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Abstract

In my talk I shall review our recent results concerning classical
superintegrability with magnetic fields. In particular, I shall focus
on two concrete examples in three spatial dimensions:

1 3–parameter family of maximally superintegrable systems with
constant magnetic field, which are quadratically minimally
superintegrable and which for rational values of one of its
parameters κ = m

n (where m, n ∈ N are incommensurable)
possess an additional integral of the order m + n − 1; and

2 6–parameter family of minimally superintegrable systems with
the magnetic field of the form

~B(~x) = bm
~x

|~x |3
+

bn
|~x |3

(
xz , yz , |~x |2 + z2

)
+ (0, 0, bz)

which seems to possess closed bounded trajectories (based on
numerical experiments), thus hinting at a hypothetical
maximal superintegrability.
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Libor Šnobl Superintegrability in the presence of magnetic fields



Contents

1 Introduction

2 General structure of the integrals of motion

3 First example - maximally superintegrable system with an
integral of arbitrarily high order

4 Second example - superintegrable system with nonconstant
magnetic field and closed trajectories

5 Future outlook
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Introduction

We consider integrable and superintegrable systems in three spatial
dimensions.

Integrability

A classical Hamiltonian system with n degrees of freedom is
integrable if it admits n functionally independent integrals of
motion in involution.

Superintegrability

A classical Hamiltonian system with n degrees of freedom is
polynomially superintegrable if it admits n + k functionally
independent integrals of motion (where k ≤ n − 1), that are
polynomial in the momenta and out of which n are in involution.
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Introduction, cont’d

Due to A.A. Makarov, J.A. Smorodinsky, K. Valiev, P. Winternitz,
Il Nuovo Cimento LII A, 8881 (1967) when quadratic integrability
is considered and the Hamiltonian involves only a kinetic term and
a scalar potential, there are 11 classes of systems admitting pairs of
commuting quadratic integrals, each uniquely determined by a pair
of commuting quadratic elements in the enveloping algebra of the
3D Euclidean algebra. These in turn correspond to a coordinate
system in which the Hamilton-Jacobi equation separates.

When systems involve vector potentials, quadratic integrability no
longer implies separability, cf. e.g. J. Bérubé, P. Winternitz. J.
Math. Phys. 45 (2004), no. 5, 1959-1973.
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Introduction, cont’d

Approaches to the problem in three spatial dimensions:

A. Marchesiello, L. Šnobl, P. Winternitz, J. Phys. A: Math.
Theor. 48, 395206 (2015): possibilities for integrability and
superintegrability arising from first order integrals.

A. Marchesiello, L. Šnobl, J. Phys. A: Math. Theor. 50,
245202 (2017): superintegrable systems which separate in
Cartesian coordinates in the limit when the magnetic field
vanishes, i.e. possess two second order integrals of motion of
the so-called Cartesian type.

A. Marchesiello, L. Šnobl, P. Winternitz, J. Phys. A: Math.
Theor. 51, 135205 (2018): (super)integrability with spherical
type integrals.

S. Bertrand and L. Šnobl, J. Phys. A: Math. Theor. 52,
195201 (2019): (super)integrability with nonsubgroup type
integrals incl. at least one angular momentum component.

Libor Šnobl Superintegrability in the presence of magnetic fields



Introduction, cont’d

Approaches to the problem in three spatial dimensions:
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General structure of the integrals of motion

We consider the classical Hamiltonian describing the motion of
a particle in three dimensions in a nonvanishing magnetic field

H =
1

2
(~p + ~A(~x))2 + W (~x), (1)

where ~p is the linear momentum, ~A(~x) is the vector potential and
W (~x) is the electrostatic potential.

The Newtonian equations of
motion are gauge invariant – they are the same for the potentials

~A′(~x) = ~A(~x) +∇χ, W ′(~x) = W (~x)

for any choice of the function χ(~x). Thus, the physically relevant
quantity is the magnetic field ~B(~x) = ∇× ~A. ~B(~x) is assumed to
be nonvanishing so that the system is not gauge equivalent to a
system with only the scalar potential.
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The general structure of the integrals of motion, cont’d

Let us consider integrals of motion which are at most second order
in the momenta. Since our system is gauge invariant, we express
the integrals in terms of gauge covariant expressions

pAj = pj + Aj(~x), LAj =
∑
l ,k

εjklxkp
A
l (2)

rather than the linear and angular momenta themselves. (εjkl is
the completely antisymmetric tensor with ε123 = 1.)

We write a general second order integral of motion as

X =
3∑

j=1

hj(~x)pAj p
A
j +

3∑
j ,k,l=1

1

2
|εjkl |nj(~x)pAk p

A
l +

3∑
j=1

s j(~x)pAj +m(~x).

(3)
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The general structure of the integrals of motion, cont’d

The condition that the Poisson bracket

{a(~x , ~p), b(~x , ~p)}P.B. =
3∑

j=1

(
∂a

∂xj

∂b

∂pj
− ∂b

∂xj

∂a

∂pj

)
(4)

of the integral (3) with the Hamiltonian (1) vanishes

{H,X}P.B. = 0 (5)

leads to terms of order 3, 2, 1 and 0 in the momenta.

The third
order ones are the same as for the system with vanishing magnetic
field and their explicit solution is known - they imply that the
quadratic terms in the integral (3) are linear combinations of
products of the generators of the Euclidean group p1, p2, p3,
L1, L2, L3, i.e. ~h, ~n can be expressed in terms of 20 constants αab,
1 ≤ a ≤ b ≤ 6. The lower order ones imply conditions (PDEs) on
the functions ~s,m, ~B,W which also depend on the constants αab.
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The general structure of the integrals of motion, cont’d

Let us now turn our attention to the situation when the
Hamiltonian is integrable in the Liouville sense, with at most
quadratic integrals. That means that in addition to the
Hamiltonian itself there must be at least two independent integrals
of motion of the form (3) which commute in the sense of Poisson
bracket.

In the papers mentioned above we have studied such systems for
various possible structures of the leading order terms in the
integrals. In this talk I shall focus on two special cases which we
find particularly interesting.
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First example

Let us first consider the system with

~B(~x) = (−Ω1,Ω2, 0), W (~x) =
Ω1Ω2

2S
(Sx − y)2 (6)

where Ω1,Ω2,S are real constants such that S 6= 0 and
Ω2

1 + Ω2
2 6= 0.

The system (6) is known to be minimally superintegrable. In
addition to the Hamiltonian it possesses the following three
independent integrals

X1 = (pA1 )2 − 2Ω2xp
A
3 − Ω2

2x
2 + Ω1Ω2x(Sx − 2y),

X2 = (pA2 )2 − 2Ω1yp
A
3 − Ω2

1y
2 +

Ω1Ω2

S
y(y − 2Sx), (7)

X3 = pA1 + SpA2 − (SΩ1 + Ω2)z .
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First example - trajectories

The trajectories of the system (6) are known:

x(t) =
1

ω2
1

((
ω2

1x0 − Ω2p30

)
cos (ω1t) + ω1p10 sin (ω1t) + Ω2p30

)
,

y(t) =
1

ω2
2

((
ω2

2y0 − Ω1p30

)
cos (ω2t) + ω2p20 sin (ω2t) + Ω1p30

)
, (8)

z(t) =
1

Ω1S + Ω2

(
p10 (cos (ω1t) − 1) + Sp20 (cos (ω2t) − 1) +

+
Ω2p30 − ω2

1x0

ω1
sin (ω1t) +

Ω1p30 − ω2
2y0

ω2
sin (ω2t)

)
+ z0,

where we introduced the constants

ω1 =
√

Ω2(Ω1S + Ω2), ω2 =

√
Ω1

S
(Ω1S + Ω2) =

√
Ω1

SΩ2
ω1.

(9)

Libor Šnobl Superintegrability in the presence of magnetic fields



First example - closed trajectories

We observe that whenever

S =
Ω1

Ω2
κ2, where κ =

m

n
, m, n ∈ N are incommensurable,

(10)
the trajectories (8) are periodic (or, equivalently, closed).

We shall see that for κ = m
n the system (6) is actually maximally

superintegrable, with the fifth integral of the order m + n − 1 in
the momenta p1, p2, p3.

Cf. A. Marchesiello and L. Šnobl, SIGMA 14 (2018) 092.
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First example - canonical transformation

By the canonical transformation

x = X +
Ω2P3

Ω2
2 + Ω2

1κ
2
, y = Y +

Ω1P3κ
2

Ω2
2 + Ω2

1κ
2
, (11)

z =
Ω2P1

Ω2
2 + Ω2

1κ
2

+
Ω1P2κ

2

(Ω2
2 + Ω2

1κ
2)

+ Z ,

pj = Pj , j=1,2,3

the Hamiltonian for κ = m
n reduces to

H2 =
1

2
(P2

1 + P2
2 ) +

1

2
ω2(m2X 2 + n2Y 2), ω2 =

Ω2
1

n2
+

Ω2
2

m2
. (12)

i.e. two dimensional anisotropic oscillator without magnetic field,
with rational frequency ratio κ = m

n , plus a constant motion in Z .
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First example - integrals of the system (12)

Thus, we immediately see two integrals of the system given by

P3 = p3, Z = (Ω2 +
Ω2

1

Ω2
κ2)X3,

since both Z and P3 are cyclic (notice: they are not in involution).

And we have the other three independent integrals of the two
dimensional anisotropic oscillator.

Thus, the original system (6) is maximally superintegrable.
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First example - explicit construction of the integral

After introducing complex coordinates

z1 = iP1 + mωX , z2 = iP2 + nωY

the generators of the ring of the integrals of the 2D oscillator can
by easily written as

I1 = z1z̄1, I2 = z2z̄2, I3 = Re (zn1 z̄
m
2 ), I4 = Im (zn1 z̄

m
2 ).

They are clearly not independent; they satisfy the relation

I 2
3 + I 2

4 = I n1 I
m
2 . (13)

By inverting the canonical transformations, we see that Ij , j = 1, 2
correspond to the Cartesian type integrals X1,X2 and I3 (or I4)
provides a new independent integral X4, of order at most n + m in
the momenta.
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First example - explicit construction of the integral

The integrals Ij can also be expressed explicitly, in terms of
Chebyshev polynomials. This provides a polynomial expression for
X4 in the original 3D phase space. In the gauge covariant form it
reads

X4 =

[ n−1
2

]∑
k=0

(−1)k
(

n

2k + 1

)
(mωX̃A)n−2k−1(pA

1 )2k+1 ·

·
[ m−1

2
]∑

k=0

(−1)k
(

m

2k + 1

)
(nωỸ A)m−2k−1(pA

2 )2k+1 +

+

[ n
2

]∑
k=0

(−1)k
(

n

2k

)
(mωX̃A)n−2k(pA

1 )2k

[ m
2

]∑
k=0

(−1)k
(
m

2k

)
(nωỸ A)m−2k(pA

2 )2k

where

X̃A = x − n2Ω2(pA
3 + Ω2x + Ω1y)

n2Ω2
2 + m2Ω2

1

, Ỹ A = y − m2Ω1(pA
3 + Ω2x + Ω1y)

n2Ω2
2 + m2Ω2

1

(and similarly for X5).
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First example - simplification of the integral

We notice that the terms of order m + n in X4 are only of the form

αkγjp
2k
1 p2j

2 p
n+m−2(k+j)
3 , k = 0, . . . ,

[
n
2

]
, j = 0, . . . ,

[
m
2

]
βkδjp

2k+1
1 p2j+1

2 p
n+m−2(k+j+1)
3 , k = 0, . . . ,

[
n−1

2

]
, j = 0, . . . ,

[
m−1

2

]
where αj , βj , γj , δj are some coefficients. Such terms can be

eliminated by subtracting the integrals

αkγjp
n+m−2(k+j)
3 X k

1 X
j
2, k = 0, . . .

[
n
2

]
, j = 0, . . .

[
m
2

]
.

βkδj
2

p
n+m−2(k+j+1)
3 X k

1 X
j
2

(
Ω2

κ2Ω1
(X 2

3 − X1)− κ2 Ω1

Ω2
X2

)
,

k = 0, . . . ,
[
n−1

2

]
, j = 0, . . . ,

[
m−1

2

]
. Therefore the order of the

integral X4 can be reduced to m + n − 1.
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First example - explicit form of the integral

Explicitly, e.g. for n = 2 and m = 3, the integral X4 is of order
n + m − 1 = 4. It has the leading order term in momenta of the
following form

X
(h.o.)
4 =

1√
9Ω2

1 + 4Ω2
2

((
16Ω3

2

9Ω1
+ 4Ω1Ω2

)
L2p

2
2p3

−4Ω1Ω2 (3L2p3 + 8L3p2) p2
3 − (14)

−
(
4Ω2

2 + 9Ω2
1

)
(L1p3 + L3p1) p2

2 + 27Ω2
1 (L1p3 + L3p1) p2

3

)
.
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First example - explicit form of the integral

and the remaining terms are

X4 − X
(h.o.)
4 = 2Ω1τy

2p2
1p3 − 2τ

(
3Ω1x +

8

9
Ω2y

)
yp1p2p3 −

8Ω2τ

9
yzp1p

2
3

+τ

(
Ω1

2
(9x2 + y2 − z2) + 2Ω2xy +

2

9

Ω2
2

Ω1

(x2 − z2)

)
p2

2p3

−
1

2τ

(
27

(
x2 −

1

3
y2 − z2

)
Ω3

1 − 36Ω2
1Ω2xy

+4Ω2
2Ω1(3x2 + 4y2 − 3z2) −

64Ω3
2

9
xy

)
p3

3

−2Ω1τyzp2p
2
3 −

τ3

27
y3p2

1 +
τ3

3
xy2p1p2 +

4Ω2τ
3

81Ω1

y2zp1p3

−
τ3

4
x2yp2

2 +
τ3

9
y2zp2p3

−τ
(

Ω2
1

(
9
x2

4
+ 2y2 − z2

)
+

4Ω2
2

9

(
x2 −

1

3
y2 − z2

)
+

16Ω3
2

81Ω1

xy

)
yp2

3

+
1

18Ω1

τ
3

((
Ω1y −

2

3
Ω2x

)2

−
(

Ω2
1 +

4

9
Ω2

2

)
z2

)
y2p3 +

τ5

108
y3x2

,

where τ =
√

9Ω2
1 + 4Ω2

2 = 6ω.
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Second example

Next, let us consider a system which possesses two intersecting
pairs of commuting quadratic integrals – one corresponding to the
spherical case, i.e. of the form L2 + . . . and L2

z + . . ., the other
corresponding to the circular parabolic case, L2

z + . . . and
pyLx − pxLy + . . ..
These assumptions imply the structure of the magnetic field

B(~x) = Bz(~x) + Bm(~x) + Bn(~x).

where ~Bz = (0, 0, bz) is a constant magnetic field,

~Bm(~x) = bm
~x

R3
, R =

√
x2 + y2 + z2.

is the field of the magnetic monopole and the last component
takes the form

~Bn(~x) =
bn
R3

(
xz , yz , (R2 + z2)

)
.
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Second example - (minimally) superintegrable Hamiltonian

The potential and thus also the Hamiltonian

H =
(pA

x )2 + (pA
y )2 + (pA

z )2

2
+

u1

x2 + y 2
+

u2

R
+

u3z

(x2 + y 2)R

+
b2
m

2R2
+

bzbmz

2R
−

bzbn
(
x2 + y 2

)
2R

+
bmbnz

R2
− b2

n(x2 + y 2)

2R2
− 1

8
b2
z

(
x2 + y 2

)
=

p2
x + p2

y + p2
z

2
+

(
− bmz

R(x2 + y 2)
+

bn
R

+
bz
2

)
LZ

+
b2
m

2(x2 + y 2)
+

u1

x2 + y 2
+

u2

R
+

u3z

(x2 + y 2)R

involve three additional arbitrary constants u1, u2, u3. Notice that
in the second form of the Hamiltonian we used the gauge choice
~A(~x) =

(
bmyz

(x2+y2)R
− bny

R
− bz y

2
,− bmxz

(x2+y2)R
+ bnx

R
+ bz x

2
, 0

)
.
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Second example - known integrals of motion

X1 = pAy L
A
x − pAx L

A
y +

(
bm
R

+
bnz

R
+ bzz

)
LAz

−
bmbz

(
x2 + y2

)
2R

−
bnbzz

(
x2 + y2

)
2R

− b2
zz

4

(
x2 + y2

)
− 2u1z

x2 + y2
− u2z

R
−

u3

(
R2 + z2

)
(x2 + y2)R

,

X2 = LAz +
bmz

R
−

bn
(
x2 + y2

)
R

− bz
2

(
x2 + y2

)
= Lz ,

Y3 = (LA)2 −
(
2bnR + bzR

2
)
LAz +

2u1z
2

x2 + y2
+

2u3zR

x2 + y2

+bnbz
(
x2 + y2

)
R + b2

n

(
x2 + y2

)
+

1

4
b2
z

(
x2 + y2

)
R2.

The algebra of these integrals of motion closes polynomially and
there exists no additional first or second order integral.
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Second example - existence of closed trajectories

Nevertheless, we observe in numerical experiments that the
trajectories for generic rational parameters are closed (when
bounded).

On the next page are plots of two trajectories, for the following
values of parameters and initial data

bz = −2/7, bm = −1/2, bn = −5/2, u1 = 1/6, u2 = −3/2,
u3 = 0 with the initial conditions x(0) = 1, y(0) = 0,
z(0) = 0, px(0) = 0, py (0) = 1, pz(0) = 1/2,

bz = 0, bm = 0, bn = −2, u1 = 1/2, u2 = −1, u3 = −1/4
with the initial conditions x(0) = 1, y(0) = 0, z(0) = 0,
px(0) = 0, py (0) = 1, pz(0) = 1/2.

The point of closure is highlighted by a green circle, the flow of
time is denoted by a gradual change of color from red to blue.
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Closed trajectories for generic rational values of parameters
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Second example - hypothetical maximal superintegrability

Based on this observation, we conjecture that also this system is
maximally superintegrable for rational ratios of its parameters.

We also expect that the order of the hypothetical additional
integral depends on the values of the the parameters
bm, bn, bz , u1, u2, u3 of the system.

So far we have no clue about the structure of this conjectured
integral. We know that it must be at least of third order in the
momenta.
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Libor Šnobl Superintegrability in the presence of magnetic fields



Future outlook

Further work on superintegrable systems in a magnetic field is in
progress in several directions:

Developing more efficient techniques to determine higher
order integrals.

Extending these results to relativistic mechanics.

Studying properties of quantum analogues of the considered
systems.
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Thank you for your attention!
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