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Abstract

The purpose of this short course is to introduce the concept of point
symmetries of differential equations. Next, we shall use point symme-
tries to solve a given ordinary differential equation. The method is
based on finding a suitable transformation of independent and depen-
dent variables after which we can reduce the order trivially. We shall
also briefly indicate other applications.
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1 Definition of Lie group and its Lie algebra

Let us consider a real smooth manifold G (of finite dimension). If the man-
ifold G is also a group, i.e. equipped with an associative product such that
a multiplicative unit e and an inverse g−1 exist, we may contemplate the
compatibility of these two structures on G. When both the product1

· : G×G→ G

and the inverse
( )−1 : G→ G

are smooth (i.e. differentiable) maps, we call G a Lie group. One may also
consider complex Lie groups which are complex manifolds such that the group
operations are holomorphic but we shall not use them here.

Lie groups form a class of manifolds with rather special properties. Let
us define two particular sets of diffeomorphisms of G, the left and right
translations

Lg : G→ G, Lg(h) = gh

and
Rg : G→ G, Rg(h) = hg

defined for any chosen g ∈ G. Since these maps are diffeomorphisms their
tangent maps (Lg)∗, (Rg)∗ define isomorphisms of the infinite–dimensional
Lie algebra X(G) of vector fields on G. A vector field X ∈ X(G) is called
left–invariant if

(Lg)∗X = X

for all g ∈ G. (Similarly for right–invariant fields.) The definition of a
left–invariant vector field can be phrased also in a different way. Let us view
both X ∈ X(G) and the pullback (Lg)

∗ as endomorphisms of the vector space
F(G) of all smooth functions on G. Then X is left–invariant if and only if

X ◦ (Lg)
∗ = (Lg)

∗ ◦X, ∀g ∈ G. (1)

The formulation (1) makes evident a crucial property of left–invariant vector
fields: they form not only a subspace but a subalgebra of X(G) because

[X, Y ] ◦ (Lg)
∗ = X ◦ Y ◦ (Lg)

∗ − Y ◦X ◦ (Lg)
∗

= (Lg)
∗ ◦X ◦ Y − (Lg)

∗ ◦ Y ◦X = (Lg)
∗ ◦ [X, Y ]

1often written without an explicit product sign ·
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for any left–invariant vector fields X, Y . The algebra of left–invariant vector
fields is called the Lie algebra of the Lie group G and denoted by g.2

Elements of g are uniquely specified by their value at any chosen point
g ∈ G. Conventionally, this identification is performed at the group unit, i.e.
we identify

g ' TeG.

Therefore, the dimension of g is the same as dimension of the Lie group G.
One of the properties of left–invariant vector fields is that they are com-

plete, i.e. any integral curve γ(t)

γ̇(t) = X(γ(t))

of X ∈ g can be extended to all real values of the curve parameter t ∈ R.
This property allows us to define the exponential map from the Lie algebra
to the Lie group

exp : g→ G : X → γX(1) where γ̇X(t) = X(γX(t)), γX(0) = e. (2)

The exponential map is a local diffeomorphism of g into G, i.e. is smooth
and is a diffeomorphism of some open neighborhood U of 0 ∈ g onto the open
neighborhood exp(U) of e ∈ G.

Using the exponential map one may relate properties of Lie groups and
their Lie algebras. In essence any local property of Lie groups has its coun-
terpart in the properties of Lie algebras. Therefore, one may say that locally,
i.e. up to topological issues, a Lie group and its Lie algebra encode the
same information. Because Lie algebras are vector spaces, most computa-
tions in the theory of Lie algebras reduce to problems of linear algebra and
consequently are much easier to handle than the corresponding computation

2More generally, an abstract Lie algebra g is a vector space over a field F equipped
with a multiplication (also called a bracket), i.e. a bilinear map [ , ] : g× g→ g, such that

[y, x] = −[x, y] (antisymmetry)
0 =

[
x, [y, z]

]
+
[
y, [z, x]

]
+
[
z, [x, y]

]
(Jacobi identity)

for all elements x, y, z ∈ g. In what follows we shall consider the fields F = R, C and
finite–dimensional Lie algebras only.

The structure of the Lie algebra g can be represented in any chosen basis (ej)dim g
j=1 by

the corresponding structure constants cjk
l in the basis (ej)dim g

j=1

[ej , ek] =
dim g∑
l=1

cjk
lel.
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in Lie groups. Therefore, using the local diffeomorphism exp (2) one may
solve many problems on Lie groups which would be intractable on a general
smooth manifold (or on a general, e.g. discrete, group).

2 Actions of Lie groups

For applications in both mathematics and physics we need a formalism allow-
ing us to view Lie groups as sets of certain transformations of some objects.
This leads us to the notion of an action of the group.

A (left) action of the Lie group G on a manifold M is a smooth map

. : G×M →M : (g,m)→ g . m

such that g1 . (g2 .m) = (g1g2) .m and e .m = m for all g1, g2 ∈ G, m ∈M .
Similarly one may consider also right actions / : M × G → G which

satisfy (m / g1) / g2 = m / (g1g2) and m / e = m. Any left action . defines a
right action / through m / g = g−1 . m and vice versa.

An action . of G on M is called effective if for every g ∈ G different
from the group unit e an element m ∈ M exists such that g . m 6= m.
Consequently, we can reconstruct the group multiplication on the group G
from the knowledge of its effective action.

Examples of left actions of the group G on itself are

g . h = gh, g . h = h · g−1

and the adjoint action

Ad : G×G→ G : Adg(h) ≡ Ad(g, h) = g · h · g−1.

When the manifold M is a vector space and the action of G on M is
linear

g . (av + w) = a(g . v) + g . w, ∀g ∈ G, v, w ∈M,a ∈ R

it is equivalent to a representation of the group G on the vector space M . A
representation of the Lie group G on a vector space V is any (smooth) map

ρ : G→ End(V )

which satisfies

ρ(e) = 1, ρ(g1g2) = ρ(g1) ◦ ρ(g2), ∀g1, g2 ∈ G.
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A representation can be associated to any linear action by the prescription

ρ : G→ End(M) : ρ(g)v = g . v.

Whether we speak about a linear action or a representation is just a
matter of convenience in the problem at hand.

A particular representation of the Lie group G on its algebra g is defined
by the derivation of the adjoint action

Ad : G→ gl(g) : Ad(g) = (Adg)∗.

This representation is called the adjoint representation of G.
Further differentiating we get the adjoint representation of the Lie algebra

g on itself
ad : g→ gl(g) : ad = Ad∗.

It can be shown that the adjoint representation of the Lie algebra satisfies

ad(x) y = [x, y] (3)

for any pair x, y of elements of g.
Sometimes we may encounter actions which are not well–defined for all

pairs (g,m). Formally, one defines a local (left) action of a Lie group G
on a manifold M to be a smooth map . : U → M where U is some open
neighborhood in G×M which contains the whole subset {e}×M and satisfies
the properties

e . m = m, ∀m ∈M
and

g1 . (g2 . m) = (g1g2) . m

whenever (g2,m) and (g1, g2 . m) ∈ U .
When we consider an abstract Lie group G together with its prescribed

(local) effective action on some manifold M we often speak about a (local)
group of transformations or group of motions of M . In fact, this notion was
what Sophus Lie had in mind in his pioneering works [1, 2, 3, 4] on what we
now call Lie groups and Lie algebras.

An infinitesimal action of the Lie algebra g on M is a homomorphism
µ : g → X(M). We often write the image of x ∈ g in capital letters,
µ(x) ≡ X. A Lie algebra equipped with an injective infinitesimal action on
some manifold M is called an algebra of infinitesimal transformations.

Any local action of G on M gives rise to an infinitesimal action of the Lie
algebra g on M through the prescription

(µ(x)f) (m) =
d

dt

∣∣∣∣
t=0

f (exp(tx) . m) , ∀f ∈ F(M),m ∈M. (4)
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3 Symmetries of algebraic equations

Now we shall introduce the notion of a symmetry of a given equation. Next,
we apply it in particular to differential equations. Again we present only the
essential notions and ideas. For proofs see [5, 6].

Let
f(x) = 0, f : Dom(f) ⊂ FN → FÑ (5)

be a system of algebraic equations (or just one equation when Ñ = 1) and
Sf be its solution set

Sf = {x ∈ Dom(f) |f(x) = 0}.

A symmetry of the equation (5) is any transformation

T : Dom(f)→ Dom(f)

such that it preserves the solution set

T (Sf ) = Sf . (6)

Usually, we restrict our attention to transformations T which are diffeomor-
phisms, T ∈ Diff(Dom(f)).

It follows from the definition of a symmetry that symmetries of a given
equation form a group, i.e. a subgroup of Diff(Dom(f)). Let us denote this
group of symmetries of the equation (5) by Sym(f = 0).

The group of all diffeomorphisms Diff(Dom(f)) is infinite–dimensional.
While the use of the theory of Lie algebras as introduced above is not com-
pletely rigorous in this case, we may in a certain sense view the algebra
X(Dom(f)) of vector fields on Dom(f) as a Lie algebra of Diff(Dom(f)).
When Sym(f = 0) happens to be a a Lie group (more precisely, a Lie group
of transformations), the corresponding algebra sym(f = 0) of infinitesimal
transformations defines a subalgebra of X(Dom(f)). Its relation to the func-
tion f is derived using the notion of a 1–parameter subgroup.

A 1–parameter subgroup σ of a group G is a homomorphism of the ad-
ditive group (R,+) into the group G. While G may not necessarily be a
Lie group (cf. Diff(Dom(f))), the image σ(R) has a natural structure of a
1–dimensional Lie group (or 0–dimensional if σ(t) = e for all t ∈ R). Conse-
quently, one may consider its Lie algebra. When G is a group of transforma-
tions of M and σ its 1–parameter subgroup we have a 1–dimensional algebra
of infinitesimal transformations spanned by its generator Xσ ∈ X(M):

Xσj(m) =
d

dt

∣∣∣∣
t=0

j (σ(t) . m) , ∀j ∈ F(M).
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Let Sym(f = 0) be the group of symmetries of the equation (5). We
shall call the vector subspace of X(Dom(f)) spanned by all generators Xσ of
1–parametric subgroups of the group Sym(f = 0) the algebra of infinitesimal
symmetries of the equation f = 0 and denote it by sym(f = 0). It turns
out that sym(f = 0) is a subalgebra of X(Dom(f)). The algebra sym(f = 0)
coincides with the algebra of infinitesimal transformations arising from the
group of transformation Sym(f = 0) when Sym(f = 0) is a Lie group.

Let us take m ∈ Sf and Xσ ∈ sym(f = 0). Because σ(t) lies in the
symmetry group Sym(f = 0) for all t ∈ R we have f(σ(t) . m) = 0 and
consequently

Xσf(m) =
d

dt

∣∣∣∣
t=0

f (σ(t) . m) = 0.

That means that the vector fields X in the algebra of infinitesimal symmetries
sym(f = 0) of the equation f = 0 satisfy

Xf
∣∣
f=0

= 0, i.e. Xf(m) = 0, ∀m ∈ Sf . (7)

Let us consider the converse problem. We recall that the flow of the vector
field X is the map

ΦX : U →M : ΦX(0,m) = m,
d

dt
ΦX(t,m) = X(ΦX(t,m)), ∀(t,m) ∈ U,

(8)
where U is some open neighborhood U ⊂ R×M such that (0,M) ⊂ U .

Let X ∈ X(Dom(f)) satisfy the condition (7). Is it true that the flow ΦX

defines a 1–parameter group of symmetries of the equation (5)?
In general, the answer is negative for two reasons.
Firstly, the flow may not be defined on the whole R × Dom(f), i.e. the

vector field may not be complete. That is why we introduced the notion of
a local action of a group: the flow of a vector field defines in general a local
action of a 1–parameter group.

Secondly, even locally the flow may not define symmetries of the given
equation (5).

Example 1 Let us consider a system of equations

x1 − x2
2 = 0, x1 = 0. (9)

Its set of solutions is S = {(0, 0)}. On the other hand, the condition (7) is
satisfied by the vector field

X = ∂x2
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whose flow is

ΦX : R× (R× R)→ (R× R) : ΦX(t, x1, x2) = (x1, x2 + t).

Now the action of the group element t 6= 0, ΦX(t, ·), takes the solution (0, 0)
to a point (0, t) which is not a solution of the equation (9).

It turns out that the condition on the function f which prevents such patho-
logical behaviour is the maximality of the rank of the Jacobian, rank

∂fj

∂xk

∣∣
Sf

=

Ñ . These results are the content of

Theorem 1 (On infinitesimal generators of symmetries) Let

f : Dom(f) ⊂ RN → RÑ define a system of equations

f(x) = 0 (10)

such that

rank
∂fj
∂xk

(x) = Ñ , ∀x ∈ Sf . (11)

Then a vector field X ∈ X(Dom(f)) generates a local 1–parameter group of
symmetries of the equation (10) if and only if

(Xf)(m) = 0, ∀m ∈ Sf . (12)

We see that under the assumption of regularity of the function f (11) we can
determine the algebra of infinitesimal symmetries sym(f = 0) of the given
equation f = 0 through solution of a linear system of equations (7) for the
coefficient functions X i ∈ F(Dom(f)) of the vector field

X : X(x) =
N∑
i=1

X i(x)
∂

∂xi

∣∣∣∣
x

.

Infinitesimal symmetries can be converted into actual symmetries through
computation of the corresponding flows; composing the flows one may con-
struct a local group of symmetries of the given equation f = 0. In this
way, the description of infinitesimal symmetries in terms of the condition (7)
significantly simplifies the search for symmetries of the given equation.

Detection of symmetries which cannot be connected to identity trans-
formation by flows of infinitesimal symmetries, e.g. belonging to different
connected components of the symmetry group, is a much harder problem
and we shall not discuss it here.

9



4 Symmetries of differential equations

Let us now shift our attention to differential equations.
Let us for simplicity start with one ordinary differential equation

F (x, u(x), u′(x), . . . , u(p)(x)) = 0 (13)

on some domain M ⊂ R.
The concept of symmetry remains the same: symmetries are transfor-

mations leaving the set of solutions invariant. The question is what kind of
transformations do we admit?

In principle, we may allow any transformation on the infinite–dimensional
space of all functions on M differentiable up to order p. Such a broad defini-
tion would, however, entail numerous computational difficulties. Therefore,
one a priori restricts the class of allowed transformations.

The most restrictive and most often used class of allowed transformations
is the following one: we allow any invertible transformation on the space of
dependent and independent variables, i.e. u and x,

x̂ = g1(x, u), û = g2(x, u). (14)

Such transformations are called point transformation. The effect of such a
transformation on any function f : M → R is defined using the transforma-
tion of the graph of the function f(x).

Let f be a function on the domain M ⊂ R. Its graph is the following
subset of M × R

Γf = {(x, f(x)) |x ∈M}. (15)

Γ ⊂ M × R defines a function f on some subset of M such that Γ = Γf if
and only if for every pair of points (x1, u1), (x2, u2) ∈ Γ the relation x1 = x2

implies u1 = u2.
When f is at least k–times differentiable we define also the kth–prolonged

graph of the function f

Γ
(k)
f = {

(
x, f(x), f ′(x), . . . , f (k)(x)

)
|x ∈M} ⊂M × R1+k. (16)

We denote the coordinates on M ×R1+k by x, u, u′, . . . , u(k) for obvious rea-
sons.

Let us assume that a (local) group G of transformations of the form (14)
is given. We define the action of g ∈ G on the graph Γf in a natural way

g . Γf = {g . (x, f(x)) |x ∈M}.
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In this way we obtain a new subset g .Γf of M ×R. When g .Γf is a graph

of some function f̂
g . Γf = Γf̂

we call f̂ ≡ g . f the transformation of the function f under the point
transformation g of M × R.

Such construction of the transformation f → f̂ introduces another source
of locality into our transformation groups. In particular, even if the action of
G on the space of dependent and independent coordinates M ×R is globally
defined, its induced action on functions is not: g . Γf may fail to define a
graph of a new function; there may be two different points (x, u1) and (x, u2)
in g .Γf . Therefore, the induced action of G on the space of functions F(M)
is only a local action.

A local 1–parameter group of point transformations

(x̂, û) = t . (x, u) : x̂ = g1(x, u; t), û = g2(x, u; t) (17)

of M × R is a 1–parameter symmetry group of the differential equation (13)
if for every solution u : M → R of equation (13) and every t ∈ R such that
û = t . u is defined we have

F (x, û(x), û′(x), . . . , û(n)(x)) = 0.

In order to establish a symmetry criterion in terms of a vector field gen-
erating the 1–parameter group of transformations we have to analyze how
do the derivatives transform. Let us assume that a function u = f(x) is

given. We have its graph Γf and its prolonged graph Γ
(1)
f . We transform Γf

by a 1–parameter group of point transformations φ : R → Diff(M × R) and
consequently we also obtain f̂t = t . f whenever it is defined. What is the
relation between the derivatives of the function f and of the functions f̂t? In
other words, how are the prolonged graphs of these functions related?

The points of the graph Γf transform under the action (17) into the points
of the graph Γf̂ as

x̂ = g1(x, f(x); t), f̂(x̂) = g2(x, f(x); t).

We obtain by differentiation and use of the chain rule an expression for the
derivative of f̂ ,

f̂ ′(x̂) ≡ df̂

dx̂
(x̂) =

d
dx
g2(x, f(x); t)

d
dx
g1(x, f(x); t)

=
∂g2
∂x

+ f ′(x)∂g2
∂u

∂g1
∂x

+ f ′(x)∂g1
∂y

∣∣∣∣∣
(x,f(x);t)

.
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We see that the transformation (17) induces a unique point transformation
of U × R2

x̂ = g1(x, u; t), û = g2(x, u; t), û′ =
∂g2
∂x

(x, u; t) + u′ ∂g2
∂u

(x, u; t)
∂g1
∂x

(x, u; t) + u′ ∂g1
∂u

(x, u; t)
(18)

such that the prolonged graph Γ
(1)
f of any function f : M → R is transformed

by the transformation (18) into the prolonged graph Γ
(1)

f̂t
of the transformed

function f̂t = t . f whenever f̂t exists. By induction, this concept can be
readily generalized to kth–prolonged graphs.

Let us now convert these ideas to the infinitesimal language. Let us
assume that the 1–parameter group of transformations (17) is generated by
the vector field X on M × R,

X ∈ X(M × R), X = ξ(x, u)
∂

∂x
+ η(x, u)

∂

∂u
. (19)

What is the corresponding vector field X̃ ∈ X(M × R × R) generating the
action on the prolonged graphs?

We differentiate equation (18) with respect to t and set t = 0. We notice
that by definition of the generator X of the 1–parameter group (17) we have

g1(x, u; 0) = x, g2(x, u; 0) = u,
∂g1

∂t
(x, u; 0) = ξ(x, u),

∂g2

∂t
(x, u; 0) = η(x, u).

Altogether, we find that

X̃ = ξ(x, u)
∂

∂x
+ η(x, u)

∂

∂u
+ (Dxη(x, u, u′)− u′Dxξ(x, u, u′))

∂

∂u′
(20)

where Dx = ∂
∂x

+u′ ∂
∂u

is called the operator of total derivative on F(M ×R).
We call the vector field (20) the first prolongation of the vector field X and
denote it by pr(1)X. Repeating the same procedure for higher derivatives we
find that the action of the 1–parameter group (17) on kth–prolonged graphs
is generated by the vector field pr(k)X ∈ X(M × R1+k)

pr(k)X = ξ(x, u)
∂

∂x
+ η(x, u)

∂

∂u
+

k∑
j=1

η(j)(x, u, u′, . . . , u(j))
∂

∂u(j)
(21)

where the components η(j)(x, u, u′, . . . , u(j)) are constructed recursively

η(j)(x, u, u′, . . . , u(j)) = Dxη(j−1) − u(j)Dxξ (22)
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using the operator of total derivative

Dx =
∂

∂x
+ u′

∂

∂u
+

k−1∑
j=1

u(j+1) ∂

∂u(j)
.

That means that the vector field (21) encodes in itself the fact that the
derivatives u′(x), . . . , u(n)(x) in the differential equation (13) transform in a
unique way once the point transformation (14) is chosen. Provided that we
work only with generators of the form (21), we may now for our purposes view
the differential equation (13) as an algebraic equation for a set of unknowns
x, u, u′, . . . , u(p). This determines certain solution hypersurface ΣF in M ×
R1+p,

ΣF = {(x, u, u′, . . . , u(p)) ∈M × R1+p|F (x, u, u′, . . . , u(p)) = 0}.

Any p–times differentiable function f : M → R whose pth–prolonged graph
Γ

(p)
f lies in the hypersurface ΣF is a solution of the differential equation (13).

Combining the results on symmetries of algebraic equations and the pro-
longation of vector fields, we can formulate a criterion on generators of point
symmetries of differential equations.

Theorem 2 (On generators of symmetries of ODEs) Let M ⊂ R and
let F : M × R1+p → R define a differential equation

F (x, u(x), u′(x), . . . , u(p)(x)) = 0. (23)

Let

ΣF = {(x, u, u′, . . . , u(p)) ∈M × R1+p|F (x, u, u′, . . . , u(p)) = 0}

and
dF (v) 6= 0, ∀v ∈ ΣF . (24)

Then a vector field X ∈ X(M × R) generates a local 1–parameter group of
point symmetries of the differential equation (23) if and only if

pr(p)F (v) = 0, ∀v ∈ ΣF . (25)

We notice that the regularity condition (24) is satisfied e.g. for any differen-
tial equation solved with respect to the highest derivative.

Let us mention that point transformations are not the only class of trans-
formations one may consider in the context of symmetry analysis of differen-
tial equations. Another, less restrictive choice is defined by transformations
on R3 (with coordinates x, u, u′) of the form

x̂ = g1(x, u, u
′), û = g2(x, u, u

′), û′ = g3(x, u, u
′) (26)
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subject to a consistency condition

∂g2(x, u, u
′)

∂u′
= g3(x, u, u

′)
∂g1(x, u, u

′)

∂u′
. (27)

This condition comes from the requirement that first derivatives of the func-
tion u = f(x) should transform independently of second and higher deriva-
tives of f(x).

Transformations (26) are called contact transformations. While for cer-
tain differential equations the group of contact symmetries is larger than the
group of point symmetries, in most cases both groups are isomorphic.

We shall restrict ourselves to point transformations in the following.

Theorem 2 can be readily generalized to systems of ordinary differential
equations and also to partial differential equations.

Let us consider a system of q partial differential equations of order at
most p

Fν(x
i, uα, . . . , uαJ) = 0, ν = 1, . . . , q, |J | ≤ p. (28)

where (xi)mi=1 are independent variables, (uα)nα=1 are dependent variables.
(Collectively, we denote them x and u, respectively.) We define the multi–
index J = (j1, . . . , jm), where ji ∈ N ∪ {0}, |J | = j1 + . . .+ jm and

uαJ =
∂|J |uα

∂j1x1∂j2x2 . . . ∂jmxm
.

We suppose that solutions u(x) of PDE (28) are defined on a domainM ⊂ Rm

and take values in N ⊂ Rn where M and N are some open subsets.
As before, the coordinates xi, uα on M ×N are formally extended to the

so–called kth jet bundle

Jk = {(xi, uα, uαJ)| |J | ≤ k} (29)

which includes both coordinates on M ×N and all derivatives of the depen-
dent variables uα of order less or equal to k (we identify J0 ≡ M ×N). On
the jet bundle, we define the total derivatives

Di =
∂

∂xi
+
∑
α,J

uαJi

∂

∂uαJ
, (30)

where
Ji = (j1, . . . , ji−1, ji + 1, ji+1, . . . , jm).

More generally, for J = (j1, j2, . . . , jm), we define

DJ = D1D1 · · · D1︸ ︷︷ ︸
j1

· · · DnDn · · · Dn︸ ︷︷ ︸
jm

. (31)
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The prolongation of a 1–parameter group action to the jet bundle Jk as
before induces a prolongation of the generating vector field. For the vector
field X given by

X = ξi(x, u)
∂

∂xi
+ ηα(x, u)

∂

∂uα
, (32)

the kth order prolongation of X is

pr(k)(X) = ξi(x, u)
∂

∂xi
+ ηα(x, u)

∂

∂uα
+
∑

α,|J |6=0

ηαJ (x, u, . . . , u(|J |))
∂

∂uαJ
, (33)

where ηαJ (x, u, . . . , u(|J |)) are functions on the |J |–th jet bundle and are given
by the recursive formula

ηαJj
= DjηαJ −

∑
i

(Djξi)uαJi
(34)

or, equivalently, by the formula

ηαJ = DJ
(
ηα − ξi∂u

α

∂xi

)
+ ξiuαJi

. (35)

An analogue of the symmetry criterion 2 can now be stated as follows

Theorem 3 (On generators of symmetries of PDEs) Let

Fν(x
i, uα, . . . , uαJ) = 0, ν = 1, . . . , q, |J | ≤ p.

be a non–degenerate system of partial differential equations (meaning that
the system is locally solvable with respect to highest derivatives and is of
maximal rank at every point p ∈ Jk such that Fν(p) = 0, ν = 1, . . . , q) and
G be a connected Lie group (locally) acting on J0 = M × N through the
transformations

x̃i = Ai(x, u, g), ũα = Bα(x, u, g).

Let the Lie algebra g of the Lie group G together with its induced infinitesi-
mal action (4) be the corresponding algebra of infinitesimal transformations.
Then G is a group of point symmetries of the PDE system F = 0 if and only
if [

pr(p)(X)
]

(Fν) = 0, ν = 1, . . . , q, whenever F = 0 (36)

for every infinitesimal generator X representing the infinitesimal action of
x ∈ g.
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Theorem 3 applies also to ODEs and systems of ODEs (when m = 1).

A practical determination of the symmetry algebra of a given pth order
system (28) of differential equations

Fν(x
i, uα, . . . , uαJ) = 0, ν = 1, . . . , q

involves several steps:

1. we have to compute pth prolongation of an arbitrary vector field X (32)
on J0,

2. evaluate pr(p)(X)Fν ,

3. substitute into it all equations Fν = 0 and their differential conse-
quences (if necessary); preferably, we eliminate the highest order deriva-
tives using Fν = 0.

These three steps can be rather lengthy and tedious, but are algorithmic
and can be efficiently and reliably performed using computer algebra
systems.

4. Now that F = 0 was imposed, the resulting equations

pr(p)(X)Fν |F=0 = 0

are to be viewed as equations for the unknown components ξi, ηα of the
vector field X which must hold for any values of the remaining jet space
coordinates uαJ , |J | ≥ 1. After we separate independent terms in uαJ ,
we obtain a highly overdetermined3 system of linear partial differential
equations for the functions ξi(x, u), ηα(x, u). Its solution provides us
with all generators X which satisfy equation (36) of Theorem 3.

Although this step is often also entrusted to computers, it does some-
times happen that computer programs miss some of the solutions and
the resulting symmetry algebra is incomplete.

After the symmetry generators are found, it is sensible to check their
consistency by verifying that the symmetry algebra is closed under commu-
tators. Next, one may integrate the generators to 1–parameter subgroups and
compose them to obtain the connected component of the symmetry group.

Other possible components of the symmetry group cannot be deduced
directly from the infinitesimal approach. Although some methods for their
determination exist (see e.g. [5, 6]) we shall not consider them here.

Let us now iluminate the presented abstract concepts by concrete exam-
ples. We use an abbreviated notation, ∂a ≡ ∂

∂a
.

3in almost all cases
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Example 2 Let us consider the ODE

y′′(x) =
(y′(x))2

y(x)
− y2(x) (37)

The second prolongation of an arbitrary vector field X = ξ(x, u) ∂
∂x

+η(x, u) ∂
∂u

is computed

pr(2)(X) = ξ∂x+η∂u+(Dxη−u′Dxξ)∂u′ +(Dx(Dxη−u′Dxξ)−u′′Dxξ)∂u′′ = . . .

We apply pr(p)(X) on the function

F = u′′ − (u′)2

u
+ u2

and substitute into it u′′ = (u′)2

u
−u2, i.e. we restrict ourselves to points laying

on the solution hypersurface ΣF . We obtain an equation

∂xxη + 2u′∂xuη + u′2∂uuη +
u′2

u
∂uη − u2∂uη − u′∂xxξ − 2u′2∂xuξ+

+2u2∂xξ − u′3∂uuξ − 3
u′3

u
∂uξ + 3u′u2∂uξ − 2

u′

u
∂xη − 2

u′2

u
∂uη+

+2
u′3

u
∂uξ +

u′2

u2
η + 2uη = 0

Isolating different powers of u′ and setting to zero each of the coefficients we
obtain four linear partial differential equations

−∂uuξ −
1

u
∂uξ = 0, (38)

∂uuη − 2∂xuξ −
1

u
∂uη +

1

u2
η = 0, (39)

2∂xuη − ∂xxξ + 3u2∂uξ − 2
1

u
∂xη = 0, (40)

∂xxη − u2∂uη + 2u2∂xξ + 2uη = 0. (41)

for the unknown functions ξ(x, u) and η(x, u). Solving the system of equations
(38–41) by simple manipulations we obtain the general solution of the system
(38–41) involving two arbitrary constants of integration

ξ(x, u) = Cx+ b, η(x, u) = −2Cu. (42)

Correspondingly, there are two linearly independent infinitesimal symmetries
of the ordinary differential equation (37), namely the translation

X1 =
∂

∂x
(43)
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with the flow Φ1(x, u; t) = (x+ t, u), and a scaling symmetry

X2 = −x ∂
∂x

+ 2u
∂

∂u
(44)

with the flow Φ2(x, u; t) = (e−tx, e2tu). The action of these point transfor-
mations on functions y(x) is

(t .1 y)(x) = y(x− t)

and
(t .2 y)(x) = e2ty(etx),

respectively.

In the case of PDEs the full derivation and intermediate calculations are
very long. Therefore, we shall only review and interpret the results.

Example 3 The heat equation

∂tu− ∂xxu = 0 (45)

has an infinite dimensional algebra of infinitesimal point symmetries. It con-
sists of the six vector fields

X1 = 4xt∂x + 4t2∂t − (2t+ x2)u∂u,

X2 = 2x∂x + 4t∂t − u∂u,
X3 = ∂t,

X4 = −2t∂x + xu∂u,

X5 = u∂u,

X6 = ∂x

together with an infinite set of generators

XV = V (x, t)∂u

where V (x, t) is an arbitrary solution of the heat equation (45).
It is instructive to interpret these vector fields in terms of the correspond-

ing finite transformations. The vector fields X3, X6 generate translations in
t and x. These symmetries are obvious from the onset – they just represent
the fact that the heat equation (45) is autonomous, i.e. does not involve t
and x explicitly.

The vector fields X2, X5 represent invariance of the heat equation under
two independent scalings u→ λu and x→ λx, t→ λ2t.
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The vector field X4 indicates invariance under the Galilei transformation
x→ x− λt accompanied by a suitable redefinition of u(x, t).

Finally, XV generates the invariance under the transformation u → u +
λV where V is another arbitrary solution of the heat equation (45), i.e. rep-
resents its linearity.

Altogether, all the symmetry generators X2, . . . , X6, XV can be guessed
without any calculations. They close into a subalgebra of the full symmetry
algebra sym(∂tu − ∂xxu = 0) = span{X1, . . . , X6, XV }∂tV−∂xxV=0. Without
explicit computation of the symmetry algebra one would probably miss the
generator X1 which does not possess any obvious physical interpretation.

As far as the algebraic structure of the Lie algebra sym(∂tu − ∂xxu = 0)
is considered, we notice that it splits into a semidirect sum,

sym(∂tu− ∂xxu = 0) = span{XV }∂tV−∂xxV=0 +⊃ span{X1, . . . , X6}

where span{XV }∂tV−∂xxV=0 is an infinite–dimensional Abelian Lie algebra
and span{X1, . . . , X6} is a finite dimensional Levi decomposable algebra. It
has a simple factor span{X1, X2, X3} isomorphic to sl(2) and a nilpotent
radical span{X4, X5, X6} isomorphic to the Heisenberg algebra h(1) which
is a nilpotent Lie algebras spanned by three vectors e1, e2, e3 with the only
nonvanishing Lie bracket

[e2, e3] = e1.

We observe that the infinite dimensional algebra span{XV }∂tV−∂xxV=0 is of-
ten truncated to a finite dimensional subalgebra when the symmetries are
computed using algorithms implemented in computer algebra systems (e.g.
procedure Infinitesimals in Maple 13).

We have noticed in this example that often most, if not all, infinitesimal
symmetries of the given differential equation can be found by inspection,
without any computation. Unfortunately, there is no easy way of establishing
the completeness of the symmetry algebra guessed in this way, e.g. there is no
method of independent determination of dimension of the symmetry algebra.
The only reliable method is to perform the full computation of symmetries
and check whether anything unexpected arises.

5 Applications: Reduction of the order of a

given ODE and others

Once the symmetry algebra of the given equation(s) is determined, one can
use it in several different ways such as:
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1. Exponentiate infinitesimal symmetries to 1–parameter subgroups and
use the resulting transformations to generate new solutions from the
known ones.

2. Use the symmetry algebra as a necessary criterion for equivalence of two
differential equations. If any pair of differential equations can be trans-
formed one into the other by a point transformation then necessarily
their symmetry algebras must be isomorphic. Thus we have a neces-
sary (though far from sufficient) condition for equivalence. In addition,
when an explicit transformation between two equations is sought, it is
often convenient to construct point transformations taking one sym-
metry algebra into the other and only then look for transformations
taking one equation into the other inside this class.

In particular, when a given PDE has an infinite dimensional Abelian
subalgebra of infinitesimal symmetries involving an arbitrary solution
of some linear PDE we may interpret it as a strong indication that our
prescribed equation may be linearizable by some point transformation.

3. Reduce the order of an ODE. This method is based on a simple obser-
vation that an ODE

F (x, y, . . . , y(p)) = 0

which possesses an infinitesimal symmetry ∂y must be independent of
the dependent variable y, i.e. in the form

F (x, y′, . . . , y(p)) = 0 (46)

(possibly up to a multiplication by a common nonvanishing y–dependent
prefactor which does not affect its solutions). Obviously, we may lower
its order by one through the substitution z = y′, then attempt to solve
the new ODE

F (x, z, . . . , z(p−1)) = 0

and once its solution z(x) is known, we may write the solution of the
original equation (46) in quadrature

y(x) =

∫
z(x)dx.

Hence, the substance of the method is the following: starting from an
arbitrary nonvanishing infinitesimal symmetry X = ξ∂x + η∂y we look
for a point transformation, i.e. a change of coordinates on M × N ,
such that in the new coordinates x̃, ỹ our vector field X takes the form
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X = ∂ỹ. According to the rules for transformation of the components
of a vector field these new coordinates must satisfy equations

X(x̃) = 0, X(ỹ) = 1.

These equations are solved using the method of characteristics. Their
solution is in general not unique, but any particular solution with non-
constant x̃ can be used.

Once x̃, ỹ are found, we lower the order of our equation in the new
coordinates, solve it (if possible), and at the end transform the solution
to the original coordinates.

This approach generalizes many particular methods used in solution of
ODEs.

Example 4 Let
F (y, . . . , y(p)) = 0

be an autonomous ODE, i.e. not depending explicitly on x. It is in-
variant under translations in the independent variable x, generated by
X = ∂x. Therefore, if we interchange the roles of independent and de-
pendent variable x̂ = y, ŷ = x, the vector field becomes X = ∂ỹ and we
may lower the order of the differential equation for the inverse function
x(y) by one.

Example 5 Let
F (x, y, . . . , y(p)) = 0 (47)

be invariant under the scaling x → λx, y → λαy. Such scaling is
obtained as the 1–parameter group of transformations generated by the
vector field

X = x∂x + αy∂y.

The new coordinates x̃, ỹ can be chosen as

x̃ =
y

xα
, ỹ = lnx.

Once we rewrite the original ODE (47) in these coordinates we may
again lower its order by one.

We remark that the reduced equation may have a group of symmetries
rather distinct from the original one. In particular, other symmetries
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of the original equation may not survive the reduction. Only the sym-
metries generated by such vector fields Y ∈ X(M ×N) that a constant
α ∈ F exists satisfying

[Y,X] = αX

are guaranteed to survive the reduction.

By induction, a k–dimensional algebra of infinitesimal symmetries of a
given ODE with a complete flag of ideals as in Lie’s theorem4 allows us
to reduce the order by k provided we can find suitable coordinates in
each step, of course. That was the original motivation for the definition
of a solvable algebra – although, as we have seen in Lie’s theorem, it
is in the current terminology well justified only if we consider complex
Lie algebras and complex (holomorphic) ODEs.

Example 6 Let us use the symmetries computed in Example 2 to solve
the ordinary differential equation (37). Since we have [X1, X2] = −X1

we shall use the vector field X1 first. The suitable new coordinates in
which we have X1 = ∂ũ are obviously

x̃ = u, ũ = x,

i.e. we use a so–called hodograph transformation. The equation (37)
when expressed in these new coordinates becomes

ỹ′′(x̃) = − ỹ
′(x̃)

x̃
+ x̃2(ỹ′(x̃))3

and we can lower its degree using the substitution

z̃(x̃) = ỹ′(x̃).

4

Theorem 4 (Theorem of Lie) Any representation ρ of a solvable Lie algebra g on a
complex finite–dimensional vector space V contains a common eigenvector v ∈ V, v 6= 0,
i.e.

ρ(x)v = λ(x) · v, x ∈ g (48)

for some linear functional λ on g.
For any complex solvable Lie algebra g there exists a filtration by codimension 1 ad–

invariant subspaces, i.e.

0 ( V1 ( V2 ( . . . ( Vdim g = g, dimVk/ dimVk−1 = 1, [g, Vk] ⊆ Vk. (49)

Lie’s theorem implies that any complex solvable Lie algebra g has only one–dimensional
irreducible representations and that the adjoint representation of any complex non–Abelian
solvable Lie algebra g is not fully reducible.
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We obtain an equation

z̃′(x̃) = − z̃(x̃)

x̃
+ x̃2(z̃(x̃))3 (50)

The vector field X2 in the new coordinates becomes

X2 = 2x̃
∂

∂x̃
− ũ ∂

∂ũ
.

Its first prolongation is

pr(1)X2 = 2x̃
∂

∂x̃
− ũ ∂

∂ũ
− 3z̃

∂

∂z̃
.

We see that dropping the ∂
∂ũ

term we obtain a well defined vector field

X̃2 = 2x̃
∂

∂x̃
− 3z̃

∂

∂z̃

on a two–dimensional space with coordinates x̃, z̃. The vector field X̃2

is by construction an infinitesimal symmetry of the equation (50). Now,
we use it to further lower the order of the equation (50), i.e. to convert
it into an algebraic equation. We find suitable new coordinates

x̂ = x̃3z̃2, ẑ = −1

2
ln x̃

in which our equation (50) becomes

ẑ′(x̂) = − 1

2(x̂+ 2x̂2)
. (51)

Integrating the equation (51) we find

ẑ(x̂) =
1

2
ln

∣∣∣∣1 + 2x̂

x̂

∣∣∣∣− 1

2
lnC

where C is a constant of integration. Going back to the coordinates x̃, z̃
we get an expression for the function z̃(x̃),

z̃(x̃) =
1

x̃
√
C − 2x̃

.

Now we can further integrate

ỹ(x̃) =

∫
z̃(x̃)dx̃ = − 2√

C
arctanh

√
C − 2x̃

C
+D
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where D is a second constant of integration. Finally, we transform the
function ỹ(x̃) to the original coordinates and find a general solution of
the ODE (37) in the form

y(x) =
C

2

(
1− tanh2

(√
C

2
(D − x)

))
. (52)

This reduction method can be immediately generalized to systems of
ODEs but not to PDEs. For PDEs, another method is available.

4. Construction of group–invariant solutions of PDEs. As already men-
tioned, the method described above does not work for PDEs since the
fact that a PDE does not involve the dependent variable explicitly does
not in general provide any help in its solution. Nevertheless, we may
employ the symmetries in construction of particular solutions of a given
PDE.

The essential observation is as simple as above. Let us suppose that a
given PDE

F (xi, uα, . . . , uαJ) = 0

has a symmetry generator
X = ∂x1 . (53)

That means that F is invariant with respect to translations in x1, i.e.
does not depend on it explicitly. Consequently, we may suppose that
our solution uα depends only on the remaining independent variables
xi, i = 2, . . . ,m and in this way we obtain a well–defined PDE with one
less independent variables. Any solution of this PDE is also a solution
of the original equation which in addition is invariant with respect to
the 1–parameter group of symmetries generated by the vector field X;
hence its name group–invariant solution.

Similarly as before, the method boils down to the construction of suit-
able coordinates x̃i, ũα on M ×N in which a given symmetry generator
X takes the form (53). Again, the method of characteristics is used.
In fact, it turns out that we need to compute only the invariant coor-
dinates

x̃i : X(x̃i) = 0, i = 2, . . . ,m, ũα : X(ũα) = 0, α = 1, . . . , n

in the process, as the following example will demonstrate.
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Example 7 Let us consider the heat equation of Example 3 and the
vector field

X4 = −2t∂x + xu∂u.

This vector field has the following invariants

τ = t, I = ue
x2

4t .

Therefore, we substitute u(x, t) = I(t)e−
x2

4t into the heat equation (45)
and obtain a reduced equation for I(t)

2tI ′(t) + I(t) = 0.

Its general solution is I(t) = C√
t
. Altogether, we have recovered the

fundamental solution (when C = 1√
4π

) of the heat equation

u(x, t) =
C√
t
e−

x2

4t

as the solution invariant with respect to Galilei transformations gener-
ated by the vector field X4.

As before, the reduced equation may have symmetries which are of no
direct relation to the original ones. If we want to be able to further re-
duce the number of independent variables we again need a solvable sym-
metry algebra and an appropriate choice of generators of 1–parameter
subgroups (i.e. a basis respecting the flag of codimension 1 ideals,
starting from the smallest one).

We notice that solutions invariant with respect to vector fields X and
X̃ = AdgX are related: we may obtain a solution ũ(x) invariant with
respect to X̃ from u(x) simply by setting ũ(x) = g . u(x). Therefore,
one shall first classify 1–dimensional subalgebras of the symmetry alge-
bra under conjugation by g ∈ G (or higher–dimensional subalgebras if
reduction with respect to more independent variables is intended) and
only then perform the reduction with respect to nonequivalent genera-
tors.
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