Superintegrable 3D systems in a magnetic field corresponding to Cartesian separation of variables
L. Šnobl in collaboration with A. Marchesiello Czech Technical University in Prague

Physics and Mathematics of Nonlinear Phenomena Gallipoli, June 19, 2017
J. Phys. A: Math. Theor. 50, 245202 (2017)

Contents

1 Introduction

2 General structure of the integrals of motion

3 Cartesian type second order integrals

4 Superintegrable systems found

5 "Generalised" Cartesian case
6 Conclusions

Contents

1 Introduction

2 General structure of the integrals of motion

3 Cartesian type second order integrals

4 Superintegrable systems found
"Generalised" Cartesian case

6 Conclusions

Contents

1 Introduction

2 General structure of the integrals of motion
3 Cartesian type second order integrals
4 Superintegrable systems found
5 "Generalised" Cartesian case

6 Conclusions

Contents

1 Introduction

2 General structure of the integrals of motion
3 Cartesian type second order integrals
4 Superintegrable systems found
5 ＂Generalised＂Cartesian case

6 Conclusions

Contents

1 Introduction

2 General structure of the integrals of motion
3 Cartesian type second order integrals
4 Superintegrable systems found
5 ＂Generalised＂Cartesian case
6 Conclusions

Contents

1 Introduction

2 General structure of the integrals of motion
3 Cartesian type second order integrals
4 Superintegrable systems found
5 ＂Generalised＂Cartesian case
6 Conclusions

Introduction

We consider superintegrable systems, i.e. Hamiltonian systems that have more globally defined integrals of motion than degrees of freedom, in three spatial dimensions.

Introduction

We consider superintegrable systems，i．e．Hamiltonian systems that have more globally defined integrals of motion than degrees of freedom，in three spatial dimensions．

Due to A．A．Makarov，J．A．Smorodinsky，K．Valiev，P． Winternitz，II Nuovo Cimento LII A， 8881 （1967）when quadratic integrability is considered and the Hamiltonian involves only a kinetic term and a scalar potential，there are 11 classes of pairs of commuting quadratic integrals，each uniquely determined by a a pair of commuting quadratic elements in the enveloping algebra of the 3D Euclidean algebra．

These in turn correspond to a coordinate system in which the
Hamilton－Jacobi or Schrödinger equation separates．

Introduction

We consider superintegrable systems, i.e. Hamiltonian systems that have more globally defined integrals of motion than degrees of freedom, in three spatial dimensions.

Due to A.A. Makarov, J.A. Smorodinsky, K. Valiev, P. Winternitz, II Nuovo Cimento LII A, 8881 (1967) when quadratic integrability is considered and the Hamiltonian involves only a kinetic term and a scalar potential, there are 11 classes of pairs of commuting quadratic integrals, each uniquely determined by a a pair of commuting quadratic elements in the enveloping algebra of the 3D Euclidean algebra.

These in turn correspond to a coordinate system in which the Hamilton-Jacobi or Schrödinger equation separates.

Introduction, cont'd

When systems involving vector potentials are considered, quadratic integrability no longer implies separability.

In J. Bérubé, P. Winternitz. J. Math. Phys. 45 (2004), no. 5, 1959-1973 the structure of the gauge-invariant integrable and superintegrable systems involving vector potentials was considered in two spatial dimensions. It was shown there that under the assumption of integrals being of at most second order in momenta, no superintegrable system with nonconstant magnetic field exists in two dimensions.

Introduction, cont'd

When systems involving vector potentials are considered, quadratic integrability no longer implies separability.
In J. Bérubé, P. Winternitz. J. Math. Phys. 45 (2004), no. 5, 1959-1973 the structure of the gauge-invariant integrable and superintegrable systems involving vector potentials was considered in two spatial dimensions. It was shown there that under the assumption of integrals being of at most second order in momenta, no superintegrable system with nonconstant magnetic field exists in two dimensions.

Introduction，cont＇d

Approaches to the problem in three spatial dimensions：
■ A．Marchesiello，L．Šnobl，P．Winternitz，J．Phys．A： Math．Theor．48， 395206 （2015）：possibilities for integrability and superintegrability arising from first order integrals were studied－cf．my talk at PMNP2015．3D maximally superintegrable systems with nonconstant magnetic field were found．Among them magnetic monopole with Coulomb like potential is second order integrable．

integrable systems which separate in Cartesian coordinates in the limit when the magnetic field vanishes，i．e．possess two second order integrals of motion of the so－called
\qquad

Introduction, cont'd

Approaches to the problem in three spatial dimensions:
■ A. Marchesiello, L. Šnobl, P. Winternitz, J. Phys. A: Math. Theor. 48, 395206 (2015): possibilities for integrability and superintegrability arising from first order integrals were studied - cf. my talk at PMNP2015. 3D maximally superintegrable systems with nonconstant magnetic field were found. Among them magnetic monopole with Coulomb like potential is second order integrable.
■ A. Zhalij, J. Phys.: Conf. Ser. 621, 012019 (2015): integrable systems which separate in Cartesian coordinates in the limit when the magnetic field vanishes, i.e. possess two second order integrals of motion of the so-called Cartesian type.
and A. Marchesiello
Superintegrable 3D systems in a magnetic field corresponding to Cartesian separation of variables

Outline

Here we extend the analysis in two directions:

- We study superintegrable 3D systems involving vector potentials when two quadratic commuting Cartesian integrals are present.
- We show that more general classes for quadratic integrals than the ones corresponding to separation in absence of magnetic field, should be considered.

Our results were published in A. Marchesiello, L. Snobl, J. Phys. A: Math. Theor. 50, 245202 (2017).

Outline

Here we extend the analysis in two directions：

■ We study superintegrable 3D systems involving vector potentials when two quadratic commuting Cartesian integrals are present．
－We show that more general classes for quadratic integrals than the ones corresponding to separation in absence of magnetic field，should be considered

Our results were published in A．Marchesiello，L．Šnobl，J Phys．A：Math．Theor．50， 245202 （2017）

Outline

Here we extend the analysis in two directions：

■ We study superintegrable 3D systems involving vector potentials when two quadratic commuting Cartesian integrals are present．
－We show that more general classes for quadratic integrals than the ones corresponding to separation in absence of magnetic field，should be considered．

Our results were published in A．Marchesiello，L．Šnobl，J．
Phys．A：Math．Theor．50， 245202 （2017）

Outline

Here we extend the analysis in two directions:

■ We study superintegrable 3D systems involving vector potentials when two quadratic commuting Cartesian integrals are present.
■ We show that more general classes for quadratic integrals than the ones corresponding to separation in absence of magnetic field, should be considered.

Our results were published in A. Marchesiello, L. Šnobl, J. Phys. A: Math. Theor. 50, 245202 (2017).

Classical Hamiltonian

We consider the Hamiltonian describing the motion of a spinless particle in three dimensions in a nonvanishing magnetic field, i.e. classically

$$
\begin{equation*}
H=\frac{1}{2}(\vec{p}+\vec{A})^{2}+W(\vec{x}) \tag{1}
\end{equation*}
$$

where \vec{p} is the momentum, \vec{A} is the vector potential and V is the electrostatic potential. The magnetic field $\vec{B}=\nabla \times \vec{A}$ is assumed to be nonvanishing so that the system is not gauge equivalent to a system with only the scalar potential.
> chose the units in which the mass of the particle has the numerical value 1 and the charge of the particle is -1 (having an electron in mind as the prime example)

Classical Hamiltonian

We consider the Hamiltonian describing the motion of a spinless particle in three dimensions in a nonvanishing magnetic field，i．e．classically

$$
\begin{equation*}
H=\frac{1}{2}(\vec{p}+\vec{A})^{2}+W(\vec{x}) \tag{1}
\end{equation*}
$$

where \vec{p} is the momentum，\vec{A} is the vector potential and V is the electrostatic potential．The magnetic field $\vec{B}=\nabla \times \vec{A}$ is assumed to be nonvanishing so that the system is not gauge equivalent to a system with only the scalar potential．We chose the units in which the mass of the particle has the numerical value 1 and the charge of the particle is -1 （having an electron in mind as the prime example）．

Gauge invariance

We recall that the equations of motion of the Hamiltonian (1) are gauge invariant, i.e. that they are the same for the potentials

$$
\overrightarrow{A^{\prime}}(\vec{x})=\vec{A}(\vec{x})+\nabla \chi, \quad V^{\prime}(\vec{x})=V(\vec{x})
$$

for any choice of the function $\chi(\vec{x})$ (we are considering only the static situation here). Thus, the physically relevant quantity is the magnetic field

$$
\begin{equation*}
\vec{B}=\nabla \times \vec{A}, \quad \text { i.e. } \quad B_{j}=\epsilon_{j k l} \frac{\partial A_{l}}{\partial x_{k}} \tag{2}
\end{equation*}
$$

rather than the vector potential $\vec{A}(\vec{x})$.

Quantum Hamiltonian

We shall also consider the quantum Hamiltonian defined as the (properly symmetrized) analogue of (1) in terms of the operators of the linear momenta $\hat{P}_{j}=-\mathrm{i} \hbar \frac{\partial}{\partial x_{j}}$ and coordinates $\hat{X}_{j}=x_{j}:$

$$
\begin{aligned}
\hat{H} & =\frac{1}{2} \sum_{j}\left(\hat{P}_{j}+\hat{A}_{j}(\vec{x})\right)^{2}+\hat{W}(\vec{x}) \\
& =\frac{1}{2} \sum_{j}\left(\hat{P}_{j} \hat{P}_{j}+\hat{P}_{j} \hat{A}_{j}(\vec{x})+\hat{A}_{j}(\vec{x}) \hat{P}_{j}+\hat{A}_{j}(\vec{x})^{2}\right)+\hat{W}(\vec{x})
\end{aligned}
$$

The operators $\hat{A}_{j}(\vec{x})$ and $\hat{W}(\vec{x})$ act on wavefunctions as multiplication by the functions $A_{j}(\vec{x})$ and $W(\vec{x})$, respectively.

Quantum gauge invariance

On the quantum level, the gauge transformation demonstrates itself as a unitary transformation of the Hilbert space. Namely, let us take

$$
\begin{equation*}
\hat{U} \psi(\vec{x})=\exp \left(\frac{\mathrm{i}}{\hbar} \chi(\vec{x})\right) \cdot \psi(\vec{x}) \tag{3}
\end{equation*}
$$

Applying (3) on the states and the observables we get an equivalent description of the same physical reality in terms of

$$
\begin{equation*}
\psi \rightarrow \psi^{\prime}=\hat{U} \psi, \quad \hat{O} \rightarrow \hat{O}^{\prime}=\hat{U} \hat{O} \hat{U}^{\dagger} \tag{4}
\end{equation*}
$$

In particular, the following observables transform covariantly

$$
\left(\hat{P}_{j}+\hat{A}_{j}\right) \rightarrow \hat{U}\left(\hat{P}_{j}+\hat{A}_{j}\right) \hat{U}^{\dagger}=P_{j}+\hat{A}_{j}^{\prime}, \quad \hat{V} \rightarrow \hat{U} \hat{V} \hat{U}^{\dagger}=\hat{V}
$$

The general structure of the integrals of motion

Let us consider integrals of motion which are at most second order in the momenta．Since our system is gauge invariant，we express the integrals in terms of gauge covariant expressions

$$
\begin{equation*}
p_{j}^{A}=p_{j}+A_{j}, \quad \hat{P}_{j}^{A}=\hat{P}_{j}+\hat{A}_{j} \tag{5}
\end{equation*}
$$

rather than the momenta themselves．The operators（5）no longer commute among each other．
They satisfy

where \hat{B}_{l} is the operator of the magnetic field strength，

$$
\hat{B}_{j} \psi(\vec{x})=B_{j}(\vec{x}) \psi(\vec{x})=\epsilon_{j k} \frac{\partial A_{l}}{\partial x_{k}} \psi(\vec{x})
$$

The general structure of the integrals of motion

Let us consider integrals of motion which are at most second order in the momenta. Since our system is gauge invariant, we express the integrals in terms of gauge covariant expressions

$$
\begin{equation*}
p_{j}^{A}=p_{j}+A_{j}, \quad \hat{P}_{j}^{A}=\hat{P}_{j}+\hat{A}_{j} \tag{5}
\end{equation*}
$$

rather than the momenta themselves. The operators (5) no longer commute among each other.
They satisfy

$$
\begin{equation*}
\left[\hat{P}_{j}^{A}, \hat{P}_{k}^{A}\right]=-\mathrm{i} \hbar \epsilon_{j k l} \hat{B}_{l}, \quad\left[\hat{P}_{j}^{A}, \hat{X}_{k}\right]=-\mathrm{i} \hbar \mathbf{1} \tag{6}
\end{equation*}
$$

where \hat{B}_{l} is the operator of the magnetic field strength,

$$
\hat{B}_{j} \psi(\vec{x})=B_{j}(\vec{x}) \psi(\vec{x})=\epsilon_{j k l} \frac{\partial A_{l}}{\partial x_{k}} \psi(\vec{x})
$$

and $\epsilon_{j k l}$ is the completely antisymmetric tensor with $\epsilon_{123}=1$.

The general structure of the integrals of motion, contd

Classically, we write a general second order integral of motion as

$$
\begin{equation*}
X=\sum_{j=1}^{3} h_{j}(\vec{x}) p_{j}^{A} p_{j}^{A}+\sum_{j, k, l=1}^{3} \frac{1}{2}\left|\epsilon_{j k \mid}\right| n_{j}(\vec{x}) p_{k}^{A} p_{l}^{A}+\sum_{j=1}^{3} s_{j}(\vec{x}) p_{j}^{A}+m(\vec{x}) \tag{7}
\end{equation*}
$$

The condition that the Poisson bracket

of the integral (7) with the Hamiltonian (1) vanishes

The general structure of the integrals of motion, cont'd

Classically, we write a general second order integral of motion as

$$
\begin{equation*}
X=\sum_{j=1}^{3} h_{j}(\vec{x}) p_{j}^{A} p_{j}^{A}+\sum_{j, k, l=1}^{3} \frac{1}{2}\left|\epsilon_{j k \mid}\right| n_{j}(\vec{x}) p_{k}^{A} p_{l}^{A}+\sum_{j=1}^{3} s_{j}(\vec{x}) p_{j}^{A}+m(\vec{x}) \tag{7}
\end{equation*}
$$

The condition that the Poisson bracket

$$
\begin{equation*}
\{a(\vec{x}, \vec{p}), b(\vec{x}, \vec{p})\}_{\text {P.B. }}=\sum_{j=1}^{3}\left(\frac{\partial a}{\partial x_{j}} \frac{\partial b}{\partial p_{j}}-\frac{\partial b}{\partial x_{j}} \frac{\partial a}{\partial p_{j}}\right) \tag{8}
\end{equation*}
$$

of the integral (7) with the Hamiltonian (1) vanishes

$$
\begin{equation*}
\{H, X\}_{P . B .}=0 \tag{9}
\end{equation*}
$$

leads to terms of order $3,2,1$ and 0 in the momenta:

The conditions for the integrals of motion

Third order

$$
\begin{array}{lll}
\partial_{x} h_{1}=0, & \partial_{y} h_{1}=-\partial_{x} n_{3}, & \partial_{z} h_{1}=-\partial_{x} n_{2}, \\
\partial_{x} h_{2}=-\partial_{y} n_{3}, & \partial_{y} h_{2}=0, & \partial_{z} h_{2}=-\partial_{y} n_{1}, \\
\partial_{x} h_{3}=-\partial_{z} n_{2}, & \partial_{y} h_{3}=-\partial_{z} n_{1}, & \partial_{z} h_{3}=0, \\
\nabla \cdot \vec{n}=0 . &
\end{array}
$$

Second order

$$
\begin{align*}
\partial_{x} s_{1} & =n_{2} B_{2}-n_{3} B_{3}, \\
\partial_{y} s_{2} & =n_{3} B_{3}-n_{1} B_{1}, \\
\partial_{z} s_{3} & =n_{1} B_{1}-n_{2} B_{2}, \quad \text { i.e. } \quad \nabla \cdot \vec{s}=0, \\
\partial_{y} s_{1}+\partial_{x} s_{2} & =n_{1} B_{2}-n_{2} B_{1}+2\left(h_{1}-h_{2}\right) B_{3}, \tag{11}\\
\partial_{z} s_{1}+\partial_{x} s_{3} & =n_{3} B_{1}-n_{1} B_{3}+2\left(h_{3}-h_{1}\right) B_{2}, \\
\partial_{y} s_{3}+\partial_{z} s_{2} & =n_{2} B_{3}-n_{3} B_{2}+2\left(h_{2}-h_{3}\right) B_{1} .
\end{align*}
$$

The conditions for the integrals of motion, cont'd

First order terms

$$
\begin{align*}
\partial_{x} m & =2 h_{1} \partial_{x} W+n_{3} \partial_{y} W+n_{2} \partial_{z} W+s_{3} B_{2}-s_{2} B_{3} \\
\partial_{y} m & =n_{3} \partial_{x} W+2 h_{2} \partial_{y} W+n_{1} \partial_{z} W+s_{1} B_{3}-s_{3} B_{1} \tag{12}\\
\partial_{z} m & =n_{2} \partial_{x} W+n_{1} \partial_{y} W+2 h_{3} \partial_{z} W+s_{2} B_{1}-s_{1} B_{2}
\end{align*}
$$

Zeroth order

$$
\begin{equation*}
\vec{s} \cdot \nabla W=0 \tag{13}
\end{equation*}
$$

Equations (10) are the same as for the system with vanishing magnetic field and their explicit solution is known - they imply that the highest order terms in the integral (7) are linear combinations of products of the generators of the Euclidean group $p_{1}, p_{2}, p_{3}, I_{1}, l_{2}, l_{3}$ where $l_{j}=\sum_{l, k} \epsilon_{j k l} x_{k} p_{l}$, i.e. h, \vec{n} can

The conditions for the integrals of motion, cont'd

First order terms

$$
\begin{align*}
\partial_{x} m & =2 h_{1} \partial_{x} W+n_{3} \partial_{y} W+n_{2} \partial_{z} W+s_{3} B_{2}-s_{2} B_{3}, \\
\partial_{y} m & =n_{3} \partial_{x} W+2 h_{2} \partial_{y} W+n_{1} \partial_{z} W+s_{1} B_{3}-s_{3} B_{1}, \tag{12}\\
\partial_{z} m & =n_{2} \partial_{x} W+n_{1} \partial_{y} W+2 h_{3} \partial_{z} W+s_{2} B_{1}-s_{1} B_{2}
\end{align*}
$$

Zeroth order

$$
\begin{equation*}
\vec{s} \cdot \nabla W=0 \tag{13}
\end{equation*}
$$

Equations (10) are the same as for the system with vanishing magnetic field and their explicit solution is known - they imply that the highest order terms in the integral (7) are linear combinations of products of the generators of the Euclidean group $p_{1}, p_{2}, p_{3}, l_{1}, l_{2}, l_{3}$ where $l_{j}=\sum_{l, k} \epsilon_{j k l} x_{k} p_{l}$, i.e. \vec{h}, \vec{n} can be expressed in terms of 20 constants $\alpha_{a b}, 1 \leq a \leq b \leq 6$,

The conditions for the integrals of motion, cont'd

In the quantum case we have to consider a properly symmetrized analogue of (7). We choose

$$
\begin{align*}
\hat{X}= & \sum_{j=1}^{3}\left\{h_{j}(\vec{x}), \hat{P}_{j}^{A} \hat{P}_{j}^{A}\right\}+\sum_{j, k, l=1}^{3} \frac{\left|\epsilon_{j k k}\right|}{2}\left\{n_{j}(\vec{x}), \hat{P}_{k}^{A} \hat{P}_{l}^{A}\right\}+ \\
& +\sum_{j=1}^{3}\left\{s_{j}(\vec{x}), \hat{P}_{j}^{A}\right\}+m(\vec{x}) \tag{14}
\end{align*}
$$

where $\{$,$\} denotes the symmetrization. Only (13) obtains an$ \hbar^{2}-proportional correction

$$
\begin{aligned}
& \vec{s} \cdot \nabla W+\frac{\hbar^{2}}{4}\left(\partial_{z} n_{1} \partial_{z} B_{1}-\partial_{y} n_{1} \partial_{y} B_{1}+\partial_{x} n_{2} \partial_{x} B_{2}-\partial_{z} n_{2} \partial_{z} B_{2}+\right. \\
& \left.\quad+\partial_{y} n_{3} \partial_{y} B_{3}-\partial_{x} n_{3} \partial_{x} B_{3}+\partial_{x} n_{1} \partial_{y} B_{2}-\partial_{y} n_{2} \partial_{x} B_{1}\right)=0 .(15)
\end{aligned}
$$

Cartesian type second order integrals

Let us now turn our attention to the situation where the Hamiltonian is integrable in the Liouville sense, with at most quadratic integrals. That means that in addition to the Hamiltonian itself there must be at least two independent integrals of motion of the form (7) or (14) which commute in the sense of Poisson bracket or commutator, respectively.

We assume such integrals to be of Cartesian type,

For vanishing magnetic field, these integrals would correspond
to separation in Cartesian coordinates.

Cartesian type second order integrals

Let us now turn our attention to the situation where the Hamiltonian is integrable in the Liouville sense, with at most quadratic integrals. That means that in addition to the Hamiltonian itself there must be at least two independent integrals of motion of the form (7) or (14) which commute in the sense of Poisson bracket or commutator, respectively.

We assume such integrals to be of Cartesian type,

$$
\begin{equation*}
X_{j}=\left(p_{j}^{A}\right)^{2}+\sum_{\ell=1}^{3} \mathcal{S}_{j}^{\ell}(\vec{x}) p_{\ell}^{A}+m_{j}(\vec{x}), \quad j=1,2 \tag{16}
\end{equation*}
$$

For vanishing magnetic field, these integrals would correspond to separation in Cartesian coordinates.
and A. Marchesiello
Superintegrable 3D systems in a magnetic field corresponding to Cartesian separation of variables

Integrable systems in the Cartesian Case

For such pair of Cartesian-type integrals to exist, the magnetic field \vec{B} must be of the form

$$
\begin{align*}
B_{1}(\vec{x}) & =F_{2}^{\prime}(z)+k_{3}^{\prime}(y) \\
B_{2}(\vec{x}) & =-F_{1}^{\prime}(z)-g_{3}^{\prime}(x) \tag{17}\\
B_{3}(\vec{x}) & =g_{2}^{\prime}(x)-k_{1}^{\prime}(y)
\end{align*}
$$

where the functions F_{1}, F_{2}, g_{ℓ} and k_{ℓ} must satisfy the following compatibility constraints

Integrable systems in the Cartesian Case

For such pair of Cartesian－type integrals to exist，the magnetic field \vec{B} must be of the form

$$
\begin{align*}
B_{1}(\vec{x}) & =F_{2}^{\prime}(z)+k_{3}^{\prime}(y) \\
B_{2}(\vec{x}) & =-F_{1}^{\prime}(z)-g_{3}^{\prime}(x) \tag{17}\\
B_{3}(\vec{x}) & =g_{2}^{\prime}(x)-k_{1}^{\prime}(y)
\end{align*}
$$

where the functions F_{1}, F_{2}, g_{ℓ} and k_{ℓ} must satisfy the following compatibility constraints

$$
\begin{align*}
F_{1}(z) g_{2}^{\prime}(x)-g_{3}(x) F_{2}^{\prime}(z) & =0 \\
F_{2}(z) k_{1}^{\prime}(y)-k_{3}(y) F_{1}^{\prime}(z) & =0 \tag{18}\\
g_{2}(x) k_{3}^{\prime}(y)-k_{1}(y) g_{3}^{\prime}(x) & =0
\end{align*}
$$

Integrable systems in the Cartesian Case, cont'd

The functions g_{ℓ} and k_{ℓ} are related to the first order terms in (16) through

$$
\begin{array}{lr}
\mathcal{S}_{1}^{1}(\vec{x})=2\left(F_{1}(z)-k_{1}(y)\right), & \ell=2,3, \\
\mathcal{S}_{1}^{\ell}(\vec{x})=2 g_{\ell}(x), & \\
\mathcal{S}_{2}^{2}(\vec{x})=2\left(F_{2}(z)-g_{2}(x)\right), & \ell=1,3 . \\
\mathcal{S}_{2}^{\ell}(\vec{x})=2 k_{\ell}(y), & \tag{19}
\end{array}
$$

Superintegrability in the Cartesian case

Conditions (17) and (18) prescribe the structure of the magnetic field that leads to 5 classes of integrable systems with nonvanishing magnetic field. ${ }^{1}$

Here we investigate which choices of the potentials render the system with integrals (16) not only integrable, but superintegrable. Namely, we look for conditions for a third independent integral to exist.

A "brute force" approach, which directly looks for an additional second order integral solving (11)-(13), presently appears intractable due to the computational complexity.
${ }^{1}$ See A. Zhalij, J. Phys.: Conf. Ser. 621, 012019 (2015)
and A. Marchesiello
Superintegrable 3D systems in a magnetic field corresponding to Cartesian separation of variables

Superintegrability in the Cartesian case

Conditions (17) and (18) prescribe the structure of the magnetic field that leads to 5 classes of integrable systems with nonvanishing magnetic field. ${ }^{1}$

Here we investigate which choices of the potentials render the system with integrals (16) not only integrable, but superintegrable. Namely, we look for conditions for a third independent integral to exist.

A "brute force" approach, which directly looks for an additional second order integral solving (11)-(13), presently appears intractable due to the computational complexity.
${ }^{1}$ See A. Zhalij, J. Phys.: Conf. Ser. 621, 012019 (2015)
and A. Marchesiello
Superintegrable 3D systems in a magnetic field corresponding to Cartesian separation of variables

Superintegrability in the Cartesian case

Conditions (17) and (18) prescribe the structure of the magnetic field that leads to 5 classes of integrable systems with nonvanishing magnetic field. ${ }^{1}$

Here we investigate which choices of the potentials render the system with integrals (16) not only integrable, but superintegrable. Namely, we look for conditions for a third independent integral to exist.

A "brute force" approach, which directly looks for an additional second order integral solving (11)-(13), presently appears intractable due to the computational complexity.

[^0]and A. Marchesiello
Superintegrable 3D systems in a magnetic field corresponding to Cartesian separation of variables

First order additional integral

Instead, let us assume that superintegrability arises in the simplest possible way, requiring the third integral to be of first order in the momenta:

$$
\begin{equation*}
X_{3}=\sum_{\ell=1}^{3} s_{\ell}(\vec{x}) p_{\ell}^{A}+m_{3}(\vec{x}) \tag{20}
\end{equation*}
$$

Next, for each minimally superintegrable system found, we
can investigate the possibilities for another integral, this time allowing second order terms, so to obtain a maximally superintegrable system.

First order additional integral

Instead, let us assume that superintegrability arises in the simplest possible way, requiring the third integral to be of first order in the momenta:

$$
\begin{equation*}
X_{3}=\sum_{\ell=1}^{3} s_{\ell}(\vec{x}) p_{\ell}^{A}+m_{3}(\vec{x}) \tag{20}
\end{equation*}
$$

Next, for each minimally superintegrable system found, we can investigate the possibilities for another integral, this time allowing second order terms, so to obtain a maximally superintegrable system.

First order additional integral，cont＇d

By setting $\vec{h}=\vec{n}=0$ ，we see that in turn the first order term in X_{3} must lie in the enveloping algebra of the Euclidean algebra：

$$
\begin{align*}
& s_{1}(x, y, z)=\beta_{12} y+\beta_{13} z+\beta_{11} \\
& s_{2}(x, y, z)=-\beta_{12} x+\beta_{23} z+\beta_{22} \tag{21}\\
& s_{3}(x, y, z)=-\beta_{13} x-\beta_{23} y+\beta_{33}
\end{align*}
$$

where $\beta_{i j} \in \mathbb{R}$ ．
Also we see that the zero order equations in the classical and quantum case now coincide for all three integrals，i．e．we cannot discover any purely quantum integrable systems in this setting．

First order additional integral, cont'd

By setting $\vec{h}=\vec{n}=0$, we see that in turn the first order term in X_{3} must lie in the enveloping algebra of the Euclidean algebra:

$$
\begin{align*}
& s_{1}(x, y, z)=\beta_{12} y+\beta_{13} z+\beta_{11} \\
& s_{2}(x, y, z)=-\beta_{12} x+\beta_{23} z+\beta_{22} \tag{21}\\
& s_{3}(x, y, z)=-\beta_{13} x-\beta_{23} y+\beta_{33}
\end{align*}
$$

where $\beta_{i j} \in \mathbb{R}$.
Also we see that the zero order equations in the classical and quantum case now coincide for all three integrals, i.e. we cannot discover any purely quantum integrable systems in this setting.

Superintegrability in the Cartesian case

Going through the solution of the remaining determining equations，we have found that minimally superintegrable systems with first order additional integral can exist only in three of the five classes of integrable systems existing in the Cartesian case．（Cases A，B，C in the following）．

Superintegrability in the Cartesian case

Going through the solution of the remaining determining equations, we have found that minimally superintegrable systems with first order additional integral can exist only in three of the five classes of integrable systems existing in the Cartesian case. (Cases A, B, C in the following).

Next, we look for maximally superintegrable systems among them. Thus, we must go through equations (11)-(13), looking for another independent integral of at most second order, i.e. of the form (7). The existence of three known integrals significantly restricts the structure of the system, thus we are able to find all its solutions, if any.

Superintegrable systems found: Case A

Case A. Let us start with the integrable system given by

$$
W(\vec{x})=\frac{1}{2}\left(u_{1}(x)+u_{2}(y)-\left(g_{3}(x)+k_{3}(y)\right)^{2}\right), \vec{B}=\left(k_{3}^{\prime}(y),-g_{3}^{\prime}(x), 0\right) .
$$

We choose the gauge so that

$$
\vec{A}(\vec{x})=\left(0,0, g_{3}(x)+k_{3}(y)\right)
$$

and the two Cartesian integrals read

$$
X_{1}=p_{1}^{2}+2 g_{3}(x) p_{3}+u_{1}(x), \quad X_{2}=p_{2}^{2}+2 k_{3}(y) p_{3}+u_{2}(y)
$$

It follows immediately that p_{3} is an integral, however not independent on the others since

$$
2 H-X_{1}-X_{2}=p_{3}^{2}
$$

Superintegrable systems found:

We have $g_{3}=\frac{\Omega}{2} x^{2}, k_{3}=\frac{\Omega}{2} \Omega y^{2}, \Omega \in \mathbb{R} \backslash\{0\}$, thus

$$
\vec{A}(\vec{x})=\left(0,0, \frac{\Omega}{2}\left(x^{2}+y^{2}\right)\right), \quad \vec{B}(\vec{x})=(\Omega y,-\Omega x, 0)
$$

The remaining arbitrary functions in the effective potential are

$$
u_{1}=\frac{U}{2} x^{2}, \quad u_{2}=\frac{U}{2} y^{2}, \quad U \in \mathbb{R}
$$

so that

$$
W(\vec{x})=-\frac{\Omega^{2}}{4}\left(x^{2}+y^{2}\right)^{2}+\frac{U}{2}\left(x^{2}+y^{2}\right)
$$

The additional independent first order integral turns out to be

$$
x_{3}=I_{3}
$$

Superintegrable systems found:

For no choice of the nonvanishing magnetic field an additional independent integral of at most second order exists, i.e. this system is never maximally quadratically superintegrable.

For $2 \Omega p_{30}+U>0$, the solution of the equations of motion takes the form of a deformed spiral.

and A. Marchesiello

Superintegrable systems found：

For no choice of the nonvanishing magnetic field an additional independent integral of at most second order exists，i．e．this system is never maximally quadratically superintegrable．

For $2 \Omega p_{30}+U>0$ ，the solution of the equations of motion takes the form of a deformed spiral．

Figure：$\Omega=1, U=0, p_{10}=1, p_{20}=1, p_{30}=1, x_{0}=1, y_{0}=0, z_{0}=0$ ．

Superintegrable systems found:

, cont'd

When the initial conditions are such that $2 \Omega p_{30}+U=0$ the solution becomes polynomial in time with all three momenta p_{1}, p_{2}, p_{3} conserved.

For $2 \Omega p_{30}+U<0$ the solution is expressed in terms of hyperbolic functions and is not bounded in any spatial direction

Superintegrable systems found：

When the initial conditions are such that $2 \Omega p_{30}+U=0$ the solution becomes polynomial in time with all three momenta p_{1}, p_{2}, p_{3} conserved．

For $2 \Omega p_{30}+U<0$ the solution is expressed in terms of hyperbolic functions and is not bounded in any spatial direction．

Superintegrable systems found:

We have $g_{3}=-\Omega_{2} x, k_{3}=-\Omega_{1} y, \Omega_{1}, \Omega_{2} \in \mathbb{R}$, which implies

$$
\vec{A}=\left(0,0,-\Omega_{2} x-\Omega_{1} y\right), \quad \vec{B}(\vec{x})=\left(-\Omega_{1}, \Omega_{2}, 0\right)
$$

The effective potential takes the form

$$
W(\vec{x})=\frac{\Omega_{1} \Omega_{2}}{2 S}(S x-y)^{2}+\frac{U}{2}(S x-y)
$$

since

$$
\begin{aligned}
& u_{1}=\Omega_{2}^{2} x^{2}+S\left(U+\Omega_{1} \Omega_{2} x\right) x \\
& u_{2}=\Omega_{1}^{2} y^{2}-\left(U-\frac{\Omega_{1} \Omega_{2}}{S} y\right) y, \quad S \in \mathbb{R}
\end{aligned}
$$

The third integral is given by

$$
\begin{equation*}
X_{3}=p_{1}+S p_{2}-\left(S \Omega_{1}+\Omega_{2}\right) z \tag{22}
\end{equation*}
$$

Superintegrable systems found:

Under the assumption $\Omega_{1} \Omega_{2} \neq 0$, a shift of the coordinates accompanied by a gauge transformation allows us to set $U=0$. becomes a linear function of the coordinates.

When $\Omega_{1} S+\Omega_{2}=0$, the Hamiltonian becomes

We can rotate our coordinates around the z-axis to set $\Omega_{2}=0$ and the integrals reduce to

$$
\begin{equation*}
X_{1}=p_{1}^{2}, \quad X_{2}=p_{2}^{2}-2 \Omega_{1} y p_{3}, \quad X_{3}=p_{1} \tag{23}
\end{equation*}
$$

i.e. X_{3} becomes equal to X_{1}

Superintegrable systems found：

Under the assumption $\Omega_{1} \Omega_{2} \neq 0$ ，a shift of the coordinates accompanied by a gauge transformation allows us to set $U=0$ ．When either of the Ω_{i} vanishes，the potential W becomes a linear function of the coordinates．

When $\Omega_{1} S+\Omega_{2}=0$ ，the Hamiltonian becomes

We can rotate our coordinates around the z－axis to set $\Omega_{2}=0$ and the integrals reduce to

$$
X_{1}=p_{1}^{2}, \quad X_{2}=p_{2}^{2}-2 \Omega_{1} y p_{3}, \quad X_{3}=p_{1}
$$

Superintegrable systems found:

Under the assumption $\Omega_{1} \Omega_{2} \neq 0$, a shift of the coordinates accompanied by a gauge transformation allows us to set $U=0$. When either of the Ω_{i} vanishes, the potential W becomes a linear function of the coordinates.

When $\Omega_{1} S+\Omega_{2}=0$, the Hamiltonian becomes

$$
H=\frac{p_{1}^{2}+p_{2}^{2}+p_{3}^{2}}{2}-\Omega_{1} y p_{3}-\Omega_{2} x p_{3}, \quad W(\vec{x})=-\frac{\left(\Omega_{1} y+\Omega_{2} x\right)^{2}}{2}
$$

We can rotate our coordinates around the z-axis to set $\Omega_{2}=0$ and the integrals reduce to

$$
\begin{equation*}
X_{1}=p_{1}^{2}, \quad X_{2}=p_{2}^{2}-2 \Omega_{1} y p_{3}, \quad X_{3}=p_{1} \tag{23}
\end{equation*}
$$

i.e. X_{3} becomes equal to X_{1}.
and A. Marchesiello
Superintegrable 3D systems in a magnetic field corresponding to Cartesian separation of variables

Superintegrable systems found：

However，there are two additional independent second order integrals

$$
X_{4}=p_{1} 1_{3}-\frac{\Omega_{1}}{2} x^{2} p_{3}, \quad X_{5}=\frac{1}{3} p_{2} l_{3}-l_{2} p_{3}-\frac{2}{3} \Omega_{1} x y p_{3}
$$

which classically make the system maximally quadratically superintegrable．The classical trajectories are unbounded for almost all initial conditions．Its quantum properties are not clear since the potential $W(\vec{x})$ is not bounded from below．

Superintegrable systems found:

Coming back to $\Omega_{1} S+\Omega_{2} \neq 0$: there are bounded trajectories, when the frequency ratio satisfies the rationality condition

$$
\begin{equation*}
S \frac{\Omega_{2}}{\Omega_{1}}=k^{2}, \quad k \in \mathbb{Q} . \tag{24}
\end{equation*}
$$

Left: $\Omega_{1}=1, \Omega_{2}=3, S=10$, irrational frequency ratio (24).
Right: $\Omega_{1}=1, \Omega_{2}=3, S=3$, i.e. rational frequency ratio (24) $k=3$. $\overline{\bar{z}}$

Superintegrable systems found：

For $1 \neq k=\sqrt{S \frac{\Omega_{2}}{\Omega_{1}}} \in \mathbb{Q}$ there is no additional first order integral．An independent second order integral exists for particular values of S ．Namely，for $S=\frac{\Omega_{1}}{4 \Omega_{2}}$ ，i．e．$k=\frac{1}{2}$ ，

$$
\begin{aligned}
X_{4} & =-p_{1} l_{3}-p_{3} l_{1}+4 \frac{\Omega_{2}}{\Omega_{1}} p_{3} l_{2} \\
& +\left(\left(2 \frac{\Omega_{2}^{2}}{\Omega_{1}}+\frac{\Omega_{1}}{2}\right)\left(x^{2}-z^{2}\right)+2 \Omega_{2} x y+\frac{\Omega_{1}}{2} y^{2}\right) p_{3} \\
& -\frac{\Omega_{1}^{2}}{4} x^{2} y-\Omega_{2}^{2} x^{2} y .
\end{aligned}
$$

For $S=4 \frac{\Omega_{1}}{\Omega_{2}}$ ，i．e．$k=2$ ，one finds a similar integral which should not come as a surprise－the two cases can be brought one into the other by the following exchange of coordinates and parameters $x \leftrightarrow y, \quad p_{1} \leftrightarrow p_{2}, \quad \Omega_{1} \leftrightarrow \Omega_{2}$.

Superintegrable systems found：

，cont＇d

Figure：$\Omega_{1}=1, \Omega_{2}=\frac{5}{6}, S=\frac{\Omega_{1}}{4 \Omega_{2}}=\frac{3}{10}, p_{20}=1, p_{10}=0, p_{30}=$ $0, x_{0}=1, y_{0}=\frac{1}{5}, z_{0}=\frac{1}{2}$ ，i．e．rational frequency ratio $k=\frac{1}{2}$ ， closed trajectory，maximally superintegrable．

Superintegrable systems found:

Let us consider the integrable system with the magnetic field

$$
\begin{equation*}
\vec{B}(\vec{x})=\left(0,0, f^{\prime \prime}(x)-g^{\prime \prime}(y)\right), \quad g_{2}=f^{\prime}, \quad k_{1}=g^{\prime} \tag{25}
\end{equation*}
$$

where f and g satisfy the elliptic equations:

$$
\begin{aligned}
f^{\prime \prime}(x) & =\alpha f(x)^{2}+\beta f(x)+\gamma \\
g^{\prime \prime}(y) & =\alpha g(y)^{2}+\delta g(y)+\xi
\end{aligned}
$$

and the effective potential reads

$$
\begin{align*}
W(\vec{x})= & V(z)-\frac{1}{6}(f(x)+g(y))(6(\eta+\gamma-\xi)+ \tag{26}\\
& +(f(x)+g(y))(3(\beta+\delta)+2 \alpha(f(x)+g(y)))
\end{align*}
$$

where $\alpha, \beta, \gamma, \delta, \xi, \eta \in \mathbb{R}$ and $V(z)$ is an arbitrary function of z. The gauge is chosen so that $\vec{A}(\vec{x})=\left(k_{1}^{\prime}(y), g_{2}^{\prime}(x), 0\right)$.

Superintegrable systems found:

The system is minimally superintegrable if $\alpha=\beta=\delta=\xi=0$ and $\eta=-\gamma$, so that

$$
\vec{B}(\vec{x})=(0,0, \gamma), \quad W(\vec{x})=V(z)
$$

The Hamiltonian reads

$$
H=\frac{1}{2}\left(p_{1}^{2}+p_{2}^{2}+p_{3}^{2}\right)+\gamma x p_{2}+\frac{\gamma^{2}}{2} x^{2}+V(z)
$$

In order to have nonvanishing magnetic field we must assume $\gamma \neq 0$. The integrals read

$$
X_{1}=p_{1}+\gamma y, \quad X_{2}=p_{2}, \quad X_{3}=2 I_{3}+\gamma\left(x^{2}-y^{2}\right)
$$

Although these three first order integrals don't commute among themselves, the system is Liouville integrable because H, X_{2} and $X_{1}^{2}+\gamma X_{3}$ form a commuting triple of integrals.

Superintegrable systems found：

The system turns to be maximally superintegrable，if

$$
\begin{align*}
& V(z)=\frac{c}{z^{2}}+\frac{\gamma^{2} z^{2}}{8} \tag{27}\\
& \text { or } V(z)=\frac{\gamma^{2}}{2} z^{2} \tag{28}
\end{align*}
$$

In the potential（27）we shall assume that $c \geq 0$ ；otherwise， the energy is not bounded from below and the system allows fall on the singular plane $z=0$ where the dynamical equations are ill－defined．Nevertheless，at the algebraic level the structure of the integrals described below is the same also for $c<0$ ．

Superintegrable systems found:

x

Figure: Left: Sample trajectory for the effective potential (27) with $\gamma=2, c=0, p_{10}=0, p_{20}=0, p_{30}=0, x_{0}=-1, y_{0}=1, z_{0}=1 / 2$.
Right: Sample trajectory for the effective potential (28) with $\gamma=2, p_{10}=0, p_{20}=0, p_{30}=0, x_{0}=-1, y_{0}=0, z_{0}=-1 / 2$.

We construct also the algebras of integrals of motion. E.g. for the potential (27) we have the integral

$$
\begin{align*}
X_{4}= & l_{1}^{2}+I_{2}^{2}+\frac{\gamma}{4}\left(\gamma\left(x^{2}+y^{2}\right)+4 y p_{1}+4 x p_{2}\right) z^{2}- \\
& -2 \gamma x y z p_{3}+2 \frac{c}{z^{2}}\left(x^{2}+y^{2}\right) . \tag{29}
\end{align*}
$$

and two more second order functionally dependent integrals

$$
\begin{align*}
& X_{5}=\frac{1}{2}\left\{X_{4}, X_{2}\right\}_{\text {P.B. }}=p_{3} I_{1}+\frac{\gamma}{2} z^{2} p_{1}-z \gamma x p_{3}+\frac{\gamma^{2}}{4} y z^{2}+2 c \frac{y}{z^{2}}, \\
& X_{6}=\frac{1}{2}\left\{X_{4}, X_{1}\right\}_{\text {P.B. }}=p_{3} I_{2}-\frac{\gamma}{2} z^{2} p_{2}-\frac{\gamma^{2}}{4} z^{2} x+2 c \frac{x}{z^{2}} . \tag{30}
\end{align*}
$$

We notice that X_{3}, X_{4} commute, i.e. provide another choice of integrals demonstrating Liouville integrability of (27).
and A. Marchesiello
Superintegrable 3D systems in a magnetic field corresponding to Cartesian separation of variables

Superintegrable systems found： integrals

，algebra of

$$
\begin{align*}
& \left\{X_{1}, X_{2}\right\}_{\text {P.B. }}=\gamma, \quad\left\{X_{1}, X_{3}\right\}_{\text {P.B. }}=-2 X_{2}, \quad\left\{X_{2}, X_{3}\right\}_{\text {P.B. }}=2 X_{1}, \\
& \left\{X_{1}, X_{5}\right\}_{\text {P.B. }}=0, \quad\left\{X_{1}, X_{6}\right\}_{\text {P.B. }}=X_{1}^{2}+X_{2}^{2}-2 H+\gamma X_{3}, \\
& \left\{X_{2}, X_{5}\right\}_{\text {P.B. }}=X_{1}^{2}+X_{2}^{2}-2 H+\gamma X_{3}, \quad\left\{X_{2}, X_{6}\right\}_{\text {P.B. }}=0, \tag{31}\\
& \left\{X_{3}, X_{5}\right\}_{\text {P.B. }}=-2 X_{6}, \quad\left\{X_{3}, X_{6}\right\}_{\text {P.B. }}=2 X_{5}, \\
& \left\{X_{4}, X_{5}\right\}_{\text {P.B. }}=2\left(-X_{2} X_{4}+X_{3} X_{6}-2 c X_{2}\right), \\
& {\left[X_{4}, X_{6}\right\}_{\text {P.B. }}=-2\left(X_{1} X_{4}+X_{3} X_{5}+2 c X_{1}\right),} \\
& \left\{X_{5}, X_{6}\right\}_{\text {P.B. }}=2\left(\left(X_{1}^{2}+X_{2}^{2}-2 H+\gamma X_{3}\right) X_{3}-X_{1} X_{5}+X_{2} X_{6}-c \gamma\right) .
\end{align*}
$$

Superintegrable systems found:

Let us consider the last relevant integrable system given by

$$
W(\vec{x})=W(z), \quad \vec{B}(\vec{x})=\left(B_{1}(z), B_{2}(z), 0\right), X_{j}=p_{j}, j=1,2
$$

We already obtained this case via a different approach in A. Marchesiello, L. Šnobl, P. Winternitz J. Phys. A: Math. Theor. 48, 395206 (2015) .

Two superintegrable systems have been found and they are described there. They are both maximally superintegrable but one of the integrals is not a polynomial function in the momenta.

Need of a "generalised" Cartesian case

Let us consider the system ($a, \beta, c, \Omega_{1}, \Omega_{2} \in \mathbb{R}, a, \beta, \Omega_{2} \neq 0$).

$$
\begin{aligned}
B_{1} & =\Omega_{1}, B_{2}=\Omega_{2}, B_{3}=0 \\
W & =a c x+\left(\frac{1}{2} \Omega_{2}\left(\beta^{2} \Omega_{2}-\Omega_{1}\right)-a\right) y^{2}-a z^{2}
\end{aligned}
$$

This system admits two quadratic commuting integrals. One of these integrals still has the Cartesian form (16) with

$$
\begin{aligned}
\overrightarrow{\mathcal{S}}_{1} & =\left(-2 \beta \Omega_{2} z, 0,-c \beta \Omega_{2}\right) \\
m_{1}(\vec{x}) & =\beta^{2}\left(z^{2}-c x\right) \Omega_{2}^{2}+\beta \Omega_{1} \Omega_{1} c y+2 a c x .
\end{aligned}
$$

Need of a "generalised" Cartesian case, cont'd

However, the second integral reads

$$
\begin{equation*}
X_{2}=\left(p_{2}^{A}\right)+2 \beta p_{1}^{A} p_{2}^{A}+\sum_{\ell+1}^{\ell} \mathcal{K}_{\ell}(\vec{x}) p_{\ell}^{A}+m_{2}(\vec{x}) \tag{32}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathcal{K}_{1}(\vec{x})= & 2 \beta \Omega_{1} z, \quad \mathcal{K}_{2}(\vec{x})=-\frac{4 a z}{\Omega_{2}}, \\
\mathcal{K}_{3}(\vec{x})= & 2\left(\Omega_{1}-\beta^{2} \Omega_{2}+\frac{2 a}{\Omega_{2}}\right) y+c \beta \Omega_{1}, \\
m_{2}(\vec{x})= & c \beta^{2} \Omega_{2} \Omega_{1} x+\beta c\left(2 a-\Omega_{1}^{2}\right) y+ \\
& \frac{\Omega_{1}+\Omega_{2}}{\Omega_{2}}\left(\beta^{2} \Omega_{2}^{2}-\Omega_{1} \Omega_{2}-2 a\right) y^{2}- \\
& -\frac{\Omega_{1}}{\Omega_{2}}\left(\beta^{2} \Omega 2^{2}+2 a\right) z^{2} .
\end{aligned}
$$

Need of a＂Generalised＂Cartesian case，cont＇d

Equivalently，putting $\tilde{X}_{2}=X_{2}+\beta^{2} X_{1}$ the second integral can be written with the leading order term of the form $\left(p_{2}+\beta p_{1}\right)^{2}$ ．

For $\beta \neq 0$ it can be easily seen that no Euclidean transformation or linear combination can reduce the integrals X_{1} and X_{2} to the form of a Cartesian－type integral．

And we cannot reduce the system to some of the classes corresponding to separation in some other coordinate systems for vanishing magnetic field．

This means that，for nonvanishing magnetic field，other pairs of integrals also need to be considered！

Need of a＂Generalised＂Cartesian case，cont＇d

Equivalently，putting $\tilde{X}_{2}=X_{2}+\beta^{2} X_{1}$ the second integral can be written with the leading order term of the form $\left(p_{2}+\beta p_{1}\right)^{2}$ ．

For $\beta \neq 0$ it can be easily seen that no Euclidean transformation or linear combination can reduce the integrals X_{1} and X_{2} to the form of a Cartesian－type integral．

And we cannot reduce the system to some of the classes corresponding to separation in some other coordinate systems for vanishing magnetic field

This means that，for nonvanishing magnetic field，other pairs of integrals also need to be considered

Need of a＂Generalised＂Cartesian case，cont＇d

Equivalently，putting $\tilde{X}_{2}=X_{2}+\beta^{2} X_{1}$ the second integral can be written with the leading order term of the form $\left(p_{2}+\beta p_{1}\right)^{2}$ ．

For $\beta \neq 0$ it can be easily seen that no Euclidean transformation or linear combination can reduce the integrals X_{1} and X_{2} to the form of a Cartesian－type integral．

And we cannot reduce the system to some of the classes corresponding to separation in some other coordinate systems for vanishing magnetic field．

This means that，for nonvanishing magnetic field，other pairs of integrals also need to be considered

Need of a "Generalised" Cartesian case, cont'd

Equivalently, putting $\tilde{X}_{2}=X_{2}+\beta^{2} X_{1}$ the second integral can be written with the leading order term of the form $\left(p_{2}+\beta p_{1}\right)^{2}$.
For $\beta \neq 0$ it can be easily seen that no Euclidean transformation or linear combination can reduce the integrals X_{1} and X_{2} to the form of a Cartesian-type integral.

And we cannot reduce the system to some of the classes corresponding to separation in some other coordinate systems for vanishing magnetic field.

This means that, for nonvanishing magnetic field, other pairs of integrals also need to be considered !

Conclusions

■ We investigated possibilities for superintegrability to arise in the Cartesian case. We found three classes of minimally superintegrable systems which lead to four maximally superintegrable subclasses.

- It was already established that quadratic integrability does not imply separability anymore. Now we also have an example showing that more general structure of the pairs of integrals needs to be considered.
- How to find a systematic way to classify all commuting quadratic integrals still remains an open problem under investigation
- There can exist purely quantum systems, with no non-trivial classical counterpart. However, the conditions imposed here were too restrictive to allow such behavior

Conclusions

■ We investigated possibilities for superintegrability to arise in the Cartesian case．We found three classes of minimally superintegrable systems which lead to four maximally superintegrable subclasses．
■ It was already established that quadratic integrability does not imply separability anymore．Now we also have an example showing that more general structure of the pairs of integrals needs to be considered．
－How to find a systematic way to classify all commuting quadratic integrals still remains an open problem under investigation
－There can exist purely quantum systems，with no non－trivial classical counterpart．However，the conditions imposed here were too restrictive to allow such behavior

Conclusions

■ We investigated possibilities for superintegrability to arise in the Cartesian case. We found three classes of minimally superintegrable systems which lead to four maximally superintegrable subclasses.
■ It was already established that quadratic integrability does not imply separability anymore. Now we also have an example showing that more general structure of the pairs of integrals needs to be considered.
■ How to find a systematic way to classify all commuting quadratic integrals still remains an open problem under investigation.

- There can exist purely quantum systems, with no non-trivial classical counterpart. However, the conditions imposed here were too restrictive to allow sulch behavior

Conclusions

■ We investigated possibilities for superintegrability to arise in the Cartesian case. We found three classes of minimally superintegrable systems which lead to four maximally superintegrable subclasses.
■ It was already established that quadratic integrability does not imply separability anymore. Now we also have an example showing that more general structure of the pairs of integrals needs to be considered.

- How to find a systematic way to classify all commuting quadratic integrals still remains an open problem under investigation.
■ There can exist purely quantum systems, with no non-trivial classical counterpart. However, the conditions imposed here were too restrictive to allow such behavior

Thank you for your attention!

[^0]: ${ }^{1}$ See A. Zhalij, J. Phys.: Conf. Ser. 621, 012019 (2015)

