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Transformation of functions and prolongations

P. J. Olver, Applications of Lie Groups to Differential
Equations (Springer–Verlag, New York, 1986).

Assume that an open neighborhood U ⊂ Rn with coordinates
x i is given. Consider the graph of a given smooth function
f : U → R as a section of the (trivial) fibre bundle
J (0) = U × R, σf (~x) = (~x , f (~x)). It naturally induces a
section of the jet bundle, e.g. for the 2nd order jet bundle
J (2) = U × R⊕ Rn ⊕ Rn(n+1)/2

σ
(2)
f (~x) = (~x , f (~x), ∂i f (~x), ∂ij f (~x) )

(The interchangeability of mixed derivatives is assumed
throughout.)
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Let u be the coordinate on R, together with ui and uij defining
the coordinates on the fibre of J (2).

Let1 v = ξi∂i + U∂u be the generator of a one–parametric
group of transformations of J (0). Assume that the graph of f
and consequently the section σf is transformed by the flow of
v, defining a new function f̂ (τ) for each value of the flow
parameter τ provided |τ | is small enough. Consider the

prolongations σ
(2)

f̂ (τ)
. Are they generated from σ

(2)
f by flow of

some vector field on J (2)?

1

∂i ≡
∂

∂x i
, ∂u ≡

∂

∂u
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Yes, the sought after vector field on J (2) has the form of the
2nd prolongation

pr(2)(v) = ξi∂i + U∂u + U i∂ui
+ U ij∂uij

,

where

U i = DiU −
∑

j

Diξ
juj , U ij = DjU i −

∑
k

Djξ
kuik , (1)

and Di is the operator of the total derivative

Di = ∂i + ui∂u + uij∂uj
+ . . . .
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When does the vector field v = ξi∂i + U∂u generate a
one–parametric group of symmetries of a given 2nd order PDE

F (~x , f (~x), ∂i f (~x), ∂ij f (~x)) = 0 ? (2)

In other words start with an arbitrary solution f of PDE (2).

When do the functions f̂ (τ) solve the same PDE (2), for any
choice of f ?

Provided that grad F |F=0 6= 0 on J (2) there is an equivalence

v = ξi∂i + U∂u is a symmetry generator of PDE (2) if and
only if

pr(2)(v)F |F=0 = 0.
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A. M. Grundland, A. J. Hariton and L. Šnobl Symmetries and Invariant Solutions of the Supersymmetric Sine–Gordon Equation



How do we find symmetries of PDEs?
Supersymmetric sine–Gordon equation

Symmetries of SSG
Invariant solutions

Conclusions

When does the vector field v = ξi∂i + U∂u generate a
one–parametric group of symmetries of a given 2nd order PDE

F (~x , f (~x), ∂i f (~x), ∂ij f (~x)) = 0 ? (2)

In other words start with an arbitrary solution f of PDE (2).

When do the functions f̂ (τ) solve the same PDE (2), for any
choice of f ?

Provided that grad F |F=0 6= 0 on J (2) there is an equivalence

v = ξi∂i + U∂u is a symmetry generator of PDE (2) if and
only if

pr(2)(v)F |F=0 = 0.
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Computation of symmetry generators of PDEs in practice

1 For given K–order PDE F = 0 find the prolongation of
order K of an arbitrary vector field v on J (0).

2 Solve F (~x , u, ui , uij , . . .) = 0 for suitable “derivative”
uAB... and substitute for it and all its differential
consequences, e.g. DiuAB..., into(

pr(K)(v)F
)

(~x , u, ui , uij , . . .) = 0.

3 The resulting expression is an equation for unknown
functions ξi(x j , u),U(x j , u) which must hold for any value
of the remaining jet coordinates ui , uij , . . .. This gives an
overdetermined system of linear PDEs for ξi ,U . If it can
be solved we find all symmetry generators of the given
PDE F = 0.
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(N=1) Supersymmetric sine–Gordon equation

A prototype of nonlinear supersymmetric field equation. The
dependent variable is a real bosonic superfield

Φ (x , t, θ1, θ2) =
1

2
u(x , t) + θ1φ(x , t) + θ2ψ(x , t) + θ1θ2F (x , t).

The N=1 supersymmetric sine–Gordon equation (SSG) reads

DxDtΦ = sin Φ (3)

where the covariant derivative operators are

Dx = ∂θ1 + θ1∂x and Dt = ∂θ2 + θ2∂t .

The quantities x , t, φ,F have bosonic (even, commuting)
character, θ1, θ2, φ, ψ are fermionic (odd, anticommuting).
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Supersymmetry transformations

It is invariant under the supersymmetry transformations

x → x − η
1
θ1, θ1 → θ1 + η

1
, t → t − η

2
θ2, θ2 → θ2 + η

2
,

where η1 and η2 are arbitrary constant fermionic parameters.

These transformations are generated by the infinitesimal
supersymmetry generators

Qx = ∂θ1 − θ1∂x and Qt = ∂θ2 − θ2∂t . (4)
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Component equations

SSG (3) can be equivalently written in terms of the
component fields

(i) uxt = − sin u + 2φψ sin
(u

2

)
,

(ii) φt = −ψ cos
(u

2

)
,

(iii) ψx = φ cos
(u

2

) (5)

and
F = − sin

(u

2

)
.

A. M. Grundland, A. J. Hariton and L. Šnobl Symmetries and Invariant Solutions of the Supersymmetric Sine–Gordon Equation



How do we find symmetries of PDEs?
Supersymmetric sine–Gordon equation

Symmetries of SSG
Invariant solutions

Conclusions

Which formulation allows to find the supersymmetry
generators by an analogue of the usual method of computation
of symmetry generators for PDEs?
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Symmetries in the component approach

Based on the methods developed in
M. A. Ayari, V. Hussin and P. Winternitz, J. Math. Phys. 40,
1951 (1999),
V. Hussin, Mathematics Newsletter (India) 10, 47–57 (2000),
N. Alvarez–Moraga and V. Hussin, J. Phys. A: Math. Gen.
36, 9479–9506 (2003).

Take the vector field

v =ξ(x , t, u, φ, ψ)∂x + τ(x , t, u, φ, ψ)∂t + U(x , t, u, φ, ψ)∂u

+ Σ(x , t, u, φ, ψ)∂φ + Ψ(x , t, u, φ, ψ)∂ψ,
(6)

where ξ, τ and U are bosonic functions while Σ and Ψ are
fermionic.
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Application of the algorithm is then a straightforward
generalization of the one for bosonic variables. Note that the
anticommuting quantities are present only in the dependent
variables and corresponding jet space coordinates, so that in
each term in the prolongation formulae (1) is at most one
anticommuting object. Consequently, (almost) no ordering
ambiguities arise.

BUT by an explicit computation we find only the Poincaré
group in 1 + 1 dimensions

Px = ∂x , Pt = ∂t , D = 2x∂x − 2t∂t − φ∂φ + ψ∂ψ.

Where did the supersymmetry go?
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The problem is that the supersymmetry doesn’t act on the
component fields u, ψ, φ,F as a point transformation,
transforming one graph into another. It involves derivatives
since under supersymmetry transformation (for simplicity
taking η2 = 0) we have

δu ∼ η1φ, δφ ∼ 1

2
η1ux ,

δψ ∼ −η1F , δF ∼ η1ψx ,

which due to the presence of ux obviously cannot be rewritten
as point transformation (even if we use the equations of
motion). Consequently, the supersymmetry acts more like a
contact transformation and doesn’t show up in the
computation of point ones.

Can this be improved in the superfield formalism?
A. M. Grundland, A. J. Hariton and L. Šnobl Symmetries and Invariant Solutions of the Supersymmetric Sine–Gordon Equation
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Superfield approach – the form of the generator

Explicitly, the SSG (3) reads

θ1θ2Φxt − θ2Φtθ1 + θ1Φxθ2 − Φθ1θ2 = sin Φ, (7)

where each successive subscript (from left to right) indicates a
successive left partial derivative.

We generalize the method of prolongations so as to include
also the independent fermionic variables. We write

v =ξ(x , t, θ1, θ2,Φ)∂x + τ(x , t, θ1, θ2,Φ)∂t + ρ(x , t, θ1, θ2,Φ)∂θ1

+ σ(x , t, θ1, θ2,Φ)∂θ2 + Λ(x , t, θ1, θ2,Φ)∂Φ,
(8)

where ξ, τ and Λ are supposed to be bosonic functions, while
ρ and σ are fermionic.
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We need the fermionic analogues Dθ1 ,Dθ2 of the bosonic total
derivatives Dx ,Dt , e.g.

Dθ1 =∂θ1 + Φθ1∂Φ + Φxθ1∂Φx + Φtθ1∂Φt + Φθ2θ1∂Φθ2
+

+ Φxxθ1∂Φxx + Φxtθ1∂Φxt + Φxθ2θ1∂Φxθ2
+

+ Φttθ1∂Φtt + Φtθ2θ1∂Φtθ2
,

(9)

We note that due to the use of left derivatives the chain rule
for a Grassmann–valued function f (g(x)) is

∂f

∂x
=
∂g

∂x
· ∂f

∂g
.
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A. M. Grundland, A. J. Hariton and L. Šnobl Symmetries and Invariant Solutions of the Supersymmetric Sine–Gordon Equation



How do we find symmetries of PDEs?
Supersymmetric sine–Gordon equation

Symmetries of SSG
Invariant solutions

Conclusions

The 2nd prolongation

Now we can write the superspace version of the prolongation
formulae. With proper respect for ordering they read

pr(2)v =ξ∂x + τ∂t + ρ∂θ1 + σ∂θ2 + Λ∂Φ + Λx∂Φx +

+ Λt∂Φt + Λθ1∂Φθ1
+ Λθ2∂Φθ2

+ Λxx∂Φxx +

+ Λxt∂Φxt + Λxθ1∂Φxθ1
+ Λxθ2∂Φxθ2

+ Λtt∂Φtt +

+ Λtθ1∂Φtθ1
+ Λtθ2∂Φtθ2

+ Λθ1θ2∂Φθ1θ2

(10)

where the components are

ΛA = DAΛ−
∑
B

DAζ
BΦB , ΛAB = DBΛA−

∑
C

DBζ
C ΦAC ,

(11)
and A,B ,C ∈ {x , t, θ1, θ2}, ζA = (ξ, τ, ρ, σ).
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Applying the second prolongation (10) to the equation (7), we
obtain the following condition

ρ (θ2Φxt + Φxθ2)− σ (θ1Φxt + Φtθ1)− Λ (cos Φ)

+ Λxt (θ1θ2) + Λtθ1 (θ2)− Λxθ2 (θ1)− Λθ1θ2 = 0.
(12)

Next, we substitute the SSG equation (12), i.e. eliminate
Φθ1θ2 , and proceed as before, carefully keeping track of the
ordering.

As was anticipated, we have found the full super–Poincaré
algebra in (1 + 1) dimensions, spanned by the generators

L = −2x∂x + 2t∂t − θ1∂θ1 + θ2∂θ2 , Px = ∂x , Pt = ∂t ,

Qx = −θ1∂x + ∂θ1 , Qt = −θ2∂t + ∂θ2 .
(13)
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Construction of invariant solutions of PDEs

The knowledge of a 1–parametric group of symmetries of
given PDE (such that its orbits have dimension one in the
space of independent variables) allows a reduction of the
number of independent variables.

It works as follows: one finds the invariants Ik , k = 1, .., n of
the action of the group on J (0), and constructs the
coordinates on J (0) out of them and one additional function
of original independent variables, say ω. One of the invariants
is chosen as the new dependent variable ũ ≡ In.

Once the PDE is expressed in these new dependent and
independent variables, one assumes that the sought solution is
invariant with respect to the action of the group, i.e. ũ
depends only on I1, . . . , In−1.

A. M. Grundland, A. J. Hariton and L. Šnobl Symmetries and Invariant Solutions of the Supersymmetric Sine–Gordon Equation



How do we find symmetries of PDEs?
Supersymmetric sine–Gordon equation

Symmetries of SSG
Invariant solutions

Conclusions

Construction of invariant solutions of PDEs

The knowledge of a 1–parametric group of symmetries of
given PDE (such that its orbits have dimension one in the
space of independent variables) allows a reduction of the
number of independent variables.

It works as follows: one finds the invariants Ik , k = 1, .., n of
the action of the group on J (0), and constructs the
coordinates on J (0) out of them and one additional function
of original independent variables, say ω. One of the invariants
is chosen as the new dependent variable ũ ≡ In.
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depends only on I1, . . . , In−1.
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Construction of invariant solutions of PDEs

The general theory guarantees that such reduction is consistent
and we obtain a PDE with one less independent variables.
Repeating this procedure one is able to reduce PDE to ODE
provided suitable symmetry group is present at each step.

Of course, this procedure allows to find only special solutions
of the original PDE, namely those invariant with respect to
some 1–parametric symmetry group. But for nonlinear PDEs
it is often the only known method giving at least some
nontrivial solutions.
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A. M. Grundland, A. J. Hariton and L. Šnobl Symmetries and Invariant Solutions of the Supersymmetric Sine–Gordon Equation



How do we find symmetries of PDEs?
Supersymmetric sine–Gordon equation

Symmetries of SSG
Invariant solutions

Conclusions

Invariant solutions of SSG

It is possible to reduce SSG without any difficulty to a
system of ODEs when the 1–parametric subgroup is
constructed out of bosonic generators L,Px ,Pt . Whether
or not at least particular nontrivial solutions of these
ODEs and the corresponding invariant solutions of SSG
can be found explicitly depends on the chosen subgroup.

When fermionic generators are included, problems may
(not always) arise. This is due to the nilpotency of some
elements of the Grassmann ring of “constants” replacing
the field R present in the classical case.
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Example

Consider the transformations generated by µQx . The
invariants are t, θ2, Φ and any quantity of the form

τ = µf (x , t, θ1, θ2,Φ).

It is an open question as to whether or not these can lead to a
reduced system of equations expressible in terms of the
invariants. It is clearly not possible for every function f . E.g.,
taking τ = µxθ1 we get

µxθ2Atτ + µxAτθ2 + sinA = 0, (14)

for the field
Φ = A (t, τ, θ2) .

A. M. Grundland, A. J. Hariton and L. Šnobl Symmetries and Invariant Solutions of the Supersymmetric Sine–Gordon Equation



How do we find symmetries of PDEs?
Supersymmetric sine–Gordon equation

Symmetries of SSG
Invariant solutions

Conclusions

The presence of the variable x in equation (14) demonstrates
that we do not obtain a reduced equation expressible in terms
of the invariants only.

Similar problem arises for the transformations generated by
Px + µQx + νQt or Px + εPt + µQx + νQt and others.
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Conclusions

With proper care it is possible to extend the conventional
approach to the search for symmetries of PDEs to the
superspace.

It seems to be the only approach in which the
supersymmetry demonstrates itself as point symmetry.

In the case of the super–sine–Gordon equation no hidden,
unexpected symmetries were found.

In the symmetry reduction there might show up problems
due to nilpotency of some invariants.
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Thank you for your attention
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