On Poisson–Lie T–plurality of boundary conditions

Libor Šnobl

Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague

in collaboration with C. Albertsson (Kyoto University) and L. Hlavatý (CTU)

Stockholm, June 22, 2007, [0706.0820]

Outline

- 1 Elements of Poisson-Lie T-plurality
- 2 Consistent boundary conditions
- Poisson-Lie T-plurality transformation of the gluing operator

Outline

- Elements of Poisson-Lie T-plurality
- 2 Consistent boundary conditions
- Poisson-Lie T-plurality transformation of the gluing operator

Outline

- Elements of Poisson-Lie T-plurality
- Consistent boundary conditions
- Poisson-Lie T-plurality transformation of the gluing operator

The σ -model given by the action

$$S_{F}[g] = \int_{\Sigma} d^{2}x \, \rho_{-}(g) \cdot F(g) \cdot \rho_{+}(g)^{t} = \int_{\Sigma} d^{2}x \, \partial_{-}\phi^{\mu} \mathcal{F}_{\mu\nu}(\phi) \partial_{+}\phi^{\nu}$$

$$\tag{1}$$

where the map g maps $\Sigma = \langle 0, \pi \rangle \times \mathbb{R}$ into the group G whose Lie algebra has basis $\{T_a\}$,

$$\rho_{\pm}(g)^{a} \equiv (\partial_{\pm}gg^{-1})^{a} = \partial_{\pm}\phi^{\mu}e_{\mu}{}^{a}(g), \quad (\partial_{\pm}gg^{-1}) = \rho_{\pm}(g) \cdot T$$

The σ -model given by the action

$$S_{F}[g] = \int_{\Sigma} d^{2}x \, \rho_{-}(g) \cdot F(g) \cdot \rho_{+}(g)^{t} = \int_{\Sigma} d^{2}x \, \partial_{-}\phi^{\mu} \mathcal{F}_{\mu\nu}(\phi) \partial_{+}\phi^{\nu}$$
(1)

where the map g maps $\Sigma = \langle 0, \pi \rangle \times \mathbb{R}$ into the group G whose Lie algebra has basis $\{T_a\}$,

$$\rho_{\pm}(g)^{a} \equiv (\partial_{\pm}gg^{-1})^{a} = \partial_{\pm}\phi^{\mu}e_{\mu}^{a}(g), \quad (\partial_{\pm}gg^{-1}) = \rho_{\pm}(g) \cdot T$$

The σ -model given by the action

$$S_{F}[g] = \int_{\Sigma} d^{2}x \, \rho_{-}(g) \cdot F(g) \cdot \rho_{+}(g)^{t} = \int_{\Sigma} d^{2}x \, \partial_{-}\phi^{\mu} \mathcal{F}_{\mu\nu}(\phi) \partial_{+}\phi^{\nu}$$
(1)

where the map g maps $\Sigma = \langle 0, \pi \rangle \times \mathbb{R}$ into the group G whose Lie algebra has basis $\{T_a\}$,

$$\rho_{\pm}(g)^{a} \equiv (\partial_{\pm}gg^{-1})^{a} = \partial_{\pm}\phi^{\mu}e_{\mu}^{a}(g), \quad (\partial_{\pm}gg^{-1}) = \rho_{\pm}(g) \cdot T$$

The σ -model given by the action

$$S_{F}[g] = \int_{\Sigma} d^{2}x \, \rho_{-}(g) \cdot F(g) \cdot \rho_{+}(g)^{t} = \int_{\Sigma} d^{2}x \, \partial_{-}\phi^{\mu} \mathcal{F}_{\mu\nu}(\phi) \partial_{+}\phi^{\nu}$$
(1)

where the map g maps $\Sigma = \langle 0, \pi \rangle \times \mathbb{R}$ into the group G whose Lie algebra has basis $\{T_a\}$,

$$\rho_{\pm}(g)^{a} \equiv (\partial_{\pm}gg^{-1})^{a} = \partial_{\pm}\phi^{\mu}e_{\mu}^{a}(g), \quad (\partial_{\pm}gg^{-1}) = \rho_{\pm}(g) \cdot T$$

The basic idea of Poisson-Lie T-duality

C. Klimčík and P. Ševera, Phys. Lett. B 351 (1995) 455.

Under certain conditions the equations of motion in the bulk of the σ -model can be written as equations on

Drinfel'd double

 $(G|\tilde{G})$ – Lie group D whose Lie algebra \mathfrak{d} admits a decomposition $\mathfrak{d} = \mathfrak{g} + \tilde{\mathfrak{g}}$ into a pair of subalgebras maximally isotropic with respect to a symmetric ad-invariant nondegenerate bilinear form $\langle .,. \rangle$.

The basic idea of Poisson-Lie T-duality

C. Klimčík and P. Ševera, Phys. Lett. B 351 (1995) 455.

Under certain conditions the equations of motion in the bulk of the σ -model can be written as equations on

Drinfel'd double

 $(G|\tilde{G})$ – Lie group D whose Lie algebra \mathfrak{d} admits a decomposition $\mathfrak{d} = \mathfrak{g} + \tilde{\mathfrak{g}}$ into a pair of subalgebras maximally isotropic with respect to a symmetric ad-invariant nondegenerate bilinear form $\langle \, . \, , . \, \rangle$.

If the metric together with the B-field are such that

$$F(g) = (E_0^{-1} + \Pi(g))^{-1}, \quad \Pi(g) = b(g) \cdot a(g)^{-1} = -\Pi(g)^t,$$
 (2)

then the bulk equations of motion of the σ -model can be formulated as the equations on the Drinfel'd double

$$\langle \partial_{\pm} I I^{-1}, \mathcal{E}^{\pm} \rangle = 0,$$

where $I=g\tilde{h}\in D,\ g\in G,\ \tilde{h}\in \tilde{G}$ and

$$\mathcal{E}^+ = \operatorname{span}\left(T + E_0 \cdot \tilde{T}\right), \qquad \mathcal{E}^- = \operatorname{span}\left(T - E_0^t \cdot \tilde{T}\right)$$

are two orthogonal subspaces in \mathfrak{d} .

If the metric together with the B-field are such that

$$F(g) = (E_0^{-1} + \Pi(g))^{-1}, \quad \Pi(g) = b(g) \cdot a(g)^{-1} = -\Pi(g)^t,$$
 (2)

then the bulk equations of motion of the σ -model can be formulated as the equations on the Drinfel'd double

$$\langle \partial_{\pm} I I^{-1}, \mathcal{E}^{\pm} \rangle = 0,$$

where $I = g\tilde{h} \in D, \ g \in G, \ \tilde{h} \in \tilde{G}$ and

$$\mathcal{E}^{+} = \operatorname{span}\left(T + E_{0} \cdot \tilde{T}\right), \qquad \mathcal{E}^{-} = \operatorname{span}\left(T - E_{0}^{t} \cdot \tilde{T}\right)$$

are two orthogonal subspaces in \mathfrak{d} .

R. von Unge, J. High En. Phys. 02:07 (2002) 014.

Main idea:

In general there are several decompositions (Manin triples) of a Drinfel'd double.

Let $\hat{\mathfrak{g}} \stackrel{.}{+} \overline{\mathfrak{g}}$ be another decomposition of the Lie algebra \mathfrak{d} into maximal isotropic subalgebras. The dual bases of $\mathfrak{g}, \widetilde{\mathfrak{g}}$ and $\hat{\mathfrak{g}}, \overline{\mathfrak{g}}$ are related by the linear transformation

$$\begin{pmatrix} T \\ \tilde{T} \end{pmatrix} = \begin{pmatrix} p & q \\ r & s \end{pmatrix} \begin{pmatrix} \hat{T} \\ \bar{T} \end{pmatrix}, \tag{3}$$

R. von Unge, J. High En. Phys. 02:07 (2002) 014.

Main idea:

In general there are several decompositions (Manin triples) of a Drinfel'd double.

Let $\hat{\mathfrak{g}} + \overline{\mathfrak{g}}$ be another decomposition of the Lie algebra \mathfrak{d} into maximal isotropic subalgebras. The dual bases of $\mathfrak{g}, \tilde{\mathfrak{g}}$ and $\hat{\mathfrak{g}}, \overline{\mathfrak{g}}$ are related by the linear transformation

$$\begin{pmatrix} T \\ \tilde{T} \end{pmatrix} = \begin{pmatrix} p & q \\ r & s \end{pmatrix} \begin{pmatrix} \hat{T} \\ \bar{T} \end{pmatrix}, \tag{3}$$

R. von Unge, J. High En. Phys. 02:07 (2002) 014.

Main idea:

In general there are several decompositions (Manin triples) of a Drinfel'd double.

Let $\hat{\mathfrak{g}}+\overline{\mathfrak{g}}$ be another decomposition of the Lie algebra \mathfrak{d} into maximal isotropic subalgebras. The dual bases of $\mathfrak{g}, \widetilde{\mathfrak{g}}$ and $\hat{\mathfrak{g}}, \overline{\mathfrak{g}}$ are related by the linear transformation

$$\begin{pmatrix} T \\ \tilde{T} \end{pmatrix} = \begin{pmatrix} p & q \\ r & s \end{pmatrix} \begin{pmatrix} \hat{T} \\ \bar{T} \end{pmatrix}, \tag{3}$$

R. von Unge, J. High En. Phys. 02:07 (2002) 014.

Main idea:

In general there are several decompositions (Manin triples) of a Drinfel'd double.

Let $\hat{\mathfrak{g}}+\bar{\mathfrak{g}}$ be another decomposition of the Lie algebra \mathfrak{d} into maximal isotropic subalgebras. The dual bases of $\mathfrak{g},\tilde{\mathfrak{g}}$ and $\hat{\mathfrak{g}},\bar{\mathfrak{g}}$ are related by the linear transformation

$$\begin{pmatrix} T \\ \widetilde{T} \end{pmatrix} = \begin{pmatrix} p & q \\ r & s \end{pmatrix} \begin{pmatrix} \widehat{T} \\ \overline{T} \end{pmatrix}, \tag{3}$$

The σ –model related to (1) by the Poisson–Lie T–plurality

is defined analogously but with

$$\widehat{F}(\hat{g}) = (\widehat{E}_0^{-1} + \widehat{\Pi}(\hat{g}))^{-1}, \quad \widehat{\Pi}(\hat{g}) = \widehat{b}(\hat{g}) \cdot \widehat{a}(\hat{g})^{-1} = -\widehat{\Pi}(\hat{g})^t, \\
\widehat{E}_0 = (p + E_0 \cdot r)^{-1} \cdot (q + E_0 \cdot s)$$

The relation between the classical solutions of equations of motion in the bulk of the two σ -models is obtained from two possible decompositions of $I \in D$

$$I = g\tilde{h} = \hat{g}\bar{h}$$

But what about the boundary conditions? Does a solution with well-defined boundary conditions transform into another one?

The σ -model related to (1) by the Poisson-Lie T-plurality

is defined analogously but with

$$\widehat{F}(\hat{g}) = (\widehat{E}_0^{-1} + \widehat{\Pi}(\hat{g}))^{-1}, \quad \widehat{\Pi}(\hat{g}) = \widehat{b}(\hat{g}) \cdot \widehat{a}(\hat{g})^{-1} = -\widehat{\Pi}(\hat{g})^t,
\widehat{E}_0 = (p + E_0 \cdot r)^{-1} \cdot (q + E_0 \cdot s)$$

The relation between the classical solutions of equations of motion in the bulk of the two σ -models is obtained from two possible decompositions of $I \in D$

$$I=g\tilde{h}=\hat{g}\bar{h}$$

But what about the boundary conditions? Does a solution with well-defined boundary conditions transform into another one?

The σ -model related to (1) by the Poisson–Lie T-plurality

is defined analogously but with

$$\widehat{F}(\widehat{g}) = (\widehat{E}_0^{-1} + \widehat{\Pi}(\widehat{g}))^{-1}, \quad \widehat{\Pi}(\widehat{g}) = \widehat{b}(\widehat{g}) \cdot \widehat{a}(\widehat{g})^{-1} = -\widehat{\Pi}(\widehat{g})^t,
\widehat{E}_0 = (p + E_0 \cdot r)^{-1} \cdot (q + E_0 \cdot s)$$

The relation between the classical solutions of equations of motion in the bulk of the two σ -models is obtained from two possible decompositions of $I \in D$

$$I = g\tilde{h} = \hat{g}\bar{h}$$

But what about the boundary conditions? Does a solution with well-defined boundary conditions transform into another one?

The gluing operator ${\cal R}$

We impose the boundary condition in the form

$$\partial_{-}g|_{\sigma=0,\pi} = \mathcal{R}\partial_{+}g|_{\sigma=0,\pi} \tag{4}$$

Explicitly we write in coordinates or in a frame e.g.

$$\partial_{-}\phi|_{\sigma=0,\pi} = \partial_{+}\phi \cdot R_{\phi}|_{\sigma=0,\pi}, \quad \rho_{-}(g)|_{\sigma=0,\pi} = \rho_{+}(g) \cdot R_{\rho}|_{\sigma=0,\pi}$$
(5)

We define the Dirichlet projector \mathcal{Q} that projects vectors onto the space normal to the D-brane $\equiv -1$ eigenspace of \mathcal{R} and Neumann projector \mathcal{N} that projects onto the tangent space of the brane. The corresponding matrices \mathcal{Q} , \mathcal{N} are given by

$$Q^2 = Q, \quad Q \cdot R = R \cdot Q = -Q, \quad N = 1 - Q.$$
 (6)

The gluing operator ${\cal R}$

We impose the boundary condition in the form

$$\partial_{-}g|_{\sigma=0,\pi} = \mathcal{R}\partial_{+}g|_{\sigma=0,\pi} \tag{4}$$

Explicitly we write in coordinates or in a frame e.g.

$$\partial_{-}\phi|_{\sigma=0,\pi} = \partial_{+}\phi \cdot R_{\phi}|_{\sigma=0,\pi}, \quad \rho_{-}(g)|_{\sigma=0,\pi} = \rho_{+}(g) \cdot R_{\rho}|_{\sigma=0,\pi}$$
(5)

We define the Dirichlet projector Q that projects vectors onto the space normal to the D-brane $\equiv -1$ eigenspace of $\mathcal R$ and Neumann projector $\mathcal N$ that projects onto the tangent space of the brane. The corresponding matrices Q, N are given by

$$Q^2 = Q, \quad Q \cdot R = R \cdot Q = -Q, \quad N = 1 - Q.$$
 (6)

The gluing operator \mathcal{R}

We impose the boundary condition in the form

$$\partial_{-}g|_{\sigma=0,\pi} = \mathcal{R}\partial_{+}g|_{\sigma=0,\pi} \tag{4}$$

Explicitly we write in coordinates or in a frame e.g.

$$\partial_{-}\phi|_{\sigma=0,\pi} = \partial_{+}\phi \cdot R_{\phi}|_{\sigma=0,\pi}, \quad \rho_{-}(g)|_{\sigma=0,\pi} = \rho_{+}(g) \cdot R_{\rho}|_{\sigma=0,\pi}$$
(5)

We define the Dirichlet projector \mathcal{Q} that projects vectors onto the space normal to the D-brane $\equiv -1$ eigenspace of \mathcal{R} and Neumann projector \mathcal{N} that projects onto the tangent space of the brane. The corresponding matrices \mathcal{Q} , \mathcal{N} are given by

$$Q^2 = Q, \quad Q \cdot R = R \cdot Q = -Q, \quad N = 1 - Q.$$
 (6)

The gluing operator ${\cal R}$

We impose the boundary condition in the form

$$\partial_{-}g|_{\sigma=0,\pi} = \mathcal{R}\partial_{+}g|_{\sigma=0,\pi} \tag{4}$$

Explicitly we write in coordinates or in a frame e.g.

$$\partial_{-}\phi|_{\sigma=0,\pi} = \partial_{+}\phi \cdot R_{\phi}|_{\sigma=0,\pi}, \quad \rho_{-}(g)|_{\sigma=0,\pi} = \rho_{+}(g) \cdot R_{\rho}|_{\sigma=0,\pi}$$
(5)

We define the Dirichlet projector \mathcal{Q} that projects vectors onto the space normal to the D-brane $\equiv -1$ eigenspace of \mathcal{R} and Neumann projector \mathcal{N} that projects onto the tangent space of the brane. The corresponding matrices \mathcal{Q}, \mathcal{N} are given by

$$Q^2 = Q, \quad Q \cdot R = R \cdot Q = -Q, \quad N = 1 - Q.$$
 (6)

In addition to (6) we want the following conditions to hold, originally derived in C. Albertsson, U. Lindström and M. Zabzine, Nucl. Phys. B 678 (2004) 295, [hep-th/0202069] (in SUSY setting)

• conformal – to be consistent with the conformal constraint $\mathcal{T}_{++}|_{\sigma=0,\pi}=\mathcal{T}_{--}|_{\sigma=0,\pi}$ we need

$$R \cdot (\mathcal{F} + \mathcal{F}^t) \cdot R^t = (\mathcal{F} + \mathcal{F}^t) \tag{7}$$

orthogonality – Neumann and Dirichlet directions must be indeed orthogonal

$$N \cdot (\mathcal{F} + \mathcal{F}^t) \cdot Q^t = 0 \tag{8}$$

In addition to (6) we want the following conditions to hold, originally derived in C. Albertsson, U. Lindström and M. Zabzine, Nucl. Phys. B 678 (2004) 295, [hep-th/0202069] (in SUSY setting)

• conformal – to be consistent with the conformal constraint $T_{++}|_{\sigma=0,\pi}=T_{--}|_{\sigma=0,\pi}$ we need

$$R \cdot (\mathcal{F} + \mathcal{F}^t) \cdot R^t = (\mathcal{F} + \mathcal{F}^t) \tag{7}$$

orthogonality – Neumann and Dirichlet directions must be indeed orthogonal

$$N \cdot (\mathcal{F} + \mathcal{F}^t) \cdot Q^t = 0 \tag{8}$$

In addition to (6) we want the following conditions to hold, originally derived in C. Albertsson, U. Lindström and M. Zabzine, Nucl. Phys. B 678 (2004) 295, [hep-th/0202069] (in SUSY setting)

• conformal – to be consistent with the conformal constraint $T_{++}|_{\sigma=0,\pi}=T_{--}|_{\sigma=0,\pi}$ we need

$$R \cdot (\mathcal{F} + \mathcal{F}^t) \cdot R^t = (\mathcal{F} + \mathcal{F}^t) \tag{7}$$

 orthogonality – Neumann and Dirichlet directions must be indeed orthogonal

$$N \cdot (\mathcal{F} + \mathcal{F}^t) \cdot Q^t = 0 \tag{8}$$

• integrability – $\operatorname{Im}(\mathcal{N})$ must form an integrable distribution, its integral submanifolds being the D-branes

$$N_{\kappa}^{\ \mu}N_{\lambda}^{\ \nu}\partial_{[\mu}N_{\nu]}^{\ \rho}=0 \tag{9}$$

 equivalence with the action principle – the boundary condition should be equivalent to the vanishing variation of the action on the boundary

$$N \cdot (\mathcal{F} - \mathcal{F}^t \cdot R^t) = 0 \tag{10}$$

is equivalent to the orthogonality condition together with

$$N \cdot \mathcal{F} \cdot N^t - N \cdot \mathcal{F}^t \cdot N^t \cdot R^t = 0$$

introduced in C. Albertsson, U. Lindström and M. Zabzine).

• integrability – $\operatorname{Im}(\mathcal{N})$ must form an integrable distribution, its integral submanifolds being the D-branes

$$N_{\kappa}^{\ \mu}N_{\lambda}^{\ \nu}\partial_{[\mu}N_{\nu]}^{\ \rho}=0 \tag{9}$$

 equivalence with the action principle – the boundary condition should be equivalent to the vanishing variation of the action on the boundary

$$N \cdot (\mathcal{F} - \mathcal{F}^t \cdot R^t) = 0 \tag{10}$$

is equivalent to the orthogonality condition together with

$$N \cdot \mathcal{F} \cdot N^t - N \cdot \mathcal{F}^t \cdot N^t \cdot R^t = 0$$

introduced in C. Albertsson, U. Lindström and M. Zabzine).

• integrability – $\operatorname{Im}(\mathcal{N})$ must form an integrable distribution, its integral submanifolds being the D-branes

$$N_{\kappa}^{\ \mu}N_{\lambda}^{\ \nu}\partial_{[\mu}N_{\nu]}^{\ \rho}=0 \tag{9}$$

 equivalence with the action principle – the boundary condition should be equivalent to the vanishing variation of the action on the boundary

$$N \cdot (\mathcal{F} - \mathcal{F}^t \cdot R^t) = 0 \tag{10}$$

(is equivalent to the orthogonality condition together with

$$N \cdot \mathcal{F} \cdot N^t - N \cdot \mathcal{F}^t \cdot N^t \cdot R^t = 0$$

introduced in C. Albertsson, U. Lindström and M. Zabzine).

PL T-plurality transformation of the gluing operator

We have found that the transformed solution \hat{g} satisfies

$$|\widehat{\rho}_{-}(\widehat{g})|_{\sigma=0,\pi} = \widehat{\rho}_{+}(\widehat{g}) \cdot \widehat{R_{\rho}}|_{\sigma=0,\pi}$$
(11)

where the transformed gluing operator is

$$\widehat{R_{\rho}} = \widehat{F}^{t}(\widehat{g}) \cdot M_{-}^{-1} \cdot F^{-t}(g) \cdot R_{\rho}(g) \cdot F(g) \cdot M_{+} \cdot \widehat{F}^{-1}(\widehat{g}), \tag{12}$$

and

$$M_{+} = s + E_0^{-1} \cdot q, \quad M_{-} = s - E_0^{-t} \cdot q$$

PL T-plurality transformation of the gluing operator

We have found that the transformed solution \hat{g} satisfies

$$|\widehat{\rho}_{-}(\widehat{g})|_{\sigma=0,\pi} = \widehat{\rho}_{+}(\widehat{g}) \cdot \widehat{R_{\rho}}|_{\sigma=0,\pi}$$
(11)

where the transformed gluing operator is

$$\widehat{R_{\rho}} = \widehat{F}^{t}(\widehat{g}) \cdot M_{-}^{-1} \cdot F^{-t}(g) \cdot R_{\rho}(g) \cdot F(g) \cdot M_{+} \cdot \widehat{F}^{-1}(\widehat{g}), \tag{12}$$

and

$$M_{+} = s + E_0^{-1} \cdot q$$
, $M_{-} = s - E_0^{-t} \cdot q$.

C 1

- The transformed gluing operator \widehat{R}_{ρ} is found explicitly.
- $\widehat{R_{\rho}}$ satisfies the conformal condition (7) if and only if the original R_{ρ} does (proven)
- $\widehat{R_{\rho}}$ allows the definition of projectors (6) and satisfies the orthogonality condition (8) if and only if the original R_{ρ} does in all the examples investigated for the transitions inside the six–dimensional Drinfel'd doubles $(Bianchi\ 5\mid\mathbb{R}^3)\simeq (Bianchi\ 6_0\mid\mathbb{R}^3)$ and the semiabelian four–dimensional Drinfel'd double $(af(1)\mid\mathbb{R}^2)\simeq (af(1)\mid af(1))$.

Good news

- The transformed gluing operator \widehat{R}_{ρ} is found explicitly.
- $\widehat{R_{\rho}}$ satisfies the conformal condition (7) if and only if the original R_{ρ} does (proven)
- $\widehat{R_{\rho}}$ allows the definition of projectors (6) and satisfies the orthogonality condition (8) if and only if the original R_{ρ} does in all the examples investigated for the transitions inside the six–dimensional Drinfel'd doubles ($Bianchi\ 5 \mid \mathbb{R}^3$) $\simeq (Bianchi\ 6_0 \mid \mathbb{R}^3)$ and the semiabelian four–dimensional Drinfel'd double ($af(1) \mid \mathbb{R}^2$) $\simeq (af(1) \mid af(1))$.

Good news

- The transformed gluing operator \widehat{R}_{ρ} is found explicitly.
- $\widehat{R_{\rho}}$ satisfies the conformal condition (7) if and only if the original R_{ρ} does (proven)
- $\widehat{R_{\rho}}$ allows the definition of projectors (6) and satisfies the orthogonality condition (8) if and only if the original R_{ρ} does in all the examples investigated for the transitions inside the six–dimensional Drinfel'd doubles ($Bianchi\ 5 \mid \mathbb{R}^3$) $\simeq (Bianchi\ 6_0 \mid \mathbb{R}^3)$ and the semiabelian four–dimensional Drinfel'd double ($af(1) \mid \mathbb{R}^2$) $\simeq (af(1) \mid af(1))$.

Not so good news

• $\widehat{R_{\rho}}$ defined by (12) may depend not only on \widehat{g} but also on g and consequently on \overline{g} .

Solution: R_{ρ} is function of \hat{g} only if the matrix-valued function $C(g) = F^{-t}(g) \cdot R_{\rho}(g) \cdot F(g)$ extended to a function on the whole Drinfel'd double as $C(g\tilde{h}) = C(g)$ satisfies

$$C(\hat{g}\bar{h}) = C(\hat{g})$$

Not so good news

• $\widehat{R_{\rho}}$ defined by (12) may depend not only on \widehat{g} but also on g and consequently on \overline{g} .

Solution: R_{ρ} is function of \hat{g} only if the matrix-valued function $C(g) = F^{-t}(g) \cdot R_{\rho}(g) \cdot F(g)$ extended to a function on the whole Drinfel'd double as $C(g\tilde{h}) = C(g)$ satisfies

$$C(\hat{g}\bar{h}) = C(\hat{g}).$$

Bad news

The integrability condition (9) and equivalence with the action principle (10) are not preserved under the PL T-plurality transformation. (Explicit counterexamples were found.) Sometimes R_ρ satisfies (9),(10) only in specific points or submanifolds of G. How to interpret this? We don't know yet.

Bad news

• The integrability condition (9) and equivalence with the action principle (10) are not preserved under the PL T-plurality transformation. (Explicit counterexamples were found.) Sometimes \widehat{R}_{ρ} satisfies (9),(10) only in specific points or submanifolds of \widehat{G} . How to interpret this? We don't know yet.

Bad news

• The integrability condition (9) and equivalence with the action principle (10) are not preserved under the PL T-plurality transformation. (Explicit counterexamples were found.) Sometimes \widehat{R}_{ρ} satisfies (9),(10) only in specific points or submanifolds of \widehat{G} . How to interpret this? We don't know yet.

Thank you for you attention

and the Grant Agency of the Czech Republic (grant No. 202/06/1480) and the Ministry of Education of the Czech Republic (research plans LC527 15397/2005-31 and MSM6840770039) for their support.