the basis functionals
el ∈ (g∗)∗ – since as functions they commute that does not in fact
change anything. Next, we associate to it an element F̃ of the uni-
versal enveloping algebra by simply changing the interpretation of the
generators ek ∈ (g∗)∗ → ek ∈ g ⊂ U(g). Recalling that the totally
symmetric representative of a given element A ∈ U(g) is unique and
observing that [ek, F̃ ] is by construction again a totally symmetric
expression in the generators el, we find that

[ek, F̃ ] = 0⇔ Êk(F ) = 0

by Leibniz rule and equation (26). Thus, polynomial invariants of
the coadjoint representation can indeed be identified with Casimir
operators in a bijective way.
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Let us first determine the number of functionally independent so-
lutions of the system (25). We can rewrite this system as

C · ∇I = 0 (27)

where C is the antisymmetric matrix

C =


0 c12

beb . . . c1n
beb

−c12
beb 0 . . . c2n

beb
...

...
−c1,n−1

beb . . . 0 cn−1,n
beb

−c1nbeb . . . −cn−1,n
beb 0

 (28)

in which summation over the repeated index b is to be understood in
each term and ∇ is the gradient operator ∇ = (∂e1 , . . . , ∂en)t (where
t stands for transposition). The number of independent equations in
the system (25) is r(C), the generic rank of the matrix C. The number
of functionally independent solutions of the system (25) is hence

nI = n− r(C). (29)

Since C is antisymmetric, its rank is even. Hence nI has the same par-
ity as n. Equation (29) gives the number of functionally independent
generalized Casimir invariants.

The individual equations in the system of partial differential equa-
tions (PDEs) (25) can be solved by the method of characteristics, or,
equivalently by integration of the vector fields (24).
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