
Modern Physics Letters A, Vol. 17, No. 7 (2002) 429–434fc World Scientific Publishing Company

CLASSIFICATION OF POISSON–LIE T–DUAL MODELS
WITH TWO DIMENSIONAL TARGETS
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1. Introduction

A very important symmetry of string theories, or more specifically, two–dimensional
sigma models is the T–duality. In the pioneering work,1 Klimč́ık and Ševera intro-
duced its nonabelian version – the Poisson–Lie T–duality and showed that the dual
sigma models can be formulated on Drinfeld doubles. The explicit form of dual
models on the nonabelian double GL(2|IR) was presented in the following work.2

Other dual models were given in a series of forthcoming papers, see e.g. Refs. 3–
5. An attempt to classify all dual principal sigma models with three–dimensional
target space6 made us to revisit the models with the two–dimensional targets and
classify them. In the following we classify all four–dimensional Drinfeld doubles and
the Poisson–Lie T–dual models on them.

2. Classification of four–dimensional Drinfeld doubles

The Drinfeld double D is defined as a Lie group such that its Lie algebra D equipped
by a symmetric ad–invariant nondegenerate bilinear form 〈., .〉 can be decomposed
into a pair of maximally isotropic subalgebras G, G̃ such that D as a vector space
is the direct sum of G and G̃. Any such decomposition written as an ordered set
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(D,G,G̃) is called a Manin triple. It is clear that to any Drinfeld double exist at
least two Manin triples (D,G,G̃), (D,G̃,G). Later we show an example of Drinfeld
double with more than two possible decomposition into Manin triples.

One can see that the dimensions of the subalgebras are equal and that bases
{Ti}, {T̃ i} in the subalgebras can be chosen so that

〈Ti, Tj〉 = 0, 〈Ti, T̃
j〉 = 〈T̃ j , Ti〉 = δj

i , 〈T̃ i, T̃ j〉 = 0. (1)

This canonical form of the bracket is invariant with respect to the transformations

T ′
i = TkAk

i , T̃
′j = (A−1)j

kT̃ k. (2)

Due to the ad-invariance of 〈., .〉 the algebraic structure of D is

[Ti, Tj ] = fij
kTk, [T̃ i, T̃ j ] = f̃ ij

kT̃ k,

[Ti, T̃
j ] = fki

j T̃ k + ˜f jk
iTk. (3)

From the above given facts it is clear that the subalgebras G,G̃ of the four–
dimensional Drinfeld double are two–dimensional and surprisingly the Jacobi iden-
tities do not impose any condition on coefficients fij

k, f̃ ij
k in this case. Each of the

subalgebras is solvable and due to the invariance of (1) w.r.t. (2), the basis {T1, T2}
can be chosen so that the nontrivial Lie bracket in the first subalgebra is

[T1, T2] = nT2 (4)

where n = 0 or 1. However, the Lie bracket in the second subalgebra in general
cannot be written in a similar way without breaking the canonical form (1) of the
bracket 〈, 〉 or the canonical form (4) of the subalgebra G. Nevertheless, we can use
the transformations (2) with

A =
(

1 a
0 b

)
, (5)

that preserve (4) to bring the Lie bracket of the second subalgebra to one of the
following form

[T̃ 1, T̃ 2] = βT̃ 2, β ∈ IR or [T̃ 1, T̃ 2] = T̃ 1. (6)

In summary, there are just four types of nonisomorphic four-dimensional Manin
triples.
Abelian Manin triple:

[Ti, Tj ] = 0, [T̃ i, T̃ j ] = 0, [Ti, T̃
j ] = 0, i, j = 1, 2. (7)

Semiabelian Manin triple (only nontrivial brackets are displayed):

[T̃ 1, T̃ 2] = T̃ 2, [T2, T̃
1] = T2, [T2, T̃

2] = −T1. (8)
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Type A nonabelian Manin triple (β 6= 0):

[T1, T2] = T2, [T̃ 1, T̃ 2] = βT̃ 2,

[T1, T̃
2] = −T̃ 2, [T2, T̃

1] = βT2, [T2, T̃
2] = −βT1 + T̃ 1. (9)

Type B nonabelian Manin triple:

[T1, T2] = T2, [T̃ 1, T̃ 2] = T̃ 1,

[T1, T̃
1] = T2, [T1, T̃

2] = −T1 − T̃ 2, [T2, T̃
2] = T̃ 1. (10)

An interesting fact is that Drinfeld doubles corresponding to semiabelian Manin
triple (8) and type B nonabelian Manin triple (10) are the same, i.e. these Manin
triples are different decomposition into maximally isotropic subalgebras of the same
Lie algebra with the same invariant form. The transformation of the dual basis
between these decompositions is

X1 = −T̃ 1 + T̃ 2, X2 = T1 + T2,

X̃1 = T2, X̃2 = T̃ 1, (11)

where (Xi, X̃
j) denote the dual basis in the type B nonabelian Manin triple and

(Ti, T̃
j) is the basis in the semiabelian Manin triple. The other Manin triples specify

the algebra of the Drinfeld double uniquely, i.e. there is one connected and simply
connected Drinfeld double to each of these Manin triples.

3. Dual sigma models

Having all four–dimensional Drinfeld doubles we can construct the two–dimensional
Poisson–Lie T–dual sigma models on them. The construction of the models is
described in the papers.1,2 The models have target spaces in the Lie groups G and
G̃ and are defined by the Lagrangians

L = Eij(g)(g−1∂−g)i(g−1∂+g)j , (12)

L̃ = Ẽij(g̃)(g̃−1∂−g̃)i(g̃−1∂+g̃)j , (13)

where
E(g) = (a(g) + E(e)b(g))−1E(e)d(g), (14)

E(e) is a constant matrix and a(g), b(g), d(g) are 2 × 2 submatrices of the adjoint
representation of the group G on D in the basis (Ti, T̃

j)

Ad(g)T =
(

a(g) 0
b(g) d(g)

)
. (15)
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The matrix Ẽ(g̃) is constructed analogously with

Ad(g̃)T =
(

d̃(g̃) b̃(g̃)
0 ã(g̃)

)
, Ẽ(ẽ) = E(e)−1 =

(
x y
u v

)
. (16)

Both equations of motion of the above given lagrangian systems can be reduced
from equation of motion on the whole Drinfeld double, not depending on the choice
of Manin triple:

〈(∂±l)l−1, E±〉 = 0, (17)

where subspaces E+ = span(T i + Eij(e)T̃j), E− = span(T i − Eji(e)T̃j) are orthog-
onal w.r.t. 〈, 〉 and span the whole Lie algebra D. One writes l = g.h̃, g ∈ G, h̃ ∈ G̃

(such decomposition of group elements exists at least at the vicinity of the unit ele-
ment) and eliminates h̃ from (17), respectively l = g̃.h, h ∈ G, g̃ ∈ G̃ and eliminates
h from (17). The resulting equations of motion for g, resp. g̃ are the equations of
motion of the corresponding lagrangian system (see Ref. 1).

The corresponding models for the Manin triples (7)–(10) are the following.
Abelian double: The adjoint representations of the groups G, G̃ are trivial so that

Ẽ(g̃) = Ẽ(e) = E(g)−1 = E(e)−1, (18)

and the Lagrangians of the dual models are

L = (xv − uy)−1 (v ∂−χ∂+χ− y ∂−χ∂+θ − u ∂−θ∂+χ + x ∂−θ∂+θ) , (19)

L̃ = x ∂−σ∂+σ + y ∂−σ∂+ρ + u ∂−ρ∂+σ + v ∂−ρ∂+ρ. (20)

Semiabelian double: The adjoint representations of the groups G, G̃ are

Ad(g)T =


1 0 0 0
0 1 0 0
0 θ 1 0
−θ 0 0 1

 , Ad(g̃)T =


1 0 0 0
−ρ eσ 0 0
0 0 1 ρe−σ

0 0 0 e−σ


where (χ, θ) and (σ, ρ) are group coordinates of G and G̃. The Lagrangians of the
dual models are

L =
(
v x− u y − u θ + y θ + θ2

)−1
[v ∂−χ∂+χ− (θ + y) ∂−χ∂+θ

+(θ − u) ∂−θ∂+χ + x ∂−θ∂+θ] , (21)

L̃ =
(
x− u ρ− y ρ + vρ2

)
∂−σ∂+σ + (y − vρ) ∂−σ∂+ρ

+(u− vρ) ∂−ρ∂+σ + v ∂−ρ∂+ρ. (22)

Similarly one may use the other possible decomposition of the double into maximally
isotropic subalgebras, i.e. type B nonabelian Manin triple. In this case the
adjoint representations of the groups G, G̃ are

Ad(g)T =


1 θe−χ 0 0
0 e−χ 0 0
0 −1 + e−χ 1 0

−1 + eχ θ − θe−χ −θ eχ

 ,



Classification of Poisson–Lie T–Dual Models 433

Ad(g̃)T =


e−ρ −σ σ − eρ σ −1 + e−ρ

0 1 −1 + eρ 0
0 0 eρ 0
0 0 eρ σ 1


and the Lagrangians of the dual models are

L = [v x + (eχ − 1− y)(eχ − 1 + u)]−1 [
(v + u θ + y θ + x θ2)∂−χ∂+χ (23)

+ (−1 + eχ − y − x θ) ∂−χ∂+θ − (−1 + eχ + u + x θ) ∂−θ∂+χ + x∂−θ∂+θ] ,

L̃ =
[
v x− u y + eρ (u− 2 v x− y + 2 u y) + e2 ρ (1 + v x + y − u (1 + y))

]−1[
x ∂−σ∂+σ +

(
v x− e−ρ v x + y + e−ρ u y − u y − xσ)

)
∂−σ∂+ρ

−
(
v x− e−ρ v x− u + e−ρ u y − u y + xσ

)
∂−ρ∂+σ

−
(
u σ + y σ − v − xσ2

)
∂−ρ∂+ρ

]
. (24)

This model has the same equations of motion in the double (17) as the previous
one (up to transformation of matrix E(e) induced by the change of basis of algebra)
and in this sense is equivalent to it.
Type A nonabelian doubles: The adjoint representations of the groups G, G̃ are

Ad(g)T =


1 θe−χ 0 0
0 e−χ 0 0
0 −β θe−χ 1 0

β θ β θ2e−χ −θ eχ

 ,

Ad(g̃)T =


1 0 0 −β−1ρe−σ

−ρ eσ β−1ρ β−1ρ2e−σ

0 0 1 ρe−σ

0 0 0 e−σ


where β parametrizes different Drinfeld doubles. The Lagrangians of the dual mod-
els are

L =
(
v x− u y + u β θ − y β θ + β2 θ2

)−1 [
(v + u θ + y θ + x θ2)∂−χ∂+χ

− (y + x θ − β θ) ∂−χ∂+θ − (u + x θ + β θ) ∂−θ∂+χ + x∂−θ∂+θ] , (25)

L̃ =
(
β2 − u β ρ + y β ρ + v x ρ2 − u y ρ2

)−1[
β2

(
x− u ρ− y ρ + v ρ2

)
∂−σ∂+σ

+β (y β + v x ρ− u y ρ− v β ρ) ∂−σ∂+ρ

−β (−u β + v x ρ− u y ρ + v β ρ) ∂−ρ∂+σ + v β2 ∂−ρ∂+ρ
]
. (26)

By rescaling E(e) 7→ E(e)/β, L 7→ Lβ, L̃ 7→ L̃/β we obtain the GL(2|IR) model
found in the work.2 It means that even though we have a one-parametric class
of nonisomorphic Drinfeld doubles of type A the corresponding dual models are
equivalent.

4. Conclusions
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We have classified the four–dimensional Drinfeld doubles and constructed the Poisson–
Lie T–dual models on them. The investigation of the Drinfeld doubles showed
explicitly that neither the subalgebras G, G̃ per se specify the Drinfeld double com-
pletely (viz. (9) vs. (10)) nor the Drinfeld double fixes the subalgebras G, G̃ uniquely
(viz. (8) and (10)). It turned out that besides the pair of dual models on GL(2|IR)
presented in Ref. 2 and the trivial abelian models, there exist two pairs of dual
models (21), (22) and (23), (24) on the semiabelian double (8). This is the simplest
(and the only one known to the authors) example of nontrivial modular space of
σ-models mutually connected by Poisson–Lie T–duality transformation.

It would be very interesting to find whether any of the semiabelian or nonabelian
models is integrable.
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