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Classification of Lie algebras - general approach

What is known in general about the classification of
finite–dimensional Lie algebras over the fields of complex and
real numbers?



Indecomposable vs. decomposable Lie algebras

If g is decomposable into a direct sum of ideals, it should be
explicitly decomposed into components that are further
indecomposable

g = g1 ⊕ g2 ⊕ . . .⊕ gk . (1)



Levi decomposition

Let g denote an (indecomposable) Lie algebra. A fundamental
theorem due to E. E. Levi1 tells us that any Lie algebra can be
represented as the semidirect sum

g = r +⊃ l, [l, l] = l, [r, r] ⊂ r, [l, r] ⊆ r, (2)

where l is semisimple subalgebra and r is the radical of g, i.e.
its maximal solvable ideal.
We note that by virtue of Jacobi identities r is a representation
space for l and that l is isomorphic to a subalgebra of the
derivations of r. These observations put a rather stringent
compatibility conditions on the possible pairs of l, r and can be
employed in the classification of Levi decomposable algebras.

1Levi E E 1905 Sulla struttura dei gruppi finiti e continui, Atti Accad. Sci.
Torino 40 551–65
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Semisimple Lie algebras over the field of complex numbers C
have been completely classified by Cartan2, over the field of
real numbers R by Gantmacher3.

Algorithms realizing decompositions (1),(2) exist4.

BUT not all solvable Lie algebras are known.

2Cartan E 1894 Sur la structure des groupes de transformations finis et
continus (Paris: Thesis, Nony)

3Gantmacher F 1939 Rec. Math. [Mat. Sbornik] N.S. 5 217–50
4Rand D, Winternitz P and Zassenhaus H 1988 Linear algebra and its

applications 109 197–246
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Classification of solvable Lie algebras

There are two ways of proceeding in the classification of
solvable Lie algebras: by dimension, or by structure.

The dimensional approach for real Lie algebras:

dimension 2 and 3: Bianchi L 1918 Lezioni sulla teoria dei
gruppi continui finite di trasformazioni, (Pisa: Enrico
Spoerri Editore) p 550–557

dimension 4: Kruchkovich GI 1954, Usp. Mat. Nauk 9 59

nilpotent up to dimension 6: Morozov V V 1958 Izv. Vys.
Uchebn. Zav. Mat. 4 (5) 161–71

solvable of dimension 5: Mubarakzyanov G M 1963 Izv.
Vys. Uchebn. Zav. Mat. 3 (34) 99–106

solvable of dimension 6: Mubarakzyanov G M 1963, Izv.
Vys. Uchebn. Zav. Mat. 4 (35) 104–16, Turkowski R
1990 J. Math. Phys. 31 1344–50.
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The classification of low–dimensional Lie algebras over C was
started earlier by S. Lie himself (Lie S and Engel F 1893
Theorie der Transformationsgruppen III, Leipzig: B.G.
Teubner).

It seems to be neither feasible, nor fruitful to proceed by
dimension in the classification of Lie algebras g beyond
dim g = 6. It is however possible to proceed by structure, i.e.
to classify solvable Lie algebras with the nilradical of a given
type.
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Heisenberg nilradicals: Rubin J and Winternitz P 1993 J.
Phys. A 26 1123–38,
Abelian nilradicals: Ndogmo JC and Winternitz P 1994 J.
Phys. A 27 405–23,
nilradicals of strictly upper triangular matrices: Tremblay
S and Winternitz P 1998 J. Phys. A 31 789–806,
two classes of filiform nilradicals: L. Šnobl and P.
Winternitz, 2005 J. Phys. A 38 2687–700
[math-ph/0411023], 2009 J. Phys. A 42 105201,
nilradicals with max. nilindex and Heisenberg subalgebra
of codim. one: Ancochea JM, Campoamor–Stursberg R,
Garcia Vergnolle L, 2006 J. Phys. A 39 1339–1355,
a certain sequence of quasi–filiform decomposable
nilradicals: Wang Y, Lin J, Deng SQ, 2008 Commun.
Algebr. 36 4052–4067.



Basic concepts and notation

Three series of subalgebras – characteristic series of g:

derived series g = g(0) ⊇ . . . ⊇ g(k) ⊇ . . . defined

g(k) = [g(k−1), g(k−1)], g(0) = g.

If ∃k ∈ N such that g(k) = 0, then g is solvable.

lower central series g = g1 ⊇ . . . ⊇ gk ⊇ . . . defined

gk = [gk−1, g], g1 = g.

If ∃k ∈ N such that gk = 0, then g nilpotent. The lowest
value of k s.t. gk = 0 is the degree of nilpotency.

upper central series z1 ⊆ . . . ⊆ zk ⊆ . . . ⊆ g where z1 is
the center of g, z1 = C (g) = {x ∈ g|[x , y ] = 0, ∀y ∈ g}
and zk are the higher centers defined recursively through

zk+1/zk = C (g/zk).
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Any solvable Lie algebra s has a uniquely defined nilradical
NR(s), i.e. maximal nilpotent ideal. Its dimension satisfies

dim NR(s) ≥ 1

2
(dim s + dim C (s)). (3)

The derived algebra of a solvable Lie algebra s is contained in
the nilradical, i.e.

[s, s] ⊆ NR(s). (4)

The centralizer gh of a given subalgebra h ⊂ g in g is the set
of all elements in g commuting with all elements in h, i.e.

gh = {x ∈ g|[x , y ] = 0, ∀y ∈ h}. (5)
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A derivation D of a given Lie algebra g is a linear map

D : g→ g

such that for any pair x , y of elements of g

D([x , y ]) = [D(x), y ] + [x ,D(y)]. (6)

If an element z ∈ g exists, such that

D = adz , i.e. D(x) = [z , x ], ∀x ∈ G ,

the derivation is inner, any other one is outer.
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An automorphism Φ of g is a regular linear map

Φ : g→ g

such that for any pair x , y of elements of g

Φ([x , y ]) = [Φ(x),Φ(y)]. (7)

Elements of the characteristic series and their centralizers are
invariant w.r.t to derivations and automorphisms.
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Classification of solvable Lie algebras with the given
nilradical

We assume that the nilradical n, dim n = n is known. That is,
in some basis (e1, . . . , en) we know the Lie brackets

[ea, eb] = Nab
cec . (8)

We wish to extend the nilpotent algebra n to all possible
indecomposable solvable Lie algebras s having n as their
nilradical. Thus, we add further elements f1, . . . , fp to the
basis (e1, . . . , en) which together will form a basis of s. It
follows from (4) that

[fi , ea] = (Ai)
b
aeb, 1 ≤ i ≤ p, 1 ≤ a ≤ n,

[fi , fj ] = γa
ijea, 1 ≤ i , j ≤ p. (9)
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We have

Jacobi identities between (fi , ea, eb) =⇒ linear relations on
the matrix elements of Ai

Jacobi identities between (fi , fj , ea) =⇒ linear relations on
γa

ij in terms of the commutators of Ai and Aj .

Jacobi identities between (fi , fj , fk) =⇒ bilinear
compatibility conditions on γa

ij and Ai .

Since n is the maximal nilpotent ideal of s, no nontrivial linear
combination of Ai can be a nilpotent matrix, i.e. they are
linearly nil–independent.



We have

Jacobi identities between (fi , ea, eb) =⇒ linear relations on
the matrix elements of Ai

Jacobi identities between (fi , fj , ea) =⇒ linear relations on
γa

ij in terms of the commutators of Ai and Aj .

Jacobi identities between (fi , fj , fk) =⇒ bilinear
compatibility conditions on γa

ij and Ai .

Since n is the maximal nilpotent ideal of s, no nontrivial linear
combination of Ai can be a nilpotent matrix, i.e. they are
linearly nil–independent.



We have

Jacobi identities between (fi , ea, eb) =⇒ linear relations on
the matrix elements of Ai

Jacobi identities between (fi , fj , ea) =⇒ linear relations on
γa

ij in terms of the commutators of Ai and Aj .

Jacobi identities between (fi , fj , fk) =⇒ bilinear
compatibility conditions on γa

ij and Ai .

Since n is the maximal nilpotent ideal of s, no nontrivial linear
combination of Ai can be a nilpotent matrix, i.e. they are
linearly nil–independent.



We have

Jacobi identities between (fi , ea, eb) =⇒ linear relations on
the matrix elements of Ai

Jacobi identities between (fi , fj , ea) =⇒ linear relations on
γa

ij in terms of the commutators of Ai and Aj .

Jacobi identities between (fi , fj , fk) =⇒ bilinear
compatibility conditions on γa

ij and Ai .

Since n is the maximal nilpotent ideal of s, no nontrivial linear
combination of Ai can be a nilpotent matrix, i.e. they are
linearly nil–independent.



Let us consider the adjoint representation of s restricted to the
nilradical n. Then ad|n(fk) is a derivation of n. In other words,
finding all sets of matrices Ai in (9) is equivalent to finding all
sets of outer nil–independent derivations of n

D1 = ad|n(f1), . . . ,Dp = ad|n(fp), (10)

such that [D j ,Dk ] are inner derivations. γa
ij are then

determined up to elements in the center C (n) of n, i.e. the
knowledge of all sets of such derivations almost amounts to
the knowledge of all solvable Lie algebras with the given
nilradical n.
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Isomorphic Lie algebras with the given nilradical

If we

1 add any inner derivation to Dk , i.e. we consider outer
derivations modulo inner derivations,

2 perform a change of basis in n such that the Lie brackets
(8) are not changed, i.e. we consider only conjugacy
classes of sets of outer derivations (modulo inner
derivations)

3 change the basis in the space span{D1, . . . ,Dp},
the resulting Lie algebra is isomorphic to the original one.
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Our nilradical nn,3

[e2, en] = e1,

[e3, en−1] = e1,

[e4, en] = e2, (11)

[ek , en] = ek−1, 5 ≤ k ≤ n − 2,

[en−1, en] = −e3.

It has the following complete flag of invariant ideals

0 ⊂ nn−3 ⊂ nn−4 ⊂ z2 ⊂ z3 ∩ n2 ⊂ . . . ⊂ zn−5 ∩ n2 ⊂ n2

⊂ (z2)n ⊂ (nn−4)n ⊂ n (12)

and a subalgebra isomorphic to nn−2,1 expressed as

ñn−2,1 = span{e1, e2, e4, . . . , en−2, en}.
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What is important for us is that the solvable extensions of
nn−2,1 were fully investigated in Šnobl L and Winternitz P
2005, A class of solvable Lie algebras and their Casimir
invariants, J. Phys. A 38 2687. At the same time, the group
of automorphisms of nn−2,1 is almost the same as the one
induced on ñn−2,1 by automorphisms of nn,3. More precisely,
locally they are identical, globally they differ by one reflection
allowed in nn−2,1 but not in ñn−2,1.



What is important for us is that the solvable extensions of
nn−2,1 were fully investigated in Šnobl L and Winternitz P
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Our current approach is as follows

1 Check which conjugacy classes of elements in
Der(nn,3)/Inn(nn,3) can be represented by derivations
which preserve ñn−2,1.

2 For these find all solvable extensions of ñn−2,1 and extend
them to solvable extensions of nn,3. In this process some
new parameters may arise, i.e. the extension is not
necessarily unique.

3 Consider the classes of derivations whose no
representative preserves ñn−2,1 and construct the
corresponding solvable extensions.
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2 For these find all solvable extensions of ñn−2,1 and extend
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them to solvable extensions of nn,3. In this process some
new parameters may arise, i.e. the extension is not
necessarily unique.

3 Consider the classes of derivations whose no
representative preserves ñn−2,1 and construct the
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Some details

The most general derivation has the form

D(en−2) = (2cn−1 + (5− n)dn)en−2 +
n−3∑
k=4

bkek + b2e2 + b1e1,

D(en−1) = cn−1en−1 + dn−1e4 +
3∑

k=1

ckek , (13)

D(en) =
n∑

k=1

dkek .

The action of D on the remaining basis elements e1, . . . , en−3

is found using D([x , y ]) = [D(x), y ] + [x ,D(y)].



In the 2n–dimensional algebra of derivations Der(nn,3) we
have (n − 1)–dimensional ideal of inner derivations Inn(nn,3)
of the form

D(en−2) = −c3en−3,

D(en−1) = c3e3 + c1e1, (14)

D(en) =
n−3∑
k=1

dkek .



The elements of Der(nn,3)/Inn(nn,3) can be uniquely
represented by outer derivations of the form

D(en−2) = (2cn−1 + (5− n)dn)en−2 +
n−4∑
k=4

bkek + b2e2 + b1e1,

D(en−1) = cn−1en−1 + dn−1e4 + c3e3 + c2e2, (15)

D(en) = dnen + dn−1en−1 + dn−2en−2.

The derivation of the form (15) leaves ñn−2,1 invariant if and
only if dn−1 = 0. We conjugate a given derivation D by the
automorphism defined by

en−2 → en−2, en−1 → en−1+
dn−1

dn − cn−1
e4, en → en+

dn−1

dn − cn−1
en−1

whenever possible, i.e. when dn 6= cn−1.



The elements of Der(nn,3)/Inn(nn,3) can be uniquely
represented by outer derivations of the form

D(en−2) = (2cn−1 + (5− n)dn)en−2 +
n−4∑
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only if dn−1 = 0. We conjugate a given derivation D by the
automorphism defined by
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Now we have d̂n−1 = 0, i.e. DΦ ≡ D̂ leaves ñn−2,1 invariant
and we can proceed by investigation of its solvable extensions.

We find that the extension of a solvable algebra with the
nilradical ñn−2,1 to a solvable extension of the nilradical nn,3 is
unique when dn 6= 0 and cn−1 6= 0; otherwise, several
non–equivalent extensions do exist.

The case when none of the conjugate derivations DΦ leaves
ñn−2,1 invariant necessarily means dn = cn−1 → 1, dn−1 6= 0
and leads to a unique solvable algebra sn+1,9 in the list below.
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ñn−2,1 invariant necessarily means dn = cn−1 → 1, dn−1 6= 0
and leads to a unique solvable algebra sn+1,9 in the list below.



The resulting classification

Any solvable Lie algebra s with the nilradical nn,3 has
dimension dim s = n + 1, or dim s = n + 2.

Five types of solvable Lie algebras of dimension dim s = n + 1
with the nilradical nn,3 exist for any n ≥ 7. They are
represented by the following:



[f , e1] = (α + 2β)e1,

[f , e2] = 2βe2,

[f , e3] = (α + β)e3,

[f , ek ] = ((3− k)α + 2β)ek , 4 ≤ k ≤ n − 2,

[f , en−1] = βen−1,

[f , en] = αen.



The classes of mutually nonisomorphic algebras of this type are

sn+1,1(β) : α = 1, β ∈ F\{0,−1

2
,

n − 5

2
},

sn+1,2 : α = 1, β =
n − 5

2
,

sn+1,3 : α = 1, β = 0,

sn+1,4 : α = 1, β = −1

2
,

sn+1,5 : α = 0, β = 1,

where the splitting into subcases reflects different dimensions
of the characteristic series.



sn+1,6(ε) : [f , e1] = (n − 3)e1,

[f , e2] = (n − 4)e2,

[f , e3] = (1 +
n − 4

2
)e3,

[f , ek ] = (n − 1− k)ek , 4 ≤ k ≤ n − 2,

[f , en−1] =
n − 4

2
en−1,

[f , en] = en + εen−2

where ε = 1 over C, whereas over R ε = 1 for n odd, ε = ±1
for n even.



sn+1,7 : [f , e1] = e1,

[f , e2] = 0,

[f , e3] = e3 − e1,

[f , ek ] = (3− k)ek , 4 ≤ k ≤ n − 2,

[f , en−1] = e2,

[f , en] = en.



sn+1,8(a2, a3, . . . , an−3) :

[f , e1] = e1, [f , e2] = e2,

[f , e3] =
1

2
e3,

[f , ek ] = ek +
k−2∑
l=4

ak−l+1el + ak−2e2 + ak−1e1, 4 ≤ k ≤ n − 2,

[f , en−1] =
1

2
en−1 + a2e3,

[f , en] = 0,

aj ∈ F, at least one aj satisfies aj 6= 0. Over C: the first
aj 6= 0 satisfies aj = 1. Over R: the first aj 6= 0 for even j
satisfies aj = 1. If all aj = 0 for j even, then the first aj 6= 0 (j
odd) satisfies aj = ±1.



sn+1,9 : [f , e1] = 3e1,

[f , e2] = 2e2,

[f , e3] = 2e3 − e2,

[f , ek ] = (5− k)ek , 4 ≤ k ≤ n − 2,

[f , en−1] = en−1 + e4,

[f , en] = en + en−1.



Precisely one solvable Lie algebra sn+2 of dim s = n + 2 with
the nilradical nn,3 exists. It is presented in a basis
(e1, . . . , en, f1, f2) where the Lie brackets involving f1 and f2 are

[f1, e1] = e1, [f2, e1] = 2e1,

[f1, e2] = 0, [f2, e2] = 2e2,

[f1, e3] = e3, [f2, e3] = e3,

[f1, ek ] = (3− k)ek , [f2, ek ] = 2ek , 4 ≤ k ≤ n − 2,

[f1, en−1] = 0, [f2, en−1] = en−1,

[f1, en] = en, [f2, en] = 0, [f1, f2] = 0.

For n = 5, 6 the results are slightly different.



Generalized Casimir invariants

The term Casimir operator is usually reserved for elements of
the center of the enveloping algebra of a Lie algebra g. These
operators are in one–to–one correspondence with polynomial
invariants characterizing orbits of the coadjoint representation
of g. The search for invariants of the coadjoint representation
is algorithmic and amounts to solving a system of linear first
order PDEs (see5). In general, solutions are not necessarily
polynomials and we shall call the general solutions generalized
Casimir invariants or invariants of the coadjoint representation.

5Patera J, Sharp R T, Winternitz P and Zassenhaus H 1976 J. Math.Phys
17 986–94
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Let us consider some basis (g1, . . . , gn) of g, in which the
structure constants are cij

k . A basis for the coadjoint
representation is given by the first order differential operators

Ĝk = gbcka
b ∂

∂ga
, (16)

where the quantities ga are commuting independent variables
which can be identified with coordinates in the dual basis of
the space g∗ (i.e. ga ≡ g ∗∗

a ).
The generalized Casimir invariants are functions on g∗,
solutions of the following system of partial differential
equations

Ĝk I = 0, k = 1, . . . , n. (17)
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Considering first the nilpotent algebra nn,3 we have the
operators (16) in the form

Ê1 = 0, Ê2 = e1
∂

∂en
, E3 = e1

∂

∂en−1
, Ê4 = e2

∂

∂en
,

Êk = ek−1
∂

∂en
, 5 ≤ k ≤ n − 2, Ên−1 = −e1

∂

∂e3
− e3

∂

∂en
,

Ên = −e1
∂

∂e2
− e2

∂

∂e4
−

n−2∑
k=5

ek−1
∂

∂ek
+ e3

∂

∂en−1
.

It is evident that any solution I of Eq. (17) cannot depend on

e3, en−1 because of Ên−1I = Ê3I = Ê2I = 0. Consequently, all
considered operators Êj can be truncated to act on functions
of ẽ1 = e1, ẽ2 = e2, ẽ3 = e4, . . . , ẽn−3 = en−2, ẽn−2 = en only.
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, Ê4 = e2

∂

∂en
,
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Then Ê3T , Ên−1T vanish and the remaining operators are
exactly those present in the investigation of invariants of
nn−2,1.

Therefore, the generalized Casimir invariants of nn,3 are the
same as the ones for nn−2,1 once written in an appropriate
basis.

The nilpotent Lie algebra nn,3 has n − 4 functionally
independent invariants. They can be chosen to be the
following polynomials

ξ0 = e1,

ξk =
(−1)kk

(k + 1)!
ek+1

2 +
k−1∑
j=0

(−1)j e j
2 ek+3−j ek−j

1

j !
, 1 ≤ k ≤ n − 5.



Then Ê3T , Ên−1T vanish and the remaining operators are
exactly those present in the investigation of invariants of
nn−2,1.

Therefore, the generalized Casimir invariants of nn,3 are the
same as the ones for nn−2,1 once written in an appropriate
basis.

The nilpotent Lie algebra nn,3 has n − 4 functionally
independent invariants. They can be chosen to be the
following polynomials

ξ0 = e1,

ξk =
(−1)kk

(k + 1)!
ek+1

2 +
k−1∑
j=0

(−1)j e j
2 ek+3−j ek−j

1

j !
, 1 ≤ k ≤ n − 5.
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A similar argument works also for its solvable extensions.

The algebras sn+1,1(β), . . . , sn+1,9 have n − 5 invariants each.
Their form is

sn+1,1(β), sn+1,2, sn+1,3, sn+1,6, sn+1,7 and sn+1,9

χk =
ξk

ξ
(k+1) 2β

1+2β

0

, 1 ≤ k ≤ n − 5. (18)

For sn+1,2 is β = n−5
2

, for sn+1,3 and sn+1,7 we have
β = 0, for sn+1,6(ε) we have β = n−4

2
and for sn+1,9 is

β = 1, respectively in Equation (18).

sn+1,4

χ1 = ξ0, χk =
ξ2
k

ξk+1
1

, 2 ≤ k ≤ n − 5. (19)
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sn+1,5

χk =
ξk

ξk+1
0

, 1 ≤ k ≤ n − 5. (20)

sn+1,8(a2, a3, . . . , an−3)

χk =

[ k+1
2

]∑
q=0

(−1)q (ln ξ0)q

q!

 ∑
i1+...+iq=k−2q+1

ai1+3ai2+3 . . . aiq+3

+
∑

j+i1+...+iq=k−2q−1

ξj+1

ξj+2
0

ai1+3ai2+3 . . . aiq+3

 ,

1 ≤ k ≤ n − 5. (21)

The summation indices take the values
0 ≤ j , i1, . . . , iq ≤ k + 1.



The Lie algebra sm+2 has n − 6 functionally independent
invariants that can be chosen to be

χk =
ξk+1

ξ
k+2

2
1

, 1 ≤ k ≤ n − 6. (22)



Thank you for your attention
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