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Department of Physics, Faculty of Nuclear
Sciences and Physical Engineering of the CTU
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Prof. Ing. Jǐŕı Tolar, DrSc.
Chairperson of the Board for the Defence of
the Doctoral Thesis in the branch of study
Mathematical Engineering
Faculty of Nuclear Sciences and Physical
Engineering,
Czech Technical University in Prague,
Břehová 7, 115 19 Prague 1

1



Contents

1 Introduction 3
1.1 σ–models and principal chiral models . . . . . . . . . . 3
1.2 Integrability of principal chiral models . . . . . . . . . 4
1.3 T–duality . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Dualities in general . . . . . . . . . . . . . . . . 5
1.3.2 Abelian T–duality . . . . . . . . . . . . . . . . 6
1.3.3 Poisson–Lie T–duality . . . . . . . . . . . . . . 7

2 My results on integrability of principal chiral models 10
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My doctoral thesis is devoted to two areas of research, the inte-
grability of principal chiral models and the classification of algebraic
structures involved in the Poisson–Lie T–duality of σ–models, namely
Manin triples and Drinfeld doubles. It consists of the papers

• L. Hlavatý, and L. Šnobl: Principal chiral models on non–semisimple
groups, J. Phys A 34 (2001) 7795–7809.

• L. Šnobl, L. Hlavatý: Principal chiral models with non–constant
metric, Czech. J. of Phys. 51 (2001) 1441–1446.

• L. Hlavatý, L. Šnobl: Poisson–Lie T–dual models with two–dimensional
targets, Mod. Phys. Lett. A 17 (2002) 429–434.

• L. Šnobl, L. Hlavatý: Classification of 6–dimensional real Drinfeld
doubles, accepted for publication in Int. J. of Mod. Phys. A.

and the preprint

• L. Hlavatý, L. Šnobl: Classification of 6–dimensional Manin triples.
e–preprint math.QA/0202209.

In the following sections I provide firstly a brief review of the known
facts about integrability of σ–models and about Poisson–Lie T–duality,
secondly a summary of my results contained in each of the papers. At
the end I recollect several open questions and propose possible direc-
tions for the future research.

1 Introduction

1.1 σ–models and principal chiral models

σ–models are encountered quite often in modern theoretical physics,
either as a corner–stone of a theory, e.g. the string theory or as toy
models reproducing some properties of more realistic and more complex
systems. They are in general field theoretical models on d–dimensional
Minkowski spacetime M with values in D–dimensional target manifold
T , whose action written in terms of fields

φa : M → T, a ∈ {1, . . . , D}

is

S =
∫

ddxL =
∫

ddxGab(φ)∂µφ
a∂µφb, (1)

Gab is interpreted as a given metric on the target space T and that’s
why it is assumed to be nondegenerate and symmetric, greek indices are
raised and lowered using the Minkowski metric η = diag(+1,−1, . . . ,−1).
In the following I consider only dimM = d = 2, i.e. η = diag(+1,−1).
The equations of motion are derived by the variation of the action

0 = ∂µ∂
µφb + (G−1)bc ∂Gcd

∂φe
∂µφ

d∂µφe − 1

2
(G−1)bc ∂Gde

∂φc
∂µφ

d∂µφe.
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Defining the Levi–Civita connection

Γa
bc =

1

2
(G−1)ad

(
∂Gdc

∂φb
+

∂Gbd

∂φc
− ∂Gbc

∂φd

)

and using the symmetry of ∂µφ
a∂µφb one can write the equations of

motion in the form

∂µ∂
µφa + Γa

bc∂µφ
b∂µφc = 0. (2)

(Generalized) Principal chiral models or principal σ–models form
a special subclass of σ–models, namely those with the target T not
only a manifold but moreover a Lie group G. In this case one may
choose a basis {ta} of the Lie algebra G and express the action in a
more geometrical way in terms of currents Jµ instead of derivatives of
the fields

S =
∫

ddxLab(φ)Ja,µJ b
,µ

where
Jµ = Lφ−1∗∂

µφ ≡ φ−1∂µφ, Jµ = Ja,µta.

This notation is especially useful when the Lagrangian is left–invariant
on the group, then Lab are just constants.

1.2 Integrability of principal chiral models

The simplest example of a principal chiral model is the model on the
abelian group G = (R+, .) with Lab = const. The equation of motion
when written in terms of θ, φ = exp(θ) is just the wave equation and the
model is explicitly solvable. One may easily find other similarly trivial
solvable principal chiral models, e.g. G = (Rn, +), Lab = (const.)ab.
A question naturally arises whether there are principal chiral models
that are not of this trivial kind but are integrable using inverse spectral
transformation. Since 1978 it is known that the answer is positive, the
most famous example is the principal chiral model on semisimple group
with the Killing form taken as the metric [1] but also other examples
are known [2],[3].

The first step in the search for spectral and inverse spectral trans-
formation is the reformulation of equations of motion as a condition
of vanishing commutator of two so–called Lax operators. The form of
Lax operators used in most known cases of integrable systems is

X0 = ∂0 + M(φ, λ), X1 = ∂1 + L(φ, λ)

where M, L are matrices (elements of some Lie algebra) depending on
the fields φ, their derivatives and the spectral parameter λ (see e.g.
[4]). The Lax equation then reads

[∂0 + M(φ, λ), ∂1 + L(φ, λ)] = 0. (3)

Since a Lie group G in principal chiral models is given from the begin-
ning, one may assume that M, L have values in its Lie algebra G.
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It is not apriori clear of what kind the functional dependence of
M, L on the field φ might be. In order to be able to look for pos-
sible integrable principal chiral models, one is forced to make some
assumptions (ansatz) about it. Since the equations of motion are lin-
ear in derivatives of Ja,µ and quadratic in Ja,µ, the simplest reasonable
ansatz proposed by N. Sochen in [5] for M, L is linear in currents Ja,µ.
Then the Lax equation might be equivalent to the equations of motion
since it contains linearly derivatives of L and M and the commutator
term, which is then quadratic in Ja,µ. Using this ansatz N. Sochen
reobtained the known Lax pairs for the principal chiral models studied
in [1], [3], both of them have constant metric Lab.

In [6], [7] using the same ansatz L. Hlavatý studied the existence of
integrable principal chiral models with non–constant metric Lab on the
simple group SU(2) and on the group of 1–dimensional affine transfor-
mations Af(1). When the metric is non–constant, the coefficients of
the currents Ja,µ in the ansatz for Lax operators might depend on φ,
but in the SU(2) case the equivalence of (3) with equations of motion
enforces the constancy of the coefficients, in the Af(1) case the consid-
eration of non–constant coefficients leads to rather non–trivial partial
differential equations for them (in addition to algebraic relations (16)–
(21) of the paper 2.1). A method of solution of this complicated system
is unknown and consequently only the constant coefficients were inves-
tigated. In the SU(2) case [6] L. Hlavatý obtained necessary conditions
for integrability on the metric but didn’t find any example of integrable
principal chiral models with non–constant metric. In the Af(1) case [7]
a nontrivial example of a model with non–constant metric seemingly
allowing Lax formulation was presented. Later it turned out that it
hadn’t the spectral parameter since it could be trivially transformed
away.

1.3 T–duality

1.3.1 Dualities in general

The notion of duality is nowadays often used in physics, especially in
connection with the superstring theory, like S– and T–duality, AdS/CFT
duality etc. The general idea behind duality is quite simple: one as-
sumes that there are two descriptions of the same physical situation and
uses duality to translate the conclusions from one description into the
other, e.g. the solutions of equations of motion. A simple example (ex-
amples in this section are taken from [8]) is provided in 4–dimensional

5



Minkowski space by a massles scalar field Φ(x) with the action1

S1 =
∫

d4xFµF
µ =

∫
d4xF ∧ ∗F, F = dΦ

and a massless antisymmetric second–rank tensor A

S2 =
1

3!

∫
d4xF̃µνρF̃

µνρ =
∫

d4xF̃ ∧ ∗F̃ , F̃ = dA

The equations of motion and Bianchi identities are

d ∗ F = 0, dF = 0 resp. d ∗ F̃ = 0, dF̃ = 0,

the duality transformation is just the Hodge dual F̃ = ∗F . Dualities
are often of this kind, interchanging the rôles of equations of motion and
Bianchi identities for respective theories. This duality can be derived
from the so–called parent action for two independent fields F̃ , φ

SP =
∫

d4x
(
F̃ ∧ ∗F̃ + φdF̃

)
The variation of SP w.r.t. φ gives the Bianchi identity dF̃ = 0, i.e. F̃ is
locally exact, F̃ = dA and plugging this back into action one reobtains
S2. Similarly by the variation of SP w.r.t. F̃ one finds F̃ = −∗ dφ and
after putting this into SP one gets the action S1 for φ. It is also worth
mentioning that the duality connects algebraically field strengths, the
connection between the original and dual fields is expressed as a differ-
ential equation

dA = − ∗ dΦ.

1.3.2 Abelian T–duality

The T–duality, or the target space duality, denotes a special duality
between σ–models, in general connecting σ–models with different tar-
get manifolds. Its simplest example is the following, so-called abelian
T–duality.

Firstly, in order not to get out of the considered class of models,
one is forced to introduce except the metric also antisymmetric terms
into the action

S =
∫

d2x
(
Gab(φ)∂µφ

a∂µφb + εµνBab(φ)∂µφ
a∂νφ

b
)
. (4)

In the light–cone coordinates z = x0 − x1, z̄ = x0 + x1 one can unite
Gab and Bab into Fab = Gab + Bab and write equivalently the action

S =
∫

dzdz̄Fab(φ)∂φa∂̄φb, where ∂ ≡ ∂

∂z
, ∂̄ ≡ ∂

∂z̄
. (5)

1I use the conventions

F =
1

r!
Fµ1...µr dxµ1 ∧ . . . ∧ dxµr , ∀F ∈ Λr(M),

∗F =
1

(d− r)!

1

r!
εµ1...µd−rν1...νr F ν1...νr dxµ1 ∧ . . . ∧ dxµd−r , ∀F ∈ Λr(M)

and
ε0123 = −1.
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Now it is possible to construct a T–duality transformation between two
such models if one assumes that an isometry of both Gab and Bab exists,
i.e. exists a vector field e = ea ∂

∂φa on the target manifold T such that

(LieeG)ab = Gac
∂ec

∂φb
+ Gcb

∂ec

∂φa
+

∂Gab

∂φc
ec = 0, (6)

and similarly for B. In suitably chosen coordinates one has

Lie ∂
∂φ0

Gab =
∂Gab

∂φ0
= 0, Lie ∂

∂φ0
Bab =

∂Bab

∂φ0
= 0. (7)

The dual model is given by Buscher’s formulae [9], [10]

G̃00 =
1

G00

, G̃0i =
1

G00

B0i, B̃0i =
1

G00

G0i,

G̃ij = Gij −
1

G00

(G0iG0j + Bi0B0j),

B̃ij = Bij +
1

G00

(G0iB0j + Bi0G0j).

It is easy to check that applying the Buscher’s formulae twice one
reobtains the original model. Also it is clear that starting from a model
with Bab = 0 one mostly gets a model with B nonvanishing, this is the
reason for the above introduced modification of the action. If several
independent commuting vector fields satisfying

(Lieej
G)ab = (Lieej

B)ab = 0

exist, i.e. there is an abelian algebra of isometries, then there are more
mutually dual models. The dualization may proceed in several steps,
using one vector field at each step for the dualization as prescribed by
Buscher’s formulae.

1.3.3 Poisson–Lie T–duality

A question naturally arises what can be done for models with non–
abelian Lie algebra G of isometries and finally whether exists a gener-
alization applicable also in the case with no isometries at all. If there
are several isometries generated by non–commuting vector fields, one
can of course choose just one of them and apply the procedure de-
scribed in the previous section but cannot proceed further because of
non–commutativity.

Nevertheless also another approach, the so–called non–Abelian du-
ality, exists if the group acts freely on T [11]. Its vast generalization
has led to the discovery of Poisson–Lie T–dual models by C. Klimč́ık
and P. Ševera in [12]. For simplicity I will assume in the following
that the group G acts on the target manifold not only freely but also
transitively, i.e. T ≡ G.

Let’s start from the light–cone action

S =
∫

dzdz̄Fij(φ)∂φi∂̄φj (8)
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and take as a basis of vector fields on G the left–invariant fields,

ea = ei
a

∂

∂φi
, [ea, eb] = f c

abec.

A variation of φ can now be expressed as

δφi = ka(z, z̄)ei
a.

Putting this variation into the action (8) one finds up to total diver-
gencies

δS =
∫

dzdz̄
(
kaLieeaFij∂φi∂̄φj + (∂ka)ei

aFij ∂̄φj + (∂̄ka)ej
aFij∂φi

)
.

Defining the current 1–forms on M

Ja = Jadz + J̄adz̄, Ja = ej
aFij∂φi, J̄a = ei

aFij ∂̄φj, (9)

one can write the equations of motion in the form

∂J̄a + ∂̄Ja = (LieeaF )ij∂φi∂̄φj. (10)

It is clear that if the group G is a group of isometries of F , LieeaFij = 0,
then the currents (9) are the corresponding Noether conserved currents
d ∗ Ja = 0. A generalization of the isometry condition is obtained by
demanding the ∗Ja to be not closed but to satisfy a Maurer–Cartan
equation on some other group G̃ written in components

d ∗ Ja +
1

2
f̃ bc

a ∗ Jb ∧ ∗Jc = (∂J̄a + ∂̄Ja − f̃ bc
a JbJ̄c)dz ∧ dz̄ = 0, (11)

This assumption allows to express the currents as a “pure gauge” on
the dual group G̃ with T̃ a the generators of its algebra [T̃ a, T̃ b] = f̃ab

c T̃ c

∗J = ∗JaT̃
a ⇒ ∗J = g̃−1dg̃, g̃ ∈ G̃.

The group elements g̃ written in some coordinates are then intepreted
as the fields dual to the original φs, the equation of motion of the
original model (10) becomes now the Bianchi identity for ∗J . Also one
should note that as in the previous examples of duality, the original and
dual fields are connected through a differential, not algebraic equation.

It remains to investigate for which metrics Fij the equivalence of
(11) and (10) can be established. Comparing (10) and (11) one finds
the condition

(LieeaF )ij = f̃ bc
a Fike

k
bFlje

l
c. (12)

From (12) together with the fact that Lie derivatives form a repre-
sentation of the Lie algebra G, one may express a necessary condition
as

f̃ jk
l f l

mi + f̃kl
mf j

li + f̃ jl
i fk

lm + f̃ jl
mfk

il + f̃kl
i f j

lm = 0. (13)

The condition (13) is surprisingly just the condition on algebras G, G̃
for existence of a Manin triple on them, i.e. of a Lie algebra D = G+ G̃
such that G, G̃ are its subalgebras maximally isotropic w.r.t. the form
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〈., .〉 defined by 〈Ta, T̃
b〉 = δb

a. Then (13) is just the Jacobi identity for
one element from G and two elements from G̃ or vice versa.

The appearance of Manin triples in the description of Poisson–Lie
T–dual models indicates a connection between the T–duality and Drin-
feld doubles; Drinfeld double D being a connected Lie group such that
its Lie algebra D equipped by a symmetric ad–invariant nondegenerate
bilinear form 〈 ., .〉 can be written as a Manin triple.

One may like to have not only some necessary conditions for exis-
tence of dual models but also a method of construction of such models,
i.e. of their metrics, from some simpler structures, avoiding the need for
solving the partial differential equations (12). Such a way of construc-
tion of Poisson–Lie T–dual models on Drinfeld doubles was presented
by C. Klimč́ık and P. Ševera in [12] and [13]. The construction starts
by postulating the equations of motion on the whole Drinfeld double,
not depending on the choice of Manin triple:

〈(∂±l)l−1, E±〉 = 0, (14)

where subspaces

E+ = span(Xi + Eij(e)X̃
j), E− = span(Xi − Eji(e)X̃

j)

are orthogonal with respect to 〈., .〉 and span the whole Lie algebra D
and {Xi}, resp. {X̃ i} form the bases of G, resp. G̃ such that

〈Xi, Xj〉 = 0, 〈X̃ i, X̃j〉 = 0, 〈Xi, X̃
j〉 = δj

i .

One writes l = g.h̃, g ∈ G, h̃ ∈ G̃, resp. l = g̃.h, h ∈ G, g̃ ∈ G̃ (such
decomposition of elements of the group D exists at least at the vicinity
of the unit element according to [14]) and eliminates h̃, resp. h by
further differentiation.

The resulting 2nd order equations can be also obtained by variation
of actions with Lagrangians

L = Eij(g)(g−1∂−g)i(g−1∂+g)j, (15)

L̃ = Ẽij(g̃)(g̃−1∂−g̃)i(g̃
−1∂+g̃)j, (16)

where
E(g) = (a(g) + E(e)b(g))−1E(e)d(g), (17)

E(e) is a constant matrix and a(g), b(g), d(g) are submatrices of the
adjoint representation of the group G on D in the basis (Xi, X̃

j)

Ad(g)T =

(
a(g) 0
b(g) d(g)

)
, (18)

the matrix Ẽ(g̃) is constructed analogously.
This construction not only shows that examples of Poisson–Lie T–

duality without isometries of the target, i.e. with both G and G̃ non-
abelian, exist but also explains that one may consider dual all models
arising from the same Drinfeld double (with a given constant matrix
Eij(e)), not only the pairs of models on one Manin triple; all such
models share the same original equations on the double (14).
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2 My results on integrability of principal chiral
models

I concentrated on the search for principal chiral models with non–
constant metric that allow Lax formulation of their equations of mo-
tion on low–dimensional Lie groups. If such nontrivial model had been
found (unfortunately hadn’t), a natural second step would be to use
the inverse spectral transformation in order to find soliton solutions of
its equations of motion.

In a continuation of the works [6], [7], I and L. Hlavatý considered
the Af(1) case for non–diagonal metric and also investigated models
on all non–semisimple 3–dimensional Lie groups. We generalized the
ansatz from the linear to affine one to get a nontrivial spectral pa-
rameter. At the end, all examples of principal chiral models on these
groups that allow Lax formulation of the chosen form turned out to be
equivalent to a sequence of linear partial differential equations, there-
fore unsuitable for solution using inverse spectral transformation. It
is possible to use even more general ansatz for Lax operators, e.g.
allow quadratic or higher order terms in currents, but currently it ap-
pears that such generalization complicates the necessary conditions for
integrability so that they cannot be solved even using the currently
available computer algebra systems. The results were published in the
following two papers:

2.1 L. Hlavatý, and L. Šnobl. Principal chiral models on
non–semisimple groups

Journal of Physics A 34 (2001) 7795–7809.

In this paper we investigated principal chiral models on solvable 2–
and 3–dimensional Lie groups. We were trying to find models whose
equations of motion can be formally rewritten as a Lax pair.

It turned out that equations of such models are in most cases equiv-
alent to a sequence of linear partial differential equations, e.g. a wave
equation for one field and two linear partial differential equations for
the remaining fields depending nonlinearly on the solution of the wave
equation. Only one of the models appeared to be truly nonlinear, but
further considerations (see the paper 2.2) showed that it can be also
brought to a similar form of sequence of linear equations.

2.2 L. Šnobl, L. Hlavatý. Principal chiral models with non–
constant metric

Czechoslovak Journal of Physics 51 (2001) 1441–1446.

This article is a summary of the talk at the 10th International Collo-
quium “Quantum Groups and Integrable Systems”. It contains a brief
review of results of previous paper and two new results.

Firstly, the Lax pair of the 2–dimensional nonlinear system (two
second order partial differential equations) obtained before (see the
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paper 2.1) hinted a possible reformulation after a change of variables
in terms of linear differential equations, namely as a wave equation and
two first order equations depending nonlinearly on the solution of the
wave equation.

Secondly, we reconsidered an older work by L. Hlavatý [6] concern-
ing the principal models on SU(2) and we proved that the technical
assumption of the diagonal form of the metric, simplifying the com-
putation to a manageable state, leads immediately to constancy of the
metric. The consideration of non–diagonal metrics seemed far too com-
plicated and was not pursued further.

3 My results on T–duality and Drinfeld doubles

I and L. Hlavatý have concentrated on investigation and classification
of Drinfeld doubles in the lowest nontrivial dimensions 4 and 6. The
classification of Drinfeld doubles in dimension 4 and the corresponding
pairs of T–dual models are presented in the paper 3.1. The main con-
clusion of this paper is that even in this case a Drinfeld double with
several non–isomorphic Manin triples exists and provides a motivation
for investigation of higher–dimensional cases. In the dimension 6 we
found all non–isomorphic Manin triples and wrote them in 78 classes
(the preprint 3.2) and then investigated which of these Manin triples
define isomorphic Drinfeld doubles (the paper 3.3). It turned out that
in the chosen parametrization there are 22 classes of non–isomorphic
6–dimensional real Drinfeld doubles.

3.1 L. Hlavatý, L. Šnobl. Classification of Poisson–Lie T–
dual models with two–dimensional targets

Modern Physics Letters A17 (2002) 429–434.

In this paper we constructed all 4–dimensional Manin triples and the
corresponding Drinfeld doubles. Quite surprisingly, even in this low
dimensional case one Drinfeld double possessing decompositions into
non–isomorphic Manin triples, i.e. into non–isomorphic pairs of maxi-
mal isotropic subalgebras exists. This is the simplest example of such
Drinfeld double, several 6–dimensional examples were found in [15]
and a complete investigation of 6–dimensional case is contained in the
next paper 3.3. Corresponding pairs of Poisson–Lie T–dual models on
Manin triples were explicitly constructed.

The knowledge of explicit examples of Drinfeld doubles decompos-
able into non–isomorphic Manin triples might be of interest in the
research on Poisson–Lie T–duality, especially it might be possible to
check whether the duality between models corresponding to different
Manin triples survives also in quantum theory; our considerations were
only on the classical level.
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3.2 L. Hlavatý, L. Šnobl. Classification of 6–dimensional real
Manin triples

preprint math.QA/0202209.

In this preprint we presented the list of all 6–dimensional Manin triples.
It is a significant generalization of the paper [15] of M.A. Jafarizadeh
and A. Rezaei-Aghdam who have assumed both isotropic subalgebras
in the Bianchi form and consequently missed quite a lot of other cases.
After its submission to electronic archive, we found that an equivalent
classification of 3–dimensional Lie bialgebras was already published by
X. Gomez in [16], albeit using different classification of 3-dimensional
Lie algebras as a starting point.

This work therefore provides an independent check of the Gomez’s
work. We compared the results and found that after translating the
notations they are equivalent. Consequently, our work was not pub-
lished.

Nevertheless there are two reasons for including it into the thesis.
Firstly, we have used it as a starting point for investigation of Drinfeld
doubles (the paper 3.3) and secondly the classification was performed
using different, more straightforward, if more computationally demand-
ing, method.

Our method basically starts from the first subalgebra of the Manin
triple written in a basis with fixed commutation relations (the so–called
Bianchi form), then gradually solving the Jacobi identities between the
subalgebras and in the second subalgebra itself and finally using the
remaining freedom in the choice of Bianchi basis of the first subalgebra
to write the second subalgebra in the simplest possible form. (Gomez
had used more theoretical approach, using the notion of twisting etc.)
The intermediate results therefore contain also general commutation
relations of any basis of the second subalgebra dual to the original
Bianchi-type one. These intermediate results might be of interest in
some applications.

3.3 L. Šnobl, L. Hlavatý. Classification of 6–dimensional real
Drinfeld doubles

accepted for publication in International Journal of Modern
Physics A.

In this paper we classified all 6–dimensional real Drinfeld doubles, i.e.
we identified Manin triples giving rise to the same Drinfeld double.

Our investigation is based on the invariants of the underlying Lie
algebra D, i.e. rank of its Killing form and dimensions of derived sub-
algebras Di, Di. These invariants give a coarse sorting into classes
of Manin triples that might possibly lead to the same Drinfeld dou-
bles. Manin triples in each of these classes are then studied and the
(non)equivalence of the corresponding Drinfeld doubles is rigorously
proven.

Interesting conclusion is that not only rather different Manin triples
might lead to the same Drinfeld double, but also the same underlying
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Lie algebra D may be equipped, e.g. for D semisimple, with different
bilinear forms and define different Drinfeld doubles.

4 Conclusions and future prospects

Concerning the integrability of principal σ–models I have found no
interesting, truly nonlinear integrable model on any 2– and 3– dimen-
sional non–semisimple Lie group, although given the ansatz for Lax
operators the investigation seems to be complete (up to completness
of results obtained using computer algebra systems, as mentioned in
the paper 2.1). I don’t know whether it is due to our linear ansatz for
Lax operators or whether it is a general property of principal models
on non–semisimple groups. One may imagine a generalization of the
ansatz but it appears that the arising conditions for the Lax operators
would be too complicated to solve.

The classification of principal models on the group SU(2) with diag-
onal metric and Lax pair linear in currents can be now considered com-
plete: only models with constant metric allow Lax pair and all models
with constant metric have a Lax pair. Unfortunately a classification
of integrable principal chiral models with nonconstant non-diagonal
metric on SU(2) seems to be technically unfeasible in the present time.

Concerning the Drinfeld doubles and Poisson–Lie T–duality we have
constructed a complete list of six-dimensional real Drinfeld doubles up
to their isomorphisms i.e. maps preserving both the Lie structure and
the ad-invariant symmetric bilinear form 〈., .〉 that define the double.
In our parametrization there are just 22 classes of the non-isomorphic
Drinfeld doubles. One can see that for many Drinfeld doubles there
are several decompositions into Manin triples. We can in principle
construct the explicit Lagrangians of the pairs of Poisson–Lie T–dual
models for every Drinfeld double but given the large number of Manin
triples this does not make much sense unless a concrete physical mo-
tivation picks up some of them. The investigation of properties of
quantum analogs of different models on the same Drinfeld double and
whether the connection between them survives the quantization, might
be of interest in the superstring theory. As far as I know no explicit
examples of such models were studied before, only recently a paper by
R. von Unge on this subject appeared [17].

An important point that follows from the classification of Drinfeld
doubles is that there are several different Drinfeld doubles correspond-
ing to Lie algebras so(1, 3), sl(2,R)⊕sl(2,R), sl(2,R).R3 whereas on
solvable Lie algebras the Drinfeld double is unique (in some cases up to
the sign of the bilinear form). It might be interesting to know whether
such behaviour holds in any dimension or is just a low–dimensional
artifact.

On the other hand there are Manin triples with one isotropic subal-
gebra abelian that are equivalent as Drinfeld doubles even though the
other subalgebras are different. That’s why it was necessary to inves-
tigate the (non)equivalence of the Manin triples of this form. More-
over the above given examples indicate the diversity of Drinfeld double
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structures one may encounter in higher dimensions. Beside that from
the present classification procedure one can find whether a given six-
dimensional Lie algebra can be equipped by a suitable ad-invariant
bilinear form and turned into a Drinfeld double (and how many such
forms exist). The investigation can be reduced to a direct check of
equivalence with a particular six-dimensional Lie algebra. For exam-
ple, one can see that there is no Drinfeld double on SO(4).

Finally, let me note that the complete sets of equivalent σ–models
for a fixed Drinfeld double are given by the so–called modular space of
the double. The construction of all non-isomorphic Manin triples for
the double is the first step in the construction of the modular spaces.
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Resumé

Dizertace je věnována dvěma oblastem výzkumu, integrabilitě prin-
cipálńıch chirálńıch model̊u a klasifikaci algebraických struktur
tvoř́ıćıch základ Poisson–Lie T–duality σ–model̊u, jmenovitě Mani-
nových trojic a Drinfeldových dvojic.

Skládá se z následuj́ıćıch publikovaných a k publikaci přijatých
článk̊u

• L. Hlavatý, and L. Šnobl: Principal chiral models on non–
semisimple groups, J. Phys A 34 (2001) 7795–7809,

• L. Šnobl, L. Hlavatý: Principal chiral models with non–constant
metric, Czech. J. of Phys. 51 (2001) 1441–1446,

• L. Hlavatý, L. Šnobl: Poisson–Lie T–dual models with two–
dimensional targets, Mod. Phys. Lett. A 17 (2002) 429–434,
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doubles, přijat k publikaci v Int. J. of Mod. Phys. A,

a z preprintu

• L. Hlavatý, L. Šnobl: Classification of 6–dimensional Manin
triples. e–preprint math.QA/0202209.

V oblasti integrability principálńıch chirálńıch model̊u jsem se
soustředil na hledáńı model̊u s nekonstantńı metrikou připouštěj́ıćıch
tzv. Laxovu formulaci v př́ıpadě grup ńızké dimenze. Protože tuto
úlohu by bylo prakticky nemožné řešit zcela obecně, byl zvolen ansatz
pro Laxovy operátory lineárńı v proudech s eventuelńım konstantńım
členem. Za tohoto předpokladu bylo možné provést úplný rozbor
model̊u na vybraných grupách. Ukázal jsem, že na 2– a 3–rozměrných
řešitelných grupách jsou takové modely vždy v jistém smyslu lineari-
zovatelné. Naopak modely na grupě SU(2) s diagonálńı metrikou jsou
sice nelineárńı, ale podmı́nka existence Laxovy formulace implikuje
konstantnost metriky. Žádné skutečně nelineárńı modely s nekon-
stantńı metrikou s Laxovou formulaćı v těchto tř́ıdách za výše uve-
deného předpokladu tedy neexistuj́ı.

Při studiu algebraických struktur Poisson–Lie T–duality se podařilo
naj́ıt úplnou klasifikaci Maninových trojic (neboli Lieových bialgeber)
a Drinfeldových dvojic v dimenźıch 4 a 6, př́ıslušné dvojice T–duálńıch
model̊u byly zkonstruovány v dimenzi 4. V dimenzi 6 bylo nalezeno ve
zvolené parametrizaci 78 tř́ıd neizomorfńıch Maninových trojic a bylo
ukázáno, že tyto trojice definuj́ı celkem 22 tř́ıd neizomorfńıch Drinfel-
dových dvojic. Již z těchto počt̊u je patrné, že v této dimenzi byla
nalezena řada př́ıpad̊u Drinfeldových dvojic připouštěj́ıćıch rozklad do
několika Maninových trojic, v dimenzi 4 existuje jediná taková Drin-
feldova dvojice. Studium odpov́ıdaj́ıćıch duálńıch model̊u může v bu-
doucnu přispět k daľśımu prohloubeńı našich znalost́ı o T–dualitách a
tedy k ještě lepš́ımu pochopeńı možnost́ı, které nab́ızej́ı duality jako
nástroj neporuchových výpočt̊u v teorii superstrun.
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