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Transformation of functions and prolongations

P. J. Olver, Applications of Lie Groups to Differential
Equations (Springer–Verlag, New York, 1986).

Assume that an open neighborhood U ⊂ Rn with coordinates
x i is given. Consider the graph of a given smooth function
f : U → R as a section of the (trivial) fiber bundle
J (0) = U × R, σf (~x) = (~x , f (~x)). It naturally induces a
section of the jet bundle, e.g. for the 2nd order jet bundle
J (2) = U × R⊕ Rn ⊕ Rn(n+1)/2

σ
(2)
f (~x) = (~x , f (~x), ∂i f (~x), ∂ij f (~x) )

(The interchangeability of mixed derivatives is assumed
throughout.)

L. Šnobl Symmetries and invariant solutions of PDEs on superspace



How do we find point symmetries of PDEs?
What are the symmetries good for – invariant solutions

Generalization of the method to equations on superspace
Conclusions

Transformation of functions and prolongations

P. J. Olver, Applications of Lie Groups to Differential
Equations (Springer–Verlag, New York, 1986).

Assume that an open neighborhood U ⊂ Rn with coordinates
x i is given. Consider the graph of a given smooth function
f : U → R as a section of the (trivial) fiber bundle
J (0) = U × R, σf (~x) = (~x , f (~x)). It naturally induces a
section of the jet bundle, e.g. for the 2nd order jet bundle
J (2) = U × R⊕ Rn ⊕ Rn(n+1)/2

σ
(2)
f (~x) = (~x , f (~x), ∂i f (~x), ∂ij f (~x) )

(The interchangeability of mixed derivatives is assumed
throughout.)
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Let u be the coordinate on R, together with ui and uij defining
the coordinates on the fiber of J (2).

Let1 v = ξi(~x , u)∂i + U(~x , u)∂u be the generator of a
one–parametric group of transformations of J (0). Assume that
the graph of f and consequently the section σf is transformed
by the flow of v, defining a new function fτ for each value of
the flow parameter τ provided |τ | is small enough. Consider its

prolongation σ
(2)
fτ

. Is it generated from σ
(2)
f by the flow of

some vector field on J (2)?

1

∂i ≡
∂

∂x i
, ∂u ≡

∂

∂u
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Yes, the sought after vector field on J (2) has the form of the
2nd prolongation

pr(2)(v) = ξi∂i + U∂u + Ui∂ui
+ Uij∂uij

,

where

Ui = DiU −
∑

j

Diξ
juj , Uij = DjUi −

∑
k

Djξ
kuik , (1)

and Di is the operator of the total derivative on the jet space

Di = ∂i + ui∂u + uij∂uj
+ . . . .
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L. Šnobl Symmetries and invariant solutions of PDEs on superspace



How do we find point symmetries of PDEs?
What are the symmetries good for – invariant solutions

Generalization of the method to equations on superspace
Conclusions

When does the vector field v = ξi∂i + U∂u generate a
one–parametric group of symmetries of a given K–th order
PDE

F (~x , f (~x), ∂i f (~x), ∂i1i2f (~x), . . . , ∂i1i2...iK f (~x)) = 0 ? (2)

In other words start with an arbitrary solution f of PDE (2).
When do the functions fτ solve the same PDE (2), for any
choice of f ?

Provided that grad F |F=0 6= 0 on J (K) there is an equivalence

v = ξi∂i + U∂u is a symmetry generator of PDE (2) if and
only if

pr(K)(v)F |F=0 = 0.
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L. Šnobl Symmetries and invariant solutions of PDEs on superspace



How do we find point symmetries of PDEs?
What are the symmetries good for – invariant solutions

Generalization of the method to equations on superspace
Conclusions

When does the vector field v = ξi∂i + U∂u generate a
one–parametric group of symmetries of a given K–th order
PDE

F (~x , f (~x), ∂i f (~x), ∂i1i2f (~x), . . . , ∂i1i2...iK f (~x)) = 0 ? (2)

In other words start with an arbitrary solution f of PDE (2).
When do the functions fτ solve the same PDE (2), for any
choice of f ?

Provided that grad F |F=0 6= 0 on J (K) there is an equivalence

v = ξi∂i + U∂u is a symmetry generator of PDE (2) if and
only if

pr(K)(v)F |F=0 = 0.
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Computation of symmetry generators of PDEs in practice

1 For the given K–order PDE F = 0 find the prolongation
of order K of an arbitrary vector field v on J (0).

2 Solve F (~x , u, ui , uij , . . .) = 0 for a suitable “derivative”
uAB... and substitute for it and all its differential
consequences, e.g. DiuAB..., into(

pr(K)(v)F
)

(~x , u, ui , uij , . . .) = 0.

3 The resulting expression is an equation for unknown
functions ξi(x j , u),U(x j , u) which must hold for any value
of the remaining jet coordinates ui , uij , . . .. This gives an
overdetermined system of linear PDEs for ξi ,U . If it can
be solved we find all symmetry generators of the given
PDE F = 0.
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Construction of invariant solutions of PDEs

The knowledge of a 1–parametric group of symmetries of
given PDE (such that its orbits have dimension one in the
space of independent variables) generated by v allows
reduction of the number of independent variables.

It works as follows: one finds the invariants Ik : v(Ik) = 0,
k = 1, .., n, of the action of the group on J (0), and constructs
the coordinates on J (0) out of them and one of the original
variables, say ω, functionally independent of Ik ’s. One of the
invariants is chosen as the new dependent variable ũ ≡ In.

Once the PDE is expressed in these new dependent and
independent variables, one assumes that its solution is
invariant with respect to the action of the group, i.e. ũ
depends on I1, . . . , In−1 but not on ω.
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Construction of invariant solutions of PDEs

The symmetry of the equation guarantees that such reduced
equation is consistent, i.e. ω drops out of it, and we obtain a
PDE with one less independent variables. Repeating this
procedure one is able to reduce PDE to ODE provided a
suitable symmetry group is present at each step.

Of course, this procedure allows to find only special solutions
of the original PDE, namely those invariant with respect to
some 1–parametric symmetry group. But for nonlinear PDEs
it is one of the few known methods giving at least some
nontrivial solutions.
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Can the same method be applied to supersymmetric
equations?

Consider some supersymmetric model formulated in terms of a
superfield on superspace, e.g the supersymmetric sine–Gordon
equation (SSG)

D1D2Φ = sin Φ (3)

for a real bosonic superfield

Φ (x1, x2, θ1, θ2) =
u(x1, x2)

2
+θ1φ(x1, x2)+θ2ψ(x1, x2)+θ1θ2F (x1, x2).

The covariant derivative operators in Eq. (3) are

D1 = ∂θ1 + θ1∂x1 and D2 = ∂θ2 + θ2∂x2 .

The quantities x1, x2, φ,F have Grassmann–even, commuting
character, θ1, θ2, φ, ψ are Grassmann–odd, anticommuting.
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Supersymmetry transformations

SSG (3) is invariant under the supersymmetry transformations

x → x − η
1
θ1, θ1 → θ1 + η

1
, t → t − η

2
θ2, θ2 → θ2 + η

2
,

where η1 and η2 are arbitrary constant fermionic parameters.

These transformations are generated by the infinitesimal
supersymmetry generators

Q1 = ∂θ1 − θ1∂x1 and Q2 = ∂θ2 − θ2∂x2 , (4)

i.e. in the superspace formalism they look like point
transformations acting on (x1, x2, θ1, θ2,Φ).
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The form of the generator in the superfield approach

Explicitly, the SSG (3) reads

θ1θ2Φx1x2 − θ2Φx2θ1 + θ1Φx1θ2 − Φθ1θ2 = sin Φ, (5)

where each successive subscript (from left to right) indicates a
successive left partial derivative.

We use the generalized method of prolongations so as to
include also the fermionic variables (introduced in M. A. Ayari
and V. Hussin, Comput. Phys. Commun. 100 (1997) 157).
We write

v =ξ∂x1 + τ∂x2 + ρ∂θ1 + σ∂θ2 + Λ∂Φ, (6)

where ξ, τ and Λ are supposed to be even–valued functions of
(x1, x2, θ1, θ2,Φ), while ρ and σ are odd–valued functions.
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We need the fermionic analogues Dθ1 ,Dθ2 of the bosonic total
derivatives Dx1 ,Dx2 , e.g.

Dθ1 =∂θ1 + Φθ1∂Φ + Φx1θ1∂Φx1
+ Φx2θ1∂Φx2

+ Φθ2θ1∂Φθ2
+

+ Φx1x1θ1∂Φx1x1
+ Φx1x2θ1∂Φx1x2

+ Φx1θ2θ1∂Φx1θ2
+

+ Φx2x2θ1∂Φx2x2
+ Φx2θ2θ1∂Φx2θ2

,

(7)

We note that due to the use of left derivatives the chain rule
for a Grassmann–valued function f (g(x)) is

∂f

∂x
=
∂g

∂x
· ∂f

∂g

irrespective of the character of f , g and x – they can be even
or odd.
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The 2nd prolongation

Similarly as in the classical case, we derive the prolongation
formulae. With proper respect for ordering they read

pr(2)v =ξ∂x1 + τ∂x2 + ρ∂θ1 + σ∂θ2 + Λ∂Φ + Λx1∂Φx1
+

+ Λx2∂Φx2
+ Λθ1∂Φθ1

+ Λθ2∂Φθ2
+ Λx1x1∂Φx1x1

+

+ Λx1x2∂Φx1x2
+ Λx1θ1∂Φx1θ1

+ Λx1θ2∂Φx1θ2
+ Λx2x2∂Φx2x2

+

+ Λx2θ1∂Φx2θ1
+ Λx2θ2∂Φx2θ2

+ Λθ1θ2∂Φθ1θ2

(8)

where the coefficients are defined by

ΛA = DAΛ−
∑
B

DAζ
BΦB , ΛAB = DBΛA −

∑
C

DBζ
C ΦAC ,

(9)
and A,B ,C ∈ {x1, x2, θ1, θ2}, ζA = (ξ, τ, ρ, σ).

L. Šnobl Symmetries and invariant solutions of PDEs on superspace



How do we find point symmetries of PDEs?
What are the symmetries good for – invariant solutions

Generalization of the method to equations on superspace
Conclusions

Applying the second prolongation (8) to the SSG equation (5),
we obtain the following condition

ρ (θ2Φx1x2 + Φx1θ2)− σ (θ1Φx1x2 + Φx2θ1)− Λ cos Φ

+ Λx1x2 θ1θ2 + Λx2θ1 θ2 − Λx1θ2 θ1 − Λθ1θ2 = 0.
(10)

Next, we substitute the SSG equation into (10), i.e. eliminate
Φθ1θ2 , expand components of v into polynomials in θ1, θ2, and
proceed as before, carefully keeping track of the ordering.

We find the full super–Poincaré algebra in (1 + 1) dimensions,
spanned by the generators

L = −2x∂x1 + 2t∂x2 − θ1∂θ1 + θ2∂θ2 , P1 = ∂x1 , P2 = ∂x2 ,

Q1 = −θ1∂x1 + ∂θ1 , Q2 = −θ2∂x2 + ∂θ2 .
(11)
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L. Šnobl Symmetries and invariant solutions of PDEs on superspace



How do we find point symmetries of PDEs?
What are the symmetries good for – invariant solutions

Generalization of the method to equations on superspace
Conclusions

Applying the second prolongation (8) to the SSG equation (5),
we obtain the following condition

ρ (θ2Φx1x2 + Φx1θ2)− σ (θ1Φx1x2 + Φx2θ1)− Λ cos Φ

+ Λx1x2 θ1θ2 + Λx2θ1 θ2 − Λx1θ2 θ1 − Λθ1θ2 = 0.
(10)

Next, we substitute the SSG equation into (10), i.e. eliminate
Φθ1θ2 , expand components of v into polynomials in θ1, θ2, and
proceed as before, carefully keeping track of the ordering.

We find the full super–Poincaré algebra in (1 + 1) dimensions,
spanned by the generators

L = −2x∂x1 + 2t∂x2 − θ1∂θ1 + θ2∂θ2 , P1 = ∂x1 , P2 = ∂x2 ,

Q1 = −θ1∂x1 + ∂θ1 , Q2 = −θ2∂x2 + ∂θ2 .
(11)

L. Šnobl Symmetries and invariant solutions of PDEs on superspace



How do we find point symmetries of PDEs?
What are the symmetries good for – invariant solutions

Generalization of the method to equations on superspace
Conclusions

Invariant solutions of SSG

It is possible to reduce SSG without any difficulty to a
system of ODEs when the 1–parametric subgroup is
constructed out of bosonic generators L,P1,P2. Whether
or not at least particular nontrivial solutions of these
ODEs and the corresponding invariant solutions of SSG
can be found explicitly depends on the chosen subgroup.

When fermionic generators are included, problems may
(not always) arise.
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Example

Consider the transformations generated by µQ1. The
invariants are t, θ2, Φ and any quantity of the form

τ = µf (x1, x2, θ1, θ2,Φ).

Obviously, we cannot find adapted coordinates on the
superspace in which µQ1 would become ∂x̃ and consequently
we do not obtain a reduced equation expressible in terms of
the invariants only.

For more details, see A.M. Grundland, A.J. Hariton and L.
Šnobl, J. Phys. A 42 (2009) 335203.
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Practical implementation of the method

Determination of the symmetry algebra by hand is rather
tedious even in the commuting case. In that case,
computer programs implementing the algorithm exist.
E.g. standard PDEtools package in Maple.
In the superspace the standard procedures usually break
down but the prolongations and the resulting determining
equations can be constructed using e.g. the standard
Physics package in Maple, which allows to perform
algebraic manipulations and calculus with anticommuting
variables.
The resulting overdetermined system of linear PDEs for
the symmetry generators we must solve by hand, using
computer for algebraic manipulations. I don’t know any
solver of PDEs involving anticommuting functions.
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Conclusions

With proper care it is possible to extend the conventional
method of determination of symmetry algebra of PDEs to
superspace.

The supersymmetry then demonstrates itself as a point
symmetry.

In the case of the super–sine–Gordon equation no hidden,
unexpected symmetries were found.

In the symmetry reduction on superspace problems may
arise due to nilpotency of some invariants.
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Thank you for your attention
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