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Introduction

We consider superintegrable systems, i.e. Hamiltonian systems
that have more globally defined integrals of motion than degrees of
freedom, in three spatial dimensions. Such Hamiltonian systems in
R3 were considered and under some restrictions classified in detail
for the case when the Hamiltonian is the sum of the kinetic energy
and the scalar potential.

In J. Bérubé, P. Winternitz. J. Math. Phys. 45 (2004), no. 5,
1959-1973 the structure of the gauge–invariant integrable and
superintegrable systems involving vector potentials was considered
in two spatial dimensions. Among other results it was shown there
that under the chosen assumptions imposed on the form of the
potential, no superintegrable system with nonconstant magnetic
field exists in dimension 2.
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Introduction - classical Hamiltonian

Inspired by the approach used there we consider the Hamiltonian
describing motion of 0–spin particle in three dimensions in a
nonvanishing magnetic field, i.e. classically

H =
1

2
(~p + ~A)2 + V (~x) (1)

where ~p is the momentum, ~A is the vector potential and V is the
electrostatic potential. The magnetic field ~B = ∇× ~A is assumed
to be nonvanishing so that the system is not gauge equivalent to a
system with only the scalar potential. We choose the units in
which the mass of the particle has the numerical value 1 and the
charge of the particle is −1 (having an electron in mind as the
prime example).
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Introduction - gauge invariance

We recall that the equations of motion of the Hamiltonian (1) are
gauge invariant, i.e. that they are the same for the potentials

~A′(~x) = ~A(~x) +∇χ, V ′(~x) = V (~x) (2)

for any choice of the function χ(~x) (we are considering only the
static situation here). Thus, the physically relevant quantity is the
magnetic field

~B = ∇× ~A, i.e. Bj = εjkl
∂Al

∂xk
(3)

rather than the vector potential ~A(~x).
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Introduction - quantum Hamiltonian

We shall also consider the quantum Hamiltonian defined as the
(properly symmetrized) analogue of (1) in terms of the operators
of the linear momenta P̂j = −i~ ∂∂xj and coordinates X̂j = xj :

Ĥ =
1

2

∑
j

(
P̂j + Âj(~x)

)2
+ V̂ (~x) (4)

=
1

2

∑
j

(
P̂j P̂j + P̂j Âj(~x) + Âj(~x)P̂j + Âj(~x)2

)
+ V̂ (~x).

The operators Âj(~x) and V̂ (~x) act on wavefunctions as
multiplication by the functions Aj(~x) and V (~x), respectively.
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Introduction - quantum gauge invariance

On the quantum level, the gauge transformation demonstrates
itself as a unitary transformation of the Hilbert space. Namely, let
us take

Ûψ(~x) = exp

(
i

~
χ(~x)

)
· ψ(~x). (5)

Applying (5) on the states and the observables we get an
equivalent description of the same physical reality in terms of

ψ → ψ′ = Ûψ, Ô → Ô ′ = ÛÔÛ†. (6)

In particular, the following observables transform covariantly

(P̂j + Âj)→ Û(P̂j + Âj)Û
† = Pj + Â′j , V̂ → ÛV̂ Û† = V̂ . (7)
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Outline of the talk

We study the conditions on the structure of the integrals of motion
of the first and second order in momenta, in particular how they
are influenced by the gauge invariance of the problem.

Next, we concentrate on the several possibilities for integrability
arising from low (i.e. first & second) order integrals.
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The assumed structure of the integrals of motion

Let us consider integrals of motion which are at most second order
in the momenta. Because our system is gauge invariant (2), (7) we
find it convenient to express the integrals in terms of gauge
covariant expressions

pAj = pj + Aj , P̂A
j = P̂j + Âj (8)

rather than the momenta themselves. The operators (8) no longer
commute among each other. They satisfy

[P̂A
j , P̂

A
k ] = −i~εjkl B̂l , [P̂A

j , X̂k ] = −i~1, (9)

where B̂l is the operator of the magnetic field strength,

B̂jψ(~x) = Bj(~x)ψ(~x) = εjkl
∂Al

∂xk
ψ(~x)

and εjkl is the completely antisymmetric tensor with ε123 = 1.
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The assumed structure of the integrals of motion

Classically, we write a general second order integral of motion as

X =
3∑

j=1

hj(~x)pAj p
A
j +

3∑
j ,k,l=1

1

2
|εjkl |nj(~x)pAk p

A
l +

3∑
j=1

sj(~x)pAj +m(~x).

(10)
The condition that the Poisson bracket

{a(~x , ~p), b(~x , ~p)}P.B. =
3∑

j=1

(
∂a

∂xj

∂b

∂pj
− ∂b

∂xj

∂a

∂pj

)
(11)

of the integral (10) with the Hamiltonian (1) vanishes

{H,X}P.B. = 0 (12)

leads to terms of order 3, 2, 1 and 0 in the momenta and
respectively to the following equations:
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The conditions for the integrals of motion

Third order terms

∂xh1 = 0, ∂yh1 = −∂xn3, ∂zh1 = −∂xn2,

∂xh2 = −∂yn3, ∂yh2 = 0, ∂zh2 = −∂yn1, (13)

∂xh3 = −∂zn2, ∂yh3 = −∂zn1, ∂zh3 = 0,

∇ · ~n = 0.

Second order terms

∂xs1 = n2B2 − n3B3,

∂y s2 = n3B3 − n1B1,

∂zs3 = n1B1 − n2B2, i.e. ∇ ·~s = 0,

∂y s1 + ∂xs2 = n1B2 − n2B1 + 2(h1 − h2)B3, (14)

∂zs1 + ∂xs3 = n3B1 − n1B3 + 2(h3 − h1)B2,

∂y s3 + ∂zs2 = n2B3 − n3B2 + 2(h2 − h3)B1.
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The conditions for the integrals of motion, cont’d

First order terms

∂xm = 2h1∂xV + n3∂yV + n2∂zV + s3B2 − s2B3,

∂ym = n3∂xV + 2h2∂yV + n1∂zV + s1B3 − s3B1, (15)

∂zm = n2∂xV + n1∂yV + 2h3∂zV + s2B1 − s1B2.

Zero order term

~s · ∇V = 0. (16)

Equations (13) are the same as for the system with vanishing
magnetic field and their explicit solution is known - they imply that
the highest order terms in the integral (10) are linear combinations
of products of the generators of the Euclidean group
p1, p2, p3, l1, l2, l3 where lj =

∑
l ,k εjklxkpl , i.e. ~h, ~n can be

expressed in terms of 20 constants αab, 1 ≤ a ≤ b ≤ 6.
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The conditions for the integrals of motion, cont’d

In the quantum case we have to consider a properly symmetrized
analogue of (10). We choose the following convention

X̂ =
3∑

j=1

{hj(~x), P̂A
j P̂

A
j }+

3∑
j ,k,l=1

|εjkl |
2
{nj(~x), P̂A

k P̂
A
l }+

+
3∑

j=1

{sj(~x), P̂A
j }+ m(~x), (17)

where { , } denotes the symmetrization.
Only (16) obtains an ~2–proportional correction

~s · ∇V +
~2

4
(∂zn1∂zB1 − ∂yn1∂yB1 + ∂xn2∂xB2 − ∂zn2∂zB2+

+∂yn3∂yB3 − ∂xn3∂xB3 + ∂xn1∂yB2 − ∂yn2∂xB1) = 0.(18)
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Integrable Hamiltonians

Let us now turn our attention to the situation when the
Hamiltonian (1) or (4) is integrable in the Liouville sense, with at
most quadratic integrals. That means that in addition to the
Hamiltonian itself there must be at least two independent integrals
of motion of the form (10) or (17) which commute in the sense of
Poisson bracket or Lie commutator, respectively. Independence is
to be understood as functional independence in the classical
situation and in the sense that no nontrivial fully symmetrized
polynomial in the given operators vanishes in the quantum case.

Keeping in mind that our main goal is to arrive at examples of
superintegrable systems with nonvanishing magnetic field we shall
assume that the integrability arises in the simplest way possible.
Firstly, let us assume that there are at least two independent first
order integrals for our Hamiltonian.
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Integrals related to the Euclidean group

Under the assumption that the integral is of first order in momenta
the conditions (13), (14), (15) and (16) simplify tremendously.
We have ~h = ~n = 0 thus the first order term in X must lie in the
enveloping algebra of the Euclidean algebra, i.e. be a linear
combination of linear and angular momenta

X1 = γ i1l
A
i + βi1p

A
i + m1(~x), X2 = γ i2l

A
i + βi2p

A
i + m2(~x). (19)

We may use the Euclidean transformations to simplify X1,X2.
Another allowed transformation is replacing X1 or X2 by an
arbitrary regular linear combination of them. For convenience, we
redefine the yet unknown functions m1(~x),m2(~x) as needed
without renaming them.
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We arrive at the following possibilities

If we have ~γ1 = ~γ2 = 0 then we can set

X1 = pA1 + m1(~x), X2 = pA2 + m2(~x). (20)

If ~γ1 6= 0 we can transform X1 into X1 = lA3 + βpA3 + m1(~x).
Assuming that the integrability arises directly at the first order,
i.e. that {X1,X2}P.B. = 0, we arrive at a single possibility

X1 = lA3 + m1(~x), X2 = pA3 + m2(~x). (21)

However, there is another option - to allow X1 and X2 to be
not in involution and expect the second commuting integral to
arise via Poisson brackets and polynomial combinations of
X1,X2. Thus we have up to rotation and linear combination

X1 = lA3 + βpA3 + m1(~x), X2 = σlA1 + βi
2p

A
i + m2(~x), σ = 0, 1.

(22)
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In order to have nontrivial dynamics, i.e. nontrivial electric and/or
magnetic field, we cannot have the full Euclidean algebra
represented in terms of the integrals of motion. Thus we must
require that the algebra generated by the highest order terms
l3 + βp3 and σl1 + βi2pi in (22) via Poisson brackets closes as a
proper subalgebra of the Euclidean algebra. The options are:

1 The algebra isomorphic to su(2)

X1 = lA3 + m1(~x), X2 = lA1 + m2(~x),

X3 = {X1,X2}P.B. = lA2 + m3(~x). (23)

2 The algebra isomorphic to l3, p1, p2

X1 = lA3 + pA3 + m1(~x), X2 = pA1 + m2(~x),

X3 = {X1,X2}P.B. = pA2 + m3(~x).

This is, however, already included in (20) as a special subcase.
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Superintegrability for the integrable system with integrals
P1,P2

Integrals (20)

X1 = pA1 + m1(~x), X2 = pA2 + m2(~x)

in involution imply

Bj(~x) = F ′j (z), B3(~x) = 0, j = 1, 2, (24)

m1(~x) = −F2(z), m2(~x) = F1(z), V (~x) = V (z).

We choose the vector potential in the form satisfying Coulomb
gauge condition ∇~A = 0

A1(~x) = F2(z), A2(~x) = −F1(z), A3(~x) = 0. (25)

Plugging all the information obtained about functions ~A, ~B,mj into
the assumed form of the integrals (20) we find a very simple
solution (unique up to the choice of gauge)

X1 = p1, X2 = p2. (26)
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Superintegrability for the integrable system with integrals
P1,P2, cont’d

Let us now assume that our system is superintegrable, i.e. that an
additional independent integral of motion exists. For simplicity, let
us assume that it is of first order in momenta. Up to addition of
X1 and X2 we have

X3 = γ i lAi + βpA3 + m3(~x). (27)

We arrive at only two possibilities for superintegrability:

F ′′1 = F ′′2 = 0, i.e. the magnetic field (24) is constant. Solving
equations (15) and (16) we find that the electrostatic
potential is constant too, i.e. we have a motion in constant
magnetic field and no electric field. Such system is
superintegrable and exactly solvable as follows.
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Superintegrability for the integrable system with integrals
P1,P2, cont’d

Without loss of generality we can rotate the coordinate system so
that

~B(~x) = (B, 0, 0), ~A(~x) = (0,−B z , 0), V (~x) = 0. (28)

We have four independent integrals which are of first order in
momenta

X1 = p1, X2 = p2, X3 = p3 − By , X4 = l1 +
B

2
(z2 − y2).

(29)
By inspection of the solution of the equations of motion one finds
that this system is maximally superintegrable with the fifth
independent integral not polynomial in momenta, it reads

X5 = (Bz − p2) cos

(
Bx

p1

)
− p3 sin

(
Bx

p1

)
. (30)
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Superintegrability for the integrable system with integrals
P1,P2, cont’d

The only superintegrable possibility for a nonconstant ~B is

~A(~x) = A

(
cos

(
z

β

)
, sin

(
z

β

)
, 0

)
, (31)

~B(~x) = −A

β

(
cos

(
z

β

)
, sin

(
z

β

)
, 0

)
, V (~x) = 0.

The integral of motion X3 (27) reduces to

X3 = l3 + βp3 (32)

in the gauge chosen above. In the classical mechanics the
Hamiltonian is maximally superintegrable with the fifth
integral expressed in terms of Jacobi elliptic functions whose
arguments depend on p1, p2 and l3. That is deduced from the
classical solution.
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Superintegrability for the integrable system with integrals
L3,P3

Performing a similar analysis for the case (21)

X1 = lA3 + m1(~x), X2 = pA3 + m2(~x)

we find

m1(~x) = −F2(R), m2(~x) = F1(R), R =
√

x2 + y2,

~B(~x) =

(
−F ′1

y

R
,F ′1

x

R
,

1

R
F ′2

)
, V (~x) = V (R), (33)

~A(~x) =
(
− y

R2
F2(R),

x

R2
F2(R),−F1(R)

)
.

Substituting (33) into our form of the integrals (21) we find that
in our choice of gauge we have in fact

X1 = l3, X2 = p3, (34)

i.e. the first order integrals are again of direct geometric origin.
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Superintegrability for the integrable system with integrals
L3,P3, cont’d

An explicit computation shows that the system with the potentials
and the field strength (33) is not first order minimally
superintegrable for any choice of the functions F1 or F2 other than
F1,F2 constants, i.e. ~B = 0. The same result applies also to the
quantum case where only the difference between equations (16)
and (18) needs to be considered.
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Superintegrability for the integrable system with integrals
L1, L2, L3

Let us now turn our attention to the case when we have three first
order integrals of motion (23). We cannot choose among them two
in involution but we easily obtain a second order integral

(~X )2 = (X1)2 + (X2)2 + (X3)2 (35)

which is in involution with all of them. Thus assuming that we
have the integrals

X1 = lA3 + m1(~x), X2 = lA1 + m2(~x)

we have immediately a minimally superintegrable system.
The compatibility of equations (15) for the three integrals X1,X2

and X3 = {X1,X2}P.B. = lA2 + m3(~x) leads to

~B(~x) = g
~x

|~x |3
, (36)

i.e. a magnetic monopole of an arbitrary strength g .
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Superintegrability for the integrable system with integrals
L1, L2, L3, cont’d

From the condition (16) we find that the electrostatic potential
V (~x) must be spherically symmetric,

V (~x) = V (|~x |). (37)

Thus the classical Hamiltonian system (1) with the potentials and
field strengths defined in (36), (37) is the only system which
possesses the three first order integrals (23) and is minimally
superintegrable because the Hamiltonian H is functionally
independent of X1,X2,X3.

Imposing that an additional independent integral X4 of the
form (10), i.e. at most second order in momenta, exists, we find
only one system, namely the Coulomb potential modified by the
|~x |−2 term proportional to the strength of the magnetic monopole

V (~x) =
g2

2

1

|~x |2
− Q

|~x |
. (38)
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Superintegrability for the integrable system with integrals
L1, L2, L3, cont’d

We have three additional integrals of the given form which are the
components of the Laplace-Runge-Lenz vector modified by the
presence of the magnetic monopole. Of course, only one of them is
functionally independent of the Hamiltonian and the integrals
X1,X2,X3.

The fact that the system defined by (36) and (38) is maximally
superintegrable has been known for long time (see e.g. A. Peres.
Phys. Rev, 167(5):1449, 1968 or S. Labelle, M. Mayrand, and L.
Vinet. J. Math. Phys., 32(6):1516-1521, 1991). Here we have
shown that under the restrictions imposed on the structure and
order of the integrals there is no other maximally superintegrable
case in this class.
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Superintegrability for the integrable system with integrals
L1, L2, L3, cont’d

While it may be surprising that no modification of the isotropic
harmonic oscillator arose in our calculation, we refer the reader to
S. Labelle, M. Mayrand, and L. Vinet where it was demonstrated
that it is superintegrable but of the fourth order in momenta, not
at most second, as considered here.
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1st & 2nd order integrals - work in progress

Next we consider another case where there is one first order
integral, assumed in the form

X1 = pA1 + m1(~x).

The conditions (13-16) imply that

B2(~x) = −∂zm1,B3(~x) = ∂ym1,V (~x) = V (y , z),m1(~x) = m1(y , z).

The second integral we assume quadratic in linear momenta

X2 = ρ11(pA1 )2 + ρ22(pA2 )2 + ρ33(pA3 )2 + ρ23p
A
2 p

A
3 + ρ13p

A
1 p

A
3

+rho12p
A
1 p

A
2 + s21(~x)pA1 + s22(~x)pA2 + s23(~x)pA3 + m2(~x).
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1st & 2nd order integrals - work in progress

Using the residual Euclidean transformations and subtraction of X1

and H we simplify the second integral X2 and proceed to study
various subcases. Among others, we find the following systems

H =
1

2
(p1 + K1z)2 +

1

2
(p2 − K4z)2 +

1

2
p2

3 +
1

2
K 2

1 y
2 + K2K1z ,

X1 = p1,

X2 = p1p2 + K1p2z + K2p2 − K1yp3 −
1

2
K1K4z

2 +
1

2
K1K4y

2,

~B(~x) = (K4,K1, 0).

The system doesn’t become quadratically superintegrable with
nonvanishing ~B(~x) for any choice of the constants.
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1st & 2nd order integrals - work in progress

Its classical trajectories are not bounded and look like

Antonella Marchesiello, Libor Šnobl and Pavel Winternitz Integrable and superintegrable systems in static electromagnetic fields



1st & 2nd order integrals - work in progress

Another, related integrable system looks like

H =
1

2

(
(p1 − K7z)2 + (p2 − K4z)2 + p2

3

−K1K7y
2 − K7K1z

2 − K 2
7 z

2
)
,

X1 = p1,

X2 = p1p2 −
1

2
K1K4z

2 + K1p2z − K1yp3 +
1

2
K1K4y

2,

~B(~x) = (K4,−K7, 0).

Its classical trajectories are not bounded but by a suitable choice
of initial data (p1 = 0) can be constricted to a bounded region.
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1st & 2nd order integrals - work in progress

They look like

Antonella Marchesiello, Libor Šnobl and Pavel Winternitz Integrable and superintegrable systems in static electromagnetic fields



1st & 2nd order integrals - work in progress

Waiting long enough they densely cover a self-intersecting surface
in space.
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1st & 2nd order integrals - work in progress

When K4=0 there is an additional integral of motion of the form

X3 = p2
2 − K1K7y

2 (39)

and the system becomes quadratically minimally superintegrable,
with trajectories helixes or circles. However, it is not maximally
quadratically superintegrable.
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Conclusions

We expressed the conditions for the existence of an integral of
motion which is at most second order in momenta in a gauge
invariant way.

We looked in detail at Hamiltonians which possess two first
order integrals of motion corresponding to the subgroups of
the Euclidean group and some Hamiltonians possessing one
first order and one second order integral. We described the
implied structure of the Hamiltonian and studied the choices
of the vector and scalar potential under which these integrable
systems become superintegrable of first or second order in
momenta.
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Conclusions

We have seen that maximal superintegrability in three spatial
dimensions does not imply constant magnetic field, i.e. in 2D
it is a consequence of low dimension.

It appears that maximally superintegrable systems with
integrals polynomial in momenta and nonvanishing magnetic
field are more difficult to find compared to the scalar potential
case. Even the explicitly solvable system with a constant
magnetic field and vanishing electric field requires integrals
which are not polynomials.
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Thank you for your attention
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Superintegrability for the integrable system with integrals
P1,P2, cont’d

The classical equation of motion of (31) for z(t) is

z̈(t) = −Ap

β
sin

(
z(t)− φp

β

)
. (40)

The order of this equation can be lowered, obtaining

1

2
(ż(t))2 = Ap

(
cos

(
z(t)− φp

β

)
+ κ

)
, κ ≥ −1 (41)

(κ < −1 is unphysical since then (41) doesn’t have real solutions).
The solution of (41) is expressible in terms of Jacobi elliptic
function sn after we change the variables
z(t) = φp + β arccos(ζ(t)), t = β√

2Ap
τ to get

(ζ̇(τ))2 = −(ζ(τ)− 1)(ζ(τ) + 1)(ζ(τ) + κ). (42)
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Superintegrability for the integrable system with integrals
P1,P2, cont’d

The equations for x(t), y(t) now reduce to quadratures in terms of
it. Solving them numerically we obtain the trajectories for our
system. For −1 < κ < 1 they are bounded in the plane
perpendicular to (p1, p2, 0) and appear like a deformed helix whose
axis is parallel to the vector (p1, p2, 0):
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Superintegrability for the integrable system with integrals
P1,P2, cont’d

For 1 ≤ κ they are no longer bounded in the z-direction and
appear like a deformed helix whose axis is no longer parallel to the
xy -plane.
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Superintegrability for the integrable system with integrals
P1,P2, cont’d

The value κ = 1 appears to be a limiting case of the κ > 1
situation.
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