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Starting from the classification of real Manin triples we look for those that are isomorphic
as six-dimensional Drinfeld doubles i.e. Lie algebras with the ad-invariant form used for
construction of the Manin triples. We use several invariants of the Lie algebras to distin-
guish the nonisomorphic structures and give the explicit form of maps between Manin
triples that are decompositions of isomorphic Drinfeld doubles. The result is a complete
list of six-dimensional real Drinfeld doubles. It consists of 22 classes of nonisomorphic
Drinfeld doubles.
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1. Introduction

In recent years, the study of T -duality in string theory has led to the discovery

of Poisson–Lie T -dual sigma models. Klimč́ık and Ševera have found a procedure

allowing us to construct the dual models from Manin triples (D,G, G̃), i.e. a decom-

positions of a Lie algebra D (it must be even-dimensional) into two maximally

isotropic subalgebras G, G̃ w.r.t. a bilinear form. The construction of the Poisson–

Lie T -dual sigma models is described in Refs. 1 and 2.

The Lie group possessing a Lie algebra that can be written as a Manin triple

is called the Drinfeld double. The classification of the two-dimensional Drinfeld

doubles is trivial and the four-dimensional Drinfeld doubles can be found e.g. in

the paper Ref. 3 together with the corresponding two-dimensional T -dual models.

Examples of six-dimensional Drinfeld doubles and three-dimensional dual models

were given e.g. in Refs. 4–6. There was an attempt to classify the six-dimensional

Drinfeld doubles by the Bianchi forms of their three-dimensional isotropic sub-

algebras in Ref. 6 but it is not sufficient for the specification of the Drinfeld

double.

As we shall see Manin triples are equivalent to Lie bialgebras and the classifi-

cation of the three-dimensional Lie bialgebras (i.e. six-dimensional Manin triples)

was given in Ref. 7. Without knowledge of this this work we have performed a

1



May 16, 2002 14:55 WSPC/139-IJMPA 01057
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classification of the six-dimensional Manin triples in Ref. 8. The consequent com-

parison proved that the results are identical even though we have started from a

different description of the three-dimensional algebras and used a completely dif-

ferent method. It means that in Ref. 8 we have done an independent check of Ref. 7

and on the other hand, expressed the results in a different form, namely as Manin

triples.

The goal of this paper is to find which of the Manin triples represent decom-

position of the same (or more precisely isomorphic) Drinfeld doubles. We use the

notation of Ref. 8 because the less compact sorting of the triples into parametrized

classes turned out more appropriate for the classification. The result is a complete

list of the real nonisomorphic six-dimensional Drinfeld doubles. Let us note that

the Drinfeld double is defined not only by its Lie structure but also by a bilinear

form. There are e.g. two classes of Drinfeld doubles for so(1, 3) as we shall see.

In the following sections, we first recall the definitions of Manin triple, Lie

bialgebra and Drinfeld double, then briefly explain the approach we have used

to distinguish the nonisomorphic structures. The main result of the paper is the

classification theorem in Sec. 3. Explicit forms of maps between Manin triples that

are decompositions of the isomorphic Drinfeld doubles are contained in the proof

of the theorem.

2. Manin Triples, Lie Bialgebras, Drinfeld Doubles

The Drinfeld double D is defined as a connected Lie group such that its Lie algebra

D equipped by a symmetric ad-invariant nondegenerate bilinear form 〈· , ·〉 can be

decomposed into a pair of subalgebras G, G̃ maximally isotropic w.r.t. 〈· , ·〉 and

D as a vector space is the direct sum of G and G̃. This ordered triple of algebras

(D,G, G̃) is called Manin triple.

One can see that the dimensions of the subalgebras are equal and that bases

{Xi}, {X̃i}, i = 1, 2, 3 in the subalgebras can be chosen so that

〈Xi,Xj〉 = 0 , 〈Xi, X̃
j〉 = 〈X̃j ,Xi〉 = δji , 〈X̃i, X̃j〉 = 0 . (1)

This canonical form of the bracket is invariant with respect to the transformations

X ′i = XkA
k
i , X̃ ′j = (A−1)jkX̃

k . (2)

The Manin triples that are related by the transformation (2) are considered isomor-

phic. Due to the ad-invariance of 〈· , ·〉 the algebraic structure of D is determined

by the structure of the maximally isotropic subalgebras because in the basis {Xi},
{X̃i} the Lie product is given by

[Xi,Xj ] = fij
kXk ,

[X̃i, X̃j] = f̃ ijkX̃
k ,

[Xi, X̃
j] = fki

jX̃k + ˜f jkiXk .

(3)
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It is clear that to any Manin triple (D,G, G̃) one can construct the dual one by

interchanging G ↔ G̃, i.e. interchanging the structure coefficients fij
k ↔ f̃ ijk. All

properties of Lie algebras (the nontrivial being the Jacobi identities) remain to be

satisfied. On the other hand for given Drinfeld double more than two Manin triples

can exist and we shall see many examples of that.

One can rewrite the structure of a Manin triple also in another, equivalent, but

for certain considerations more suitable, form of a Lie bialgebra defined as a Lie

algebra g equipped also by a Lie cobracketa δ : g → g ⊗ g : δ(x) =
∑
x[1] ⊗ x[2]

such that ∑
x[1] ⊗ x[2] = −

∑
x[2] ⊗ x[1] , (4)

(id⊗ δ) ◦ δ(x) + cyclic permutations of tensor indices = 0 , (5)

δ([x, y]) =
∑

[x, y[1]]⊗ y[2] + y[1] ⊗ [x, y[2]]

− [y, x[1]]⊗ x[2] − x[1] ⊗ [y, x[2]] (6)

(for detailed account on Lie bialgebras see e.g. Ref. 9 or 10, Chapter 8).

The correspondence between a Manin triple and a Lie bialgebra can now be

formulated in the following way. Because both subalgebras G, G̃ of the Manin triple

are of the same dimension and are connected by nondegenerate pairing, it is natural

to consider G̃ as a dual G∗ to G and to use the Lie bracket in G̃ to define the Lie

cobracket in G; δ(x) is given by 〈δ(x), ỹ ⊗ z̃〉 = 〈x, [ỹ, z̃]〉, ∀ỹ, z̃ ∈ G∗, i.e. δ(Xi) =

f̃ jki Xj ⊗Xk. The Jacobi identities in G̃

f̃klm f̃
ij
l + f̃ ilmf̃

jk
l + f̃ jlmf̃kil = 0 (7)

are then equivalent to the property of cobracket (5) and the G̃-component of the

mixed Jacobi identitiesb

f̃ jklfmi
l + f̃klmfli

j + f̃ jliflm
k + f̃ jlmfil

k + f̃kliflm
j = 0 (8)

are equivalent to (6).

From now on, we will use the formulation in terms of Manin triples, Lie bialge-

bra formulation of all results can be easily derived from it. We also consider only

algebraic structure, the Drinfeld doubles as the Lie groups can be obtained in prin-

ciple by means of exponential map and usual theorems about relation between Lie

groups and Lie algebras apply, e.g. there is a one to one correspondence between

(finite-dimensional) Lie algebras and connected and simply connected Lie groups.

The group structure of the Drinfeld double can be deduced e.g. by taking matrix

exponential of adjoint representation of its algebra.

aSummation index is suppressed.
bThe Jacobi identities [Xi, [X̃j , X̃k ]]+ cyclic = 0 lead to both (8) (terms proportional to X̃l) and
(7) (terms proportional to Xl).
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We shall consider two Drinfeld doubles isomorphic if they have isomorphic alge-

braic structure and there is an isomorphism transforming one ad-invariant bilinear

form to the other. As mentioned above we can always choose a basis so that the

bilinear form have canonical form (1) and the Lie product is then given by (3). The

Drinfeld doubles D and D′ with these special bases Ya = (X1,X2,X3, X̃
1, X̃2, X̃3),

Y ′a = (X ′1,X
′
2,X

′
3, X̃

′1, X̃ ′2, X̃ ′3) are isomorphic iff there is an invertible 6×6 matrix

Ca
b such that the linear map given by

Y ′a = Ca
bYb (9)

transforms the Lie multiplication of D into that of D′ and preserves the canonical

form of the bilinear form 〈· , ·〉. This is equivalent to

Ca
pCb

qBpq = Bab , Ca
pCb

qFpq
r = F ′ab

c
Cc

r , (10)

where Fab
c, F ′ab

c
, a, b, c = 1, . . . , 6 are structure coefficients of the doubles D and

D′ and

B =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0


. (11)

3. Method and Result of Classification

As mentioned in the Introduction, there are 78 nonisomorphic classes of Manin

triples.8 If we take into account the duality transformation (D,G, G̃) 7→ (D, G̃,G)
the number is reduced to 44. Their explicit form is given in App. B. It follows from

(1) and (3) that the structure of the Manin triple can be given by the structure

coefficients fkij , f̃
ij
k of G and G̃ in the special basis where relations (1) hold. That

is why we usually denote the Manin triples (D,G, G̃) by (G|G̃) or (G|G̃|b) when a

scaling parameter b occurs in the definition of the Lie product. Let us note that

(G|G̃|b) and (G|G̃|b′) are isomorphic up to rescaling of 〈· , ·〉.
It is clear that a direct check which of 44 Manin triples are decomposition of

isomorphic Drinfeld doubles is a tremendous task. That is why we first evaluate as

many invariants of the algebras as possible and then sort them into smaller subsets

according to the values of the invariants. It is clear that only the Manin triples in

these subsets can be decomposition of the same Drinfeld double. The invariants we

have used are:

• signature (numbers of positive, negative and zero eigenvalues) of the Killing form,

• dimensions of the comutant [D,D] ≡ D1 ≡ D1 and subalgebras created by the

repeated Lie multiplication Di+1 = [Di,D], (up to i = 3, it turns out that for

i ≥ 3 Di+1 = Di). (We have for completeness determined also dimensions of

Di+1 = [Di,Di], but they does not lead to refinement of our partition.)
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Table 1. Invariants of Manin triples.

Signature Dim. of Dim. of Dim. of Manin triples

of K [D,D] D2, D3 D2, D3

(3, 3, 0) 6 6, 6 6, 6 (9|5|b), (8|5.ii|b),
(7a|71/a|b), (70|5.ii|b)

(4, 2, 0) 6 6, 6 6, 6 (8|5.i|b), (6a|61/a.i|b),
(60|5.iii|b)

(0, 3, 3) 6 6, 6 6, 6 (9|1)

(2, 1, 3) 6 6, 6 6, 6 (8|1), (8|5.iii), (70|4|b),
(70|5.i), (60|4.i|b), (60|5.i),
(5|2.ii), (4|2.iii|b),

3 3, 3 3, 3 (3|3.i)

(1, 0, 5) 5 5, 5 1, 0 (7a|1), (7a|2.i), (7a|2.ii), a > 1

(6a|1), (6a|2), (6a|61/a.ii),

(6a|61/a.iii), (60|1), (60|2),
(60|4.ii), (60|5.ii), (5|1), (5|2.i),
(4|1), (4|2.i), (4|2.ii)

3 3, 3 1, 0 (3|1), (3|2), (3|3.ii), (3|3.iii)

(0, 1, 5) 5 5, 5 1, 0 (7a|1), (7a|2.i), (7a|2.ii), a < 1

(70|1), (70|2.i), (70|2.ii)

(0, 0, 6) 5 5, 5 1, 0 (7a|1), (7a|2.i), (7a|2.ii), a = 1

3 0, 0 0,0 (2|2)

2, 0 0, 0 (2|2.i), (2|2.ii)

0 0, 0 0, 0 (1|1)

The partition of the list of Manin triples according to the values of invariants is

in Table 1. The final distinction between nonisomorphic Drinfeld doubles and their

decomposition into Manin triples provides the following theorem.

Theorem 1. Any six-dimensional real Drinfeld double belongs just to one of the

following 22 classes and allows decomposition into all Manin triples listed in the

class and their duals (G ↔ G̃). If the class contains parameter a or b, the Drinfeld

doubles with different values of this parameter are nonisomorphic.

(1) (9|5|b) ∼= (8|5.ii|b) ∼= (70|5.ii|b), b > 0,

(2) (8|5.i|b) ∼= (60|5.iii|b), b > 0,

(3) (7a|71/a|b) ∼= (71/a|7a|b), a ≥ 1, b ∈ R− {0},
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(4) (6a|61/a.i|b) ∼= (61/a.i|6a|b), a > 1, b ∈ R− {0},
(5) (9|1),

(6) (8|1) ∼= (8|5.iii) ∼= (70|5.i) ∼= (60|5.i) ∼= (5|2.ii),
(7) (70|4|b) ∼= (4|2.iii|b) ∼= (60|4.i| − b), b ∈ R− {0},
(8) (3|3.i),
(9) (7a|1) ∼= (7a|2.i) ∼= (7a|2.ii), a > 1,

(10) (6a|1) ∼= (6a|2) ∼= (6a|61/a.ii) ∼= (6a|61/a.iii), a > 1,

(11) (60|1) ∼= (60|5.ii) ∼= (5|1) ∼= (5|2.i),
(12) (60|2) ∼= (60|4.ii) ∼= (4|1) ∼= (4|2.i) ∼= (4|2.ii),
(13) (3|1) ∼= (3|2) ∼= (3|3.ii) ∼= (3|3.iii),
(14) (7a|1) ∼= (7a|2.i) ∼= (7a|2.ii), 0 < a < 1,

(15) (70|1),

(16) (70|2.i),
(17) (70|2.ii),
(18) (71|1) ∼= (71|2.i) ∼= (71|2.ii),
(19) (2|1),

(20) (2|2.i),
(21) (2|2.ii),
(22) (1|1).

4. The Proof of Theorem 1

The essence of the proof is to find which of the 78 nonisomorphic Manin triples

found in Ref. 8 and displayed in App. B yield isomorphic Drinfeld doubles. The iso-

morphisms are given by the explicit form of the transformation matrices C [see (9)]

that were found by solution of Eq. (10). In this part we have used the computer

programs Maple V and Mathematica 4. The solutions are not unique and here we

present only a simple examples of them. The nonisomorphic Drinfeld doubles are

distinguished by investigation of their various subalgebras and properties of 〈· , ·〉
and the Killing form on them.

In the next subsection we analyze the subsets of nonisomorphic Manin triples

characterized by invariants described in Sec. 3 and displayed in Table 1.

4.1. Manin triples with the Killing form of signature (3, 3, 0)

In this case the signature of the Killing form itself fixes the Lie algebraD of the Drin-

feld double uniquely. It is the well-known so(3, 1) which is simple as a real Lie alge-

bra and its complexification is semisimple; it decomposes into two copies of sl(2,C).

The Drinfeld doubles corresponding to (9|5|b), (8|5.ii|b), (70|5.ii|b), (7a|71/a|b) can

consequently differ only by the bilinear form 〈· , ·〉.
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We can find a necessary condition for equivalence of semisimple Drinfeld doubles

from the fact that any invariant symmetric bilinear form on a complex simple Lie

algebra is a multiple of the Killing form and that any invariant symmetric bilinear

form on a semisimple Lie algebra is a sum of invariant symmetric bilinear forms on

its simple components. (Proof: Let G = ⊕iGi be the decomposition into simple com-

ponents, X ∈ Gi, Y ∈ Gj , i 6= j. Then ∃Ak, Bk ∈ Gj s.t. Y =
∑
k[Ak, Bk] and from

the ad-invariance of the form 〈X,Y 〉 =
∑
k〈X, [Ak, Bk]〉 = −

∑
k〈[Ak,X], Bk〉 =

−
∑
k〈0, Bk〉 = 0.)

We therefore consider the complexification DC of the Drinfeld double algebra

and write both the Killing form on DC and the bilinear form 〈· , ·〉 in terms of

Killing forms K1, K2 of still unspecified simple components sl(2,C)1, sl(2,C)2

(DC = sl(2,C)1 ⊕ sl(2,C)2)

K = K1 +K2 , 〈 , 〉 = αK1 + βK2 .

We trivially extend the Killing forms K1, K2 to the whole Drinfeld double algebra

DC and express them as

K1 =
〈 , 〉 − βK
α− β , K2 =

αK − 〈 , 〉
α− β .

Because K1, K2 are trivially extended Killing forms, they must have three-

dimensional nullspace [sl(2,C)2 in the case of K1 and sl(2,C)1 in the case of

K2]. These two conditions on dimensions of nullspaces fix the coefficients α, β

uniquely up to a permutation. Therefore, the necessary condition for equivalence

of two semisimple six-dimensional Drinfeld doubles is the equality of their sets of

coefficients {α, β}.
We compute the coefficients α, β for the Manin triples in this class and find that

in three cases (9|5|b), (8|5.ii|b), (70|5.ii|b) is

{α, β} =

{
i

4b
,− i

4b

}
and for (7a|71/a|b) is

{α, β} =

{
ia

4b(a− i)2
,− ia

4b(i+ a)2

}
.

We see that the Manin triple (7a|71/a|b) defines for any a, b Drinfeld doubles dif-

ferent from any of the Drinfeld doubles associated to the Manin triples (9|5|b),
(8|5.ii|b), (70|5.ii|b) and that Drinfeld doubles corresponding to (7a|71/a|b) with

different values of a and b are different except the case a′ = 1/a, b′ = b. The

Manin triples (7a|71/a|b) and (71/a|7a|b) are mutually dual, correspond to G ↔ G̃
and therefore give the same Drinfeld double. The Manin triple (71|71|b) is of course

self-dual.
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Also one sees that the Manin triples (9|5|b), (8|5.ii|b), (70|5.ii|b) with different

b cannot lead to the same Drinfeld double. For the Manin triples (9|5|b), (8|5.ii|b),
(70|5.ii|b) with equal b, the transformations (9) between Drinfeld doubles exist, but

may contain complex numbers since up to now we have considered only complexi-

fications of the original Manin triples.

However, one can check that the following real transformation matrices C guar-

antee the equivalence of the Drinfeld doubles in this class for fixed value of b.

(9|5|b)→ (8|5.ii|b) : C =



0 1 0 0 0
1

b

0 0 1 0 −1

b
0

1 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 1 0 0


,

(9|5|b)→ (70|5.ii|b) : C =



1

2
0 −1

2
0

1

2b
0

0
1

2
0 − 1

2b
0 0

0 0 1 0 0 0

0 b 0 1 0 0

−b 0 −b 0 1 0

0 b 0 0 0 1


.

As mentioned in the beginning of this section, the transformation matrices are not

unique; they contain several free parameters. Here and further we give them in a

simple form setting the parameters zero or one.

4.2. Manin triples with the Killing form of signature (4, 2, 0)

In this case the signature of the Killing form again fixes the Lie algebra D of the

Drinfeld double uniquely, it is sl(2,R) ⊕ sl(2,R), and the Drinfeld doubles may

again differ only by the bilinear form 〈· , ·〉. We use the criterion developed in the

previous subsection for semisimple Drinfeld doubles and find

• (8|5.i|b), (60|5.iii|b) : {α, β} =
{

1
4b ,−

1
4b

}
,

• (6a|61/a.i|b) : {α, β} =
{

a
4b(a−1)2 ,− a

4b(1+a)2

}
.

This shows that the Manin triples might specify isomorphic Drinfeld doubles only

in the following two cases:
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(1) (8|5.i|b) and (60|5.iii|b) for the same value of b. In this case we have found the

transformation matrix C

(8|5.i|b)→ (60|5.iii|b) : C =



0 0 − b
2
−1

2
0 0

− b
2

b

2
0 0 0

1

2

0 −1 0 0 0 0

−1 −1 0 0 0 −1

b

0 0 1 −1

b
0 0

0 0 b 0 −1 0


.

This transformation is real and therefore the Drinfeld doubles are isomorphic,

(8|5.i|b) ∼= (60|5.iii|b).
(2) (6a|61/a.i|b) and (61/a|6a.i|b). One can easily see that these Manin triples are

dual (i.e. can be obtained one from the other by the interchange G ↔ G̃) and

the Drinfeld doubles are therefore isomorphic.

4.3. Manin triples with the Killing form of signature (0, 3, 3)

This class contains only one Manin triple (9|1) and its dual; the corresponding

Drinfeld double is isomorphic to so(3) .R3 since the Killing form has the signature

(0, 3, 3) and dim[D,D] = 3.

4.4. Manin triples with the Killing form of signature (2, 1, 3)

We consider only the Manin triples with dim[D,D] = 6, the other set in this class

contains only one Manin triple (3|3.i), which is isomorphic as a Lie algebra to

sl(2,R)⊕R3 since the Killing form has the signature (2, 1, 3) and dim[D,D] = 3.

The Manin triples in this set (8|1), (8|5.iii), (70|4|b), (70|5.i), (60|4.i|b), (60|5.i),
(5|2.ii), (4|2.iii|b), are neither semisimple (rankK 6= 6) nor solvable ([D,D] = D).

Therefore they have a nontrivial Levi–Maltsev decomposition into semidirect sum

of a semisimple subalgebra S and radical N

D = S . N ,

both of them are three-dimensional. Knowledge of this decomposition turns out to

be helpful in the investigation of equivalence of the Drinfeld doubles.

A rather simple computation shows that the radical is in all these Manin

triples Abelian and maximally isotropic, e.g. for (8|1) the radical is N =

span{X̃1, X̃2, X̃3}, for (4|2.iii|b) the radical is N = span{X3, X̃
1, X̃2}.

Next we find the semisimple component. It turns out that the semisimple sub-

algebra S is in all cases sl(2,R), e.g. for (8|1) it can be evidently chosen S =

span{X1,X2,X3}, for (4|2.iii|b) the most general form of the semisimple subalgebra
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is S = span
{
2X1−2αX3− 2

b X̃
1−2βX̃2,− 2

bX2− 2γ
b X3− 2β

b X̃
1, αX̃1+(2−γ)X̃2+X̃3

}
for any values of α, β, γ.

One can restrict the form 〈· , ·〉 to the semisimple subalgebra S and finds that

for (8|1) 〈· , ·〉S = 0, i.e. S is maximally isotropic, whereas for (4|2.iii|b) and any

choice of α, β, γ is 〈· , ·〉S = −1/bKS, KS being the Killing form on S. This shows

that as Drinfeld doubles (8|1) and (4|2.iii|b) and similarly (4|2.iii|b) for different

values of b are not isomorphic.

Performing the same computation for all Manin triples in this set, we find that

they divide into two subsets.

(1) (8|1), (8|5.iii), (70|5.i), (60|5.i), (5|2.ii) : 〈· , ·〉S = 0

(2) (70|4|b), (60|4.i| − b), (4|2.iii|b) : 〈· , ·〉S = −1/bKS, b ∈ R− {0}

We find the transformation matrices for Manin triples in these subsets and prove

the equivalence of the corresponding Drinfeld doubles:

(8|1)→ (8|5.iii) : C =



−1 0 0 0 0 0

0 −1 0 0 0 0

0 0 1 0 0 0

0 1 0 −1 0 0

−1 0 −1 0 −1 0

0 −1 0 0 0 1


,

(8|1)→ (70|5.i) : C =



0 0 0 0 −1 0

0 0 0 1 0 0

0 0 1 0 0 0

0 −1 0 0 0 0

1 0 1 0 0 0

0 0 0 −1 0 1


,

(8|1)→ (60|5.i) : C =



0 0 0 0 1 0

0 0 0 0 0 −1

1 0 0 0 0 0

0 1 0 0 0 0

1 0 −1 0 0 0

0 0 0 1 0 1


,

(8|1)→ (5|2.ii) : C =



1 −1 −1 −1 −1 0

0 0 0 0 −1 1

0 −1 −1 −1 0 0

0 0 0 1 −1 1

−1 0 1 0 1 0

0 0 0 −1 0 −1


,



May 16, 2002 14:55 WSPC/139-IJMPA 01057

Classification of Six-Dimensional Real Drinfeld Doubles 11

respectively

(4|2.iii|b)→ (70|4|b) : C =



0 0 0
1

b
0 0

0 0 − 1

2b
0 1 0

0
1

2b
0 0 0 1

b 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0


,

(4|2.iii|b)→ (60|4.i| − b) : C =



0 0 0 −1

b
0 0

0 0
1

2b
0 1 0

0 − 1

2b
0 0 0 1

−b 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0


.

Concerning the Lie structure of these Drinfeld doubles, it follows from the sig-

nature of the Killing form and dimension of [D,D] that the Lie algebra of D is

isomorphic in both cases to sl(2,R) . R3 where commutation relations between

subalgebras are given by the unique irreducible representation of sl(2,R) on R3.

4.5. Manin triples with the Killing form of signature (1, 0, 5)

4.5.1. Case dim[D,D] = 5

This set contains the greatest number of Manin triples: (7a>1|1), (7a>1|2.i),
(7a>1|2.ii), (6a|1), (6a|2), (6a|61/a.ii), (6a|61/a.iii), (60|1), (60|5.ii), (5|1), (5|2.i),
(60|2), (60|4.ii), (4|1), (4|2.i), (4|2.ii). In order to shorten our considerations we

firstly present the transformation matrices C showing the equivalence of following

Drinfeld doubles and later we prove that the following classes of Drinfeld doubles

are nonisomorphic:

(1) (7a>1|1) ∼= (7a>1|2.i) ∼= (7a>1|2.ii) for the same value of a

(7a|1)→ (7a|2.i) : C =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 − 1

2a
0 1 0

0
1

2a
0 0 0 1


,



May 16, 2002 14:55 WSPC/139-IJMPA 01057
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(7a|1)→ (7a|2.ii) : C =



−1 0 0 0 0 0

0 0 0 0 −2a 0

0 0 0 0 0 2a

0 0 0 −1 0 0

0 − 1

2a
0 0 0 1

0 0
1

2a
0 1 0


.

(2) (6a|1) ∼= (6a|2) ∼= (6a|61/a.ii) ∼= (6a|61/a.iii) for the same value of a

(6a|1)→ (6a|2):

C =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 − 1

2a
0 1 0

0
1

2a
0 0 0 1


,

(6a|1)→ (6a|6 1
a
.ii) :

C =



1 0 0 0 0 1

0 0 1− a a− 1 0 0

0 1− a 0 0 0 0

0 −1 1 0 0 0
1

a− 1
0 0 0 0 0

− 1

a− 1
0 0 0 − 1

a− 1
− 1

a− 1


,

(6a|1)→ (6a|6 1
a
.iii) :

C =



1 0 0 0 0 1

0 0 −1− a a+ 1 0 0

0 −1− a 0 0 0 0

0 1 1 0 0 0

1

a+ 1
0 0 0 0 0

1

a+ 1
0 0 0 − 1

a+ 1

1

a+ 1


.
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(3) (5|1) ∼= (5|2.i) ∼= (60|1) ∼= (60|5.ii)

(5|1)→ (5|2.i) : C =



−1 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 −1 0 0

0 1 0 0 0 −1

2

0 0 1 0
1

2
0


,

(5|1)→ (60|1): C =



0 0 −1

2
0 1 0

0 0
1

2
0 1 0

−1 0 0 0 0 0

0
1

2
0 0 0 −1

0
1

2
0 0 0 1

0 0 0 −1 0 0


,

(5|1)→ (60|5.ii) : C =



0 −1 0 0 0
1

2

0 1 0 1 0
1

2

−1 0 1 0
1

2
0

1 0 0 0 −1 0

1 0 0 0 0 0

0 0 0 0 0 1


.

(4) (4|1) ∼= (4|2.i) ∼= (4|2.ii) ∼= (60|2) ∼= (60|4.ii)

(4|1)→ (4|2.i) : C =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 −1

2
0 1 0

0
1

2
0 0 0 1


,
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14 L. Šnobl & L. Hlavatý

(4|1)→ (4|2.ii) : C =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0
1

2
0 1 0

0 −1

2
0 0 0 1


,

(4|1)→ (60|2): C =



0 0
1

2
0 1 0

0 0
1

2
0 −1 0

1 0 0 0 0 0

0
1

2
0 0 0 1

0 −1

2
0 0 0 1

0 0 0 1 0 0


,

(4|1)→ (60|4.ii) : C =



0 0 1 1
1

2
0

0 0 −1 0
1

2
0

−1 1 0 0 0
1

2

1 0 0 0 0 0

1 0 0 0 0 −1

0 0 0 0 1 0


.

In the proof of inequivalence of the above given classes of Manin triples we ex-

ploit the fact that the Drinfeld doubles have at least one decomposition into Manin

triple with the 2nd subalgebra G̃ Abelian; we will use only these representantions

(7a|1), a > 1, (6a|1), (5|1), (4|1) in our considerations.

Firstly we find all maximal isotropic Abelian subalgebras A of each of the given

Drinfeld doubles. The dimension of any suchAmust be 3 from the maximal isotropy.

The commutant is in all these cases D1 = [D,D] = span{X2,X3, X̃
1, X̃2, X̃3} and

the centre is Z(D) = span{X̃1} = D2. One can see that any element of the form

X1+Y , Y ∈ D1 cannot occur in A because X1 commutes only with Z(D) and itself.

Therefore, A ⊂ D1. Further it follows from the maximality that A contains Z(D)

and we conclude that A = span{X̃1, Y1, Y2} where Y1, Y2 ∈ span{X2,X3, X̃
2, X̃3}.

Analyzing the maximal isotropy and replacing Y1, Y2 by their suitable linear
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combinations we find that A can be in general expressed in one of the following

forms:

(1) A = span{X̃1,X2, X̃
3},

(2) A = span{X̃1,X2 + αX̃3,X3 − αX̃2},
(3) A = span{X̃1,X2 + αX3,−αX̃2 + X̃3},
(4) A = span{X̃1,X3, X̃

2},
(5) A = span{X̃1, X̃2, X̃3}.

In the next step we check which of these subspaces really form a subalgebra of

the given Manin triple.

• (7a|1): the maximal isotropic Abelian subalgebras are span{X̃1,X2,X3} and

span{X̃1, X̃2, X̃3}. One may easily construct for each of these maximal isotropic

Abelian subalgebras the dual (w.r.t 〈·〉) subalgebra by taking the remaining

elements of the standard basis X1, . . . , X̃
3 and finds that it is isomorphic in

both cases to Bianchi algebra 7a. In other words, we have shown that this class

of Drinfeld doubles is nonisomorphic to the other ones and are mutually non-

isomorphic for different values of a.

• (6a|1): the maximal isotropic Abelian subalgebras are span{X̃1,X2,X3},
span{X̃1,X2+X3,−X̃2+X̃3}, span{X̃1,X2−X3, X̃

2+X̃3}, span{X̃1, X̃2, X̃3}.
By a slightly more complicated construction of the dual subalgebras we find that

they are of the Bianchi type 6a for the same a, i.e. this class of Drinfeld doubles

is nonisomorphic to the other ones and are mutually nonisomorphic for different

values of a.

• (5|1): the maximal isotropic Abelian subalgebras are span{X̃1,X2, X̃
3},

span{X̃1,X2,X3}, span{X̃1,X2 + αX3,−αX̃2 + X̃3}, span{X̃1,X3, X̃
2} and

span{X̃1, X̃2, X̃3}.
• (4|1): the maximal isotropic Abelian subalgebras are span{X̃1,X2 + αX̃3,X3 −
αX̃2}, span{X̃1,X3, X̃

2} and span{X̃1, X̃2, X̃3}.

Already from comparison of number of possible maximal isotropic Abelian sub-

algebras for (5|1) and (4|1) one sees that the corresponding Drinfeld doubles are

nonisomorphic.

It also follows that Drinfeld doubles corresponding to Manin triples (7a|1),

(6a|1), (5|1) and (4|1) are different as Lie algebras, since any maximal isotropic

Abelian subalgebra A of these Manin triples is in fact an Abelian ideal I such

that [D, I] = I and any such three-dimensional ideal is maximal isotropic from ad-

invariance of 〈 , 〉. Therefore we have in fact identified the nonisomorphic Drinfeld

doubles from the knowledge of these ideals I (and in some cases D/I) which does

not depend on the form 〈 , 〉 and the doubles differ already in their Lie algebra

structure.
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4.5.2. Case dim[D,D] = 3

All Manin triples of this subset are decomposition of one Drinfeld double, i.e. they

can be transformed one into another by the transformation (9). Below are the corre-

sponding matrices.

(3|1)→ (3|2): C =



−1 0 0 0 0 0

0
1

2
−1

2
0 1 1

0 −1

2

1

2
0 1 1

0 0 0 −1 0 0

0
1

2
0 0 0 −1

0
1

2
0 0 0 1


,

(3|1)→ (3|3.ii) : C =



1 0 0 0 0 2

0 1 0 0 0 0

0 0 1 −2 0 0

0 −1

2

1

2
0 0 0

1

2
0 0 0 1 1

−1

2
0 0 0 0 0


,

(3|1)→ (3|3.iii) : C =



−1 0 0 0 0 0

0 0 0 0 0 −2

0 0 0 0 −2 0

0 0 0 −1 1 1

−1

2
0 −1

2
0 0 0

−1

2
−1

2
0 0 0 0


.

4.6. Manin triples with the Killing form of signature (0, 1, 5)

This set contains Manin triples (7a<1|1), (7a<1|2.i), (7a<1|2.ii), (70|1), (70|2.i),
(70|2.ii). As in the Subsec. 4.5.1 we can show that Manin triples (7a<1|1), (7a<1|2.i),
(7a<1|2.ii) are decomposition of isomorphic Drinfeld doubles for the same a; the

transformation matrices given above for a > 1 are meaningful also in this case. It

remains to be investigated whether the Drinfeld doubles induced by (70|1), (70|2.i),
(70|2.ii) are isomorphic as or not.
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We again find all maximal isotropic Abelian subalgebras of these Manin triples.

We find

• (70|1): the maximal isotropic Abelian subalgebras are span{X̃3,X1 +αX̃2,X2−
αX̃1}, span{X̃1, X̃2, X̃3},
• (70|2.i) the only maximal isotropic Abelian subalgebra is span{X̃3,X1,X2}, the

dual subalgebra to it w.r.t 〈· , ·〉 does not exist.

• (70|2.ii) the only maximal isotropic Abelian subalgebra is span{X̃3,X1,X2}, the

dual subalgebra to it w.r.t 〈· , ·〉 does not exist.

This means that Drinfeld double induced by (70|1) has only decompositions into

Manin triple (70|1) and that Drinfeld doubles corresponding to (70|2.i), (70|2.ii)
are not isomorphic to the Drinfeld double corresponding to (7a<1|1) for any value

of a. To prove that also (70|2.i), (70|2.ii) induce nonisomorphic Drinfeld doubles,

we find all isotropic subalgebras of Bianchi type 70 in the Manin triple (70|2.ii).
They are

span{Y1, Y2, Y3} ,

where

Y1 = X1 − αX̃3 , Y2 = X2 − βX̃3 , Y3 = X3 + αX̃1 + βX̃2 , α, β ∈ R ,

and the dual subalgebra w.r.t. 〈· , ·〉 is in general

span{Ỹ1, Ỹ2, Ỹ3} ,

where

Ỹ1 = γX2 + X̃1 − γβX̃3 , Ỹ2 = −γX1 + X̃2 + γαX̃3 , Ỹ3 = X̃2 , γ ∈ R .

Structure coefficients in this new basis Y1, . . . , Ỹ3 are identical with the original

structure coefficients for any α, β, γ, therefore the Drinfeld double corresponding to

(70|2.ii) allows no decomposition into other Manin triples and similarly for (70|2.i).
Concerning the Lie algebra structure, the Drinfeld doubles corresponding to

(70|2.i) and (70|2.ii) are isomorphic as Lie algebras because they differ just by the

sign of the bilinear form 〈 , 〉, and consequently the commutation relations implied

by ad-invariance of 〈 , 〉 are the same. The other Drinfeld doubles specify different

Lie algebras for the same reason as in Subsec. 4.5.1.

4.7. Manin triples with the Killing form of signature (0, 0, 6)

4.7.1. Case dim[D,D] = 5

This set contains Manin triples (71|1), (71|2.i) and (71|2.ii). They specify isomor-

phic Drinfeld doubles. For transformation matrices see Subsec. 4.5.1 and substi-

tute a = 1.
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4.7.2. Case dim[D,D] = 3

In this set, the only Manin triples that can lead to the same Drinfeld double are

(2|2.i) and (2|2.ii). To see that the Drinfeld doubles are different, it is sufficent to

find the centres Z(D) of these Manin triples and restrict the form 〈· , ·〉 to them.

These restricted forms 〈· , ·〉Z(D) have different signatures, therefore the Drinfeld

doubles are nonisomorphic:

(1) (2|2.i) : Z(D) = span{X1,X2 − X̃2, X̃3}, signature of 〈· , ·〉Z(D) = (0, 1, 2).

(2) (2|2.ii) : Z(D) = span{X1,X2 + X̃2, X̃3}, signature of 〈· , ·〉Z(D) = (1, 0, 2).

These Drinfeld doubles are isomorphic as Lie algebras because they differ just by

the sign of the bilinear form 〈 , 〉 and the commutation relations are due to the

ad-invariance the same.

5. Conclusions

In this work we have constructed the complete list of six-dimensional real Drinfeld

doubles up to their isomorphisms i.e. maps preserving both the Lie structure and

an ad-invariant symmetric bilinear form 〈 , 〉 that define the double. The result

is summarized in the theorem at the end of Sec. 3 and claims that there just

22 classes of the nonisomorphic Drinfeld doubles. Some of them contain one or two

real parameters denoted a and b. The number 22 is in a way conditional because

e.g. the classes 9,14,18 could be united into one. The reason why they are given as

separate classes is that they have different values of their invariants, in this case

the signature of the Killing form.

An important point that follows from the classification is that there are several

different Drinfeld doubles corresponding to Lie algebras so(1, 3), sl(2,R)⊕ sl(2,R),

sl(2,R).R3 whereas on solvable Lie algebras the Drinfeld double is unique (in some

cases up to the sign of the bilinear form). On the other hand there are Manin triples

with one isotropic subalgebra Abelian that are equivalent as Drinfeld doubles even

though the other subalgebras are different [see (60|1) and (5|1)]. That is why it

is necessary to investigate the (non)equivalence of the Manin triples of this form.

Moreover the above given examples indicate the diversity of Drinfeld double struc-

tures one may encounter in higher dimensions.

Beside that from the present classification procedure one can find whether a

given six-dimensional Lie algebra can be equipped by a suitable ad-invariant bilinear

form and turned into a Drinfeld double (and how many such forms exist). The

decisive aspects are the signature of the Killing form and the dimensions of the

ideals Dj ,Dj . The necessary condition is that they have the values occuring in

Table 1. The investigation then can be reduced to a direct check of equivalence with

a particular six-dimensional Lie algebra (possibly after determination of Abelian

ideals and the factor algebras as in the Subsec. 4.5.1).
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One can see that for many Drinfeld doubles there are several decompositions

into Manin triples. For each Manin triple there is a pair of dual sigma models. Their

equation of motion 2

〈∂±ll−1, E±〉 = 0 (12)

are given by the Drinfeld double and a three-dimensional subspace E+ ⊂ D so that

all these models (for fixed E+) are equivalent. Moreover the scaling of 〈 , 〉 does not

change the equations of motion (12) and consequently all the models corresponding

to (nonisomorphic) Drinfeld doubles with different b are equal. We can construct

the explicit forms of the equations of motion for every Drinfeld double but without

a physical motivation this does not make much sense.

Let us note that the complete sets of the equivalent sigma models for a fixed

Drinfeld double are given by the so called modular space of the double. The con-

struction of all nonisomorphic Manin triples for the double is the first step in the

construction of the modular spaces.

Appendix A. Bianchi Algebras

It is known that any three-dimensional real Lie algebra can be brought to one of

11 forms by a change of basis. These forms represent nonisomorphic Lie algebras

and are conventionally known as Bianchi algebras. They are denoted by 1, . . . ,5,

6a, 60, 7a, 70, 8, 9 (see e.g. Ref. 11, in literature often uppercase roman numbers

are used instead of arabic ones). The list of Bianchi algebras is given in decreasing

order starting from simple algebras.

9 : [X1,X2] = X3, [X2,X3] = X1, [X3,X1] = X2, (i.e. so(3)) ,

8 : [X1,X2] = −X3, [X2,X3] = X1, [X3,X1] = X2, (i.e. sl(2,R)) ,

7a : [X1,X2] = −aX2 +X3, [X2,X3] = 0, [X3,X1] = X2 + aX3, a > 0 ,

70 : [X1,X2] = 0, [X2,X3] = X1, [X3,X1] = X2 ,

6a : [X1,X2] = −aX2 −X3, [X2,X3] = 0 ,

[X3,X1] = X2 + aX3, a > 0, a 6= 1 ,

60 : [X1,X2] = 0, [X2,X3] = X1, [X3,X1] = −X2 ,

5 : [X1,X2] = −X2, [X2,X3] = 0, [X3,X1] = X3 ,

4 : [X1,X2] = −X2 +X3, [X2,X3] = 0, [X3,X1] = X3 ,

3 : [X1,X2] = −X2 −X3, [X2,X3] = 0, [X3,X1] = X2 +X3 ,

2 : [X1,X2] = 0, [X2,X3] = X1, [X3,X1] = 0 ,

1 : [X1,X2] = 0, [X2,X3] = 0, [X3,X1] = 0 .
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One might use also another classification (used e.g. in Ref. 7). In this notation

the basis of the Lie algebra is usually written as (e0, e1, e2) and the classification is:

R3 = 1 : [e1, e2] = 0, [e0, ei] = 0 ,

n3 = 2 : [e1, e2] = e0, [e0, ei] = 0 ,

r3(ρ) : [e1, e2] = 0, [e0, e1] = e1 ,

[e0, e2] = ρe2, −1 ≤ ρ ≤ 1 .

This algebra is isomorphic to 60 for ρ = −1, 6 ρ+1
ρ−1

for 0 < |ρ| < 1, 3 for ρ = 0

and 5 for ρ = 1.

r′3(1) = 4 : [e1, e2] = 0, [e0, e1] = e1, [e0, e2] = e1 + e2 ,

s3(µ) : [e1, e2] = 0, [e0, e1] = µe1 − e2, [e0, e2] = e1 + µe2, µ ≥ 0 .

This algebra is isomorphic to 70 for µ = 0 and 7µ for µ > 0.

sl(2,R) = 8 , so(3) = 9 .

It is clear that this classification is more compact, on the other hand the classes in

this classification contain algebras with different properties such as dimensions of

commutant etc. and surprisingly the special cases of parameters we need to distin-

guish correspond in most cases to different Bianchi algebras. Therefore we use the

Bianchi classification.

Appendix B. List of Manin Triples

We present a list of Manin triples based on Ref. 8. The label of each Manin triple,

e.g. (8|5.ii|b), indicates the structure of the first subalgebra G, e.g. Bianchi algebra

8, the structure of the second subalgebra G̃, e.g. Bianchi algebra 5; roman num-

bers i, ii etc. (if present) distinguish between several possible pairings 〈· , ·〉 of the

subalgebras G, G̃ and the parameter b indicates the Manin triples differing by the

rescaling of 〈· , ·〉 (if such Manin triples are not isomorphic).

The Lie structures of the subalgebras G and G̃ are written out in mutually dual

bases (X1,X2,X3) and (X̃1, X̃2, X̃3) where the transformation (2) was used to

bring G to the standard Bianchi form. Because of (3) this information specifies the

Manin triple completely.

The dual Manin triples (D, G̃,G) are not written explicitly but can be easily

obtained by Xj ↔ X̃j.

(1) Manin triples with the first subalgebra G = 9:

(9|1) : [X1,X2] = X3, [X2,X3] = X1, [X3,X1] = X2 ,

[X̃1, X̃2] = 0, [X̃2, X̃3] = 0, [X̃3, X̃1] = 0 ,

(9|5|b) : [X1,X2] = X3, [X2,X3] = X1, [X3,X1] = X2 ,

[X̃1, X̃2] = −bX̃2, [X̃2, X̃3] = 0, [X̃3, X̃1] = bX̃3, b > 0 .
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(2) Manin triples with the first subalgebra G = 8:

(8|1) : [X1,X2] = −X3, [X2,X3] = X1, [X3,X1] = X2 ,

v[X̃1, X̃2] = 0, [X̃2, X̃3] = 0, [X̃3, X̃1] = 0 ,

(8|5.i|b) : [X1,X2] = −X3, [X2,X3] = X1, [X3,X1] = X2 ,

[X̃1, X̃2] = −bX̃2, [X̃2, X̃3] = 0, [X̃3, X̃1] = bX̃3, b > 0 ,

(8|5.ii|b) : [X1,X2] = −X3, [X2,X3] = X1, [X3,X1] = X2 ,

[X̃1, X̃2] = 0, [X̃2, X̃3] = bX̃2, [X̃3, X̃1] = −bX̃1, b > 0 ,

(8|5.iii) : [X1,X2] = −X3, [X2,X3] = X1, [X3,X1] = X2 ,

[X̃1, X̃2] = X̃2, [X̃2, X̃3] = X̃2, [X̃3, X̃1] = −(X̃1 + X̃3) .

(3) Manin triples with the first subalgebra G = 7a:

(7a|1) : [X1,X2] = −aX2 +X3, [X2,X3] = 0 ,

[X3,X1] = X2 + aX3, a > 0 ,

[X̃1, X̃2] = 0, [X̃2, X̃3] = 0, [X̃3, X̃1] = 0 ,

(7a|2.i) : [X1,X2] = −aX2 +X3, [X2,X3] = 0 ,

[X3,X1] = X2 + aX3, a > 0 ,

[X̃1, X̃2] = 0, [X̃2, X̃3] = X̃1, [X̃3, X̃1] = 0 ,

(7a|2.ii) : [X1,X2] = −aX2 +X3, [X2,X3] = 0 ,

[X3,X1] = X2 + aX3, a > 0 ,

[X̃1, X̃2] = 0, [X̃2, X̃3] = −X̃1, [X̃3, X̃1] = 0 ,

(7a|71/a|b) : [X1,X2] = −aX2 +X3, [X2,X3] = 0 ,

[X3,X1] = X2 + aX3, a > 0 ,

[X̃1, X̃2] = b
(
− 1
a
X̃2 + X̃3

)
, [X̃2, X̃3] = 0 ,

[X̃3, X̃1] = b
(
X̃2 + 1

a
X̃3
)
, b ∈ R− {0} .

(4) Manin triples with the first subalgebra G = 70:

(70|1) : [X1,X2] = 0, [X2,X3] = X1, [X3,X1] = X2 ,

[X̃1, X̃2] = 0, [X̃2, X̃3] = 0, [X̃3, X̃1] = 0 ,

(70|2.i) : [X1,X2] = 0, [X2,X3] = X1, [X3,X1] = X2 ,

[X̃1, X̃2] = X̃3, [X̃2, X̃3] = 0, [X̃3, X̃1] = 0 ,
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(70|2.ii) : [X1,X2] = 0, [X2,X3] = X1, [X3,X1] = X2 ,

[X̃1, X̃2] = −X̃3, [X̃2, X̃3] = 0, [X̃3, X̃1] = 0 ,

(70|4|b) : [X1,X2] = 0, [X2,X3] = X1, [X3,X1] = X2 ,

[X̃1, X̃2] = b(−X̃2 + X̃3), [X̃2, X̃3] = 0 ,

[X̃3, X̃1] = bX̃3, b ∈ R− {0} ,

(70|5.i) : [X1,X2] = 0, [X2,X3] = X1, [X3,X1] = X2 ,

[X̃1, X̃2] = −X̃2, [X̃2, X̃3] = 0, [X̃3, X̃1] = X̃3 ,

(70|5.ii|b) : [X1,X2] = 0, [X2,X3] = X1, [X3,X1] = X2 ,

[X̃1, X̃2] = 0, [X̃2, X̃3] = bX̃2, [X̃3, X̃1] = −bX̃1 , b > 0 .

(5) Manin triples with the first subalgebra G = 6a:

(6a|1) : [X1,X2] = −aX2 −X3, [X2,X3] = 0 ,

[X3,X1] = X2 + aX3, a > 0 , a 6= 1 ,

[X̃1, X̃2] = 0, [X̃2, X̃3] = 0, [X̃3, X̃1] = 0 ,

(6a|2) : [X1,X2] = −aX2 −X3, [X2,X3] = 0 ,

[X3,X1] = X2 + aX3, a > 0, a 6= 1 ,

[X̃1, X̃2] = 0, [X̃2, X̃3] = X̃1, [X̃3, X̃1] = 0 ,

(6a|61/a.i|b) : [X1,X2] = −aX2 −X3, [X2,X3] = 0 ,

[X3,X1] = X2 + aX3, a > 0, a 6= 1 ,

[X̃1, X̃2] = −b
(

1
a
X̃2 + X̃3

)
, [X̃2, X̃3] = 0 ,

[X̃3, X̃1] = b
(
X̃2 + 1

a
X̃3), b ∈ R− {0} ,

(6a|61/a.ii) : [X1,X2] = −aX2 −X3, [X2,X3] = 0 ,

[X3,X1] = X2 + aX3, a > 0, a 6= 1 ,

[X̃1, X̃2] = X̃1, [X̃2, X̃3] = a+1
a−1 (X̃2 + X̃3) ,

[X̃3, X̃1] = X̃1 ,

(6a|61/a.iii) : [X1,X2] = −aX2 −X3, [X2,X3] = 0 ,

[X3,X1] = X2 + aX3, a > 0, a 6= 1 ,

[X̃1, X̃2] = X̃1, [X̃2, X̃3] = a−1
a+1 (−X̃2 + X̃3) ,

[X̃3, X̃1] = −X̃1 .
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(6) Manin triples with the first subalgebra G = 60:

(60|1) : [X1,X2] = 0, [X2,X3] = X1, [X3,X1] = −X2 ,

[X̃1, X̃2] = 0, [X̃2, X̃3] = 0, [X̃3, X̃1] = 0 ,

(60|2) : [X1,X2] = 0, [X2,X3] = X1, [X3,X1] = −X2 ,

[X̃1, X̃2] = X̃3, [X̃2, X̃3] = 0, [X̃3, X̃1] = 0 ,

(60|4.i|b) : [X1,X2] = 0, [X2,X3] = X1, [X3,X1] = −X2 ,

[X̃1, X̃2] = b(−X̃2 + X̃3), [X̃2, X̃3] = 0 ,

[X̃3, X̃1] = bX̃3, b ∈ R− {0} ,

(60|4.ii) : [X1,X2] = 0, [X2,X3] = X1, [X3,X1] = −X2 ,

[X̃1, X̃2] = (−X̃1 + X̃2 + X̃3) ,

[X̃2, X̃3] = X̃3, [X̃3, X̃1] = −X̃3 ,

(60|5.i) : [X1,X2] = 0, [X2,X3] = X1, [X3,X1] = −X2 ,

[X̃1, X̃2] = −X̃2, [X̃2, X̃3] = 0, [X̃3, X̃1] = X̃3 ,

(60|5.ii) : [X1,X2] = 0, [X2,X3] = X1, [X3,X1] = −X2 ,

[X̃1, X̃2] = −X̃1 + X̃2, [X̃2, X̃3] = X̃3, [X̃3, X̃1] = −X̃3 ,

(60|5.iii|b) : [X1,X2] = 0, [X2,X3] = X1, [X3,X1] = −X2 ,

[X̃1, X̃2] = 0, [X̃2, X̃3] = −bX̃2, [X̃3, X̃1] = bX̃1, b > 0 .

(7) Manin triples with the first subalgebra G = 5:

(5|1) : [X1,X2] = −X2, [X2,X3] = 0, [X3,X1] = X3 ,

[X̃1, X̃2] = 0, [X̃2, X̃3] = 0, [X̃3, X̃1] = 0 ,

(5|2.i) : [X1,X2] = −X2, [X2,X3] = 0, [X3,X1] = X3 ,

[X̃1, X̃2] = 0, [X̃2, X̃3] = X̃1, [X̃3, X̃1] = 0 ,

(5|2.ii) : [X1,X2] = −X2, [X2,X3] = 0, [X3,X1] = X3 ,

[X̃1, X̃2] = X̃3, [X̃2, X̃3] = 0, [X̃3, X̃1] = 0

and dual Manin triples (G ↔ G̃) to Manin triples given above for G = 60, 70,

8, 9.
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(8) Manin triples with the first subalgebra G = 4:

(4|1) : [X1,X2] = −X2 +X3, [X2,X3] = 0, [X3,X1] = X3 ,

[X̃1, X̃2] = 0, [X̃2, X̃3] = 0, [X̃3, X̃1] = 0 ,

(4|2.i) : [X1,X2] = −X2 +X3, [X2,X3] = 0, [X3,X1] = X3 ,

[X̃1, X̃2] = 0, [X̃2, X̃3] = X̃1, [X̃3, X̃1] = 0 ,

(4|2.ii) : [X1,X2] = −X2 +X3, [X2,X3] = 0, [X3,X1] = X3 ,

[X̃1, X̃2] = 0, [X̃2, X̃3] = −X̃1, [X̃3, X̃1] = 0 ,

(4|2.iii|b) : [X1,X2] = −X2 +X3, [X2,X3] = 0, [X3,X1] = X3 ,

[X̃1, X̃2] = 0, [X̃2, X̃3] = 0, [X̃3, X̃1] = bX̃2, b ∈ R− {0}

and dual Manin triples (G ↔ G̃) to Manin triples given above for G = 60, 70.

(9) Manin triples with the first subalgebra G = 3:

(3|1) : [X1,X2] = −X2 −X3, [X2,X3] = 0, [X3,X1] = X2 +X3 ,

[X̃1, X̃2] = 0, [X̃2, X̃3] = 0, [X̃3, X̃1] = 0 ,

(3|2) : [X1,X2] = −X2 −X3, [X2,X3] = 0, [X3,X1] = X2 +X3 ,

[X̃1, X̃2] = 0, [X̃2, X̃3] = X̃1, [X̃3, X̃1] = 0 ,

(3|3.i) : [X1,X2] = −X2 −X3, [X2,X3] = 0, [X3,X1] = X2 +X3 ,

[X̃1, X̃2] = −b(X̃2 + X̃3), [X̃2, X̃3] = 0 ,

[X̃3, X̃1] = b(X̃2 + X̃3), b ∈ R− {0} ,

(3|3.ii) : [X1,X2] = −X2 −X3, [X2,X3] = 0, [X3,X1] = X2 +X3 ,

[X̃1, X̃2] = 0, [X̃2, X̃3] = X̃2 + X̃3, [X̃3, X̃1] = 0 ,

(3|3.iii) : [X1,X2] = −X2 −X3, [X2,X3] = 0, [X3,X1] = X2 +X3 ,

[X̃1, X̃2] = X̃1, [X̃2, X̃3] = 0, [X̃3, X̃1] = −X̃1 .

(10) Manin triples with the first subalgebra G = 2:

(2|1) : [X1,X2] = 0, [X2,X3] = X1, [X3,X1] = 0 ,

[X̃1, X̃2] = 0, [X̃2, X̃3] = 0, [X̃3, X̃1] = 0 ,

(2|2.i) : [X1,X2] = 0, [X2,X3] = X1, [X3,X1] = 0 ,

[X̃1, X̃2] = X̃3, [X̃2, X̃3] = 0, [X̃3, X̃1] = 0 ,

(2|2.ii) : [X1,X2] = 0, [X2,X3] = X1, [X3,X1] = 0 ,

[X̃1, X̃2] = −X̃3, [X̃2, X̃3] = 0, [X̃3, X̃1] = 0

and dual Manin triples (G ↔ G̃) to Manin triples given above for G = 3, 4,

60, 6a, 70, 7a.
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(11) Manin triples with the first subalgebra G = 1:

(1|1) : [X1,X2] = 0, [X2,X3] = 0, [X3,X1] = 0 ,

[X̃1, X̃2] = 0, [X̃2, X̃3] = 0, [X̃3, X̃1] = 0

and dual Manin triples (G ↔ G̃) to Manin triples given above for G = 2–9.

References
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4. M. A. Lledó and V. S. Varadarajan, Lett. Math. Phys. 45, 247 (1998).
5. K. Sfetsos, Phys. Lett. B432, 365 (1998).
6. M. A. Jafarizadeh and A. Rezaei-Aghdam, Phys. Lett. B458, 470 (1999).
7. X. Gomez, J. Math. Phys. 41, 4939 (2000).
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