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Introduction

We consider superintegrable systems, i.e. Hamiltonian systems
that have more globally defined integrals of motion than
degrees of freedom, in three spatial dimensions.

Due to A.A. Makarov, J.A. Smorodinsky, K. Valiev, P.
Winternitz, Il Nuovo Cimento LII A, 8881 (1967) when
quadratic integrability is considered and the Hamiltonian
involves only a kinetic term and a scalar potential, there are 11
classes of pairs of commuting quadratic integrals, each
uniquely determined by a a pair of commuting quadratic
elements in the enveloping algebra of the 3D Euclidean
algebra.

These in turn correspond to a coordinate system in which the
Hamilton-Jacobi or Schrödinger equation separates.
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Introduction, cont’d

When systems involving vector potentials are considered,
quadratic integrability no longer implies separability.

In J. Bérubé, P. Winternitz. J. Math. Phys. 45 (2004), no. 5,
1959-1973 the structure of the gauge–invariant integrable and
superintegrable systems involving vector potentials was
considered in two spatial dimensions. It was shown there that
under the assumption of integrals being of at most second
order in momenta, no superintegrable system with
nonconstant magnetic field exists in two dimensions.
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Introduction, cont’d

Approaches to the problem in three spatial dimensions:
A. Marchesiello, L. Šnobl, P. Winternitz, J. Phys. A:
Math. Theor. 48, 395206 (2015): possibilities for
integrability and superintegrability arising from first order
integrals were studied - cf. my talk at PMNP2015. 3D
maximally superintegrable systems with nonconstant
magnetic field were found. Among them magnetic
monopole with Coulomb like potential is second order
integrable.
A. Zhalij, J. Phys.: Conf. Ser. 621, 012019 (2015):
integrable systems which separate in Cartesian coordinates
in the limit when the magnetic field vanishes, i.e. possess
two second order integrals of motion of the so-called
Cartesian type.

L. Šnobl and A. Marchesiello

Superintegrable 3D systems in a magnetic field corresponding to Cartesian separation of variables



Introduction, cont’d

Approaches to the problem in three spatial dimensions:
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Outline

Here we extend the analysis in two directions:

We study superintegrable 3D systems involving vector
potentials when two quadratic commuting Cartesian
integrals are present.

We show that more general classes for quadratic integrals
than the ones corresponding to separation in absence of
magnetic field, should be considered.

Our results were published in A. Marchesiello, L. Šnobl, J.
Phys. A: Math. Theor. 50, 245202 (2017).
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Classical Hamiltonian

We consider the Hamiltonian describing the motion of a
spinless particle in three dimensions in a nonvanishing
magnetic field, i.e. classically

H =
1

2
(~p + ~A)2 + W (~x) (1)

where ~p is the momentum, ~A is the vector potential and V is
the electrostatic potential. The magnetic field ~B = ∇× ~A is
assumed to be nonvanishing so that the system is not gauge
equivalent to a system with only the scalar potential. We
chose the units in which the mass of the particle has the
numerical value 1 and the charge of the particle is −1 (having
an electron in mind as the prime example).
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Gauge invariance

We recall that the equations of motion of the Hamiltonian (1)
are gauge invariant, i.e. that they are the same for the
potentials

~A′(~x) = ~A(~x) +∇χ, V ′(~x) = V (~x)

for any choice of the function χ(~x) (we are considering only
the static situation here). Thus, the physically relevant
quantity is the magnetic field

~B = ∇× ~A, i.e. Bj = εjkl
∂Al

∂xk
(2)

rather than the vector potential ~A(~x).
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Quantum Hamiltonian

We shall also consider the quantum Hamiltonian defined as
the (properly symmetrized) analogue of (1) in terms of the

operators of the linear momenta P̂j = −i~ ∂
∂xj

and coordinates

X̂j = xj :

Ĥ =
1

2

∑
j

(
P̂j + Âj(~x)

)2

+ Ŵ (~x)

=
1

2

∑
j

(
P̂j P̂j + P̂j Âj(~x) + Âj(~x)P̂j + Âj(~x)2

)
+ Ŵ (~x).

The operators Âj(~x) and Ŵ (~x) act on wavefunctions as
multiplication by the functions Aj(~x) and W (~x), respectively.
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Quantum gauge invariance

On the quantum level, the gauge transformation demonstrates
itself as a unitary transformation of the Hilbert space. Namely,
let us take

Ûψ(~x) = exp

(
i

~
χ(~x)

)
· ψ(~x). (3)

Applying (3) on the states and the observables we get an
equivalent description of the same physical reality in terms of

ψ → ψ′ = Ûψ, Ô → Ô ′ = ÛÔÛ†. (4)

In particular, the following observables transform covariantly

(P̂j + Âj)→ Û(P̂j + Âj)Û
† = Pj + Â′

j , V̂ → ÛV̂ Û† = V̂ .
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The general structure of the integrals of motion

Let us consider integrals of motion which are at most second
order in the momenta. Since our system is gauge invariant, we
express the integrals in terms of gauge covariant expressions

pAj = pj + Aj , P̂A
j = P̂j + Âj (5)

rather than the momenta themselves. The operators (5) no
longer commute among each other.
They satisfy

[P̂A
j , P̂

A
k ] = −i~εjkl B̂l , [P̂A

j , X̂k ] = −i~1, (6)

where B̂l is the operator of the magnetic field strength,

B̂jψ(~x) = Bj(~x)ψ(~x) = εjkl
∂Al

∂xk
ψ(~x)

and εjkl is the completely antisymmetric tensor with ε123 = 1.
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The general structure of the integrals of motion, cont’d

Classically, we write a general second order integral of motion
as

X =
3∑

j=1

hj(~x)pAj p
A
j +

3∑
j ,k,l=1

1

2
|εjkl |nj(~x)pAk p

A
l +

3∑
j=1

sj(~x)pAj +m(~x).

(7)
The condition that the Poisson bracket

{a(~x , ~p), b(~x , ~p)}P.B. =
3∑

j=1

(
∂a

∂xj

∂b

∂pj
− ∂b

∂xj

∂a

∂pj

)
(8)

of the integral (7) with the Hamiltonian (1) vanishes

{H ,X}P.B. = 0 (9)

leads to terms of order 3, 2, 1 and 0 in the momenta:
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The conditions for the integrals of motion

Third order

∂xh1 = 0, ∂yh1 = −∂xn3, ∂zh1 = −∂xn2,

∂xh2 = −∂yn3, ∂yh2 = 0, ∂zh2 = −∂yn1,

∂xh3 = −∂zn2, ∂yh3 = −∂zn1, ∂zh3 = 0,

∇ · ~n = 0. (10)

Second order

∂xs1 = n2B2 − n3B3,

∂y s2 = n3B3 − n1B1,

∂zs3 = n1B1 − n2B2, i.e. ∇ · ~s = 0,

∂y s1 + ∂xs2 = n1B2 − n2B1 + 2(h1 − h2)B3, (11)

∂zs1 + ∂xs3 = n3B1 − n1B3 + 2(h3 − h1)B2,

∂y s3 + ∂zs2 = n2B3 − n3B2 + 2(h2 − h3)B1.
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The conditions for the integrals of motion, cont’d

First order terms

∂xm = 2h1∂xW + n3∂yW + n2∂zW + s3B2 − s2B3,

∂ym = n3∂xW + 2h2∂yW + n1∂zW + s1B3 − s3B1, (12)

∂zm = n2∂xW + n1∂yW + 2h3∂zW + s2B1 − s1B2.

Zeroth order

~s · ∇W = 0. (13)

Equations (10) are the same as for the system with vanishing
magnetic field and their explicit solution is known - they imply
that the highest order terms in the integral (7) are linear
combinations of products of the generators of the Euclidean
group p1, p2, p3, l1, l2, l3 where lj =

∑
l ,k εjklxkpl , i.e. ~h, ~n can

be expressed in terms of 20 constants αab, 1 ≤ a ≤ b ≤ 6.
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The conditions for the integrals of motion, cont’d

In the quantum case we have to consider a properly
symmetrized analogue of (7). We choose

X̂ =
3∑

j=1

{hj(~x), P̂A
j P̂

A
j }+

3∑
j ,k,l=1

|εjkl |
2
{nj(~x), P̂A

k P̂
A
l }+

+
3∑

j=1

{sj(~x), P̂A
j }+ m(~x), (14)

where { , } denotes the symmetrization. Only (13) obtains an
~2–proportional correction

~s · ∇W +
~2

4
(∂zn1∂zB1 − ∂yn1∂yB1 + ∂xn2∂xB2 − ∂zn2∂zB2+

+∂yn3∂yB3 − ∂xn3∂xB3 + ∂xn1∂yB2 − ∂yn2∂xB1) = 0.(15)
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Cartesian type second order integrals

Let us now turn our attention to the situation where the
Hamiltonian is integrable in the Liouville sense, with at most
quadratic integrals. That means that in addition to the
Hamiltonian itself there must be at least two independent
integrals of motion of the form (7) or (14) which commute in
the sense of Poisson bracket or commutator, respectively.

We assume such integrals to be of Cartesian type,

Xj =
(
pAj
)2

+
3∑

`=1

S`
j (~x)pA` + mj(~x), j = 1, 2. (16)

For vanishing magnetic field, these integrals would correspond
to separation in Cartesian coordinates.
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Integrable systems in the Cartesian Case

For such pair of Cartesian-type integrals to exist, the magnetic
field ~B must be of the form

B1(~x) = F ′
2(z) + k ′

3(y),

B2(~x) = −F ′
1(z)− g ′

3(x), (17)

B3(~x) = g ′
2(x)− k ′

1(y)

where the functions F1,F2, g` and k` must satisfy the following
compatibility constraints

F1(z)g ′
2(x)− g3(x)F ′

2(z) = 0,

F2(z)k ′
1(y)− k3(y)F ′

1(z) = 0, (18)

g2(x)k ′
3(y)− k1(y)g ′

3(x) = 0.
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Integrable systems in the Cartesian Case, cont’d

The functions g` and k` are related to the first order terms in
(16) through

S1
1(~x) = 2(F1(z)− k1(y)),

S`
1(~x) = 2g`(x), ` = 2, 3,

(19)

S2
2(~x) = 2(F2(z)− g2(x)),

S`
2(~x) = 2k`(y), ` = 1, 3.
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Superintegrability in the Cartesian case

Conditions (17) and (18) prescribe the structure of the
magnetic field that leads to 5 classes of integrable systems
with nonvanishing magnetic field. 1

Here we investigate which choices of the potentials render the
system with integrals (16) not only integrable, but
superintegrable. Namely, we look for conditions for a third
independent integral to exist.

A “brute force” approach, which directly looks for an
additional second order integral solving (11)-(13), presently
appears intractable due to the computational complexity.

1See A. Zhalij, J. Phys.: Conf. Ser. 621, 012019 (2015)
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First order additional integral

Instead, let us assume that superintegrability arises in the
simplest possible way, requiring the third integral to be of first
order in the momenta:

X3 =
3∑

`=1

s`(~x)pA` + m3(~x). (20)

Next, for each minimally superintegrable system found, we
can investigate the possibilities for another integral, this time
allowing second order terms, so to obtain a maximally
superintegrable system.
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First order additional integral, cont’d

By setting ~h = ~n = 0, we see that in turn the first order term
in X3 must lie in the enveloping algebra of the Euclidean
algebra:

s1(x , y , z) = β12y + β13z + β11,

s2(x , y , z) = −β12x + β23z + β22, (21)

s3(x , y , z) = −β13x − β23y + β33,

where βij ∈ R.

Also we see that the zero order equations in the classical and
quantum case now coincide for all three integrals, i.e. we
cannot discover any purely quantum integrable systems in this
setting.
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Superintegrability in the Cartesian case

Going through the solution of the remaining determining
equations, we have found that minimally superintegrable
systems with first order additional integral can exist only in
three of the five classes of integrable systems existing in the
Cartesian case. (Cases A, B, C in the following).

Next, we look for maximally superintegrable systems among
them. Thus, we must go through equations (11)-(13), looking
for another independent integral of at most second order, i.e.
of the form (7). The existence of three known integrals
significantly restricts the structure of the system, thus we are
able to find all its solutions, if any.
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Superintegrable systems found: Case A

Case A. Let us start with the integrable system given by

W (~x) =
1

2
(u1(x)+u2(y)−(g3(x)+k3(y))2), ~B = (k ′

3(y),−g ′
3(x), 0) .

We choose the gauge so that

~A(~x) = (0, 0, g3(x) + k3(y))

and the two Cartesian integrals read

X1 = p2
1 + 2g3(x)p3 + u1(x), X2 = p2

2 + 2k3(y)p3 + u2(y).

It follows immediately that p3 is an integral, however not
independent on the others since

2H − X1 − X2 = p2
3.
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Superintegrable systems found: Case A.1

We have g3 = Ω
2
x2, k3 = Ω

2
Ωy 2, Ω ∈ R\{0}, thus

~A(~x) =

(
0, 0,

Ω

2
(x2 + y 2)

)
, ~B(~x) = (Ωy ,−Ωx , 0).

The remaining arbitrary functions in the effective potential are

u1 =
U

2
x2, u2 =

U

2
y 2, U ∈ R

so that

W (~x) = −Ω2

4
(x2 + y 2)2 +

U

2
(x2 + y 2).

The additional independent first order integral turns out to be

X3 = l3.
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Superintegrable systems found: Case A.1, cont’d

For no choice of the nonvanishing magnetic field an additional
independent integral of at most second order exists, i.e. this
system is never maximally quadratically superintegrable.

For 2Ωp30 + U > 0, the solution of the equations of motion
takes the form of a deformed spiral.

Figure: Ω = 1,U = 0, p10 = 1, p20 = 1, p30 = 1, x0 = 1, y0 = 0, z0 = 0.
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Superintegrable systems found: Case A.1, cont’d

When the initial conditions are such that 2Ωp30 + U = 0 the
solution becomes polynomial in time with all three momenta
p1, p2, p3 conserved.

For 2Ωp30 + U < 0 the solution is expressed in terms of
hyperbolic functions and is not bounded in any spatial
direction.
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Superintegrable systems found: Case A.2

We have g3 = −Ω2x , k3 = −Ω1y , Ω1,Ω2 ∈ R, which implies

~A = (0, 0,−Ω2x − Ω1y), ~B(~x) = (−Ω1,Ω2, 0).

The effective potential takes the form

W (~x) =
Ω1Ω2

2S
(Sx − y)2 +

U

2
(Sx − y),

since

u1 = Ω2
2x

2 + S(U + Ω1Ω2x)x

u2 = Ω2
1y

2 − (U − Ω1Ω2

S
y)y , S ∈ R.

The third integral is given by

X3 = p1 + Sp2 − (SΩ1 + Ω2)z . (22)
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Superintegrable systems found: Case A.2, cont’d

Under the assumption Ω1Ω2 6= 0, a shift of the coordinates
accompanied by a gauge transformation allows us to set
U = 0. When either of the Ωi vanishes, the potential W
becomes a linear function of the coordinates.

When Ω1S + Ω2 = 0, the Hamiltonian becomes

H =
p2

1 + p2
2 + p2

3

2
− Ω1yp3 − Ω2xp3, W (~x) = −(Ω1y + Ω2x)2

2
.

We can rotate our coordinates around the z-axis to set Ω2 = 0
and the integrals reduce to

X1 = p2
1, X2 = p2

2 − 2Ω1yp3, X3 = p1, (23)

i.e. X3 becomes equal to X1.
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Superintegrable systems found: Case A.2, cont’d

However, there are two additional independent second order
integrals

X4 = p1l3 −
Ω1

2
x2p3, X5 =

1

3
p2l3 − l2p3 −

2

3
Ω1xyp3

which classically make the system maximally quadratically
superintegrable. The classical trajectories are unbounded for
almost all initial conditions. Its quantum properties are not
clear since the potential W (~x) is not bounded from below.
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Superintegrable systems found: Case A.2, cont’d

Coming back to Ω1S + Ω2 6= 0: there are bounded trajectories,
when the frequency ratio satisfies the rationality condition

S
Ω2

Ω1
= k2, k ∈ Q. (24)

Left: Ω1 = 1,Ω2 = 3,S = 10, irrational frequency ratio (24).

Right: Ω1 = 1,Ω2 = 3,S = 3, i.e. rational frequency ratio (24) k = 3.
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Superintegrable systems found: Case A.2, cont’d

For 1 6= k =
√

S Ω2

Ω1
∈ Q there is no additional first order

integral. An independent second order integral exists for
particular values of S . Namely, for S = Ω1

4Ω2
, i.e. k = 1

2
,

X4 = −p1l3 − p3l1 + 4
Ω2

Ω1
p3l2

+

((
2

Ω2
2

Ω1
+

Ω1

2

)(
x2 − z2

)
+ 2Ω2xy +

Ω1

2
y2

)
p3

− Ω2
1

4
x2y − Ω2

2x
2y .

For S = 4Ω1

Ω2
, i.e. k = 2, one finds a similar integral which

should not come as a surprise - the two cases can be brought
one into the other by the following exchange of coordinates
and parameters x ↔ y , p1 ↔ p2, Ω1 ↔ Ω2.
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Superintegrable systems found: Case A.2, cont’d

Figure: Ω1 = 1,Ω2 = 5
6 ,S = Ω1

4Ω2
= 3

10 , p20 = 1, p10 = 0, p30 =

0, x0 = 1, y0 = 1
5 , z0 = 1

2 , i.e. rational frequency ratio k = 1
2 ,

closed trajectory, maximally superintegrable.
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Superintegrable systems found: Case B

Let us consider the integrable system with the magnetic field

~B(~x) = (0, 0, f ′′(x)− g ′′(y)) , g2 = f ′, k1 = g ′ (25)

where f and g satisfy the elliptic equations:

f ′′(x) = αf (x)2 + βf (x) + γ,

g ′′(y) = αg(y)2 + δg(y) + ξ.

and the effective potential reads

W (~x) = V (z)− 1

6
(f (x) + g(y)) (6(η + γ − ξ)+ (26)

+(f (x) + g(y))(3(β + δ) + 2α(f (x) + g(y))) ,

where α, β, γ, δ, ξ, η ∈ R and V (z) is an arbitrary function

of z . The gauge is chosen so that ~A(~x) = (k ′
1(y), g ′

2(x), 0).
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Superintegrable systems found: Case B, cont’d

The system is minimally superintegrable if α = β = δ = ξ = 0
and η = −γ, so that

~B(~x) = (0, 0, γ), W (~x) = V (z).

The Hamiltonian reads

H =
1

2
(p2

1 + p2
2 + p2

3) + γxp2 +
γ2

2
x2 + V (z).

In order to have nonvanishing magnetic field we must assume
γ 6= 0. The integrals read

X1 = p1 + γy , X2 = p2, X3 = 2l3 + γ
(
x2 − y 2

)
.

Although these three first order integrals don’t commute
among themselves, the system is Liouville integrable because
H ,X2 and X 2

1 + γX3 form a commuting triple of integrals.
L. Šnobl and A. Marchesiello

Superintegrable 3D systems in a magnetic field corresponding to Cartesian separation of variables



Superintegrable systems found: Case B, cont’d

The system turns to be maximally superintegrable, if

V (z) =
c

z2
+
γ2z2

8
, (27)

or V (z) =
γ2

2
z2. (28)

In the potential (27) we shall assume that c ≥ 0; otherwise,
the energy is not bounded from below and the system allows
fall on the singular plane z = 0 where the dynamical equations
are ill-defined. Nevertheless, at the algebraic level the structure
of the integrals described below is the same also for c < 0.
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Superintegrable systems found: Case B, cont’d

Figure: Left: Sample trajectory for the effective potential (27) with
γ = 2, c = 0, p10 = 0, p20 = 0, p30 = 0, x0 = −1, y0 = 1, z0 = 1/2.
Right: Sample trajectory for the effective potential (28) with
γ = 2, p10 = 0, p20 = 0, p30 = 0, x0 = −1, y0 = 0, z0 = −1/2.
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Superintegrable systems found: Case B, algebra of
integrals

We construct also the algebras of integrals of motion. E.g. for
the potential (27) we have the integral

X4 = l21 + l22 +
γ

4

(
γ(x2 + y 2) + 4yp1 + 4xp2

)
z2 −

−2γxyzp3 + 2
c

z2

(
x2 + y 2

)
. (29)

and two more second order functionally dependent integrals

X5 =
1

2
{X4,X2}P.B. = p3l1 +

γ

2
z2p1 − zγxp3 +

γ2

4
yz2 + 2c

y

z2
,

X6 =
1

2
{X4,X1}P.B. = p3l2 −

γ

2
z2p2 −

γ2

4
z2x + 2c

x

z2
. (30)

We notice that X3,X4 commute, i.e. provide another choice of
integrals demonstrating Liouville integrability of (27).
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Superintegrable systems found: Case B, algebra of
integrals

{X1,X2}P.B. = γ, {X1,X3}P.B. = −2X2, {X2,X3}P.B. = 2X1,

{X1,X5}P.B. = 0, {X1,X6}P.B. = X 2
1 + X 2

2 − 2H + γX3,

{X2,X5}P.B. = X 2
1 + X 2

2 − 2H + γX3, {X2,X6}P.B. = 0, (31)

{X3,X5}P.B. = −2X6, {X3,X6}P.B. = 2X5,

{X4,X5}P.B. = 2 (−X2X4 + X3X6 − 2cX2) ,

[X4,X6}P.B. = −2 (X1X4 + X3X5 + 2cX1) ,

{X5,X6}P.B. = 2
((
X 2

1 + X 2
2 − 2H + γX3

)
X3 − X1X5 + X2X6 − cγ

)
.
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Superintegrable systems found: Case C

Let us consider the last relevant integrable system given by

W (~x) = W (z), ~B(~x) = (B1(z),B2(z), 0) , Xj = pj , j = 1, 2.

We already obtained this case via a different approach in A.
Marchesiello, L. Šnobl, P. Winternitz J. Phys. A: Math.
Theor. 48, 395206 (2015) .

Two superintegrable systems have been found and they are
described there. They are both maximally superintegrable but
one of the integrals is not a polynomial function in the
momenta.
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Need of a “generalised” Cartesian case

Let us consider the system (a, β, c ,Ω1,Ω2 ∈ R, a, β,Ω2 6= 0).

B1 = Ω1, B2 = Ω2, B3 = 0,

W = acx +

(
1

2
Ω2

(
β2Ω2 − Ω1

)
− a

)
y 2 − az2

This system admits two quadratic commuting integrals. One
of these integrals still has the Cartesian form (16) with

~S1 = (−2βΩ2z , 0,−cβΩ2),

m1(~x) = β2(z2 − cx)Ω2
2 + βΩ1Ω1cy + 2acx .
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Need of a “generalised” Cartesian case, cont’d

However, the second integral reads

X2 = (pA2 ) + 2βpA1 p
A
2 +

∑̀
`+1

K`(~x)pA` + m2(~x) (32)

where

K1(~x) = 2βΩ1z , K2(~x) = −4az

Ω2
,

K3(~x) = 2

(
Ω1 − β2Ω2 +

2a

Ω2

)
y + cβΩ1,

m2(~x) = cβ2Ω2Ω1x + βc(2a− Ω2
1)y +

Ω1 + Ω2

Ω2

(
β2Ω2

2 − Ω1Ω2 − 2a
)
y2 −

−Ω1

Ω2

(
β2Ω22 + 2a

)
z2.
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Need of a “Generalised” Cartesian case, cont’d

Equivalently, putting X̃2 = X2 + β2X1 the second integral can
be written with the leading order term of the form
(p2 + βp1)2.

For β 6= 0 it can be easily seen that no Euclidean
transformation or linear combination can reduce the integrals
X1 and X2 to the form of a Cartesian-type integral.

And we cannot reduce the system to some of the classes
corresponding to separation in some other coordinate systems
for vanishing magnetic field.

This means that, for nonvanishing magnetic field, other pairs
of integrals also need to be considered !
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Conclusions

We investigated possibilities for superintegrability to arise
in the Cartesian case. We found three classes of minimally
superintegrable systems which lead to four maximally
superintegrable subclasses.
It was already established that quadratic integrability does
not imply separability anymore. Now we also have an
example showing that more general structure of the pairs
of integrals needs to be considered.
How to find a systematic way to classify all commuting
quadratic integrals still remains an open problem under
investigation.
There can exist purely quantum systems, with no
non-trivial classical counterpart. However, the conditions
imposed here were too restrictive to allow such behavior.
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Thank you for your attention!
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