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Onďrej Kub̊u and Libor Šnobl Superintegrability and time - dependent integrals



Abstract

While looking for additional integrals of motion of several
minimally superintegrable systems in static electric and magnetic
fields, we have realized that in some cases Lie point symmetries of
Euler–Lagrange equations imply existence of explicitly
time–dependent integrals of motion through Noether’s theorem.
These integrals allow a completely algebraic determination of the
trajectories (including their time dependence) although the systems
don’t exhibit maximal superintegrability in the usual sense.

Report on work in progress, based on bachelor thesis of Onďrej
Kubů.
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Introduction

We consider integrable and superintegrable systems. Let us recall
the standard definitions:

Integrability

A classical Hamiltonian system in n degrees of freedom is called
integrable if it admits n functionally independent integrals of
motion in involution.

Superintegrability

A classical Hamiltonian system in n degrees of freedom is
superintegrable if it admits n + k functionally independent
integrals of motion (where k ≤ n − 1), out of which n are in
involution.
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Introduction, cont’d

In these definitions, the Hamiltonian as well as the integrals are
assumed to be functions on the phase space, i.e. time independent.

For time–dependent Hamiltonians also the integrals may naturally
be explicitly time dependent. However, does it make any sense to
consider time–dependent integrals also for time–independent
Hamiltonians? Can they somehow naturally arise and can they be
actually useful?
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Introduction, cont’d

In particular: one may try to search for previously unknown
integrals of the considered Hamiltonian system in the following
way:

1 find point symmetries of the corresponding Euler–Lagrange
equations (we need second or higher order equations to be
able to determine symmetries algorithmically, thus Hamilton’s
equations are not suitable for this purpose),

2 among them find the ones which preserve the action, not only
the Euler–Lagrange equations,

3 associate to them integrals of motion via Noether’s Theorem,
first in Lagrangian formalism and next rewrite them in
Hamiltonian mechanics.
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Introduction, cont’d

We find that for some systems considered in A. Marchesiello & L.Š
J. Phys. A: Math. Theor. 50, 245202 (2017) we construct in this
way time–dependent integrals.

The main open question: Is it just some pecularity of these
systems or does it happen also in some more general
situations?
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Point symmetries of ODEs

Let us first review what are the point symmetries of ODEs. The
key concepts are the following:

1 We are given an ODE (or a set of them) of order p

F (x , y(x), y ′(x), . . . , y (p)(x)) = 0.

(1)

2 Let y(x) be a function on the domain M ⊂ R. Its graph is the
following subset of M × R

Γy = {(x , y(x)) | x ∈ M}. (2)

We define also the kth prolonged graph of the function y

Γ
(k)
y =

{(
x , y(x), y ′(x), . . . , y (k)(x)

)
| x ∈ M

}
⊂ M × R1+k

and we denote the coordinates on the kth jet space
J (k) ≡ M × R1+k , k ≥ 0, by x , u, u′, . . . , u(k).
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Point symmetries of ODEs

3 We consider a 1–parameter (local) group of transformations
of the space of dependent and independent variables J (0), i.e.
of u and x ,

t . (x , u) = (x̂ = g1(x , u; t), û = g2(x , u; t)), (3)

Such transformations are called point transformation.

The effect of such a transformation on any function
y : M → R is defined using the transformation of the graph of
the function y(x),

Γt.y = t . Γy ≡ {(g1(x , y(x); t), g2(x , y(x); t)) | x ∈ M}. (4)

We shall assume that the 1-parameter group (3) is generated
by its generator X , i.e. the vector field

X = ξ(x , u)
∂

∂x
+ η(x , u)

∂

∂u
, s.t. t . (x , u) ≡ Φt

X (x , u).
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Point symmetries of ODEs

4 Both the original graph and the transformed graph can be
extended to their kth prolongation. We may ask ourselves
whether for a given generator X there exists a vector field
pr(k)X on J (k) such that for every function y : M → R we
have

Γ
(k)
t.y = Φt

pr(k)X

(
Γ

(k)
y

)
. (5)

That means that the vector field pr(k)X should encode in
itself the fact that the derivatives u′(x), . . . , u(n)(x) in the
differential equation (1) transform in a unique way once a
point transformation (3) is chosen.
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Point symmetries of ODEs - prolongation of the generator

Such pr(k)X on J (k), called the kth prolongation of the vector
field X , indeed exists and is given by the formula

pr(k)X = ξ(x , u)
∂

∂x
+ η(x , u)

∂

∂u
+

k∑
j=1

η(j)(x , u, u′, . . . , u(j))
∂

∂u(j)

(6)
where the components η(j)(x , u, u′, . . . , u(j)) are constructed
recursively

η(j)(x , u, u′, . . . , u(j)) = Dxη
(j−1) − u(j)Dxξ (7)

using the operator of total derivative

Dx =
∂

∂x
+ u′

∂

∂u
+

k−1∑
j=1

u(j+1) ∂

∂u(j)
.
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Point symmetries of ODEs - definition

A point transformation on J (0) is called a point symmetry of the
given ODE (1) if it preserves the solution set of ODE (1), i.e. it
maps any its solution to a solution.

Actually, this “definition” needs to be taken with a grain of salt –
not all functions can be mapped by a generic point transformation.
Thus we consider the (local) 1–parameter group of point
transformations and consider only functions on which it can act
when the group parameter t is sufficiently close to 0.
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Point symmetries of ODEs - theorem

Theorem (On generators of symmetries of ODEs)

Let M ⊂ R and let F : J (k) → R define a differential equation

F (x , u(x), u′(x), . . . , u(k)(x)) = 0. (8)

Let

ΣF = {(x , u, u′, . . . , u(k)) ∈ J (k)|F (x , u, u′, . . . , u(k)) = 0}

and dF (v) 6= 0, ∀v ∈ ΣF . Then a vector field X ∈ X(J (0))
generates a local 1–parameter group of point symmetries of
the differential equation (8) if and only if

pr(k)F (v) = 0, ∀v ∈ ΣF . (9)
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Point symmetries of ODEs - theorem

N.B.: For more dependent variables and thus systems of ODEs
everything works almost the same, just indices a, α labelling ua
and Fα appear and summations over the index a in the definitions
of Dx and pr(k)X show up.
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Noether’s Theorem in Lagrangian mechanics

We use geometrical formulation of Lagrangian dynamics on the
evolution space TM × R (where M is the configuration space of
our system). Assuming regularity of the given Lagrangian L we
encode the dynamics in the dynamical vector field

Γ =
∂

∂t
+ q̇i

∂

∂qi
+ Λi (qi , q̇i , t)

∂

∂q̇i
(10)

where

Λi (qi , q̇i , t) =

(
∂2L

∂q̇i∂q̇j

)−1(
− ∂2L

∂q̇j∂qk
q̇k − ∂2L

∂q̇j∂t
+
∂L

∂qj

)
.

(11)
Its integral curves after projection to the extended configuration
space M × R give us solutions of the Euler–Lagrange equations

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0. (12)
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Cartan’s forms

We define the Cartan’s 1–form

θ = Ldt +
∂L

∂q̇i
(dqi − q̇i dt) ∈ Ω1(TM × R), (13)

and Cartan’s 2–form dθ. The dynamical vector field Γ can then
be characterized equivalently by the conditions

iΓdθ = 0, 〈Γ, dt〉 = 1, (14)

i.e. Γ is a suitably normalized characteristic vector field of the
Cartan’s 2–form dθ (which by definition means
iΓdθ = 0 & iΓd(dθ) = 0).
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Dynamical and dθ–symmetries

A vector field Y ∈ X(TM × R) is a (generator of a) dynamical
symmetry of the dynamical vector field Γ ∈ X(TM × R) if and
only if a function g ∈ C∞(TM × R) exists such that

[Y , Γ] = g · Γ. (15)

The flow of a dynamical symmetry Y preserves the integral curves
of Γ albeit possibly reparametrized.

A particular subclass of dynamical symmetries are dθ–symmetries.
A vector field Y ∈ X(TM × R) is a dθ–symmetry of the
dynamical vector field Γ ∈ X(TM × R) if and only if it satisfies

LY dθ = 0. (16)
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Noether’s Theorem for dθ–symmetries

Let us consider a Lagrangian system whose dynamics is described
by the dynamical vector field Γ and the Cartan’s 1–form θ. Then

1 to every dθ–symmetry Y is associated an integral of motion F
of the form

F = f − iY θ, where df = LY θ. (17)

F is defined locally (use of Poincaré lemma in its
construction) and is determined up to a constant.

2 To every integral of motion F exists a dθ–symmetry Y which
is unique up to h · Γ, where h ∈ C∞(TM × R).

3 To every integral of motion F exists unique X ∈ X(TM × R)
such that 〈X , dt〉 = 0. As a consequence [X , Γ] = 0.

4 Integral of motion F is an invariant of the dθ–symmetry Y ,
i.e. Y (F ) = 0.

(Cf. W. Sarlet, F. Cantrijn, SIAM Rev. 23(4) 467-494 (1981).)
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Example of system with time–dependent integrals

Now let us apply these ideas to the chosen system. We proceed as
follows:

1 rewrite the given Hamiltonian system in its Lagrangian
formulation,

2 find generators of point symmetries of its Euler–Lagrange
equations,

3 extend them from J (0) to J (1) through their first
prolongation to get the corresponding dynamical symmetries
and establish which of them are dθ–symmetries,

4 associate to dθ–symmetries corresponding integrals of motion
via Noether’s Theorem above.
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Example of system with time–dependent integrals

The system under consideration is taken from A. Marchesiello &
L.Š., J. Phys. A: Math. Theor. 50, 245202 (2017). Its
Hamiltonian reads

H =
1

2

(
~p + ~A(~x)

)2
+ W (~x) (18)

=
1

2

(
p2

1 + p2
2 + (p3 − Ω1y − Ω2x)2

)
+

Ω1Ω2

2S
(Sx − y)2 ,

i.e. describes a particle in a constant magnetic field with

~B(~x) = (−Ω1,Ω2, 0), ~A = (0, 0,−Ω2x − Ω1y),

W (~x) =
Ω1Ω2

2S
(Sx − y)2 (19)

and e = −1, m = 1.
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Example of system with time–dependent integrals

It is known to be minimally superintegrable (A. Marchesiello & L.Š
J. Phys. A: Math. Theor. 50, 245202 (2017)) and for

S =
Ω1

Ω2
κ2 (20)

with κ = m
n ∈ Q even maximally superintegrable, with an

additional integral of order m + n − 1 (cf. A. Marchesiello & L.Š.,
SIGMA 14 (2018), 092).
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Point symmetries of the corresponding E.-L. equations

The corresponding Euler–Lagrange equations read

ẍ = Ω2ż − Ω1Ω2

(
Ω1κ

2x

Ω2
− y

)
,

ÿ = żΩ1 +
Ω2

2

κ2

(
Ω1κ

2x

Ω2
− y

)
, (21)

z̈ = −Ω1ẏ − Ω2ẋ .

They possess generically the following 8–dimensional algebra of
point symmetry generators
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Point symmetries of the corresponding E.-L. equations

Y1 =
∂

∂t
, Y2 =

∂

∂z
,

Y3 = x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z
, Y4 =

∂

∂x
+

Ω1

Ω2
κ2 ∂

∂y
,

Y5 = sin(ωt)
∂

∂x
+

Ω2

ω
cos(ωt)

∂

∂z
,

Y6 = cos(ωt)
∂

∂x
− Ω2

ω
sin(ωt)

∂

∂z
, (22)

Y7 = sin
(ω
κ
t
) ∂

∂y
+

Ω1κ

ω
cos
(ω
κ
t
) ∂

∂z
,

Y8 = cos
(ω
κ
t
) ∂

∂y
− Ω1κ

ω
sin
(ω
κ
t
) ∂

∂z

where ω =
√

Ω2
1κ

2 + Ω2
2,
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Point symmetries of the corresponding E.-L. equations

which is enhanced to 12–dimensional one when κ = 1

Y9 = z
∂

∂x
+ z

Ω1

Ω2

∂

∂y
−

(
Ω1

Ω2
y + x

)
∂

∂z
,

Y10 = y
∂

∂x
+

(
Ω2

1 − Ω2
2

Ω1Ω2
y + x

)
∂

∂y
+

Ω1

Ω2
z
∂

∂z
,

Y11 =

[(
Ω1

Ω2
y + x

)
sin(ωt) +

ω

Ω2
z cos(ωt)

]
∂

∂x

+
Ω1

Ω2
2

[(Ω1y + Ω2x) sin(ωt) + ωz cos(ωt)]
∂

∂y

+
ω

Ω2
2

[(Ω1y + Ω2x) cos(ωt) − ωz sin(ωt)]
∂

∂z
,

(23)

Y12 =

[(
Ω1

Ω2
y + x

)
cos(ωt) − ω

Ω2
z sin(ωt)

]
∂

∂x

+
Ω1

Ω2
2

[(Ω1y + Ω2x) cos(ωt) − ωz sin(ωt)]
∂

∂y

− ω

Ω2
2

[(Ω1y + Ω2x) sin(ωt) + ωz cos(ωt)]
∂

∂z
.
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Associated integrals of motion

Among the generators Y1, . . . ,Y8 all except Y3 give rise to
dθ–symmetries through their prolongation. The corresponding
integrals read

E =
1

2
~̇x2 +

Ω2
2

2κ2

(
Ω1

Ω2
κ2x − y

)2

, pz = ż + Ω1y + Ω2x ,

F4 = −Ω1

Ω2
κ2ẏ − ẋ +

ω2

Ω2
z ,

F5 = −Ω2

ω
pz cos (ωt)− ẋ sin (ωt) + ωx cos (ωt) ,

F6 =
Ω2

ω
pz sin (ωt)− ẋ cos (ωt)− ωx sin (ωt) , (24)

F7 = −Ω1κ

ω
pz cos

(ω
κ
t
)
− ẏ sin

(ω
κ
t
)

+
ω

κ
y cos

(ω
κ
t
)
,

F8 =
Ω1κ

ω
pz sin

(ω
κ
t
)
− ẏ cos

(ω
κ
t
)
− ω

κ
y sin

(ω
κ
t
)
.
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Corresponding integrals

We can consider F5 and F6 (F7 and F8, respectively) as real and
imaginary parts of complex integrals

J5 =

(
ωx − Ω2

ω
pz + iẋ

)
eiωt , J7 =

(
ω

κ
y − Ω1κ

ω
pz + iẏ

)
ei
ω
κ
t .

Two time-independent integrals can be constructed as squares of
their norms. After simplification, they read

F̃5 = ẋ2 +

[
Ω2(ż + Ω1y)− Ω2

1κ
2x
]2

ω2
, F̃7 = ẏ2 +

(
Ω1κ

2(ż + Ω2x)− Ω2
2y

κω

)2

,

out of which only one is independent of E , pz and F4 since they
are related to the energy through F̃5 + F̃7 = 2E .
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Corresponding integrals

In addition if κ = m
n ∈ Q, we can combine J5 and J7 to get

J57 = Jn5 J̄
m
7 =

(
ωx − Ω2

ω
pz + iẋ

)n (nω

m
y − mΩ1

nω
pz − iẏ

)m

,

(25)
where bar means complex conjugation. Its real or imaginary part

is an additional independent integral, the other four being E , pz ,F4

and F̃5 (or F̃7). Explicit formulas for the real or imaginary part can
be obtained in terms of Chebyshev polynomials.

Thus, we have recovered through the point symmetry approach the
four known time-independent integrals which imply minimal
superintegrability of our system, as well as the fifth for rational κ.
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Corresponding integrals of motion

Thus we have recovered through the point symmetry approach the
four known time–independent integrals which were found in A.
Marchesiello & L.Š J. Phys. A: Math. Theor. 50, 245202 (2017)
and imply minimal superintegrability of our system.

We have also found for rational κ an additional integral, which
makes the system maximally superintegrable, in accordance with
A. Marchesiello & L.Š SIGMA 14, 092 (2018).

For κ = 1 out of additional integrals only Y9 leads to a
dθ–symmetry. The corresponding integral reads

F9 =
1

2Ω2
((2Ω1xy + 2xż − 2ẋz)Ω2

+((y2 + z2)Ω1 + 2y ż − 2ẏ z)Ω1 + (x2 + z2)Ω2
2

)
.
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Corresponding integrals of motion

The integrals (24) involve six independent functions on the
7–dimensional manifold TM × R, i.e. their values determined by
the initial data restrict the dynamics to a curve in TM × R and
allow to find the trajectories algebraically.

We may also observe that the time–dependent integrals F5, . . . ,F8
are actually integrated Euler–Lagrange equations for x and y with
a suitable integrating factor, e.g.

d

dt
F5 = ωẋ cos (ωt) − ω2x sin (ωt) + Ω2pz sin (ωt) − ẍ sin (ωt) − ωẋ cos (ωt)

= − sin (ωt)
(
ẍ + ω2x − Ω2pz

)
.
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= − sin (ωt)
(
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Conclusions - open questions

The example just presented (and a few others) lead us to two
essential open questions

Is the presence of time–dependent integrals of
time–independent systems just an indication that the system
is in some way trivial?

Namely, we have so far found in this way only integrals
involving trigonometric functions sin and cos of the time
argument t, leading to some oscillatory behavior, and
consequently, to some harmonic oscillator behind the
considered system. Do less trivial examples exist?
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Conclusions - open questions

Does the presence of time–dependent integrals give us some
new information about superintegrability?

Caution should be
exercised here.

The system considered above is known to be maximally
superintegrable for the rational values of κ = m

n , with last
integral of order m + n − 1 in momenta (velocities). However,
in the symmetry analysis there was no difference in the
number or structure of the symmetries between κ rational and
irrational, with the exception of the particular value κ = 1.

Also, maximal superintegrability in the usual sense implies that
bounded trajectories are closed. Here the integrals restrict the
trajectory to a curve in the extended phase space whose
projection on the phase space may be bounded but not closed.
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