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Abstract

We construct all solvable Lie algebras with a specific n–dimensional nilradical
nn,3 which contains the previously studied filiform (n−2)–dimensional nilpotent
algebra nn−2,1 as a subalgebra but not as an ideal. Rather surprisingly it turns
out that the classification of such solvable algebras can be deduced from the
classification of solvable algebras with the nilradical nn−2,1. Also the sets of
invariants of coadjoint representation of nn,3 and its solvable extensions are
deduced from this reduction. In several cases they have polynomial bases, i.e.
the invariants of the respective solvable algebra can be chosen to be Casimir
invariants in its enveloping algebra.
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1. Introduction

The current article belongs to a series of papers initiated by Pavel Winter-
nitz in [1] and continued throughout the years with his various collaborators in
[2–7]. All these papers dealt with the problem of classification of all solvable
Lie algebras with the given n–dimensional nilradical, e.g. Abelian, Heisenberg
algebra, the algebra of strictly upper triangular matrices etc., for arbitrary finite
dimension n. Other similar series have been recently investigated by different
groups in [8] (naturally graded nilradicals with maximal nilindex and a Heisen-
berg subalgebra of codimension one) and [9] (a certain series of quasi–filiform
nilradicals).
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As is well known, the problem of classification of all solvable (including nilpo-
tent) Lie algebras in an arbitrarily large finite dimension is presently unsolved
and is generally believed to be unsolvable. All known full classifications termi-
nate at relatively low dimensions, e.g. the classification of nilpotent algebras is
available at most in dimension 8 [10, 11], for the solvable ones in dimension 6
[12, 13]. The unifying idea behind the series [1–7] is a belief that the knowledge
of full classification of all solvable extensions of certain series of nilradicals can be
very useful for both theoretical considerations – e.g. testing various hypotheses
about general structure of solvable Lie algebras – and practical purposes – e.g.
when a generalization of a given algebra or its nilradical to higher dimensions
appears in some physical theory.

In this paper we shall consider the nilradical

nn,3 = span{x1, . . . , xn}, n ≥ 5

with the following nonvanishing Lie brackets

[x2, xn] = x1,

[x3, xn−1] = x1,

[xk, xn−1] = xk−1, 4 ≤ k ≤ n− 2, (1)
[xn−1, xn] = x2.

When n = 5, the only remaining nonvanishing Lie brackets are

[x2, x5] = [x3, x4] = x1, [x4, x5] = x2. (2)

The n–dimensional nilpotent Lie algebra nn,3 is nilpotent of degree of nilpo-
tency1 equal to n− 3 and with (n− 2)–dimensional maximal Abelian ideal. It
has one–dimensional center C(nn,3) = span{x1}.

Later it will become important for our investigation that it contains as a
subalgebra the nilpotent algebra nn−2,1

[yk, yn−2] = yk−1, 2 ≤ k ≤ n− 3, (3)

whose solvable extensions were investigated in [6]. Namely, we have ñn−2,1

spanned by x1, x3, . . . , xn−1. Similarly, nn,3 also contains ñ6,3 spanned by
x1, x2, x3, x4, xn−1, xn. Here, tildes were used to denote these particular embed-
dings of algebras of the type (3) and (1), respectively, into the n–dimensional
nilradical nn,3. We stress that neither ñn−2,1 nor ñ6,3 are ideals.

In general, the knowledge of solvable extensions of a subalgebra of the given
nilradical does not provide much help in the classification of all solvable exten-
sions of the nilradical. That is because the outer derivations of the nilradical

1also called the nilindex. It is the largest value of k for which the k–th power gk =
[g, [g, . . . , [g, g] . . .]] of g is nonvanishing. Equivalently, it can be defined as the number of
nonvanishing ideals in the lower central series (5) including g1 = g.
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need not to leave the subalgebra invariant – indeed, it is not invariant even with
respect to inner derivations. However, in the particular case of the nilradical
nn,3 considered here all the classification can be reduced to the cases of nn−2,1

already investigated in [6] and n6,3.

In the following we shall firstly find out the general form of an automorphism
and a derivation of nn,3. Next, we use this knowledge in the construction of all
solvable extensions of the nilradical nn,3. Finally, we deduce generalized Casimir
invariants of both nn,3 and its solvable extensions.

Throughout the paper we shall use the same notation as in [7]. We have
attempted to make the present paper self–contained but if any doubts arise
about chosen conventions etc. the reader may consult [7] as a suitable reference.
Also, if the reader desires to get a more general background information about
the classification of solvable Lie algebras, the construction of Casimir invariants
and so on, we refer him to the review parts of [7] and the literature cited there.

2. Automorphisms and derivations of the nilradical nn,3

In the computations below we shall assume that n ≥ 7. The results for
n = 5, 6 are derived at the end of Section 3, in Subsections 3.1, 3.2.

The nilpotent algebra n = nn,3 has the following complete flag of ideals

0 ⊂ nn−3 ⊂ nn−4 ⊂ z2 ⊂ z3 ∩ n2 ⊂ . . . ⊂ zn−5 ∩ n2 ⊂ n2 ⊂ (z2)n ⊂ (nn−4)n ⊂ n
(4)

where

• nk are elements of the lower central series, defined recursively by:

n1 = n, nk = [nk−1, n], k ≥ 2, (5)

• zk are elements of the upper central series – that means that zk is the
unique ideal in n such that zk/zk−1 is the center of n/zk−1; the recursion
starts from the center of n, i.e. z1 = C(n),

• and (nn−4)n is the centralizer of nn−4 in n, i.e.

(nn−4)n = {x ∈ n|[x, y] = 0, ∀y ∈ nn−4}.

By construction, the flag (4) is invariant with respect to any automorphism
of the Lie algebra n, i.e. in the basis respecting the flag any automorphism will
be represented by an upper triangular matrix. Because derivations of n can be
viewed as infinitesimal automorphisms (i.e. elements of the Lie algebra of the
matrix Lie group of automorphisms of n), the same triangular form holds also
for them.

Therefore, we find it convenient to change the basis (xk) of n defined in
Eq. (1) to a seemingly less natural (i.e. Lie brackets appear more cumbersome)
basis (ek) whose essential advantage over the original one is that it respects the
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flag (4), i.e. the k–th subspace in the flag is span{e1, . . . , ek} for all k. Namely,
we take

e1 = x1, e2 = x3, e3 = x2, e4 = x4, . . . , en−2 = xn−2, en−1 = xn, en = xn−1.
(6)

The nonvanishing Lie brackets now become

[e2, en] = e1,

[e3, en−1] = e1,

[e4, en] = e2, (7)
[ek, en] = ek−1, 5 ≤ k ≤ n− 2,

[en−1, en] = −e3.

The important subalgebras isomorphic to nn−2,1, n6,3 are now expressed as

ñn−2,1 = span{e1, e2, e4, . . . , en−2, en}, ñ6,3 = span{e1, e2, e3, e4, en−1, en},

respectively. The ideals in the derived2, lower central and upper central series
are

n2 = n(1) = span{e1, . . . , en−3}, n(2) = 0,
nk = span{e1, e2, e4, . . . , en−k−1}, 3 ≤ k ≤ n− 5,
nn−4 = span{e1, e2}, nn−3 = span{e1}, nn−2 = 0,
z1 = nn−3, z2 = span{e1, e2, e3},
zk = span{e1, . . . , ek+1, en−1}, 3 ≤ k ≤ n− 4, zn−3 = n.

In order to find the structure of an arbitrary automorphism of nn,3 we con-
sider its matrix in the basis (6)

Φ(ek) = ejΦjk (8)

(summation over repeated indices applies throughout the paper unless otherwise
stated). As mentioned above, such a matrix must be necessarily upper triangular
because the flag (4) is preserved. It is also obvious that the knowledge of its last
three columns, i.e. of Φ(en−2),Φ(en−1) and Φ(en), is sufficient for the knowledge
of the whole matrix Φ due to the definition of an automorphism

Φ([x, y]) = [Φ(x),Φ(y)], ∀x, y ∈ n

and the Lie brackets (7) – we can recover all Φ(ek), 1 ≤ k ≤ n − 3 through
multiple brackets of Φ(en−2),Φ(en−1) and Φ(en). A natural question is the

2The elements n(k) of the derived series are defined recursively by:

n(0) = n, n(k) = [n(k−1), n(k−1)], k ≥ 1.
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following: Under which conditions do the relations

Φ(en−2) = αen−2 +
n−3∑
k=1

φkek,

Φ(en−1) = βen−1 + γen−2 +
n−3∑
k=1

ψkek,

Φ(en) = κen + λen−1 + µen−2 +
n−3∑
k=1

ρkek

give rise to an automorphism of nn,3?
Obviously, we must have αβκ 6= 0 to have an invertible map. The preserva-

tion of z3 implies γ = 0, ψk = 0, k = 5, . . . , n− 3. The remaining conditions are
found as follows

• 0 = Φ([en−2, en−1]) implies φ3 = 0,

• 0 = Φ([[en−1, en], en]) leads to ψ4 = λ
κβ,

• 0 = Φ([[en−1, en], en−1]) + Φ
(
(−aden)n−4en−2

)
leads to α = β2κ5−n.

All other Lie brackets are either used to define Φ(ek), 1 ≤ k ≤ n − 3 or are
preserved trivially. Therefore, we conclude that any automorphism Φ of nn,3 is
defined in terms of 2n parameters which have been denoted by β, κ, λ, ψ1, ψ2, ψ3,
φ1, φ2, φ4, . . . , φn−3, ρ1, . . . , ρn−3. It acts on the generators of the Lie algebra
nn,3 in the following way:

Φ(en−2) = β2κ5−nen−2 +
n−3∑
k=4

φkek + φ2e2 + φ1e1,

Φ(en−1) = βen−1 +
λ

κ
βe4 +

3∑
k=1

ψkek, (9)

Φ(en) = κen + λen−1 + µen−2 +
n−3∑
k=1

ρkek.

Taking automorphisms infinitesimally close to the unity, i.e. constructing the
Lie algebra of the group of automorphisms, we find the algebra of deriva-
tions Der(nn,3). It consists of all linear maps D which act on the generators
en−2, en−1, en as follows:

D(en−2) = (2cn−1 + (5− n)dn)en−2 +
n−3∑
k=4

bkek + b2e2 + b1e1,

D(en−1) = cn−1en−1 + dn−1e4 +
3∑
k=1

ckek, (10)

D(en) =
n∑
k=1

dkek;
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the action of D on the remaining basis elements e1, . . . , en−3 is uniquely deter-
mined using multiple brackets and the Leibniz’s law

D([x, y]) = [D(x), y] + [x,D(y)].

The 2n–dimensional algebra of derivations Der(nn,3) contains a (n−1)–dimensional
ideal of inner derivations Inn(nn,3) having the form

D(en−2) = −c3en−3,

D(en−1) = c3e3 + c1e1, (11)

D(en) =
n−3∑
k=1

dkek.

Indeed, such a derivation D can be expressed as

D = ad

(
d1e2 + c1e3 + d2e4 +

n−3∑
k=4

dkek+1 − d3en−1 + c3en

)
. (12)

Because e1 spans the kernel of ad, i.e. the center of nn,3, derivations of the form
(11) exhaust all inner derivations.

3. Construction of solvable Lie algebras with the nilradical nn,3

Firstly, we recall how the knowledge of automorphisms and derivations of a
given nilpotent Lie algebra n can be employed in the construction of all solvable
Lie algebras s with the nilradical n.

Let us consider a basis of s in the form (e1, . . . , en, f1, . . . , fp) where (e1, . . . , en)
is a basis of n with prescribed Lie brackets. Since n is an ideal in s and the
derived algebra of s falls into n we necessarily have Lie brackets of the form

[fa, ej ] = (Aa)kj ek, [fa, fb] = γjabej . (13)

Furthermore, n must be the maximal nilpotent ideal of s, i.e. any nonvanishing
linear combination of the matrices Aa must be non–nilpotent.

The algebra s doesn’t change if we transform its basis. Since the structure
of n is fixed we allow only such transformations that the Lie brackets in n are
not altered, i.e.

ek → ẽk = ejΦjk, fa → f̃a = fbΞba + ekΨka (14)

where Φ is a matrix of an automorphism of n in the original basis (e1, . . . , en),
Ξ is a regular matrix and Ψ is arbitrary.

We represent all non–nilpotent elements fa in the basis of s by the corre-
sponding operators in Der(n) ⊂ gl(n),

fa ∈ s→ Da = adfa |n ∈ Der(n). (15)
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We note that under this mapping of fa’s to outer derivations we lose some
information – from the knowledge of Da, Db we can reconstruct the Lie bracket
[fa, fb] only modulo the kernel of this map, i.e. modulo elements in the center
of n. Nevertheless, the construction of all non–equivalent sets of (D1, . . . , Dp)
is crucial in the construction of all solvable Lie algebras s with the nilradical n.

Because Eq. (15) defines a homomorphism of s into Der(n) we can translate
properties of fa’s to Da’s. In particular, a commutator of any Da, Db must be an
inner derivation and no nontrivial linear combination of Da’s can be nilpotent.
That means that (D1, . . . , Dp) must span an Abelian subalgebra a in the factor
algebra Der(n)/Inn(n) such that no nonvanishing element of a is nilpotent. The
subalgebras conjugated under any automorphism of n are equivalent. Therefore,
in an abstract formulation we can say that the Lie brackets of solvable extensions
of n are determined modulo elements in the center of n by conjugacy classes of
Abelian subalgebras a of the factor algebra Der(n)/Inn(n) such that no element
of a is represented by a nilpotent operator on n. Now the practical issue is how
one can conveniently construct these classes for particular n = nn,3?

Let us start by considering one additional basis element f1 ≡ f , i.e. one
derivation D. The elements of Der(nn,3)/Inn(nn,3) can be uniquely represented
by outer derivations of the form

D(en−2) = (2cn−1 + (5− n)dn)en−2 +
n−4∑
k=4

bkek + b2e2 + b1e1,

D(en−1) = cn−1en−1 + dn−1e4 + c3e3 + c2e2, (16)
D(en) = dnen + dn−1en−1 + dn−2en−2

(the action on e1, . . . , en−3 follows from the Leibniz’s law). Above, a suitable
inner derivation (11) was added to an arbitrary derivation, eliminating n − 1
parameters. We mention that the form (16) of the representative of the coset
[D] is not invariant under conjugation by an automorphism

D → DΦ = Φ−1 ◦D ◦ Φ

so that we may be forced to use a representative Φ(D)′ of the coset [Φ(D)]
different from Φ(D). Such a change of representative amounts to an addition
of an inner derivation and is understood in all simplifications below whenever
we employ an automorphism. Due to the triangular shape of D we see that
the sought–after Abelian subalgebras are at most two–dimensional since any
higher dimensional subalgebra in Der(nn,3)/Inn(nn,3) will necessarily involve
nonvanishing nilpotent elements.

Next, we find all possible canonical forms of the coset (16) up to conjugation
by automorphisms and rescaling. In order to reduce the problem to the one
already investigated in [6] we realize that the derivation of the form (16) leaves

ñn−2,1 = span{e1, e2, e4, . . . , en−2, en}

invariant if and only if dn−1 = 0. We conjugate a given derivation D by the
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automorphism defined by

Φ(en−2) = en−2, Φ(en−1) = en−1+
dn−1

dn − cn−1
e4, Φ(en) = en+

dn−1

dn − cn−1
en−1

whenever possible, i.e. when dn 6= cn−1. Now we have d̂n−1 = 0, i.e. DΦ ≡ D̂
leaves ñn−2,1 invariant. The case when none of the conjugate derivations DΦ

leaves ñn−2,1 invariant, which necessarily means that dn = cn−1, dn−1 6= 0, will
be dealt with later on, on page 10.

Provided we set dn−1 = 0, the outer derivation (16) restricted to ñn−2,1

has the same structure as in [6], Eq. (25). Consequently, we may consider
all solvable extensions of ñn−2,1 and then extend these to solvable extensions
of nn,3, i.e. determine the parameters cn−1, c3, c2. In this way we obtain all
solvable extensions of nn,3 except the case dn = cn−1, dn−1 6= 0.

The value of the parameter cn−1 is fixed by the structure of the solvable
extension of ñn−2,1. Namely, in relation to parameters α, β introduced below in
Theorem 1 we have

cn−1 =
1
2

(β + (n− 5)α) , dn = α.

When cn−1 6= 0 any derivation D can be brought to Dφ with c2 = 0 using
an automorphism Φ specified by

Φ(en−2) = en−2, Φ(en−1) = en−1 −
c2
cn−1

e2, Φ(en) = en.

When cn−1 = 0 we cannot eliminate nonvanishing c2 by any automorphism but
we can bring it to 1 by rescaling of ek’s provided such scaling remains available
by the structure of the solvable extension of the subalgebra ñn−2,1. It turns out
that for cn−1 = 0 two non–conjugate extensions of a derivation of ñn−2,1 exist,
namely those determined by c2 = 0, 1.

A similar consideration can be applied also to the parameter c3. When dn 6=
0 any derivation D can be brought to Dφ with c3 = 0 using the automorphism
Φ specified by

Φ(en−2) = en−2, Φ(en−1) = en−1 −
c3
dn
e3, Φ(en) = en.

When dn = 0 we cannot eliminate nonvanishing c3 by any automorphism.
Whether or not c3 can be rescaled depends on the residual automorphisms
still available – if the diagonal part of automorphisms is completely fixed by
the structure of the solvable extension of the subalgebra ñn−2,1 nothing can be
done, otherwise we can scale c3 to 1 using an automorphism

Φ(en−2) = en−2, Φ(en−1) = en−1, Φ(en) =
1
c3
en.

To sum up, the extension to a derivation of the nilradical nn,3 is unique up
to a conjugation when dn 6= 0 and cn−1 6= 0; otherwise, several non–equivalent
extensions do exist.

We recall the main classification theorem of [6]:
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Theorem 1. Let F be the field of real or complex numbers. Any solvable Lie
algebra s̃ over the field F with the nilradical nm,1 has dimension dim s̃ = m+1, or
dim s̃ = m+ 2. Three types of solvable Lie algebras of dimension dim s̃ = m+ 1
exist for any m ≥ 4. They are represented by the following:

1. [f̃ , ẽk] = ((m− k − 1)α+ β) ẽk, k ≤ m− 1, [f̃ , ẽm] = αẽm. The classes of
mutually nonisomorphic algebras of this type are

s̃m+1,1(β) : α = 1, β ∈ F\{0,m− 2},
DS = [m+ 1,m,m− 2, 0], CS = [m+ 1,m], US = [0],

s̃m+1,2 : α = 1, β = 0,
DS = [m+ 1,m− 1,m− 3, 0], CS = [m+ 1,m− 1], US = [0],

s̃m+1,3 : α = 1, β = 2−m,
DS = [m+ 1,m,m− 2, 0], CS = [m+ 1,m], US = [1],

s̃m+1,4 : α = 0, β = 1,
DS = [m+ 1,m− 1, 0], CS = [m+ 1,m− 1], US = [0].

2. s̃m+1,5 : [f̃ , ẽk] = (m− k)ẽk, k ≤ m− 1, [f̃ , ẽm] = ẽm + ẽm−1.

DS = [m+ 1,m,m− 2, 0], CS = [m+ 1,m], US = [0].

3. s̃m+1,6(a3, . . . , am−1) : [f̃ , ẽk] = ẽk +
∑k−2
l=1 ak−l+1ẽl, k ≤ m−1, [f, ẽm] =

0, aj ∈ F, at least one aj satisfies aj 6= 0.
Over C: the first nonzero aj satisfies aj = 1.
Over R: the first nonzero aj for even j satisfies aj = 1. If all aj = 0 for
j even, then the first nonzero aj (j odd) satisfies aj = ±1. We have

DS = [m+ 1,m− 1, 0], CS = [m+ 1,m− 1], US = [0].

For each m ≥ 4 precisely one solvable Lie algebra s̃m+2 of dim s̃ = m + 2 with
the nilradical nm,1 exists. It is represented by a basis (ẽ1, . . . , ẽm, f̃1, f̃2) and the
Lie brackets involving f1 and f2 are

[f̃1, ẽk] = (m− 1− k)ẽk, 1 ≤ k ≤ m− 1, [f̃1, ẽm] = ẽm,

[f̃2, ẽk] = ẽk, 1 ≤ k ≤ m− 1, [f̃2, ẽm] = 0, [f̃1, f̃2] = 0.

For this algebra we have

DS = [m+ 2,m,m− 2, 0], CS = [m+ 2,m], US = [0].

Above, we used the abbreviations DS,CS and US for (ordered) lists of integers
denoting the dimensions of subalgebras in the derived, lower central and upper
central series, respectively. We listed the last (then repeated) entry only once
(e.g. we write CS = [m,m− 1] rather than CS = [m,m− 1,m− 1,m− 1, . . .]).

We must point out, however, that there is a caveat in the presented theorem.
If we work over the field R the group of automorphisms of nn−2,1 used in the
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derivation of Theorem 1 in [6] is slightly larger than the one we have available
for the subalgebra ñn−2,1, i.e. inherited from automorphisms of nn,3. In other
words, the available automorphisms form a group only locally isomorphic to
the group of automorphisms of nn−2,1. Namely, the sign of α = β2κ5−n in Eq.
(9) is restricted – for given n we have sgnα = (sgnκ)n−5. As a consequence,
for our purposes we must for n even consider [f̃ , ẽm] = ẽm ± ẽm−1 in s̃m+1,5

(m = n− 2). All other results in Theorem 1 hold irrespective of this constraint
on allowed automorphisms.

The corresponding solvable extensions of the nilradical nn,3 are summarized
in Theorem 2 below.

Coming back to the case dn = cn−1, dn−1 6= 0, we first rescale D to get
dn = cn−1 = 1 and by scaling of ek’s we set dn−1 = 1. Using the automorphism

Φ(en−2) = en−2, Φ(en−1) = en−1, Φ(en) = en +
dn−2

n− 6
en−2

we get rid of dn−2; it is possible since n 6= 6. We get D which preserves the
subalgebra ñ6,3. Therefore, it is enough to consider its solvable extensions (with
dn = cn−1 = 1) and then extend these to solvable algebras with the nilradical
nn,3. It turns out that such an enlargement is unique up to conjugation, i.e. fully
determined by dn = cn−1 = 1, dn−1 = 1, dn−2 = 0, the remaining parameters in
Eq. (16) vanish.

Finally, the two–dimensional Abelian subalgebras a in Der(nn,3)/Inn(nn,3)
are easily obtained using the results of the previous analysis. Such subal-
gebras must contain two linearly independent elements D′1, D

′
2, whose diag-

onal parameters can be chosen to have the values cn−1 = 1, dn = −1 and
cn−1 = 1, dn = 0, respectively. Due to the chosen values for D1 we can always
go over to D̃1 = (D′1)Φ, D̃2 = (D′2)Φ where D̃1 was diagonalized by a suitable
automorphism Φ. The restriction [D̃1, D̃2] ∈ Inn(nn,3) now restricts D̃2 to be
also diagonal. Therefore, all elements of a act diagonally on nn,3 in the chosen
basis and can be expressed e.g. in the basis defined by D1 (cn−1 = 0, dn = 1)
and D2 (cn−1 = 1, dn = 0). The corresponding non–nilpotent elements f1, f2 in
s in general satisfy

[f1, f2] = αe1 ∈ C(n)

but a simple redefinition f1 → f1 + α
2 e1 gives an isomorphic solvable algebra s

with [f1, f2] = 0.

To sum up, we have the following theorem

Theorem 2. Let F be the field of real or complex numbers and n be an integer
number greater or equal to 7. Any solvable Lie algebra s over the field F with
the nilradical nn,3 has dimension dim s = n+ 1 or dim s = n+ 2.

Five types of solvable Lie algebras of dimension dim s = n + 1 with the
nilradical nn,3 exist. They are represented by the following:

10



1. [f, e1] = (α+ 2β)e1, [f, e2] = 2βe2, [f, e3] = (α+ β)e3,
[f, ek] = ((3− k)α+ 2β)ek, 4 ≤ k ≤ n− 2,
[f, en−1] = βen−1, [f, en] = αen.
The classes of mutually nonisomorphic algebras of this type are

sn+1,1(β) : α = 1, β ∈ F\{0,−1
2
,
n− 5

2
},

DS = [n+ 1, n, n− 3, 0], CS = [n+ 1, n], US = [0],

sn+1,2 : α = 1, β =
n− 5

2
,

DS = [n+ 1, n− 1, n− 4, 0], CS = [n+ 1, n− 1], US = [0],
sn+1,3 : α = 1, β = 0,

DS = [n+ 1, n− 1, n− 4, 0], CS = [n+ 1, n− 1], US = [0],

sn+1,4 : α = 1, β = −1
2
,

DS = [n+ 1, n, n− 3, 0], CS = [n+ 1, n], US = [1],
sn+1,5 : α = 0, β = 1,

DS = [n+ 1, n− 1, 1, 0], CS = [n+ 1, n− 1], US = [0].

2. sn+1,6(ε) :
[f, e1] = (n− 3)e1, [f, e2] = (n− 4)e2, [f, e3] = (1 + n−4

2 )e3,
[f, ek] = (n− 1− k)ek, 4 ≤ k ≤ n− 2,
[f, en−1] = n−4

2 en−1, [f, en] = en + εen−2,
where ε = 1 over C, whereas over R ε = 1 for n odd, ε = ±1 for n even.

DS = [n+ 1, n, n− 3, 0], CS = [n+ 1, n], US = [0].

3. sn+1,7 :
[f, e1] = e1, [f, e2] = 0, [f, e3] = e3 − e1,
[f, ek] = (3− k)ek, 4 ≤ k ≤ n− 2,
[f, en−1] = e2, [f, en] = en.

DS = [n+ 1, n− 1, n− 4, 0], CS = [n+ 1, n− 1], US = [0].

4. sn+1,8(a2, a3, . . . , an−3) :
[f, e1] = e1, [f, e2] = e2, [f, e3] = 1

2e3,

[f, ek] = ek +
∑k−2
l=4 ak−l+1el + ak−2e2 + ak−1e1, 4 ≤ k ≤ n− 2,

[f, en−1] = 1
2en−1 + a2e3, [f, en] = 0,

aj ∈ F, at least one aj satisfies aj 6= 0 and:

• when F = C the first nonzero aj satisfies aj = 1.

• when F = R the first nonzero aj for even j satisfies aj = 1. If all
aj = 0 for j even, then the first nonzero aj (j odd) satisfies aj = ±1.

DS = [n+ 1, n− 1, 1, 0], CS = [n+ 1, n− 1], US = [0].
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5. sn+1,9 :
[f, e1] = 3e1, [f, e2] = 2e2, [f, e3] = 2e3 − e2,
[f, ek] = (5− k)ek, 4 ≤ k ≤ n− 2,
[f, en−1] = en−1 + e4, [f, en] = en + en−1.

DS = [n+ 1, n, n− 3, 0], CS = [n+ 1, n], US = [0].

Exactly one solvable Lie algebra sn+2 of dim s = n+2 with the nilradical nn,3 ex-
ists. It is presented in a basis (e1, . . . , en, f1, f2) where the Lie brackets involving
f1 and f2 are

[f1, e1] = e1, [f2, e1] = 2e1,

[f1, e2] = 0, [f2, e2] = 2e2,

[f1, e3] = e3, [f2, e3] = e3,

[f1, ek] = (3− k)ek, [f2, ek] = 2ek, 4 ≤ k ≤ n− 2,
[f1, en−1] = 0, [f2, en−1] = en−1,

[f1, en] = en, [f2, en] = 0, [f1, f2] = 0.

For this algebra we have

DS = [n+ 2, n, n− 3, 0], CS = [n+ 2, n], US = [0].

We note that the class sn+1,8(a2, a3, . . . , an−3) encompasses both extensions
of s̃m+1,7(a3, . . . , am−1) and an extension of s̃m+1,4 with c3 6= 0 in Eq. (16).
The parameter brought to ±1 was selected in the most convenient form for
presentation and consequently is equivalent but slightly different from a direct
extension of s̃m+1,7(a3, . . . , am−1) to the nilradical nn,3 – for that choice the
non–equivalent values of parameters would be more cumbersome to write down.

Next, we investigate the classification of solvable extensions of nn,3 in low
dimensions n = 6, 5. Results in these dimensions somewhat differ from the
general ones presented in Theorem 2.

3.1. Dimension n = 6
When n = 6 the results are as follows: all the algebras presented in Theorem

2 exist (with en−2 ≡ e4) but they do not exhaust all the possibilities. The reason
for this is that in this particular dimension we have [f, en−2] = (2c5−d6)en−2 +
. . .. Therefore, if d6 = c5 then also [f, en−2] = d6en−2 + . . .. That implies that
if we have d6 = c5 → 1, d5 6= 0, d4 6= 0 in the derivation (16) then we can set
to zero neither d5 nor d4 by any choice of automorphism Φ and we are left with
only one scaling available – preferably used to set d5 → 1.

That means that for the 6–dimensional nilradical n6,3 we have solvable exten-
sions s7,1(β), s7,2, s7,3, s7,4, s7,5, s7,6(ε), s7,7, s7,8(1, a3), s7,8(0, ε), s7,9, s8 where ε =
1 over C and ε = ±1 over R, whose structure is as described in Theorem 2 above
and one additional class of algebras, differing from s7,9 by one additional non-
vanishing parameter α
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• s7,10(α), α 6= 0 :
[f, e1] = 3e1, [f, e2] = 2e2, [f, e3] = 2e3 − e2,
[f, e4] = e4, [f, e5] = e5 + e4, [f, e6] = e6 + e5 + αe4,

DS = [7, 6, 3, 0], CS = [7, 6], US = [0].

3.2. Dimension n = 5
When n = 5, the investigation must be performed in a different way. Namely,

there is no ñ3,1 subalgebra – it has collapsed to the Heisenberg algebra which
has different properties. Nevertheless, by a rather straightforward, if repeti-
tive, computation (essentially linear algebra of 5 × 5 matrices) one can con-
struct all solvable extensions of n5,3. Since this was done already in [12] for one
non–nilpotent element and for two elements the result can be derived from the
previous one, we shall only list the results and compare them to their higher
dimensional analogues. In order to make our comparison as simple as possible
we work in a basis analogous to Eq. (6), namely

e1 = x1, e2 = x3, e3 = x2, e4 = x5, e5 = x4. (17)

The nonvanishing Lie brackets are

[e2, e5] = e1, [e3, e4] = e1, [e4, e5] = −e3. (18)

Although the structure of the nilradical is quite different from the other elements
of the series, the set of solvable extensions is rather similar. We get analogues of
all solvable algebras in Theorem 2 with some changes in the structure of sn+1,6,
sn+1,8, sn+1,9; in addition, the two algebras sn+1,2 and sn+1,3 become identical
when n = 5. The fact that the algebras sn+1,6, sn+1,8, sn+1,9 must be modified
when n = 5 can be inferred already from Theorem 2 since the Lie brackets as
presented there cannot be made sense of if n = 5. These structurally different
analogues are distinguished by primes below.

Explicitly, assuming the structure of n5,3 in the form (18), we have the fol-
lowing Lie brackets with non–nilpotent element(s) and dimensions of the char-
acteristic series

• s6,1(β), β ∈ F\{0,− 1
2} :

[f, e1] = (1 + 2β)e1, [f, e2] = 2βe2, [f, e3] = (β + 1)e3, [f, e4] = βe4,
[f, e5] = e5,

DS = [6, 5, 2, 0], CS = [6, 5], US = [0].

• s6,2 : [f, e1] = e1, [f, e2] = 0, [f, e3] = e3, [f, e4] = 0, [f, e5] = e5,

DS = [6, 3, 0], CS = [6, 3], US = [0].

• s6,4 : [f, e1] = 0, [f, e2] = −e2, [f, e3] = 1
2e3, [f, e4] = − 1

2e4, [f, e5] = e5,

DS = [6, 5, 2, 0], CS = [6, 5], US = [1].
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• s6,5 : [f, e1] = 2e1, [f, e2] = 2e2, [f, e3] = e3, [f, e4] = e4, [f, e5] = 0,

DS = [6, 4, 1, 0], CS = [6, 4], US = [0].

• s′6,6 : [f, e1] = 2e1, [f, e2] = e2, [f, e3] = 3
2e3, [f, e4] = 1

2e4, [f, e5] = e5+e2,

DS = [6, 5, 2, 0], CS = [6, 5], US = [0].

• s6,7 : [f, e1] = e1, [f, e2] = 0, [f, e3] = e3 − e1, [f, e4] = e2, [f, e5] = e5,

DS = [6, 4, 1, 0], CS = [6, 4, 3], US = [0].

• s′6,8 : [f, e1] = 2e1, [f, e2] = 2e2, [f, e3] = e3, [f, e4] = −e3 + e4, [f, e5] = 0,

DS = [6, 4, 1, 0], CS = [6, 4], US = [0].

• s′6,9 : [f, e1] = 3e1, [f, e2] = 2e2 − e3, [f, e3] = 2e3, [f, e4] = e4 + e5,
[f, e5] = e5,

DS = [6, 5, 2, 0], CS = [6, 5], US = [0].

• s7 : [f1, e1] = e1, [f1, e2] = 0, [f1, e3] = e3, [f1, e4] = 0, [f1, e5] = e5,
[f2, e1] = 2e1, [f2, e2] = 2e2, [f2, e3] = e3, [f2, e4] = e4, [f2, e5] = 0,
[f1, f2] = 0,

DS = [7, 5, 2, 0], CS = [7, 5], US = [0].

We note that in several cases the characteristic series are different from the ones
in Theorem 2. This difference in behavior is due to the structural difference
between nn−2,1 and the Heisenberg algebra.

4. Generalized Casimir invariants

We proceed to construct generalized Casimir invariants, i.e. invariants of
the coadjoint representation, of the nilpotent algebra nn,3 and its solvable ex-
tensions. We recall that a basis for the coadjoint representation of the Lie
algebra g is given by the first order differential operators

X̂k = xac
a
kb

∂

∂xb
(19)

acting on functions on the vector space g∗. Here, ckij are the structure constants
of the Lie algebra g in the given basis (x1, . . . , xN ) and the quantities xa are
coordinates in the basis of the space g∗ dual to the basis (x1, . . . , xN ) of the
algebra g. That means that xa are linear functionals on g∗, i.e. xa ∈ (g∗)∗, and
through the canonical isomorphism of vector spaces (g∗)∗ ' g one can identify
xa ' xa. In what follows we shall not typographically distinguish between xa
and xa, the meaning – vector in algebra vs. linear functional on the dual space
– shall be clear from the context.
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Invariants of the coadjoint representation, i.e. generalized Casimir invari-
ants, are functions I on g∗ which satisfy the following system of partial differ-
ential equations

X̂kI(x1, . . . , xN ) = 0, k = 1, . . . , N. (20)

Several methods exist for construction of invariants of the coadjoint represen-
tation, most widely used ones are direct solution of Eq. (20) by the method of
characteristics (see e.g. [14–17]) and the method of moving frames (see [18–23]).

However, we shall use a different approach. We reduce the equations (20) to
the ones encountered and solved in [6] for the subalgebra ñn−2,1 and its solvable
extensions.

Considering first the nilpotent algebra nn,3 we have the operators (19) in the
form

Ê1 = 0, Ê2 = e1
∂

∂en
, Ê3 = e1

∂

∂en−1
, Ê4 = e2

∂

∂en
,

Êk = ek−1
∂

∂en
, 5 ≤ k ≤ n− 2, Ên−1 = −e1

∂

∂e3
− e3

∂

∂en
, (21)

Ên = −e1
∂

∂e2
− e2

∂

∂e4
−
n−2∑
k=5

ek−1
∂

∂ek
+ e3

∂

∂en−1
.

It is evident that any solution I of Eq. (20) cannot depend3 on e3, en−1 be-
cause of Ên−1I = Ê3I = Ê2I = 0. Consequently, all considered operators Êj
can be truncated to act on functions of ẽ1 = e1, ẽ2 = e2, ẽ3 = e4, . . . , ẽn−3 =
en−2, ẽn−2 = en only. Then Ê3T , Ên−1T vanish and the remaining operators are
exactly those present in the investigation of invariants of nn−2,1 in [6]. There-
fore, the generalized Casimir invariants of nn,3 are the same as the ones for
nn−2,1 once written in an appropriate basis.

Similarly, when we consider the solvable extensions of nn,3, the operators
Êj in (21) get additional ∂

∂f or ∂
∂f1

, ∂
∂f2

terms and one (F̂ ) or two (F̂1, F̂2)
additional operators are present in Eq. (20).

Let us first consider the case with F̂ only. When the derivation D defining
f is such that 2cn−1 + dn 6= 0, we have Ê1 = (2cn−1 + dn)e1

∂
∂f which excludes

the dependence of I on f . When 2cn−1 + dn = 0 the situation is only slightly
more complicated – the operators Ê2, Ê4 together again exclude the dependence
of I on both f and en. In both cases, we can restrict all operators (21) and
F̂ to nn,3 and then to nn−2,1, reducing the computation to the corresponding
solvable extension of nn−2,1.

In the second case we have two additional operators F̂1, F̂2 and ∂
∂f1

, ∂
∂f2

terms in Êj . Now the operators Ê1, Ê2, Ê3, Ê4 are used in the same way to
show that any invariant I cannot depend on f1, f2.

Altogether, the construction of generalized Casimir invariants was fully re-
duced to the one for the nilradical nn−2,1.

3neither can I depend on en
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As proved in [6], invariants of the Lie algebra nm,1 and its solvable extensions
are as follows:

Theorem 3. The nilpotent Lie algebra nm,1 has m−2 functionally independent
invariants. They can be chosen to be the following polynomials

ξ̃0 = ẽ1,

ξ̃k =
(−1)kk
(k + 1)!

ẽk+1
2 +

k−1∑
j=0

(−1)j
ẽj2 ẽk+2−j ẽ

k−j
1

j!
, 1 ≤ k ≤ m− 3. (22)

The algebras s̃m+1,1(β), . . . , s̃m+1,5 have m− 3 invariants each. Their form is

1. s̃m+1,1(β), s̃m+1,2 and s̃m+1,5:

χ̃k =
ξ̃k

ξ̃
(k+1)m−3+β

m−2+β
0

, 1 ≤ k ≤ m− 3. (23)

For s̃m+1,2 and s̃m+1,5 we have β = 0 and β = 1, respectively in Equation
(23).

2. s̃m+1,3:

χ̃1 = ξ̃0, χ̃k =
ξ̃2
k

ξ̃k+1
1

, 2 ≤ k ≤ m− 3. (24)

3. s̃m+1,4:

χ̃k =
ξ̃k

ξ̃k+1
0

, 1 ≤ k ≤ m− 3. (25)

4. s̃m+1,7(a3, . . . , am−1):

χ̃k =
[ k+1

2 ]∑
q=0

(−1)q
(ln ξ̃0)q

q!

 ∑
i1+...+iq=k−2q+1

ai1+3ai2+3 . . . aiq+3 (26)

+
∑

j+i1+...+iq=k−2q−1

ξ̃j+1

ξ̃j+2
0

ai1+3ai2+3 . . . aiq+3

 , 1 ≤ k ≤ m− 3.

The summation indices take the values 0 ≤ j, i1, . . . , iq ≤ k + 1.

The Lie algebra s̃m+2 has m−4 functionally independent invariants that can be
chosen to be

χ̃k =
ξ̃k+1

ξ̃
k+2
2

1

, 1 ≤ k ≤ m− 4. (27)

The results for nn,3 and its solvable extensions are now as follows:
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Theorem 4. Let n ≥ 6.The nilpotent Lie algebra nn,3 has n − 4 functionally
independent invariants. They can be chosen to be the following polynomials

ξ0 = e1,

ξk =
(−1)kk
(k + 1)!

ek+1
2 +

k−1∑
j=0

(−1)j
ej2 ek+3−j e

k−j
1

j!
, 1 ≤ k ≤ n− 5. (28)

The algebras sn+1,1(β), . . . , sn+1,9 have n− 5 invariants each. Their form is

1. sn+1,1(β), sn+1,2, sn+1,3, sn+1,6, sn+1,7 and sn+1,9:

χk =
ξk

ξ
(k+1) 2β

1+2β
0

, 1 ≤ k ≤ n− 5. (29)

For sn+1,2 is β = n−5
2 , for sn+1,3 and sn+1,7 we have β = 0, for sn+1,6(ε)

we have β = n−4
2 and for sn+1,9 is β = 1, respectively in Equation (29).

2. sn+1,4:

χ1 = ξ0, χk =
ξ2
k

ξk+1
1

, 2 ≤ k ≤ n− 5. (30)

3. sn+1,5:

χk =
ξk

ξk+1
0

, 1 ≤ k ≤ n− 5. (31)

4. sn+1,8(a2, a3, . . . , an−3):

χk =
[ k+1

2 ]∑
q=0

(−1)q
(ln ξ0)q

q!

 ∑
i1+...+iq=k−2q+1

ai1+3ai2+3 . . . aiq+3 (32)

+
∑

j+i1+...+iq=k−2q−1

ξj+1

ξj+2
0

ai1+3ai2+3 . . . aiq+3

 , 1 ≤ k ≤ n− 5.

The summation indices take the values 0 ≤ j, i1, . . . , iq ≤ k + 1.

When n = 6 the Lie algebra s7,10(α) has one invariant which can be chosen in
the form 2e4e1−e22

e
4/3
1

, i.e. coincides with the one for s7,9.

The Lie algebra sn+2 has n− 6 functionally independent invariants that can
be chosen to be

χk =
ξk+1

ξ
k+2
2

1

, 1 ≤ k ≤ n− 6. (33)

We point out that the algebras sn+1,3 and sn+1,7 are examples of solvable non–
nilpotent Lie algebras with a polynomial basis of invariants, i.e. their bases
of invariants can be chosen in the form of Casimir operators in the enveloping
algebra of sn+1,3 and sn+1,7 (the same holds also for s̃m+1,1(3 −m) of [6]). If
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ever a hypothesis concerning a criterion for the existence of polynomial basis of
invariants of solvable algebras is presented, these examples can be easily used
as simple tests of its plausibility.

For 5–dimensional nilradical n5,3 we have solvable algebras s6,1(β), s6,2, s6,5,
s′6,6, s6,7, s′6,8, s′6,9 with no invariants and s6,4 which has two invariants. They
can be chosen in the polynomial form

e1, 2e2
1f − 2e1e2e5 + e1e3e4 + e2e

2
3.

The algebra s7 has one invariant

(f2 − 2f1)e2
1 + (2e2e5 − e3e4)e1 − e2e

2
3

e2
1

.

We observe that invariants of the solvable Lie algebras with the nilradical n5,3 (if
nonconstant) depend on elements outside of n5,3, i.e. f or f1, f2. This is related
to the fact that there is no ñ3,1 subalgebra – it degenerates to the Heisenberg
algebra, the properties of which are markedly different.

5. Conclusions

We have fully classified all solvable Lie algebras with the nilradical nn,3 in
arbitrary dimension n and constructed their generalized Casimir invariants.

There are two general lessons to be learned from this computation. Firstly,
it turned out that the knowledge of all solvable extensions of a suitable subal-
gebra ñ of the given nilpotent algebra n may lead to a significant simplification
of the whole computation and is definitively worth investigating if such subal-
gebras are identified in n. This can hold notwithstanding the fact that not all
automorphisms of n preserve the subalgebra ñ. Of course, it was important in
our investigation that the structure of the subalgebra was restrictive enough, i.e.
we expect that a similar simplification can be achieved probably for subalgebras
with high enough degree of nilpotency, e.g. filiform or quasi–filiform.

Secondly, it was of profound importance that (almost) all automorphisms
of ñ could be obtained as a restriction of automorphisms of n. In our case we
had a local isomorphism of Aut(ñ) and Aut(n)|ñ; the two differ topologically
by the absence of some connected components of Aut(ñ) in Aut(n)|ñ. This
minor difference could be easily taken into account and the classification of all
solvable extensions of ñ with respect to this restricted group of automorphisms
acting on ñ was obtained by inspection from previously known results [6]. On
the other hand, had the Aut(ñ) and Aut(n)|ñ been locally non–isomorphic, the
knowledge of solvable extensions of ñ would not be of much use in the study
of solvable extensions of n. A simple example of this is the maximal Abelian
ideal a of n. Its group of automorphisms per se is typically much larger than the
automorphisms inherited from n, i.e. many transformations used in a are not
allowed in n and, at the same time, most of solvable extensions of a cannot be
enlarged to solvable extensions of n – the Lie brackets in n simply don’t allow

18



that. Therefore, the particular properties of the subalgebra and its immersion
into the whole nilradical are of crucial importance for the whole setup to work.

Finally, we have seen that although the considered series of nilpotent algebras
can be rather naturally constructed starting from dimension n = 5, the 5–
dimensional one has substantially different properties. They reflect themselves
also in possible solvable extensions and their invariants.
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