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Field equations for generalized principal chiral models with non–constant metric and
their possible Lax formulation are considered. Ansatz for Lax operators is taken linear
in currents. Results of a complete investigation of models allowing Lax formulation with
linear ansatz for Lax operators on solvable 2– and 3–dimensional groups are given; all
such models appear to be almost linear. Also models on simple group SU(2) with diagonal
metric are considered; it turns out that Lax formulation exists in this case for constant
metrics only.
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1 Introduction

We have investigated the generalisation of principal chiral models [1] to models
with non–constant metric (this idea was suggested by Sochen in [2]) This approach
allowed to study also models on non–semisimple groups. We have studied the case
of 2– and 3– dimensional groups, both solvable and simple. In this article we provide
a brief overview and extension of our results, submitted for publication elsewhere
(see [3], [6] and [5]).

Generalised principal chiral models [2] are given by the action

I[g] =
∫

d2xηµνLab(g)Ja
µJb

ν (1)

where G is a Lie group, L(G) its Lie algebra,

Jµ = (g−1∂µg) ∈ L(G), (2)

g : R2 → G, µ, ν ∈ {0, 1}, η = diag(1,−1), L is a G-dependent symmetric
nondegenerate bilinear form. We consider the bilinear form L as a metric on the
group manifold and the generalization of principal models from ad-invariant Killing
form on L(G) to more general case enables us to introduce the principal models
also on non–semisimple groups.

Lie products of elements of the basis of L(G) define the structure coefficients

[ta, tb] = cab
ctc (3)
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and in the same basis we define the coordinates of the field Jν

Jν = g−1∂νg = Jb
νtb. (4)

Fields automatically satisfy Bianchi identities

∂µJν − ∂νJµ + [Jµ, Jν ] = 0. (5)

Varying the action (1) we obtain the equations of motion for the generalized prin-
cipal chiral models

∂µJµ,a + Γa
bcJ

b
µJµ,c = 0 (6)

where the connection Γ is defined by

Γa
bc =

1
2
(L−1)ad(cdb

qLqc + cdc
qLqb + UbLcd + UcLbd − UdLbc). (7)

The vector fields Ua are defined in the local group coordinates θi as

Ua = U i
a(θ)

∂

∂θi
(8)

where the matrix U is the inverse of the matrix V of vielbein coordinates

U i
a(θ) = (V −1)i

a(θ), V a
i = (g−1 ∂g

∂θi
)a. (9)

Note that the connection (7) is symmetric in the lower indices, Γa
bc = Γa

cb.

1.1 Lax pairs

The ansatz that we are going to use for the Lax operators X0, X1 of the generalized
principal chiral models is

X0 = ∂0 + PabJ
b
0ta + QabJ

b
1ta + Aata, (10)

X1 = ∂1 + Q̃abJ
b
0ta + P̃abJ

b
1ta + Bata, (11)

where P,Q, P̃ , Q̃ are four arbitrary constant dimG× dimG matrices and A,B are
two arbitrary constant vectors.

By explicit evaluation of the zero curvature condition

[X0, X1] = 0, (12)

using the equations of motions (6) and Bianchi identities (5) and equating the
coefficients of different powers and derivatives of Ja

µ one finds following necessary
and sufficient conditions that the operators X0, X1 form a Lax pair:

P̃ = P, Q̃ = Q, ∃Q−1 (13)
(PbpPcq −QbpQcq)cbc

a = Pabcpq
b, (14)

1
2
ccd

a(PcpQdq + PcqQdp) = QabΓb
pq, (15)

ccd
a(PcpBd + AcQdp) = 0, (16)

ccd
a(QcpBd + AcPdp) = 0, (17)

ccd
aAcBd = 0. (18)
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Moreover, the previous equations impose a condition on Γ. Namely, we can
express (15) in an equivalent form

1
2
(Q−1)baccd

a(PcpQdq + PcqQdp) = Γb
pq (19)

and conclude that only the generalized principal models with the constant
connection Γ admit the Lax formulation (10)–(12) because the left–hand side
of the previous equation is constant.

2 2–dimensional solvable group

Every non-Abelian two–dimensional connected Lie group is isomorphic to the
group of affine transformations of real line. Let us denote it by Af(1). We have
used its matrix realisation with the following parametrisation (θ1, θ2 ∈ R)

g(θ1, θ2) =
(

exp(θ1) θ2

0 1

)
(20)

There exist for the group Af(1) two classes of metrics allowing Lax pair of the
form considered:

1. One class of metrics with Lax formulation, leading to equations of motion

∂µ∂µθ1 = 0 , ∂µ∂µθ2 + Keθ1

[(
∂θ1

∂x0

)2

−
(

∂θ1

∂x0

)2
]

= 0 (21)

The first equation is just the wave equation, its general solution has the well–
known form θ1 = F (x0−x1)+G(x0+x1). We can then substitute this solution
into the second equation and find a linear equation for θ2.

2. The class of metrics of the form

L(θ1, θ2) = αeθ1

(
−1+K2κ2

κ2 −K
−K 1

)
(22)

where K ∈ R, α, κ ∈ R \ {0}. Its equations of motion read

∂ν∂νθ1 +
1
2
∂νθ1∂

νθ1 −
1
2
κ2(K2∂νθ1∂

νθ1

−2Ke−θ1∂νθ1∂
νθ2 + e−2θ1∂νθ2∂

νθ2) = 0, (23)
∂ν∂νθ2 −Keθ1∂ν∂νθ1 = ∂νθ1∂

νθ2 (24)

and the Lax pair reads

X0 =
(

∂0 + 1
2Y0 + λ, Y1 − 2λ
0 ∂0

)
, X1 =

(
∂1 + 1

2Y1 + λ, Y0 − 2λ
0 ∂1

)
(25)

where Y0 = J1
0 − κJ2

1 + KκJ1
1 , Y1 = J1

1 − κJ2
0 + KκJ1

0 and J1
µ = ∂µθ1, J2

µ =
e−θ1∂µθ2, λ may be interpreted as a spectral parameter.
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In order to get deeper understanding of the model considered we explicitly
evaluate corresponding Lax equation (12) and find

∂0Y1 − ∂1Y0 = 0, ∂0Y0 − ∂1Y1 +
1
2
(Y0Y0 − Y1Y1) = 0. (26)

We may consider the first of these equations (26) a condition for existence of φ such
that

Yµ = 2
∂µφ

φ
(27)

and the second equation (26) becomes

∂µ∂µφ = 0. (28)

Once one has a solution φ of the wave equation (28), he may substitute this solution
into (27). After explicit calculation of Yµ in this model one finds

∂µθ1 − κe−θ1∂µ̄θ2 + Kκ∂µ̄θ1 = 2
∂µφ

φ
, (29)

where µ̄ is defined 1̄ = 0, 0̄ = 1.
After substitution eθ1 = ρ, κθ2 = W we finally obtain a set of linear partial

differential equations for ρ,W

∂0ρ− ∂1W + Kκ∂1ρ = 2
∂0φ

φ
ρ, ∂1ρ− ∂0W + Kκ∂0ρ = 2

∂1φ

φ
ρ. (30)

We have thus transformed the original nonlinear problem into several
steps, each containing linear equations only. This approach can be used to
find some simple solutions of the principal chiral model (23–24), but it is probably
impossible to write explicitly ρ,W (and consequently θ1, θ2) for a general solution
φ of the wave equation (27). We also see that we have linearized the equations
(23–24) without inverse spectral transform. On the other hand, the Lax pair (25)
proved to be useful for guessing the linearizing transformation (27).

3 3–dimensional solvable Lie groups

Models on 3-dimensional solvable Lie groups were investigated in [6]. It was
shown that most of such groups allow models of the following form only:

∂µJµ,A + 2ΓA
B3J

B
µ Jµ,3 + ΓA

33J
3
µJµ,3 = 0

∂µJµ,3 = 0

where J3
µ = ∂µθ3, JA

µ are linear in ∂µθB and θB (and nonlinear in θ3); i.e. the
equation of motion for θ3 is just the wave equation ∂µ∂µθ3 = 0 and J1

µ, J2
µ are

linear in θ1, θ2 and their derivatives and consequently the equations of motion for
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θ1,2 after substitution of the explicit form of θ3 turn out to be a system of two
coupled linear partial differential equations for unknown θ1, θ2.

The only exceptions, allowing equations of motion of a different form, are 3-
dimensional nilpotent group, i.e. Heisenberg group, and centrally extended Af(1)
group. These cases were considered separately.

The Heisenberg group leads to models that can be written again in terms of
linear equations (although not of the form given above). The case of centrally
extended Af(1) group was investigated using computer algebra system and we
have also found no intrinsically nonlinear model, i.e. the results are again similar
to the previous one.

4 Generalized principal chiral models on SU(2)

As mentioned in the introduction to the first chapter, chiral models on simple
groups were the original ones considered because of nondegeneracy of their Killing
form. Results concerning the case of models with such ad-invariant metrics and
corresponding inverse scattering method were published firstly in [1]. The gener-
alization by Sochen [2] allowed to consider also the case with nonconstant metric.
In the paper [5] one of us has tried to construct such model on SU(2) group for
diagonal metric, but has not found any.

In the following we present a simple explanation why there is no such model
with diagonal nonconstant metric on SU(2). We use the usual basis of su(2) with
the structure coefficients cc

ab = iεabc. As was mentioned in [5], the connection Γ in
the case of diagonal metric on SU(2) has a following form (no sums over repeated
indices):

iΓa
bc = εabc

Lbb − Lcc

2Laa
, ∀a 6= b, a 6= c, c 6= b, (31)

iΓa
bb = −UaLbb

2Laa
, ∀a 6= b, (32)

iΓa
ab = iΓa

ba =
UbLaa

2Laa
, (33)

If we write explicitly the equations (31) for different choices of indices, we find

L22 = 2iΓ1
23L11 + L33, (34)

L33 = 2iΓ2
31L22 + L11, L11 = 2iΓ3

12L33 + L22. (35)

We eliminate from (35) L22 using the equation (34) and find

(1− 2iΓ1
23)L11 = (2iΓ3

12 + 1)L33, (36)
(4iΓ1

23iΓ
2
31 + 1)L11 = (1− 2iΓ2

31)L33. (37)

Since Γs are constant due to (19), we find that L11 is a constant multiple of L33

(otherwise the nonsingularity of the metric L would require all coefficients in the
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equations (36–37) be zero, i.e. Γ1
23 = − i

2 ,Γ3
12 = i

2 ,Γ2
31 = − i

2 and −4Γ1
23Γ

2
31 + 1 =

2 = 0 leading to a contradiction).
Together with (34) we have found that L11 and L22 are constant multiples of

L33. Using the relation
detL = const. (38)

proven in [5] we find det L = K(L33)3 = const. (where K 6= 0 is a certain constant),
i.e. L33 = Const.. Therefore, the only diagonal metrics L admitting the
Lax formulation in the form considered (i.e. linear in currents) are the
constant ones. It was shown in [5] that constant diagonal metrics always allow
such a Lax pair.

5 Conclusion

We have found no interesting, truly nonlinear integrable model on any 2– and
3– dimensional non–semisimple Lie group. We don’t know whether it is due to our
ansatz (10–11) for Lax operators or whether it is a general property of principal
models on non–semisimple groups.

The investigation of principal models on the group SU(2) with diagonal met-
ric and Lax pair linear in currents can be considered complete: only models with
constant metric allow Lax pair and all models with constant metric have a Lax
pair.

Classification of principal chiral models with nonconstant non-diagonal metric
on SU(2) seems to be technically unfeasible in the present time.

This work was partially supported by grant No. 1929/2001 of Czech Council of Uni-

versities.
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