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Chapter 1

Introduction and overview

My doctoral thesis is devoted to two areas of research, the integrability of
principal chiral models and the classification of algebraic structures involved
in the Poisson–Lie T–duality of σ–models, namely Manin triples and Drinfeld
doubles. It consists of the papers

• L. Hlavatý, and L. Šnobl: Principal chiral models on non–semisimple
groups, J. Phys A 34 (2001) 7795–7809.

• L. Šnobl, L. Hlavatý: Principal chiral models with non–constant metric,
Czech. J. of Phys. 51 (2001) 1441–1446.

• L. Hlavatý, L. Šnobl: Poisson–Lie T–dual models with two–dimensional
targets, Mod. Phys. Lett. A 17 (2002) 429–434.

• L. Šnobl, L. Hlavatý: Classification of 6–dimensional real Drinfeld dou-
bles, accepted for publication in Int. J. of Mod. Phys. A.

and the preprint

• L. Hlavatý, L. Šnobl: Classification of 6–dimensional Manin triples.
e–preprint math.QA/0202209.

In this chapter I provide a review of what is currently known about these
subjects together with references to the literature and a brief summary of my
results contained in the papers. At the end of the Chapter I recollect several
open questions and propose possible directions for the future research.

The remaining chapters contain the papers, each preceded by a résumé.
A bibliography1, a list of my papers and preprints, a list of my conference
contributions and a list of citations are given at the end.

1Please note that each paper has got its own list of references and the citations in it
refer to that list.
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1.1 σ–models and principal chiral models

σ–models are encountered quite often in modern theoretical physics, either as
a corner–stone of a theory, e.g. the string theory or as toy models reproducing
some properties of more realistic and more complex systems. They are in
general field theoretical models on d–dimensional Minkowski spacetime M
with values in D–dimensional target manifold T , whose action written in
terms of fields

φa : M → T, a = 0, . . . , D − 1

is
S =

∫
ddxL =

∫
ddxGab(φ)∂µφ

a∂µφb, (1.1)

Gab is interpreted as a given metric on the target space T and that’s why it
is assumed to be nondegenerate and symmetric, greek indices are raised and
lowered using the Minkowski metric η = diag(+1,−1, . . . ,−1). One may
also add an antisymmetric tensor times derivatives of the fields etc., this will
be considered in Section 1.3. I will also consider only d = 2. The equations
of motion are obtained as Euler–Lagrange equations by the variation of the
action

0 = ∂µ
∂L

∂(∂µφa)
− ∂L
∂φa

= 2∂µ(Gab∂
µφb)− ∂Gbc

∂φa
∂µφ

b∂µφc =

= 2Gab

(
∂µ∂

µφb + (G−1)bc∂Gcd

∂φe
∂µφ

d∂µφe − 1

2
(G−1)bc∂Gde

∂φc
∂µφ

d∂µφe

)
.

Defining the Levi–Civita connection

Γa
bc =

1

2
(G−1)ad

(
∂Gdc

∂φb
+
∂Gbd

∂φc
− ∂Gbc

∂φd

)

and using the symmetry of ∂µφ
a∂µφb one can write the equations of motion

in the form
∂µ∂

µφa + Γa
bc∂µφ

b∂µφc = 0. (1.2)

It is interesting to note that in d = 2 case, any left– or right–moving set
of fields, i.e. φa(x0 + x1), ∀a < D or φa(x0 − x1), ∀a < D are solutions of
equations of motion since ∂µ∂

µφa(x0 ± x1) = φ′′a(x0 ± x1) − (±1)2φ′′a(x0 ±
x1) = 0 and Γa

bc∂µφ
b(x0 ± x1)∂µφc(x0 ± x1) = Γa

bc(φ
′b(x0 ± x1)φ′c(x0 ± x1)−

(±1)2φ′b(x0 ± x1)φ′c(x0 ± x1)) = 0.
(Generalized) Principal chiral models or principal σ–models form a special

subclass of σ–models, namely those with the target T not only a manifold
but moreover a Lie group G. In this case one may write the action also in a
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slightly modified, probably more geometrical way. Instead of writing directly
the derivatives of the fields g ≡ φ one can left translate them to the group
unit and denote by the current

Jµ = Lg−1∗∂
µg ≡ g−1∂µg.

After choosing the basis {ta} of the Lie algebra G one may write the coordi-
nates of the currents Jµ = Ja,µta. The action is

S =
∫
ddxLab(g)J

a,µJ b
,µ

and the equations of motion are

∂µJ
a,µ + Γa

bcJ
µ,bJ c

,µ = 0,

where Γa
bc is defined by relations (7)− (11) in Chapter 2.

This notation is especially useful when the Lagrangian is left–invariant on
the group, Lab(hg)(g

−1h−1∂µhg)a(g−1h−1∂µhg)b = Lab(g)(g
−1∂µg)a(g−1∂µg)b,

i.e. Lab(hg) = Lab(g), ∀h ∈ G and Lab are in this case just constants.

1.2 Integrability of principal chiral models

The simplest example of a principal chiral model is the model on the abelian
group G = (R+, .) and Lab = const. The equation of motion when written
in terms of θ, g = exp(θ) is just the wave equation

∂µ∂
µθ = 0

and the model is explicitly solvable

θ = A(x0 − x1) +B(x0 + x1).

One may easily find other similarly trivial solvable principal chiral models,
e.g. G = (Rn,+), Lab = (const.)ab. A question naturally arises whether
there are principal chiral models that are not of this trivial kind but are
integrable using inverse spectral transformation. Since 1978 it is known that
the answer is positive, the most famous example is the principal chiral model
on semisimple group with the Killing form taken as the metric [1] but also
other examples are known [2],[3].

The first step in the search for spectral and inverse spectral transforma-
tion is the reformulation of equations of motion as a condition of vanishing
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commutator of two so–called Lax operators. The form of Lax operators used
in most known cases of integrable systems is

X0 = ∂0 +M(φ, λ), X1 = ∂1 + L(φ, λ)

where M,L are matrices (elements of some Lie algebra) depending on the
fields φ and their derivatives and the spectral parameter λ. (This form was
considered e.g. by Ablowitz, Kaup, Newell and Segur in their founding paper
[4].) The Lax equation then reads

[∂0 +M(φ, λ), ∂1 +L(φ, λ)] = ∂0L(φ, λ)−∂1M(φ, λ)+ [M(φ, λ), L(φ, λ)] = 0.
(1.3)

Since a Lie group G in principal chiral models is given from the beginning,
one may assume that M,L have values in its Lie algebra G.

It is not apriori clear of what kind the functional dependence of M,L
on the field g might be. In order to be able to look for possible integrable
principal chiral models, one is forced to make some assumptions (ansatz)
about it. Since the equations of motion are linear in derivatives of Ja,µ and
quadratic in Ja,µ, the simplest reasonable ansatz proposed by N. Sochen in
[5] for M,L is linear in currents Ja,µ. Then the Lax equation might be
equivalent to the equations of motion since it contains linearly derivatives of
L and M and the commutator term, which is then quadratic in Ja,µ. Using
this ansatz N. Sochen reobtained the known Lax pairs for the principal chiral
models studied in [1], [3], both of them have constant metric Lab.

In [6], [7] using the same ansatz L. Hlavatý studied the existence of inte-
grable principal chiral models with non–constant metric Lab on the simplest
groups available, namely on the simple group SU(2) and on the solvable
group of 1–dimensional affine transformations Af(1). When the metric is
non–constant, the coefficients of the currents Ja,µ in the ansatz for Lax op-
erators might depend on g, but in the SU(2) case the equivalence of Lax
equations (1.3) with equations of motion enforces the constancy of the coeffi-
cients, in the Af(1) case the consideration of non–constant coefficients leads
to rather non–trivial partial differential equations for them (in addition to
algebraic relations (16)–(21) of Chapter 2). A method of solution of this
complicated system is unknown and consequently only the constant coeffi-
cients were investigated. In the SU(2) case [6] L. Hlavatý obtained necessary
conditions for integrability on the metric and tried to find some of their solu-
tions in the case of diagonal metric (this was motivated by the fact that the
known examples above can be written in diagonal form) but wasn’t succesful;
no example of integrable principal chiral models with non–constant metric
was found. In the Af(1) case [7] a nontrivial example of a model with non–
constant metric seemingly allowing Lax formulation was presented. Later it
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turned out that it hadn’t the spectral parameter since it could be trivially
transformed away.

1.2.1 My results on integrability of principal chiral
models

I concentrated on the search for principal chiral models with non–constant
metric that allow Lax formulation of their equations of motion on low–
dimensional Lie groups. If such nontrivial model had been found (unfor-
tunately hadn’t), a natural second step would be to use the inverse spectral
transformation in order to find soliton solutions of its equations of motion.

In a continuation of the already mentioned works [6], [7] I and L. Hlavatý
considered the Af(1) case for non–diagonal metric and also investigated mod-
els on all non–semisimple 3–dimensional Lie groups (Chapter 2). We gener-
alized the ansatz from the linear to affine one to get a nontrivial spectral pa-
rameter. At the end, all examples of principal chiral models on these groups
that allow Lax formulation of the chosen form turned out to be equivalent
to a sequence of linear partial differential equations, therefore unsuitable for
solution using inverse spectral transformation. It is possible to use even more
general ansatz for Lax operators, e.g. allow quadratic or higher order terms
in the currents, but currently it appears that such generalization complicates
the necessary conditions for integrability so that they cannot be solved even
using the currently available computer algebra systems. I also found that in
the SU(2) case the diagonality of the metric together with the chosen ansatz
for Lax operators immediately leads to the constancy of the metric. The in-
vestigation of the non–diagonal non–constant metric in the SU(2) case again
seems to be unmanageable at the time. The results were published in two
papers and are presented in Chapters 2, 3.

1.3 T–duality

1.3.1 Dualities in general

The notion of duality is nowadays often used in physics, especially in connec-
tion with the superstring theory, like S– and T–duality, AdS/CFT duality
etc. The general idea behind duality is quite simple: one assumes that there
are two descriptions of the same physical situation and uses duality to trans-
late the conclusions from one description into the other, e.g. the solutions of
equations of motion. A simple example (examples in this section are taken
from [8]) is provided in 4–dimensional Minkowski space by a massles scalar
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field Φ(x) with the action2

S1 =
∫
d4xFµF

µ =
∫
F ∧ ∗F, F = dΦ

and a massless antisymmetric second–rank tensor A

S2 =
1

3!

∫
d4xF̃µνρF̃

µνρ =
∫
F̃ ∧ ∗F̃ , F̃ = dA

The equations of motion and Bianchi identities are in the first case

d ∗ F = 0, dF = 0

and in the second case
d ∗ F̃ = 0, dF̃ = 0,

the duality transformation is just the Hodge dual F̃ = ∗F . Dualities are
often of this kind, interchanging the rôles of equations of motion and Bianchi
identities for respective theories. This duality can be derived from the so–
called parent action for two independent fields F̃ , φ

SP =
∫ (

F̃ ∧ ∗F̃ + φdF̃
)

The variation of SP w.r.t. φ gives the Bianchi identity dF̃ = 0, i.e. F̃ is locally
exact, F̃ = dA and plugging this back into action one reobtains S2. Similarly
by the variation of SP w.r.t. F̃ one finds F̃ = − ∗ dφ and after putting this
into SP one gets the action S1 for φ. It is also worth mentioning that the
duality connects algebraically field strengths, the connection between the
original and dual fields is expressed as a differential equation

dA = − ∗ dΦ.

Such dualities might be almost trivial if one is able to describe the system
completely and find explicit solutions of equations of motion but may be of

2I use the conventions

F =
1
r!

Fµ1...µrdxµ1 ∧ . . . ∧ dxµr , ∀F ∈ Λr(M),

∗F =
1

(d− r)!
1
r!

εµ1...µd−rν1...νr
F ν1...νrdxµ1 ∧ . . . ∧ dxµd−r , ∀F ∈ Λr(M)

and
ε0123 = −1.
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crucial importance if only a perturbative methods are available, especially
in quantum theory. In such a case one might be able to connect through
duality theories where perturbative computations appear to be convergent
and theories in which they are strongly divergent (weak and strong coupling
regimes); a typical example is electromagnetic duality replacing the electro-
magnetic tensor by its Hodge dual, i.e. exchanging the electric a magnetic
field strengths and taking the coupling constant to its inverse.

1.3.2 Abelian T–duality

The T–duality, or the target space duality, denotes a special duality between
σ–models, in general connecting σ–models with different target manifolds.
One of the simplest examples of T–duality is the following. Let’s assume
that the metric Gab in the model (1.1) has an isometry, i.e. exists a vector
field e = ea ∂

∂φa on the target manifold T such that

LieeGab = Gac
∂ec

∂φb
+Gcb

∂ec

∂φa
+
∂Gab

∂φc
ec = 0,

i.e. e is a Killing vector field. Then the action is invariant under the in-
finitesimal transformation

δφa = εea.

One may choose the system of coordinates so that e = ∂
∂φ0 (a ∈ {0, . . . D−1})

and write the parent action for the 1–form V = Vµdx
µ, the original fields

φi, i ≥ 1 and the 2-form Λ = 1
2!
Λµνdx

µ ∧ dxν (Reminder: Gab don’t depend
on φ0, i.e. φ0 doesn’t appear in the action)

SP =
∫
ddx

(
G00V

µVµ + 2G0iV
µ∂µφ

i +Gij∂
µφi∂µφ

j + Λµν∂µVν

)
. (1.4)

By its variation with respect to Λ one finds that ∂µVν−∂νVµ = 0, i.e. dV = 0
and therefore locally exists φ0 such that V = dφ0. Putting V = dφ0 into (1.4)
one reobtains the original action. Variation of (1.4) with respect to V gives

2G00V
µ + 2G0i∂

µφi − ∂νΛ
νµ = 0

and I can eliminate

V µ =
1

G00

(
1

2
∂νΛ

νµ −Goi∂
µφi

)
,

after substitution for V the parent action becomes (up to total divergences)

S̃ =
∫
ddx

[
1

G00

(
−1

4
∂νΛ

νµ∂ρΛ
ρ
µ +G0i∂νΛ

νµ∂µφ
i
)

+ (Gij −
G0iG0j

G00

)∂µφi∂µφ
j
]
.

(1.5)
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One should note that there is still a relation between Bianchi identities of one
model and the equations of motion in the other one. The equation derived
by variation with respect to φ0 in the first model (1.1) can be written

∂µ(G00V
µ +G0i∂

µφi) = 0, where V µ = ∂µφ0 (1.6)

and the equation derived by variation with respect to Λ in the second model
(1.5) is

∂µVν − ∂νVµ = 0, where V µ =
1

G00

(
1

2
∂νΛ

νµ −G0i∂
µφi

)
(1.7)

The equation (1.7) follows directly as a kind of Bianchi identity from the
definition of V µ in (1.6) and vice versa the equation (1.6) is a Bianchi identity
for V µ defined in (1.7).

In the case d = 2 one may replace the 2–form Λ by a scalar A = 1
2
∗ Λ,

Λµν = 2εµνA. This substitution enables to write the first term in the action
(1.5) as 1

G00
∂µA∂µA, but the second term 2(G00)

−1(G0iε
νµ∂νA∂µφ

i) still spoils
the form of the σ–model action (1.1) since it contains the antisymmetric
tensor εµν instead of the Minkowski metric ηµν on M . In order to be able to
rewrite the resulting model again as some kind of a σ–model, one is forced
to introduce except the metric also antisymmetric terms into the action

S =
∫
d2x

(
Gab(φ)∂µφ

a∂µφb + εµνBab(φ)∂µφ
a∂νφb

)
, (1.8)

Bab is assumed to be antisymmetric. Note: In the light–cone coordinates
z = x0−x1, z̄ = x0 +x1 one can unite Gab and Bab into Fab = Gab +Bab and
write equivalently the action

S =
∫
dzdz̄Fab(φ)∂φa∂̄φb, where ∂ ≡ ∂

∂z
, ∂̄ ≡ ∂

∂z̄
. (1.9)

Now it is possible to construct a T–duality transformation between two such
models if one assumes that an isometry of both Gab and Bab exists, i.e. in
suitable coordinates

Lie ∂
∂φ0
Gab =

∂Gab

∂φ0
= 0, Lie ∂

∂φ0
Bab =

∂Bab

∂φ0
= 0. (1.10)

The dual model is given by Buscher’s formulae [9], [10]

G̃00 =
1

G00

, G̃0i =
1

G00

B0i, B̃0i =
1

G00

G0i,

G̃ij = Gij −
1

G00

(G0iG0j +Bi0B0j),
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B̃ij = Bij +
1

G00

(G0iB0j +Bi0G0j).

If in the original model is Bab = 0 then one gets back to the action (1.5)
with Λµν = 2εµνA. (Note: in quantum version of these formulae encountered
in the literature also a scalar (dilaton) field coupled to the Ricci scalar R(2)

of the metric h on M appears, the action then reads (up to overall constant
factors)

S =
∫
d2x

(√
−hGab(φ)hµν∂µφ

a∂νφ
b +

√
−hR2ψ(φ) + εµνBab(φ)∂µφ

a∂νφb
)
.

The dilaton field doesn’t transform classically under T–duality, its transfor-
mation follows in path–integral formulation from requirement of maintaining
the conformal invariance. Because I present only the classical description
of T–duality, I have not included the dilaton into the action and the Weyl
rescaling of the metric on M then allowed to choose the metric on M to be
the flat Minkowski metric.)

It is easy to check that applying the Buscher’s formulae twice one obtains
back the original model. If several independent commuting vector fields ej

satisfying
(Lieej

G)ab = (Lieej
B)ab = 0

exist, i.e. there is an abelian algebra of isometries, then there are more
mutually dual models. The dualization may proceed in several steps, using
one vector field at each step for the dualization as prescribed by Buscher’s
formulae.

1.3.3 Non–abelian and Poisson–Lie T–duality

A question naturally arises what can be done for models with non–abelian
algebra G of isometries and finally whether exists a generalization applicable
also in the case with no isometries at all. If there are several isometries
generated by non–commuting vector fields, one can of course choose just one
of them and apply the procedure described in the previous section but cannot
proceed further because of non–commutativity (since the vector fields don’t
commute, the coordinates in which they are all written as ∂

∂φi don’t exist).
Nevertheless also another approach, the so–called non–Abelian duality,

exists if the group acts freely on T [11]. Then one may at least locally choose
coordinates so that first r coordinates correspond to the group elements and
the remaining ones parametrize different orbits of the action, and dualize all r
coordinates at once. The approach is based on constructing the parent action
by gauging the action e.g. in the light–cone coordinates (1.9), i.e. replacing
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∂φa and ∂̄φa by Dφa = ∂φa +Ab(Tb)
a
cφ

c and D̄φa = ∂̄φa + Āb(Tb)
a
cφ

c where
a, b, c ∈ {0, . . . , r − 1}, T s form an r–dimensional representation of the Lie
algebra G, and adding a gauge fixing term, e.g. Tr(ΛaTaF ), F = dA+ 1

2
[A,A]

for G semisimple.

SP =
∫
dzdz̄

(
Fab(φ)DφaD̄φb + Fai(φ)Dφa∂̄φi + Fib(φ)∂φiD̄φb+

+Fij(φ)∂φi∂̄φj + Λa(∂Āe − ∂Āe + f e
fgA

f Āg)(Ta)
b
c(Te)

c
b

)
,

where a, . . . , e < r and r ≤ i, j ≤ D − 1, fa
bc are structure constants of G,

[Tb, Tc] = fa
bcTa. By variation of the parent action with respect to Λ one finds

that A is a pure gauge and by gauge fixing, i.e. by a suitable choice of the
coordinate fields φa, one may put A = 0 and get back the original action. By
variation of the parent action with respect to Aa and eliminating Aa from it
one can find a dual action depending on Λa and φi, i ≥ r only. The difficulty
with this duality lies in the fact that the dual model might have no isometries
at all and it is therefore not clear how to perform the inverse transformation.

Such considerations have led to the discovery of Poisson–Lie T–dual mod-
els by C. Klimč́ık and P. Ševera in [12]. For simplicity I will assume in the
following that the group G acts on the target manifold not only freely but
also transitively, i.e. T ≡ G. (Otherwise one may, as long as the action of
the group is free, locally choose the coordinates as above and proceed in a
similar fashion.) Let’s start from the light–cone action

S =
∫
dzdz̄Fij(φ)∂φi∂̄φj (1.11)

and take as a basis of vector fields on G the left–invariant fields, i.e. elements
of the Lie algebra, ea = ei

a
∂

∂φi and

[ea, eb] = f c
abec.

A variation of φ can now be expressed as

δφi = ka(z, z̄)ei
a.

Putting this variation into the action (1.11) one finds3

δS =
∫
dzdz̄

(
ka(LieeaF )ij∂φ

i∂̄φj + (∂ka)ei
aFij ∂̄φ

j + (∂̄ka)ej
aFij∂φ

i
)
.

3Up to total divergencies and using

(Lieea
F )ij = Fik

∂ek
a

∂φj
+ Fkj

∂ek
a

∂φi
+

∂Fij

∂φk
ek
a.
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Defining the current 1–forms on M

Ja = Jadz + J̄adz̄, Ja = ej
aFij∂φ

i, J̄a = ei
aFij ∂̄φ

j, (1.12)

one can write the equations of motion in the form

∂J̄a + ∂̄Ja = (LieeaF )ij∂φ
i∂̄φj. (1.13)

It is clear that if the group G is a group of isometries of F , LieeaFij = 0, then
the currents (1.12) are the corresponding Noether conserved currents d∗Ja =
0. A generalization of the isometry condition is obtained by demanding the
∗Ja to be not closed but to satisfy a Maurer–Cartan equation on some other
group G̃ written in components

d ∗ Ja +
1

2
f̃ bc

a ∗ Jb ∧ ∗Jc = (∂J̄a + ∂̄Ja − f̃ bc
a JbJ̄c)dz ∧ dz̄ = 0. (1.14)

This assumption allows to express the currents as a “pure gauge” on the dual
group G̃ with T̃ a the generators of its algebra [T̃ a, T̃ b] = f̃ab

c T̃
c

∗J = ∗JaT̃
a ⇒ ∗J = g̃−1dg̃, g̃ ∈ G̃.

The group elements g̃ written in some coordinates are then intepreted as the
fields dual to original φs, the equation of motion of the original model (1.13)
becomes now the Bianchi identity for ∗J . Also one should note that as in
the previous examples of duality, the original and dual fields are connected
through a differential equation, e.g. if one locally parametrizes G̃ by g =
g0 exp(φ̃aT̃a), the relation between φi and φ̃a is

∂φ̃a = ∂φiFij(φ)ej
a, ∂̄φ̃

a = ∂̄φjFij(φ)ei
a.

It remains to investigate for which metrics Fij the equivalence of (1.14)
and (1.13) can be established. Obviously the condition is

(LieeaF )ij∂φ
i∂̄φj = f̃ bc

a JbJ̄c

i.e.
(LieeaF )ij = f̃ bc

a Fike
k
bFlje

l
c. (1.15)

Since Lie derivatives form a representation of the Lie algebra G

[Lieea , Lieeb
] = f c

abLieec

one can easily express a necessary condition as

([Lieem , Lieei
]F )ab = f c

mi(LieecF )ab,
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expanding the commutator and using (1.15) one finds the following condition
(times a common term Face

c
je

d
kFdb)

f̃ jk
l f l

mi + f̃kl
mf

j
li + f̃ jl

i f
k
lm + f̃ jl

mf
k
il + f̃kl

i f
j
lm = 0. (1.16)

The condition (1.16) is surprisingly just the condition on algebras G, G̃ for
existence of a Manin triple on them, i.e. of a Lie algebra D = G+G̃ (as vector
spaces) such that G, G̃ are its subalgebras maximally isotropic with respect
to the form 〈., .〉 defined by 〈Ta, T̃

b〉 = δb
a. Then (1.16) is just the Jacobi

identity for one element from G and two elements from G̃ or vice versa.
The metric of the dual model in the coordinates φ̃a should satisfy a dual

condition
(LieẽaF̃ )ij∂φ̃i∂̄φ̃j = fa

bcJ̃
b ¯̃J

c
,

which leads to the same necessary condition (1.16).
The appearance of Manin triples in the description of Poisson–Lie T–dual

models indicates a connection between the T–duality and Drinfeld doubles;
Drinfeld double D being a connected Lie group such that its Lie algebra
D equipped by a symmetric ad-invariant nondegenerate bilinear form 〈 ., .〉
can be decomposed into a pair of subalgebras G, G̃ maximally isotropic with
respect to 〈 ., .〉 and D as a vector space is the direct sum of G and G̃.

One may like to have not only some necessary conditions for existence
of dual models but also a method of construction of such models, i.e. of
their metrics, from some simpler structures, avoiding the need for solving the
partial differential equations (1.15). Such a way of construction of Poisson–
Lie T–dual models on Drinfeld doubles was presented by C. Klimč́ık and P.
Ševera in [12] and [13]. The construction starts by postulating the equations
of motion on the whole Drinfeld double, not depending on the choice of
Manin triple:

〈(∂±l)l−1, E±〉 = 0, (1.17)

where subspaces

E+ = span(Xi + Eij(e)X̃
j), E− = span(Xi − Eji(e)X̃

j)

are orthogonal with respect to 〈., .〉 and span the whole Lie algebra D and
{Xi}, resp. {X̃ i} form the bases of G, resp. G̃ such that

〈Xi, Xj〉 = 0, 〈X̃ i, X̃j〉 = 0, 〈Xi, X̃
j〉 = δj

i .

One writes l = g.h̃, g ∈ G, h̃ ∈ G̃ (such decomposition of elements of the
group D exists at least at the vicinity of the unit element according to [14])
and using the invariance of 〈., .〉 arrives from (1.17) at equations

〈g−1(∂±g) + (∂±h̃)h̃
−1, g−1E±g〉 = 0.

14



After defining Eij(g)

g−1E+g = span(Xi + Eij(g)X̃
j), , g−1E−g = span(Xi − Eji(g)X̃

j),

one finds (the upper and lower indices i, j denote the coordinates in the bases
{Xi} and {X̃ i})(

(∂+h̃)h̃
−1
)

i
= −Eij(g)(g

−1∂+g)
j ≡ A+i(g),(

(∂−h̃)h̃
−1
)

i
= Eji(g)(g

−1∂−g)
j ≡ A−i(g).

Finally by further differentiation ∂−((∂+h̃)h̃
−1)i and ∂+((∂−h̃)h̃

−1)i and due
to the interchangeability of the ordering of partial derivatives one eliminates
h̃ from equations of motion

∂+A−i(g)− ∂−A+i(g) + f̃kl
i A+k(g)A−l(g) = 0. (1.18)

The dual equation is found by writing l = g̃.h, h ∈ G, g̃ ∈ G̃ and elimi-
nating h from (1.17).

The resulting models have target spaces in the Lie groups G and G̃ and
are equivalent to the models described by the Lagrangians

L = Eij(g)(g
−1∂−g)

i(g−1∂+g)
j, (1.19)

L̃ = Ẽij(g̃)(g̃−1∂−g̃)i(g̃
−1∂+g̃)j, (1.20)

where
E(g) = (a(g) + E(e)b(g))−1E(e)d(g), (1.21)

E(e) is a constant matrix and a(g), b(g), d(g) are submatrices of the adjoint
representation of the group G on D in the basis (Xi, X̃

j)

Ad(g)T =

(
a(g) 0
b(g) d(g)

)
. (1.22)

The matrix Ẽ(g̃) is constructed analogously with

Ad(g̃)T =

(
d̃(g̃) b̃(g̃)
0 ã(g̃)

)
, Ẽ(ẽ) = E(e)−1. (1.23)

This construction not only shows that examples of Poisson–Lie T–duality
without isometries of the target, i.e. with both G and G̃ nonabelian, exist
but also explains that one may consider dual all models arising from the
same Drinfeld double (with a given constant matrix Eij(e)), not only the
pairs of models on one Manin triple; all such models share the same original
equations on the double (1.17).
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1.3.4 My results on T–duality and Drinfeld doubles

I and L. Hlavatý have concentrated on investigation and classification of Drin-
feld doubles in the lowest nontrivial dimensions 4 and 6. The classification of
Drinfeld doubles in dimension 4 and the corresponding pairs of T–dual models
are presented in Chapter 4.4 The main conclusion of this paper is that even in
this case a Drinfeld double with several non–isomorphic Manin triples exists
and provides a motivation for investigation of higher–dimensional cases. In
the dimension 6 we found all non–isomorphic Manin triples and wrote them
in 78 classes (Chapter 5) and then investigated which of these Manin triples
define isomorphic Drinfeld doubles (Chapter 6). It turned out that in the
chosen parametrization there are 22 classes of non–isomorphic 6–dimensional
real Drinfeld doubles. One of interesting conclusions of this paper is that not
only rather different Manin triples might lead to the same Drinfeld double,
but also the same underlying Lie algebra D may be equipped with different
bilinear forms and define different Drinfeld doubles.

1.4 Conclusions and future prospects

Concerning the integrability of principal σ–models we have found no in-
teresting, truly nonlinear integrable model on any 2– and 3– dimensional
non–semisimple Lie group, although given the ansatz for Lax operators the
investigation seems to be complete (up to completness of results obtained
using computer algebra systems, as mentioned in Chapter 2). I don’t know
whether it is due to our linear ansatz for Lax operators or whether it is a
general property of principal models on non–semisimple groups. One may
imagine a generalization of the ansatz but it appears that the arising condi-
tions for the Lax operators would be too complicated to solve.

The classification of principal models on the group SU(2) with diagonal

4This work was originally inspired by a question raised by S. Majid at the Bialowieža
workshop: whether the model with Lax pair found in Chapter 2 has something to do with
the Poisson–Lie T–dual models. The answer is unfortunately negative, the Lagrangian of
our model is much simpler than the Lagrangians of the Poisson–Lie T–dual models and
also it depends on the coordinate θ1 only in the parametrization of the group

g =
(

exp(θ1) θ2

0 1

)
whereas Poisson–Lie T–dual Lagrangians depend only on θ2. Beside that as V. Kavka
showed in his Diploma Thesis, the T–dual models constructed in Chapter 4 don’t pass the
Painlevé test and are therefore not integrable. Nevertheless I would like to express my
gratitude to S. Majid because his remark has led me to the study of T–duality.
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metric and Lax pair linear in currents can be now considered complete: only
models with constant metric allow Lax pair and all models with constant
metric have a Lax pair. Unfortunately a classification of integrable principal
chiral models with nonconstant non-diagonal metric on SU(2) seems to be
technically unfeasible in the present time.

Concerning the Drinfeld doubles and Poisson–Lie T–duality we have con-
structed a complete list of six-dimensional real Drinfeld doubles up to their
isomorphisms i.e. maps preserving both the Lie structure and an ad-invariant
symmetric bilinear form 〈., .〉 that define the double. In our parametrization
there are just 22 classes of the non-isomorphic Drinfeld doubles. One can see
that for many Drinfeld doubles there are several decompositions into Manin
triples. We can in principle construct the explicit Lagrangians of the pairs of
Poisson–Lie T–dual models for every Manin triple but given the large number
of Manin triples this does not make much sense unless a concrete physical
motivation picks up some of them. The investigation of properties of quan-
tum analogs of different models on the same Drinfeld double and whether the
connection between them survives the quantization, might be of interest in
the superstring theory. As far as I know no explicit examples of such models
were studied before, only recently a paper by R. von Unge on this subject
appeared [17].

An important point that follows from the classification of Drinfeld dou-
bles is that there are several different Drinfeld doubles corresponding to Lie
algebras so(1, 3), sl(2,R) ⊕ sl(2,R), sl(2,R) .R3 whereas on solvable Lie
algebras the Drinfeld double is unique (in some cases up to the sign of the
bilinear form). It might be interesting to know whether such behaviour holds
in any dimension or is just a low–dimensional artifact.

On the other hand there are Manin triples with one isotropic subalge-
bra abelian that are equivalent as Drinfeld doubles even though the other
subalgebras are different (see (60|1) and (5|1) or (6a|1) and (6 1

a
|1)). That’s

why it was necessary to investigate the (non)equivalence of the Manin triples
of this form. Moreover the above given examples indicate the diversity of
Drinfeld double structures one may encounter in higher dimensions. Beside
that from the present classification procedure one can find whether a given
six-dimensional Lie algebra can be equipped by a suitable ad-invariant bilin-
ear form and turned into a Drinfeld double (and how many such forms exist).
The investigation then can be reduced to a direct check of equivalence with
a particular six-dimensional Lie algebra. For example, one can see that there
is no Drinfeld double on SO(4).

Let me note that the complete sets of equivalent σ–models for a fixed
Drinfeld double are given by the so–called modular space of the double. The

17



construction of all non–isomorphic Manin triples for the double is the first
step in the construction of the modular spaces.
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Chapter 2

Principal chiral models on
non–semisimple groups

Journal of Physics A 34 (2001) 7795–7809.

In this paper we investigated principal chiral models on solvable 2– and 3–
dimensional Lie groups. We were trying to find models whose equations of
motion can be formally rewritten as a Lax pair. Lax operators were assumed
for simplicity to be in linear form in currents (with possible constant term).

It turned out that equations of such models are in most cases equivalent
to a sequence of linear partial differential equations, e.g. a wave equation
for one field and two linear partial differential equations for the remaining
fields depending nonlinearly on the solution of the wave equation. Only one
of the models appeared to be truly nonlinear, but further considerations (see
Chapter 3) showed that it can be also brought to a similar form of sequence
of linear equations.

Possible generalizations of the ansatz for Lax pair, e.g. non–constant
coefficients of the currents in Lax operators, quadratic ansatz for Lax op-
erators etc., were not considered because of rapidly growing complexity of
computations.
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Abstract

Generalized principal models on non-semisimple groups are defined. An ansatz
for the Lax form of the equations of motion is chosen and models on two- and
three-dimensional non-semisimple groups that admit this Lax formulation are
classified. Only one of these models has truly nonlinear equations of motion,
and the Lax pair is explicitly given. The equations of motion of all the other
models can be brought to linear partial differential equations.

PACS numbers: 02.20.1a, 02.30.lk, 02.30.Jr, 02.30.Zz, 02.40.−k, 11.30.Rd

1. Introduction

Integrable models in two dimensions are important theoretical laboratories for investigating
possible phenomena of nonlinear theories in higher dimensions. Principal chiral models are
examples of nonlinear relativistic field theories on the group manifolds. It is well known that
they are classically integrable in 1 + 1 dimensions (see [1]).

Until now, the principal models were investigated mainly on semisimple groups because
the bilinear forms used for the construction of the field actions were actually taken as the
ad-invariant Killing metrics on the corresponding Lie algebras. As the forms should be non-
degenerate, these models were defined on semisimple groups only. A few years ago Sochen
[2] suggested a generalization of the principal models for metrics that are not ad-invariant (see
also [3] and [4] for a different point of view). It opened up the possibility of defining the
principal models on non-semisimple groups as well. An example of such model, including the
Lax formulation of equations of motion was formulated in [5] but the parameters in the Lax
pair could be transformed off, so that there remained no free spectral parameters, necessary
for the inverse spectral method. We use a more general ansatz for the Lax operators in this
paper that enables us to introduce such a free parameter.

The main topic of this paper is classification of models on the two- and three-dimensional
non-semisimple groups that admit Lax formulation of a form given below.

0305-4470/01/387795+15$30.00 © 2001 IOP Publishing Ltd Printed in the UK 7795
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7796 L Hlavatý and L Šnobl

2. Generalized principal models

Generalized principal chiral models [2] are given by the action

I [g] =

∫

d2x ηµνLab(g)J
a
µJ
b
ν (1)

where G is a Lie group, L(G) its Lie algebra,

Jµ =

(

g−1∂µg
)

∈ L(G) (2)

g: R2 → G,µ, ν ∈ {0, 1}, η = diag(1,−1), L is a G-dependent symmetric non-degenerate
bilinear form. We consider the bilinear form L as a metric on the group manifold and the
generalization of principal models from ad-invariant Killing form on L(G) to more general
case enables us to introduce the principal models on non-semisimple groups also.

Lie products of elements on the basis of L(G) define the structure coefficients

[ta, tb] = cab
ctc (3)

and on the same basis we define the coordinates of the field Jν

Jν = g−1∂νg = J bν tb. (4)

Fields automatically satisfy the Bianchi identities

∂µJν − ∂νJµ + [Jµ, Jν ] = 0. (5)

Varying the action (1) we obtain the equations of motion for the generalized principal chiral
models

∂µJ
µ,a + �abcJ

b
µJ
µ,c = 0 (6)

where the connection � is a sum of two parts

�abc = Sabc + γ abc. (7)

Sabc is a so-called flat connection

Sabc =
1

2

(

Cabc + Cacb
)

Cabc = (L−1)apc
q
pbLqc (8)

and γ abc are Christoffel symbols for the metric Lab(g)

γ abc =
1

2
(L−1)ad(UbLcd + UcLbd − UdLbc). (9)

The vector fields Ua are defined in the local group coordinates θi as

Ua = U ia(θ)
∂

∂θi
(10)

where the matrix U is the inverse of the matrix V of vielbein coordinates

U ia(θ) = (V−1)ia(θ) V ai =

(

g−1 ∂g

∂θi

)a

. (11)

Note that the connection (7) is symmetric in the lower indices

�abc = �acb. (12)
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2.1. Lax pairs

It is evident from (6) and (2) that the equations of motion of generalized principal chiral models
may form highly nonlinear systems of PDEs. One of the most powerful method for solving
nonlinear PDEs is the so-called inverse scattering method that transforms the PDEs to solvable
system of ODEs. The inverse transform requires solving the Riemann–Hilbert problem of
determining a complex function from their values at a curve (for a detailed explanation, see,
e.g., [6]).

The first step of the method consists in writing the system of PDEs in terms of a
commutator of two differential operators X0,X1 containing a free parameter that is later
used as the independent variable in the associated Riemann–Hilbert problem. These operators
are called Lax pair and serve to define an associated linear spectral problem defining the
(direct) transform. Finding such a Lax pair for a given system of PDEs is a rather nontrivial
problem.

The ansatz that we are going to use for the Lax operators X0,X1 of the generalized
principal chiral models is

X0 = ∂0 + PabJ b0 ta +QabJ b1 ta +Aata (13)

X1 = ∂1 + Q̃abJ
b
0 ta + P̃ abJ

b
1 ta + Ba ta (14)

where P,Q, P̃ , Q̃ are four arbitrary constant dim G × dim G matrices and A, B are two
arbitrary constant vectors.

By explicit evaluation of the zero curvature condition

[X0,X1] = 0 (15)

using the equations of motion (6) and Bianchi identities (5), and equating the coefficients of
different powers and derivatives of J aµ , one finds the following necessary conditions that the
operatorsX0,X1 must satisfy in order to form a Lax pair:

P̃ = P, Q̃ = Q (16)

(PbpPcq −QbpQcq )c
a
bc = Pabc

b
pq (17)

1
2c
a
cd (PcpQdq + PcqQdp) = Qab�

b
pq (18)

cacd(PcpBd + AcQdp) = 0 (19)

cacd(QcpBd + AcPdp) = 0 (20)

cacdAcBd = 0. (21)

Equation (16) is the reason for originally counterintuitive notation in equations (13) and
(14). In the following we always immediately replace P̃ by P and Q̃ by Q.

In order to guarantee the equivalence between equation (15) and the equations of
motion (6) one needs further restrictions on P,Q,A,B (otherwise consider e.g.P = Q =

A = B = 0). Such a condition can be found quite easily by rewriting the left-hand side of the
equation (15) and using equations (16)–(21) and the Bianchi identities (5), one gets

[X0,X1] = Qab

(

∂µJ
µ,b + �bpqJ

p
µJ

µ,q
)

. (22)

It is now clear that equation (15) is equivalent to the equations of motion (6) if and only if the
matrix Q is invertible.

To sum up, the Lax formulation (13)–(15) is equivalent to the equations of motion if and

only if the equations (16)–(21) hold and Q is invertible.
Moreover, the previous equations impose a condition on �. Hence, we can express (18)

in an equivalent form
1

2
(Q−1)bacacd(PcpQdq + PcqQdp) = �bpq (23)
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7798 L Hlavatý and L Šnobl

and conclude that only the generalized principle models with the constant connection � admit

the Lax formulation (13)–(15) because the left-hand side of the previous equation is constant.

3. Abelian groups

The case of the principal models on Abelian groups having the Lax formulation (15) can
be investigated rather quickly by the following method. Because in this case ccab = 0,
equation (17) is satisfied identically and equation (18) simplifies to 0 =Qab�

b
pq . This equation

represents for any given pair p, q a set of dim G linear equations for dim G variables�bpq with an

invertible matrix of coefficients (=Q); therefore only the trivial solution �bpq = 0 is possible,
leading to the model

∂µJ
µ,a = 0. (24)

Because we may choose coordinates θ : g(θ) = exp
(
∑n
i=1 θi ti

)

, and the corresponding
expression for the fields is J aµ = ∂µθa , we have in such coordinates a free model

∂µ∂
µθi = 0. (25)

In the following we shall systematically explore the generalized principal models on non-
semisimple two- and three-dimensional Lie groups.

4. Two-dimensional solvable group

Every non-Abelian two-dimensional connected Lie group is isomorphic to the group of affine
transformations of real line. Let us denote it by Af (1). This group can be conveniently realized
as a matrix group consisting of matrices

(

a b

0 1

)

a > 0. (26)

A suitable parametrization of this group is

g(θ1, θ2) =

(

exp(θ1) θ2

0 1

)

(27)

where θ1, θ2 ∈ R. The basis of the corresponding Lie algebra can be chosen from

t1 =

(

1 0
0 0

)

t2 =

(

0 1
0 0

)

. (28)

The nonzero structure coefficients for this choice of basis are

c2
12 = 1 c2

21 = −1. (29)

The coordinates of vector fieldsJµ in this basis are (∂µθ1, e−θ1∂µθ2). The differential operators
Ua in this case are

U1 =
∂

∂θ1
U2 = eθ1

∂

∂θ2
. (30)

The equations of motion are

0 =
∂2θ1

∂x2
0

−
∂2θ1

∂x2
1

+ �1
11

(

(

∂θ1

∂x0

)2

−

(

∂θ1

∂x1

)2
)

+ 2�1
12e−θ1

(

∂θ1

∂x0

∂θ2

∂x0
−
∂θ1

∂x1

∂θ2

∂x1

)

+�1
22e−2θ1

(

(

∂θ2

∂x0

)2

−

(

∂θ2

∂x1

)2
)

(31)
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0 = e−θ1

(

∂2θ2

∂x2
0

−
∂2θ2

∂x2
1

−
∂θ1

∂x0

∂θ2

∂x0
+
∂θ1

∂x1

∂θ2

∂x1

)

+ �2
11

(

(

∂θ1

∂x0

)2

−

(

∂θ1

∂x1

)2
)

+ 2�2
12e−θ1

×

(

∂θ1

∂x0

∂θ2

∂x0
−
∂θ1

∂x1

∂θ2

∂x1

)

+ �2
22e−2θ1

(

(

∂θ2

∂x0

)2

−

(

∂θ2

∂x1

)2
)

. (32)

These equations were already investigated in [5] but only for diagonal metric L and less general
ansatz of Lax operators.

To find models admitting Lax formulation one can proceed in the following way. Equation
(17) is equivalent to two equations

P12 = 0 P22(P11 − 1) = Q11Q22 −Q21Q12 (=det Q). (33)

Because the matrix Q is invertible, i.e. det Q �= 0, the second condition can be rewritten

P22 =
det Q

P11 − 1
. (34)

Equation (18) should be considered first for a = 1. Then the left-hand side of (18) vanishes
and one finds

0 = Q11�
1
pq +Q12�

2
pq ∀p, q. (35)

We divide our investigation into two cases depending on the value of Q12.

4.1. CaseQ12 �= 0

In this case we immediately find that �2
pq = K�1

pq ,∀p, q (where K = −Q11/Q12) and the
defining equations (7) for � can be rewritten in an equivalent form

∂L11

∂θ1
= 2�1

11(L11 +KL12) (36)

∂L11

∂θ2
= e−θ1

(

2�1
12L11 + 2K�1

12L12 − L12

)

(37)

∂L12

∂θ1
= �1

12L11 +K�1
11L22 + �1

11L11 +K�1
11L12 +

1

2
L12 (38)

∂L12

∂θ2
=

e−θ1

2

(

2�1
22L11 + 2�1

12(KL22 + L12) + 2K�1
22L12 − L22

)

(39)

∂L22

∂θ1
= 2�1

12L12 + L22 + 2K�1
12L22 (40)

∂L22

∂θ2
= 2e−θ1�1

22(L12 +KL22) (41)

where K and �’s are constants. From these equations it is rather easy to calculate following
necessary conditions for the existence of the metric L. Using the equations (36)–(41) one
evaluates the difference of second derivatives

∂

∂θ1

∂

∂θ2
Lij −

∂

∂θ2

∂

∂θ1
Lij (42)

in terms of Lkl . Since this difference must be zero, one obtains a set of three (for
(i, j) = (1, 1), (1, 2), (2, 2)) linear equations for Lkl . In order to have a nontrivial (nonzero)
solution, the matrix of this set of equations must have a zero determinant, i.e.,

−
1

2
e−3θ1

(

K�1
22 + �1

12

)

[

4K2�1
11

(

�1
22

)2
− 4K2

(

�1
12

)2
�1

22 + 8K�1
11�

1
12�

1
22 − 8K

(

�1
12

)2

− 3�1
22 + 4

(

�1
11

)2
�1

22 − �1
11�

1
22 − 4�1

11

(

�1
12

)2
+ 4

(

�1
12

)2
]

= 0.
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As this must hold for all θ1, we get either

�1
12 = −K�1

22 (43)

or

4K2�1
11

(

�1
22

)2
− 4K2

(

�1
12

)2
�1

22 + 8K�1
11�

1
12�

1
22 − 8K

(

�1
12

)2
− 3�1

22 + 4
(

�1
11

)2
�1

22

−�1
11�

1
22 − 4�1

11

(

�1
12

)2
+ 4

(

�1
12

)2
= 0. (44)

It can be found by careful investigation that if (44) holds, then the only possible metrics L are
singular (for all values of θ1, θ2).

The remaining possibility is that (43) holds. In this case, from (42) one obtains further
conditions on L’s and �’s, namely that either

�1
11 = −

1

2
�1

12 = �1
22 = 0 (45)

or

L12 = −KL22, L11 =

(

−2K2�1
11�

1
22 + 2�1

11 + 4K4�1
22 + 1 + 4K2�1

22

)

L22

2�1
22

(

2K2�1
22 − 2�1

11 + 3
) . (46)

Otherwise the metric L is singular.
In case (45) one can compute the metric L and the connection � from the equations

(36)–(41) and the matrices P, Q from equations (18)–(21), but the resulting matrix Q is not
invertible, i.e. the Lax formulation (15) is not equivalent to the equations of motion (6).

In case (46) we can again solve equations (36)–(41). The resulting connection and the
metric are

�1
11 =

1

2
+K2�1

22 �1
22 = −K�1

22 (47)

L11 =
�1

11

�1
22

αeθ1 L12 = −K αeθ1 L22 = αeθ1 (48)

where �1
22, α ∈ R\{0}, K ∈ R are parameters of the model. In the following we will denote

�1
22 = −κ2/2.

The resulting equations of motion can be found substituting the above given � into
equations (31) and (32). To get the Lax operators for this model we still have to solve
equations (18)–(21). The solutions in this case depend on three arbitrary parameters λ, ρ, σ
where σ �= 0

P =

( 1
2 0

ε1(κKσ + ρ) −ε1σκ

)

(49)

Q =

(

ε1K
2 κ −

ε1
2 κ

σ +Kκρ −κρ

)

ε1 = ±1 (50)

A = (λ, 2λ(ε1ρ − ε2σ)) (51)

B = (ε2λ, 2λ(ε1ε2ρ − σ)) ε2 = ±1. (52)

The Lax operator X0 then reads (for simplicity we set ε1 = ε2 = +1)

X0 =

(

∂0 + 1
2Y0 + λ, σY1 + ρY0 + 2λ(ρ − σ)

0 ∂0

)

(53)

where Yµ are linear functions of the fields J aµ ,

Y0 = J 1
0 − κJ 2

1 +KκJ 1
1 (54)

Y1 = J 1
1 − κJ 2

0 +KκJ 1
0 . (55)

The expression for X1 can be obtained from (53) by an interchange of indices 0, 1 in (53).
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We can transform the Lax operators to the form with one parameter only by the similarity
transform X̃µ = TXµT

−1 with

T =

(

1 2ρ
0 σ

)

. (56)

The transformed Lax operator then is of the form

X̃0 =

(

∂0 + 1
2Y0 + λ, Y1 − 2λ
0 ∂0

)

. (57)

An analogous expression is obtained for X̃1.
From the formula (57) it is clear that if the ansatz (13) and (14) is chosen without the

constant terms Aata, Ba ta (cf. [5]) then λ = 0 and there is no free parameter for the inverse
scattering method.

4.2. CaseQ12 = 0

IfQ12 = 0, then the invertibility of Q leads to Q11 �= 0 and equation (35) simplifies to

0 = �1
pq . (58)

It is clear that equation (31) is then just the wave equation

∂2θ1

∂x2
0

−
∂2θ1

∂x2
1

= 0. (59)

Using the same approach as before for Q12 �= 0, one finds that the defining relation of � (7)
can be reformulated in the following way

∂L11

∂θ1
= 2�2

11L12 (60)

∂L11

∂θ2
= e−θ1

(

−1 + 2�2
12

)

L12 (61)

∂L12

∂θ1
=

1

2
L12 + �2

11L22 + �2
12L12 (62)

∂L12

∂θ2
=

1

2
e−θ1

(

2�2
22L12 + 2�2

12L22 − L22

)

(63)

∂L22

∂θ1
=
(

1 + 2�2
12

)

L22 (64)

∂L22

∂θ2
= 2e−θ1�2

22L22. (65)

The interchangeability of the ordering of partial derivatives of θi (equation (42)) leads to
conditions

�2
12 = −

1

2
�2

22 = 0. (66)

By solving (60)–(65) one finds all possible metrics in the form

L11 = e2θ1
(

�2
11

)2
α + 2eθ1�2

11β + γ (67)

L12 = �2
11αe2θ1 + βeθ1 L22 = αe2θ1

26



7802 L Hlavatý and L Šnobl

where α, β, γ, �2
11 ∈ R are parameters such that det L �= 0. By evaluation of � we arrive at

the explicit form of equations of motion

∂2θ1

∂x2
0

−
∂2θ1

∂x2
1

= 0 e−θ1

(

∂2θ2

∂x2
0

−
∂2θ2

∂x2
1

)

+ �2
11

(

(

∂θ1

∂x0

)2

−

(

∂θ1

∂x1

)2
)

= 0. (68)

The equations of motion are in fact two coupled linear wave equations; the first one is
homogeneous, i.e. explicitly solvable (θ1 = F(x0 − x1) + G(x0 + x1)), and the second one
contains nonlinear terms in already known θ1 only, it is therefore just the inhomogeneous
wave equation. That is why the application of the inverse spectral method is questionable in
this case.

5. Three-dimensional solvable Lie groups

Structure of all three-dimensional solvable real Lie algebras can be written in the following
form (see e.g. [7]):

[t2, t3] = b11t1 + b12t2

[t3, t1] = b21t1 + b22t2

[t1, t2] = 0 (69)

where the 2 × 2 matrix B = (bij ) is one of the following

(

0 0
0 0

)

,

(

1 0
0 0

)

,

(

1 0
0 1

)

,

(

0 1
1 0

)

,

(

0 1
−1 0

)

,

(

1 1
−1 0

)

,

(

σ 1
−1 σ

)

,

(

σ 1
−1 −σ

)

σ is a positive real number. Each of these algebras can be realized as a matrix algebra in the
form











(1 + b21)z −b11z x

b22z (1 − b12)z y

0 0 z





∣

∣

∣

∣

∣

∣

x, y, z ∈ R







. (70)

For convenience, in the following we will denote by capital letters indices going from 1 to 2
only (e.g.A ∈ {1, 2}), other index conventions remain unchanged.

The structure coefficients are

c12
q = 0 cA3

3 = 0 (71)

c31
1 = b21 c31

2 = b22 c23
1 = b11 c23

2 = b12. (72)

Considering the equations (17) for a = 3 one finds P3Bcpq
B = 0, i.e. for (p, q) = (3, 1) and

(p, q) = (2, 3)

P31b21 + P32b22 = 0 P31b11 + P32b12 = 0. (73)

We divide our investigation into two possibilities, first detB �= 0 (⇒ P31 = P32 = 0) and
second det B = 0.
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5.1. Three–dimensional solvable groups with det B �= 0

Considering the case of det B �= 0 (i.e. all cases in the previous classification except the

Abelian algebra (B =

(

0 0
0 0

)

), the nilpotent Heisenberg algebra (B =

(

1 0
0 0

)

) and the

case B =

(

1 1
−1 −1

)

), we can conclude that

P31 = P32 = 0. (74)

Furthermore, considering equations (17) for (p, q) = (1, 2) one finds

cA13(Q31Q12 −Q11Q32) + cA23(Q31Q22 −Q21Q32) = 0. (75)

Using the relations between the structure constants and the matrix B, one finds that the linear
set of equations (75) forQ31Q12 −Q11Q32 andQ31Q22 −Q21Q32 has only trivial solution
(for det B �= 0), i.e.

Q11Q32 = Q31Q12 Q21Q32 = Q31Q22. (76)

It follows that detQ = Q33(Q11Q22 −Q12Q21) and ifQ31 �= 0 orQ32 �= 0 thenQ11Q22 =

Q21Q12 and det Q = 0.
We are therefore led to

Q31 = Q32 = 0. (77)

Using equations (18) one finds for a = 3 that

0 = Q3b�
b
pq = Q33�

3
pq i.e. �3

pq = 0 (78)

and for p = A, q = B

0 =
1

2
caCD(PCAQDB + PCBQDA) = Qab�

b
AB (79)

leading together with (78) to

0 = Q11�
1
AB +Q12�

2
AB

0 = Q21�
1
AB +Q22�

2
AB . (80)

Since detQ = Q33(Q11Q22 −Q12Q21) �= 0, we have

�1
AB = �2

AB = 0. (81)

The corresponding equations of motion (6) have the following form

∂µJ
µ,A + 2�AB3J

B
µ J

µ,3 + �A33J
3
µJ
µ,3 = 0 (82)

∂µJ
µ,3 = 0. (83)

To gain more insight into these equations one should explicitly write the fields Jµ,a . First,
one needs a suitable realization of the Lie group G. It can be obtained by exponentiation of
the elements of the algebra (70)

g(x, y, z) = exp









(1 + b21)z −b11z x

b22z (1 − b12)z y

0 0 z







 . (84)
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After a reparametrization we can write a general group element in the form

g(θ1, θ2, θ3) =





D(θ3)
θ1

θ2

0 0 exp(θ3)



 θi ∈ R (85)

whereD(θ3) =

(

d11 d12

d21 d22

)

= exp

(

(1 + b21)θ3 −b11θ3

b22θ3 (1 − b12)θ3

)

.

Then

g−1(θ1, θ2, θ3) =





D−1(θ3)
exp(−θ3)(det D−1)(d12θ2 − d22θ1)

exp(−θ3)(det D−1)(d11θ2 − d21θ1)

0 0 exp(−θ3)



 (86)

and

∂µg(θ1, θ2, θ3) =





∂µD(θ3)
∂µθ1

∂µθ2

0 0 (∂µθ3) exp(θ3)



 . (87)

The fields Jµ = g−1∂µg can then be computed

Jµ =





F(θ3, ∂µθ3)
(det D)−1(d22∂µθ1 − d12∂µθ2 + e−z(∂µθ3)(d12θ2 − d22θ1))

(det D)−1(d21∂µθ1 − d11∂µθ2 + e−z(∂µθ3)(d11θ2 − d21θ1))

0 0 ∂µθ3



 (88)

where F(θ3, ∂µθ3) = D−1(θ3)∂µD(θ3). Reading off the coordinates of the fields J µ in the
basis (t1, t2, t3) one concludes that

(i) J 3
µ = ∂µθ3, i.e. the equation of motion (83) for θ3 is just the wave equation ∂µ∂µθ3 = 0

and
(ii) J 1

µ, J 2
µ are linear in θ1, θ2 and their derivatives, i.e. the equations of motion (82) for θ1,2

after substitution of the explicit form of θ3 turn out to be a system of two coupled linear
PDEs for unknown θ1, θ2.

Because inverse scattering method is usually not applied to linear PDEs, we do not study
this case further.

5.2. Three–dimensional solvable groups with det B = 0

The condition det B = 0 allows three possibilities:

(i) three-dimensional nilpotent group, i.e. Heisenberg group,

(ii) centrally extended Af (1) group (B =

(

1 1
−1 −1

)

) and

(iii) three-dimensional Abelian group (already considered, see section 3).

5.2.1. Heisenberg group. The Heisenberg group is a nilpotent three-dimensional group. It
can be realized as a matrix group of upper triangular 3 × 3 matrices with unit diagonal. We
choose parametrization

g(θ1, θ2, θ3) =





1 θ1 θ3 + θ1θ2
2

0 1 θ2

0 0 1



 . (89)
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The basis of the corresponding Lie algebra is then

t1 =





0 1 0
0 0 0
0 0 0



 t2 =





0 0 0
0 0 1
0 0 0



 t1 =





0 0 1
0 0 0
0 0 0



 (90)

and the nonzero structure coefficients are

c12
3 = 1 c21

3 = −1. (91)

The coordinates of the vector fields Jµ evaluated in the given basis are

Jµ =

(

∂µθ1, ∂µθ2, ∂µθ3 +
θ2

2
∂µθ1 −

θ1

2
∂µθ2

)

. (92)

The differential operators Ua are in this case

U1 =
∂

∂θ1
−
θ2

2

∂

∂θ3
U2 =

∂

∂θ2
+
θ1

2

∂

∂θ3
U3 =

∂

∂θ3
. (93)

Equation (17) is in this case equivalent to a set of equations

P13 = P23 = 0 Q13 = Q23 = 0
(94)

P11P22 −Q11Q22 = Q12Q21 − P12P21 = P33.

Equation (18) for a = 1, 2 is

Q11�
1
pq +Q12�

2
pq = 0 Q21�

1
pq +Q22�

2
pq = 0. (95)

Invertibility of Q together with Q13 = Q23 = 0 implies det

(

Q11 Q12

Q21 Q22

)

�= 0 and

consequently

�1
pq = �2

pq = 0. (96)

Also it follows thatQ1b�
b
3q = 0,Q2b�

b
3q = 0. Similarly, equation (18) for a = 3, p = 3 leads

toQ3b�
b
3q = 0. All these equations imply

�b3q = 0 (97)

and

�̃d3c ≡ Ldb�
b
3c = 0. (98)

After expressing this equality in coordinates using definition of � (7) and some simple algebra,
one finds

U3Lij = 0 (99)

U1L33 = 0 (100)

U2L33 = 0 (101)

L33 = L23,1 − L13,2 = U1L23 − U2L13. (102)

Similarly, for b, c �= 3 we find using (96)

�̃jbc ≡ Ljd�
d
bc = Lj3�

3
bc (103)
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leading to

U1L11 = L13�
3
11 (104)

L13 + U2L11 = 2L13�
3
12 (105)

2L23 + 2U2L12 − U1L22 = 2L13�
3
22 (106)

−2L13 + 2U1L12 − U2L11 = 2L23�
3
11 (107)

−L23 + U1L22 = 2L23�
3
12 (108)

U2L22 = 2L23�
3
22 (109)

2U1L13 = 2L33�
3
11 (110)

U1L23 + U2L13 = 2L33�
3
12 (111)

2U2L23 = 2L33�
3
22. (112)

Using the last three equations together with (99)–(102) to express �3
ij and substituting it into

the remaining equations one finds a set of coupled first-order differential equations. Using the
fact that nothing depends on θ3 (see (99), U3 = ∂

∂θ3
) one can solve these equations:

L13 = αθ1 + βθ2 +K13 (113)

L23 = γ θ1 + δθ2 +K23 (114)

L33 = γ − β (115)

L11 =
L2

13

L33
+K11 (116)

L12 =
L13L23

L33
+K12 (117)

L22 =
L2

23

L33
+K22 (118)

where α, β, γ, δ,Ki,j ∈ R, β �= γ are parameters such that K11K22 − K2
12 �= 0. The

corresponding equations of motion are of the following form

∂2θ1

∂x2
0

−
∂2θ1

∂x2
1

= 0 (119)

∂2θ2

∂x2
0

−
∂2θ2

∂x2
1

= 0 (120)

∂2θ3

∂x2
0

−
∂2θ3

∂x2
1

+ F(θ1, θ2) = 0 (121)

where F(θ1, θ2) is a certain function of θ1, θ2 and their derivatives. It is clear that the
homogeneous wave equations (119) and (120) can be solved explicitly and then (121) is an
inhomogeneous wave equation. A corresponding Lax pair can be found by solving equations
(18)–(21). To sum up, the only possible generalized principal chiral model for the Heisenberg
group expressible by the Lax operators (13) and (14) is again equivalent to the inhomogeneous
wave equation.

5.2.2. Centrally extendedAf (1) group. We consider a 2 × 2 matrix realization of this group
with the parametrization

g(θ1, θ2, θ3) =





exp
(

θ1−θ3
2

)

exp
(

θ1
2

)

θ2
2

0 exp
(

θ1+θ3
2

)



 . (122)
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In the corresponding Lie algebra we choose a basis

t1 =

( 1
2 0
0 1

2

)

t2 =

(

0 1
2

0 0

)

t1 =

(

− 1
2 0

0 1
2

)

. (123)

The nonzero structure coefficients for this choice of basis are

c23
2 = 1 c32

2 = −1. (124)

The coordinates of the vector fields Jµ in this basis are

Jµ =

(

∂µθ1, e−
θ3
2

(

∂µθ2 −
1

2
θ2∂µθ3

)

, ∂µθ3

)

. (125)

The differential operators Ua are in this case

U1 =
∂

∂θ1
U2 = e(−θ3/2)

∂

∂θ2
U3 =

1

2
θ2
∂

∂θ2
+
∂

∂θ3
. (126)

We have used an approach rather similar to the one used in the case of Af (1). First we
have used equation (18) with a = 1, 3 to derive a linear relation between �ijk:

0 = Q1b�
b
pq 0 = Q3b�

b
pq (127)

reducing (together with the invertibility of Q) the possible values of � to

�ipq = κ i9pq (128)

where κ i,9pq = 9qp ∈ R.
In the next step we put the above given expressions for � into the definition of the

connection (7) and solve it with respect to derivatives of the metric L.
Using those PDEs for L we calculate a necessary condition for the existence of a Lax pair.

We evaluate the difference of second derivatives

∂

∂θa

∂

∂θb
Lij −

∂

∂θb

∂

∂θa
Lij (129)

in terms of Lkl. Since this difference must be zero, we obtain a set of 18 (for i, j ∈ {1, 2, 3}

and (a, b) = (1, 2), (1, 3), (2, 3)) equations for six components of the metric Lkl and nine
constants κj ,9pq .

We have solved equations (129) using Maple V computer algebra system only, neither
Mathematica 4 nor Reduce 3.6 were able to solve it. Therefore we have to rely on the results
of Maple and we are not able to independently check the completeness of the solution.

All possible connections allowing invertible metric L and Lax formulation of equations
of motion (13)–(15) appear to be of one of the following two forms (we recall that J 2

µ =

e−
θ3
2 (∂µθ2 − 1

2θ2∂µθ3)):

(i) �1
pq = �3

pq = 0, �2
1q = �2

22 = 0, �2
23 = − 1

2 , �
2
33 ∈ R. The corresponding equations of

motion are

∂µ∂
µθ1 = 0 ∂µJ

µ,2 −
1

2
Jµ,2 ∂µθ3 + �2

33∂µθ3∂
µθ3 = 0 ∂µ∂

µθ3 = 0 (130)

i.e., the equations of motion for θ1, θ3 are the wave equations and can be solved explicitly.
The equation of motion for θ2 is linear after substitution of the solution θ3 because Jµ,2

is linear in θ2.
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(ii) �3
pq = �2

pq = 0, �1
1j = 0, �1

22, �
1
23, �

1
33 ∈ R. The equations of motion are

∂µ∂
µθ1 + F(θ2, θ3) = 0 ∂µJ

µ,2 = 0 ∂µ∂
µθ3 = 0 (131)

where F(θ2, θ3) is a certain given function of θ2, θ3 and their derivatives. In this case
we have again the wave equation for θ3. After substituting the solution of this equation
into ∂µJµ,2 = 0 we have a linear PDE for θ2 and finally substituting both θ2, θ3 into an
equation of motion for θ1 we have an inhomogeneous wave equation for θ1:

∂µ∂
µθ1 + F(θ2, θ3) = 0.

This case also includes the model with �apq = 0.

To conclude, in the case of centrally extended group Af (1) we have found no intrinsically
nonlinear model but one should be aware that the completeness of this result relies on the
computation done only in one computer algebra system.

6. Conclusions

We have analysed generalized principal chiral models given by the action of the form (1)
where the target manifold of the fields are two- and three-dimensional connected and simply
connected non-semisimple Lie groups. We have found that in these cases all but one equations
of motions admitting Lax formulation (13)–(15) can be brought to linear PDEs.

The only truly nonlinear system of equations comes from the generalized principal model
on the two-dimensional solvable group with the non-constant metric

L(θ1, θ2) =

(

−1+K2κ2

κ2 αeθ1 −Kαeθ1

−Kαeθ1 αeθ1

)

(132)

whereK ∈ R, α, κ ∈ R\{0}. Its equations of motion read

∂ν∂
νθ1 +

1

2
∂νθ1∂

νθ1 −
1

2
κ2
(

K2∂νθ1∂
νθ1 − 2Ke−θ1∂νθ1∂

νθ2 + e−2θ1∂νθ2∂
νθ2

)

= 0 (133)

∂ν∂
νθ2 −Keθ1∂ν∂νθ1 = ∂νθ1∂

νθ2 (134)

and the Lax pair is

X0 =

(

∂0 + λ + 1
2

(

J 1
0 +KκJ 1

1 − κJ 2
1

)

, −2λ + J 1
1 − κJ 2

0 +KκJ 1
0

0 ∂0

)

(135)

X1 =

(

∂1 + λ + 1
2

(

J 1
1 +KκJ 1

0 − κJ 2
0

)

, −2λ + J 1
0 − κJ 2

1 +KκJ 1
1

0 ∂1

)

(136)

where J 1
µ = ∂µθ1, J

2
µ = e−θ1∂µθ2 and λ is a free parameter that can be used for the inverse

scattering method.

References

[1] Zakharov V E and Mikhailov A V 1978 Relativistically invariant two-dimensional models in field theory
integrable by the inverse problem technique J. Exp. Theor. Phys. 74 1953 (in Russian)

[2] Sochen N 1997 Integrable generalized principal chiral models Phys. Lett. B 391 374
[3] Cherednik I V 1981 On the integrability of the equation for the two-dimensional chiral asymmetric O(3) field

and its quantum analog Jadernaja fizika 33 278 (in Russian)

33



Principal chiral models on non-semisimple groups 7809

[4] Holod P I 1987 Hidden symmetry of the Landau–Lifshitz equation, its higher analogues and dual equation for
asymmetric chiral field Theor. Math. Phys. 70 18 (in Russian)
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Chapter 3

Principal chiral models with
non–constant metric

Czechoslovak Journal of Physics 51 (2001) 1441–

1446.

This article is a summary of the talk at the 10th International Colloquium
“Quantum Groups and Integrable Systems”. It contains a brief review of
results of previous paper and two new results.

Firstly, the Lax pair of the 2–dimensional nonlinear system (two second
order partial differential equations) obtained before (see Chapter 2) hinted a
possible reformulation after a change of variables in terms of linear differential
equations, namely as a wave equation and two first order equations depending
nonlinearly on the solution of the wave equation.

Secondly, we reconsidered an older work by L. Hlavatý [6] concerning the
principal models on SU(2) and we proved that the technical assumption of
the diagonal form of the metric, simplifying the computation to a manage-
able state, leads immediately to constancy of the metric. The consideration
of non–diagonal metrics seemed far too complicated and was not pursued
further.
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Field equations for generalized principal chiral models with non–constant metric and
their possible Lax formulation are considered. Ansatz for Lax operators is taken linear
in currents. Results of a complete investigation of models allowing Lax formulation with
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1 Introduction

We have investigated the generalisation of principal chiral models [1] to models
with non–constant metric (this idea was suggested by Sochen in [2]) This approach
allowed to study also models on non–semisimple groups. We have studied the case
of 2– and 3– dimensional groups, both solvable and simple. In this article we provide
a brief overview and extension of our results, submitted for publication elsewhere
(see [3], [6] and [5]).

Generalised principal chiral models [2] are given by the action

I[g] =
∫

d2xηµνLab(g)Ja
µJb

ν (1)

where G is a Lie group, L(G) its Lie algebra,

Jµ = (g−1∂µg) ∈ L(G), (2)

g : R2 → G, µ, ν ∈ {0, 1}, η = diag(1,−1), L is a G-dependent symmetric
nondegenerate bilinear form. We consider the bilinear form L as a metric on the
group manifold and the generalization of principal models from ad-invariant Killing
form on L(G) to more general case enables us to introduce the principal models
also on non–semisimple groups.

Lie products of elements of the basis of L(G) define the structure coefficients

[ta, tb] = cab
ctc (3)

∗) Presented at the 10th International Colloquium on Quantum Groups: “Quantum Groups and
Integrable Systems”, Prague, 21–23 June 2001.
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and in the same basis we define the coordinates of the field Jν

Jν = g−1∂νg = Jb
νtb. (4)

Fields automatically satisfy Bianchi identities

∂µJν − ∂νJµ + [Jµ, Jν ] = 0. (5)

Varying the action (1) we obtain the equations of motion for the generalized prin-
cipal chiral models

∂µJµ,a + Γa
bcJ

b
µJµ,c = 0 (6)

where the connection Γ is defined by

Γa
bc =

1
2
(L−1)ad(cdb

qLqc + cdc
qLqb + UbLcd + UcLbd − UdLbc). (7)

The vector fields Ua are defined in the local group coordinates θi as

Ua = U i
a(θ)

∂

∂θi
(8)

where the matrix U is the inverse of the matrix V of vielbein coordinates

U i
a(θ) = (V −1)i

a(θ), V a
i = (g−1 ∂g

∂θi
)a. (9)

Note that the connection (7) is symmetric in the lower indices, Γa
bc = Γa

cb.

1.1 Lax pairs

The ansatz that we are going to use for the Lax operators X0, X1 of the generalized
principal chiral models is

X0 = ∂0 + PabJ
b
0ta + QabJ

b
1ta + Aata, (10)

X1 = ∂1 + Q̃abJ
b
0ta + P̃abJ

b
1ta + Bata, (11)

where P,Q, P̃ , Q̃ are four arbitrary constant dimG× dimG matrices and A,B are
two arbitrary constant vectors.

By explicit evaluation of the zero curvature condition

[X0, X1] = 0, (12)

using the equations of motions (6) and Bianchi identities (5) and equating the
coefficients of different powers and derivatives of Ja

µ one finds following necessary
and sufficient conditions that the operators X0, X1 form a Lax pair:

P̃ = P, Q̃ = Q, ∃Q−1 (13)
(PbpPcq −QbpQcq)cbc

a = Pabcpq
b, (14)

1
2
ccd

a(PcpQdq + PcqQdp) = QabΓb
pq, (15)

ccd
a(PcpBd + AcQdp) = 0, (16)

ccd
a(QcpBd + AcPdp) = 0, (17)

ccd
aAcBd = 0. (18)

1442 A Czech. J. Phys. 51 (2001)
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Moreover, the previous equations impose a condition on Γ. Namely, we can
express (15) in an equivalent form

1
2
(Q−1)baccd

a(PcpQdq + PcqQdp) = Γb
pq (19)

and conclude that only the generalized principal models with the constant
connection Γ admit the Lax formulation (10)–(12) because the left–hand side
of the previous equation is constant.

2 2–dimensional solvable group

Every non-Abelian two–dimensional connected Lie group is isomorphic to the
group of affine transformations of real line. Let us denote it by Af(1). We have
used its matrix realisation with the following parametrisation (θ1, θ2 ∈ R)

g(θ1, θ2) =
(

exp(θ1) θ2

0 1

)
(20)

There exist for the group Af(1) two classes of metrics allowing Lax pair of the
form considered:

1. One class of metrics with Lax formulation, leading to equations of motion

∂µ∂µθ1 = 0 , ∂µ∂µθ2 + Keθ1

[(
∂θ1

∂x0

)2

−
(

∂θ1

∂x1

)2
]

= 0 (21)

The first equation is just the wave equation, its general solution has the well–
known form θ1 = F (x0−x1)+G(x0+x1). We can then substitute this solution
into the second equation and find a linear equation for θ2.

2. The class of metrics of the form

L(θ1, θ2) = αeθ1

(
−1+K2κ2

κ2 −K
−K 1

)
(22)

where K ∈ R, α, κ ∈ R \ {0}. Its equations of motion read

∂ν∂νθ1 +
1
2
∂νθ1∂

νθ1 −
1
2
κ2(K2∂νθ1∂

νθ1

−2Ke−θ1∂νθ1∂
νθ2 + e−2θ1∂νθ2∂

νθ2) = 0, (23)
∂ν∂νθ2 −Keθ1∂ν∂νθ1 = ∂νθ1∂

νθ2 (24)

and the Lax pair reads

X0 =
(

∂0 + 1
2Y0 + λ, Y1 − 2λ
0 ∂0

)
, X1 =

(
∂1 + 1

2Y1 + λ, Y0 − 2λ
0 ∂1

)
(25)

where Y0 = J1
0 − κJ2

1 + KκJ1
1 , Y1 = J1

1 − κJ2
0 + KκJ1

0 and J1
µ = ∂µθ1, J2

µ =
e−θ1∂µθ2, λ may be interpreted as a spectral parameter.
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In order to get deeper understanding of the model considered we explicitly
evaluate corresponding Lax equation (12) and find

∂0Y1 − ∂1Y0 = 0, ∂0Y0 − ∂1Y1 +
1
2
(Y0Y0 − Y1Y1) = 0. (26)

We may consider the first of these equations (26) a condition for existence of φ such
that

Yµ = 2
∂µφ

φ
(27)

and the second equation (26) becomes

∂µ∂µφ = 0. (28)

Once one has a solution φ of the wave equation (28), he may substitute this solution
into (27). After explicit calculation of Yµ in this model one finds

∂µθ1 − κe−θ1∂µ̄θ2 + Kκ∂µ̄θ1 = 2
∂µφ

φ
, (29)

where µ̄ is defined 1̄ = 0, 0̄ = 1.
After substitution eθ1 = ρ, κθ2 = W we finally obtain a set of linear partial

differential equations for ρ,W

∂0ρ− ∂1W + Kκ∂1ρ = 2
∂0φ

φ
ρ, ∂1ρ− ∂0W + Kκ∂0ρ = 2

∂1φ

φ
ρ. (30)

We have thus transformed the original nonlinear problem into several
steps, each containing linear equations only. This approach can be used to
find some simple solutions of the principal chiral model (23–24), but it is probably
impossible to write explicitly ρ,W (and consequently θ1, θ2) for a general solution
φ of the wave equation (27). We also see that we have linearized the equations
(23–24) without inverse spectral transform. On the other hand, the Lax pair (25)
proved to be useful for guessing the linearizing transformation (27).

3 3–dimensional solvable Lie groups

Models on 3-dimensional solvable Lie groups were investigated in [6]. It was
shown that most of such groups allow models of the following form only:

∂µJµ,A + 2ΓA
B3J

B
µ Jµ,3 + ΓA

33J
3
µJµ,3 = 0

∂µJµ,3 = 0

where J3
µ = ∂µθ3, JA

µ are linear in ∂µθB and θB (and nonlinear in θ3); i.e. the
equation of motion for θ3 is just the wave equation ∂µ∂µθ3 = 0 and J1

µ, J2
µ are

linear in θ1, θ2 and their derivatives and consequently the equations of motion for

1444 A Czech. J. Phys. 51 (2001)
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θ1,2 after substitution of the explicit form of θ3 turn out to be a system of two
coupled linear partial differential equations for unknown θ1, θ2.

The only exceptions, allowing equations of motion of a different form, are 3-
dimensional nilpotent group, i.e. Heisenberg group, and centrally extended Af(1)
group. These cases were considered separately.

The Heisenberg group leads to models that can be written again in terms of
linear equations (although not of the form given above). The case of centrally
extended Af(1) group was investigated using computer algebra system and we
have also found no intrinsically nonlinear model, i.e. the results are again similar
to the previous one.

4 Generalized principal chiral models on SU(2)

As mentioned in the introduction to the first chapter, chiral models on simple
groups were the original ones considered because of nondegeneracy of their Killing
form. Results concerning the case of models with such ad-invariant metrics and
corresponding inverse scattering method were published firstly in [1]. The gener-
alization by Sochen [2] allowed to consider also the case with nonconstant metric.
In the paper [5] one of us has tried to construct such model on SU(2) group for
diagonal metric, but has not found any.

In the following we present a simple explanation why there is no such model
with diagonal nonconstant metric on SU(2). We use the usual basis of su(2) with
the structure coefficients cc

ab = iεabc. As was mentioned in [5], the connection Γ in
the case of diagonal metric on SU(2) has a following form (no sums over repeated
indices):

iΓa
bc = εabc

Lbb − Lcc

2Laa
, ∀a 6= b, a 6= c, c 6= b, (31)

iΓa
bb = −UaLbb

2Laa
, ∀a 6= b, (32)

iΓa
ab = iΓa

ba =
UbLaa

2Laa
, (33)

If we write explicitly the equations (31) for different choices of indices, we find

L22 = 2iΓ1
23L11 + L33, (34)

L33 = 2iΓ2
31L22 + L11, L11 = 2iΓ3

12L33 + L22. (35)

We eliminate from (35) L22 using the equation (34) and find

(1− 2iΓ1
23)L11 = (2iΓ3

12 + 1)L33, (36)
(4iΓ1

23iΓ
2
31 + 1)L11 = (1− 2iΓ2

31)L33. (37)

Since Γs are constant due to (19), we find that L11 is a constant multiple of L33

(otherwise the nonsingularity of the metric L would require all coefficients in the
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equations (36–37) be zero, i.e. Γ1
23 = − i

2 ,Γ3
12 = i

2 ,Γ2
31 = − i

2 and −4Γ1
23Γ

2
31 + 1 =

2 = 0 leading to a contradiction).
Together with (34) we have found that L11 and L22 are constant multiples of

L33. Using the relation
detL = const. (38)

proven in [5] we find det L = K(L33)3 = const. (where K 6= 0 is a certain constant),
i.e. L33 = Const.. Therefore, the only diagonal metrics L admitting the
Lax formulation in the form considered (i.e. linear in currents) are the
constant ones. It was shown in [5] that constant diagonal metrics always allow
such a Lax pair.

5 Conclusion

We have found no interesting, truly nonlinear integrable model on any 2– and
3– dimensional non–semisimple Lie group. We don’t know whether it is due to our
ansatz (10–11) for Lax operators or whether it is a general property of principal
models on non–semisimple groups.

The investigation of principal models on the group SU(2) with diagonal met-
ric and Lax pair linear in currents can be considered complete: only models with
constant metric allow Lax pair and all models with constant metric have a Lax
pair.

Classification of principal chiral models with nonconstant non-diagonal metric
on SU(2) seems to be technically unfeasible in the present time.

This work was partially supported by grant No. 1929/2001 of Czech Council of Uni-

versities.
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Chapter 4

Classification of Poisson–Lie
T–dual models with
two–dimensional targets

Modern Physics Letters A17 (2002) 429–434.

In this paper we constructed all 4–dimensional Manin triples and the corre-
sponding Drinfeld doubles. Quite surprisingly, even in this low dimensional
case exists a Drinfeld double possessing decompositions into non–isomorphic
Manin triples, i.e. into non–isomorphic pairs of maximal isotropic subal-
gebras. Corresponding Poisson–Lie T–dual models on the Drinfeld doubles
were explicitly constructed. This is the simplest example of such Drinfeld
double, several 6–dimensional examples were found in [15] and a complete
investigation of 6–dimensional case is contained in the next article (Chapter
6).

The knowledge of explicit examples of Drinfeld doubles decomposable
into non–isomorphic Manin triples might be of interest in the research of
Poisson–Lie T–duality, especially it might be possible to check whether the
duality between models corresponding to different Manin triples survives also
in quantum theory; our considerations were only on the classical level.
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Four–dimensional Manin triples and Drinfeld doubles are classified and corresponding
two–dimensional Poisson–Lie T–dual sigma models on them are constructed. The sim-

plest example of a Drinfeld double allowing decomposition into two nontrivially different

Manin triples is presented.
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PACS Nos.: 02.20.Qs, 02.20.Sv, 11.25.Hf

1. Introduction

A very important symmetry of string theories, or more specifically, two–dimensional
sigma models is the T–duality. In the pioneering work,1 Klimč́ık and Ševera intro-
duced its nonabelian version – the Poisson–Lie T–duality and showed that the dual
sigma models can be formulated on Drinfeld doubles. The explicit form of dual
models on the nonabelian double GL(2|IR) was presented in the following work.2

Other dual models were given in a series of forthcoming papers, see e.g. Refs. 3–
5. An attempt to classify all dual principal sigma models with three–dimensional
target space6 made us to revisit the models with the two–dimensional targets and
classify them. In the following we classify all four–dimensional Drinfeld doubles and
the Poisson–Lie T–dual models on them.

2. Classification of four–dimensional Drinfeld doubles

The Drinfeld double D is defined as a Lie group such that its Lie algebra D equipped
by a symmetric ad–invariant nondegenerate bilinear form 〈., .〉 can be decomposed
into a pair of maximally isotropic subalgebras G, G̃ such that D as a vector space
is the direct sum of G and G̃. Any such decomposition written as an ordered set

429
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(D,G,G̃) is called a Manin triple. It is clear that to any Drinfeld double exist at
least two Manin triples (D,G,G̃), (D,G̃,G). Later we show an example of Drinfeld
double with more than two possible decomposition into Manin triples.

One can see that the dimensions of the subalgebras are equal and that bases
{Ti}, {T̃ i} in the subalgebras can be chosen so that

〈Ti, Tj〉 = 0, 〈Ti, T̃
j〉 = 〈T̃ j , Ti〉 = δj

i , 〈T̃ i, T̃ j〉 = 0. (1)

This canonical form of the bracket is invariant with respect to the transformations

T ′
i = TkAk

i , T̃
′j = (A−1)j

kT̃ k. (2)

Due to the ad-invariance of 〈., .〉 the algebraic structure of D is

[Ti, Tj ] = fij
kTk, [T̃ i, T̃ j ] = f̃ ij

kT̃ k,

[Ti, T̃
j ] = fki

j T̃ k + ˜f jk
iTk. (3)

From the above given facts it is clear that the subalgebras G,G̃ of the four–
dimensional Drinfeld double are two–dimensional and surprisingly the Jacobi iden-
tities do not impose any condition on coefficients fij

k, f̃ ij
k in this case. Each of the

subalgebras is solvable and due to the invariance of (1) w.r.t. (2), the basis {T1, T2}
can be chosen so that the nontrivial Lie bracket in the first subalgebra is

[T1, T2] = nT2 (4)

where n = 0 or 1. However, the Lie bracket in the second subalgebra in general
cannot be written in a similar way without breaking the canonical form (1) of the
bracket 〈, 〉 or the canonical form (4) of the subalgebra G. Nevertheless, we can use
the transformations (2) with

A =
(

1 a
0 b

)
, (5)

that preserve (4) to bring the Lie bracket of the second subalgebra to one of the
following form

[T̃ 1, T̃ 2] = βT̃ 2, β ∈ IR or [T̃ 1, T̃ 2] = T̃ 1. (6)

In summary, there are just four types of nonisomorphic four-dimensional Manin
triples.
Abelian Manin triple:

[Ti, Tj ] = 0, [T̃ i, T̃ j ] = 0, [Ti, T̃
j ] = 0, i, j = 1, 2. (7)

Semiabelian Manin triple (only nontrivial brackets are displayed):

[T̃ 1, T̃ 2] = T̃ 2, [T2, T̃
1] = T2, [T2, T̃

2] = −T1. (8)
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Type A nonabelian Manin triple (β 6= 0):

[T1, T2] = T2, [T̃ 1, T̃ 2] = βT̃ 2,

[T1, T̃
2] = −T̃ 2, [T2, T̃

1] = βT2, [T2, T̃
2] = −βT1 + T̃ 1. (9)

Type B nonabelian Manin triple:

[T1, T2] = T2, [T̃ 1, T̃ 2] = T̃ 1,

[T1, T̃
1] = T2, [T1, T̃

2] = −T1 − T̃ 2, [T2, T̃
2] = T̃ 1. (10)

An interesting fact is that Drinfeld doubles corresponding to semiabelian Manin
triple (8) and type B nonabelian Manin triple (10) are the same, i.e. these Manin
triples are different decomposition into maximally isotropic subalgebras of the same
Lie algebra with the same invariant form. The transformation of the dual basis
between these decompositions is

X1 = −T̃ 1 + T̃ 2, X2 = T1 + T2,

X̃1 = T2, X̃2 = T̃ 1, (11)

where (Xi, X̃
j) denote the dual basis in the type B nonabelian Manin triple and

(Ti, T̃
j) is the basis in the semiabelian Manin triple. The other Manin triples specify

the algebra of the Drinfeld double uniquely, i.e. there is one connected and simply
connected Drinfeld double to each of these Manin triples.

3. Dual sigma models

Having all four–dimensional Drinfeld doubles we can construct the two–dimensional
Poisson–Lie T–dual sigma models on them. The construction of the models is
described in the papers.1,2 The models have target spaces in the Lie groups G and
G̃ and are defined by the Lagrangians

L = Eij(g)(g−1∂−g)i(g−1∂+g)j , (12)

L̃ = Ẽij(g̃)(g̃−1∂−g̃)i(g̃−1∂+g̃)j , (13)

where
E(g) = (a(g) + E(e)b(g))−1E(e)d(g), (14)

E(e) is a constant matrix and a(g), b(g), d(g) are 2 × 2 submatrices of the adjoint
representation of the group G on D in the basis (Ti, T̃

j)

Ad(g)T =
(

a(g) 0
b(g) d(g)

)
. (15)
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The matrix Ẽ(g̃) is constructed analogously with

Ad(g̃)T =
(

d̃(g̃) b̃(g̃)
0 ã(g̃)

)
, Ẽ(ẽ) = E(e)−1 =

(
x y
u v

)
. (16)

Both equations of motion of the above given lagrangian systems can be reduced
from equation of motion on the whole Drinfeld double, not depending on the choice
of Manin triple:

〈(∂±l)l−1, E±〉 = 0, (17)

where subspaces E+ = span(T i + Eij(e)T̃j), E− = span(T i − Eji(e)T̃j) are orthog-
onal w.r.t. 〈, 〉 and span the whole Lie algebra D. One writes l = g.h̃, g ∈ G, h̃ ∈ G̃

(such decomposition of group elements exists at least at the vicinity of the unit ele-
ment) and eliminates h̃ from (17), respectively l = g̃.h, h ∈ G, g̃ ∈ G̃ and eliminates
h from (17). The resulting equations of motion for g, resp. g̃ are the equations of
motion of the corresponding lagrangian system (see Ref. 1).

The corresponding models for the Manin triples (7)–(10) are the following.
Abelian double: The adjoint representations of the groups G, G̃ are trivial so that

Ẽ(g̃) = Ẽ(e) = E(g)−1 = E(e)−1, (18)

and the Lagrangians of the dual models are

L = (xv − uy)−1 (v ∂−χ∂+χ− y ∂−χ∂+θ − u ∂−θ∂+χ + x ∂−θ∂+θ) , (19)

L̃ = x ∂−σ∂+σ + y ∂−σ∂+ρ + u ∂−ρ∂+σ + v ∂−ρ∂+ρ. (20)

Semiabelian double: The adjoint representations of the groups G, G̃ are

Ad(g)T =


1 0 0 0
0 1 0 0
0 −θ 1 0
θ 0 0 1

 , Ad(g̃)T =


1 0 0 0
−ρ eσ 0 0
0 0 1 ρe−σ

0 0 0 e−σ


where (χ, θ) and (σ, ρ) are group coordinates of G and G̃. The Lagrangians of the
dual models are

L =
(
v x− u y + u θ − y θ + θ2

)−1
[v ∂−χ∂+χ + (θ − y) ∂−χ∂+θ

−(θ + u) ∂−θ∂+χ + x ∂−θ∂+θ] , (21)

L̃ =
(
x− u ρ− y ρ + vρ2

)
∂−σ∂+σ + (y − vρ) ∂−σ∂+ρ

+(u− vρ) ∂−ρ∂+σ + v ∂−ρ∂+ρ. (22)

Similarly one may use the other possible decomposition of the double into maximally
isotropic subalgebras, i.e. type B nonabelian Manin triple. In this case the
adjoint representations of the groups G, G̃ are

Ad(g)T =


1 θe−χ 0 0
0 e−χ 0 0
0 −1 + e−χ 1 0

−1 + eχ θ − θe−χ −θ eχ

 ,
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Ad(g̃)T =


e−ρ −σ σ − eρ σ −1 + e−ρ

0 1 −1 + eρ 0
0 0 eρ 0
0 0 eρ σ 1


and the Lagrangians of the dual models are

L = [v x + (eχ − 1− y)(eχ − 1 + u)]−1 [(v + u θ + y θ + x θ2)∂−χ∂+χ (23)

+ (−1 + eχ − y − x θ) ∂−χ∂+θ − (−1 + eχ + u + x θ) ∂−θ∂+χ + x∂−θ∂+θ] ,

L̃ =
[
v x− u y + eρ (u− 2 v x− y + 2 u y) + e2 ρ (1 + v x + y − u (1 + y))

]−1[
x ∂−σ∂+σ +

(
v x− e−ρ v x + y + e−ρ u y − u y − xσ)

)
∂−σ∂+ρ

−
(
v x− e−ρ v x− u + e−ρ u y − u y + xσ

)
∂−ρ∂+σ

−
(
u σ + y σ − v − xσ2

)
∂−ρ∂+ρ

]
. (24)

This model has the same equations of motion in the double (17) as the previous
one (up to transformation of matrix E(e) induced by the change of basis of algebra)
and in this sense is equivalent to it.
Type A nonabelian doubles: The adjoint representations of the groups G, G̃ are

Ad(g)T =


1 θe−χ 0 0
0 e−χ 0 0
0 −β θe−χ 1 0

β θ β θ2e−χ −θ eχ

 ,

Ad(g̃)T =


1 0 0 −β−1ρe−σ

−ρ eσ β−1ρ β−1ρ2e−σ

0 0 1 ρe−σ

0 0 0 e−σ


where β parametrizes different Drinfeld doubles. The Lagrangians of the dual mod-
els are

L =
(
v x− u y + u β θ − y β θ + β2 θ2

)−1 [
(v + u θ + y θ + x θ2)∂−χ∂+χ

− (y + x θ − β θ) ∂−χ∂+θ − (u + x θ + β θ) ∂−θ∂+χ + x∂−θ∂+θ] , (25)

L̃ =
(
β2 − u β ρ + y β ρ + v x ρ2 − u y ρ2

)−1[
β2
(
x− u ρ− y ρ + v ρ2

)
∂−σ∂+σ

+β (y β + v x ρ− u y ρ− v β ρ) ∂−σ∂+ρ

−β (−u β + v x ρ− u y ρ + v β ρ) ∂−ρ∂+σ + v β2 ∂−ρ∂+ρ
]
. (26)

By rescaling E(e) 7→ E(e)/β, L 7→ Lβ, L̃ 7→ L̃/β we obtain the GL(2|IR) model
found in the work.2 It means that even though we have a one-parametric class
of nonisomorphic Drinfeld doubles of type A the corresponding dual models are
equivalent.

4. Conclusions
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434 L. Hlavatý & L. Šnobl

We have classified the four–dimensional Drinfeld doubles and constructed the Poisson–
Lie T–dual models on them. The investigation of the Drinfeld doubles showed
explicitly that neither the subalgebras G, G̃ per se specify the Drinfeld double com-
pletely (viz. (9) vs. (10)) nor the Drinfeld double fixes the subalgebras G, G̃ uniquely
(viz. (8) and (10)). It turned out that besides the pair of dual models on GL(2|IR)
presented in Ref. 2 and the trivial abelian models, there exist two pairs of dual
models (21), (22) and (23), (24) on the semiabelian double (8). This is the simplest
(and the only one known to the authors) example of nontrivial modular space of
σ-models mutually connected by Poisson–Lie T–duality transformation.

It would be very interesting to find whether any of the semiabelian or nonabelian
models is integrable.
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Chapter 5

Classification of 6–dimensional
real Manin triples

preprint math.QA/0202209.

In the following preprint we presented the list of all 6–dimensional Manin
triples. It is a significant generalization of the paper [15] of M.A. Jafarizadeh
and A. Rezaei-Aghdam who have assumed both isotropic subalgebras in the
Bianchi form and consequently missed quite a lot of other cases. After its
submission to electronic archive, we found that an equivalent classification
of 3–dimensional Lie bialgebras was already published by X. Gomez in [16],
albeit using different classification of 3-dimensional Lie algebras as a starting
point.

This work therefore provides an independent check of the Gomez’s work.
We compared the results and found that after translating the notations they
are equivalent. Consequently, our work was not published.

Nevertheless there are two reasons for including it into this thesis. Firstly,
we have used it as a starting point for investigation of Drinfeld doubles (Chap-
ter 6) and secondly the classification was performed using different, more
straightforward, if more computationally demanding, method.

Our method basically starts from the first subalgebra of the Manin triple
written in a basis with fixed commutation relations (the so–called Bianchi
form), then gradually solving the Jacobi identities between the subalgebras
and in the second subalgebra itself and finally using the remaining freedom
in the choice of Bianchi basis of the first subalgebra to write the second sub-
algebra in the simplest possible form. (Gomez had used more theoretical
approach, using the notion of twisting etc.) The intermediate results there-
fore contain also general commutation relations of any basis of the second
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subalgebra dual to the original Bianchi-type one. These intermediate results
might be of interest in some applications.
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Abstract

We present a complete list of 6–dimensional Manin triples or,
equivalently, of 3–dimensional Lie bialgebras. We start from the well
known classification of 3–dimensional real Lie algebras and assume the
canonical bilinear form on the 6-dimensional Drinfeld double. Then
we solve the Jacobi identities for the dual algebras. Finally we find
mutually non–isomorphic Manin triples. The complete list consists of
78 classes of Manin triples, or 44 Lie bialgebras if one considers dual
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1 Introduction

In recent years, the study of T–duality in string theory has led to
discovery of Poisson–Lie T–dual sigma models. Klimč́ık and Ševera
have found a procedure allowing to construct such models from a given
Manin triple (D,G, G̃) , i.e. a decomposition of a Lie algebra D into
two maximally isotropic subalgebras G, G̃. The construction of the
Poisson–Lie T–dual sigma models is described in [1] and [2]. The
models have target spaces in the Lie groups G and G̃ and are defined
by the Lagrangians

L = Eij(g)(g−1∂−g)i(g−1∂+g)j (1)

L̃ = Ẽij(g̃)(g̃−1∂−g̃)i(g̃−1∂+g̃)j (2)

where the matrices E(g) and Ẽ(g̃) are constructed from a constant
invertible matrix E(e) by virtue of the adjoint representation of the
group G resp G̃ on D. It implies that any pair of Poisson–Lie T–
dual sigma models is given (up to the constant matrix E) by the
corresponding Manin triple and that’s why it is interesting and useful
to classify these structures.

One can easily see that the dimension of the Lie algebra D must
be even. In the dimension two D must be abelian and there is just
one Manin triple (D,G, G̃) ≡ (D, G̃,G) where dimG = dimG̃ = 1. The
classification of Manin triples for the four–dimensional Lie algebras
together with the pairs of dual models was given in [3]. In this paper
we are going to classify the Manin triples of the 6–dimensional real
Lie algebras.

Important steps in this direction were made in [4] where a list of
possible maximally isotropic subalgebras of the 6–dimensional Lie al-
gebras can be found. It turns out that the subalgebras don’t specify
the Manin triple completely. For certain algebras there exist sev-
eral rather different possible pairings, allowing to construct different
Manin triples. In the present paper, we present a complete list of real
6–dimensional Manin triples, i.e. we give not only the possible subal-
gebras, but also the corresponding ad–invariant form (i.e we write dual
bases of the algebras with respect to this form and their Lie brackets).
The complex solvable Manin triples were classified in [5].

As we shall see Manin triples are equivalent to Lie bialgebras and
the classification of the three–dimensional Lie bialgebras (i.e. six–
dimensional Manin triples) was given in [6]. Our classification was
done independently without knowledge of [6]. The consequent com-
parison proved that the results are identical even though we have
started from a different description of the three–dimensional algebras
and used a completely different method. It means that the present
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work can be considered as an independent check of [6] with the results
expressed in a different form, namely as Manin triples.

In the following sections, we firstly recall the definitions of Manin
triple, Drinfeld double and Lie bialgebra, then briefly explain the ap-
proach we have used to find all algebras of 6–dimensional Drinfeld
doubles, and finally give a complete list of all 6–dimensional Manin
triples.

2 Manin triples, Drinfeld doubles, Lie

bialgebras

The Drinfeld double D is defined as a Lie group such that its Lie alge-
bra D equipped by a symmetric ad–invariant nondegenerate bilinear
form 〈., .〉 can be decomposed into a pair of maximally isotropic sub-
algebras G, G̃ such that D as a vector space is the direct sum of G and
G̃. This ordered triple of algebras (D,G,G̃) is called Manin triple.

One can see that the dimensions of the subalgebras are equal and
that bases {Xi}, {X̃i} in the subalgebras can be chosen so that

〈Xi, Xj〉 = 0, 〈Xi, X̃
j〉 = 〈X̃j , Xi〉 = δj

i , 〈X̃
i, X̃j〉 = 0. (3)

This canonical form of the bracket is invariant with respect to the
transformations

X ′
i = XkA

k
i , X̃

′j = (A−1)j
kX̃

k. (4)

Due to the ad-invariance of 〈., .〉 the algebraic structure of D is

[Xi, Xj ] = fij
kXk, [X̃i, X̃j ] = f̃ ij

kX̃
k,

[Xi, X̃
j ] = fki

jX̃k + ˜f jk
iXk. (5)

It is clear that to any Manin triple (D,G, G̃) one can construct the
dual one by interchanging G ↔ G̃, i.e. interchanging the structure
constants fij

k ↔ f̃ ij
k. All properties of Lie algebras (the nontrivial

being the Jacobi identities) remain to be satisfied. On the other hand
for given Drinfeld double more than two Manin triples can exist.

One can rewrite the structure of a Manin triple also in another,
equivalent, but for certain considerations more suitable, form of Lie
bialgebra.

A Lie bialgebra is a Lie algebra g equipped also by a Lie cobracket1

δ : g → g ⊗ g : δ(x) =
∑

x[1] ⊗ x[2] such that∑
x[1] ⊗ x[2] = −

∑
x[2] ⊗ x[1], (6)

1Summation index is suppressed
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(id⊗ δ) ◦ δ(x) + cyclic permutations of tensor indices = 0, (7)
δ([x, y]) =

∑
[x, y[1]]⊗ y[2] + y[1] ⊗ [x, y[2]]−

− [y, x[1]]⊗ x[2] − x[1] ⊗ [y, x[2]] (8)

(for detailed account on Lie bialgebras see e.g. [7] or [8], Chapter 8).
The correspondence between a Manin triple and a Lie bialgebra

can now be formulated in the following way. Because both subalgebras
G, G̃ of the Manin triple are of the same dimension and are connected
by nondegenerate pairing, it is natural to consider G̃ as a dual G∗ to G
and to use the Lie bracket in G̃ to define the Lie cobracket in G; δ(x) is

given by 〈δ(x), ỹ⊗ z̃〉 = 〈x, [ỹ, z̃]〉, ∀ỹ, z̃ ∈ G∗, i.e. δ(Xi) = ˜
f jk

i Xj⊗Xk.
The Jacobi identities in G̃

f̃kl
m f̃ ij

l + f̃ il
m

˜
f jk

l + f̃ jl
mf̃ki

l = 0 (9)

are then equivalent to the property of cobracket (7) and the G̃–component
of the mixed Jacobi identities 2

˜f jk
lfmi

l + f̃kl
mfli

j + f̃ jl
iflm

k + f̃ jl
mfil

k + f̃kl
iflm

j = 0 (10)

are equivalent to (8).
From now on, we will use the formulation in terms of Manin triples,

Lie bialgebra formulation of all results can be easily derived from it.
We also consider only algebraic structure, the Drinfeld doubles as the
Lie groups can be obtained in principle by means of exponential map
and usual theorems about relation between Lie groups and Lie alge-
bras apply, e.g. there is a one to one correspondence between (finite–
dimensional) Lie algebras and connected and simply connected Lie
groups. The group structure of the Drinfeld double can be deduced
e.g. by taking matrix exponential of adjoint representation of its al-
gebra.

3 Method of classification

In this section we present the approach we have used to find all 6–
dimensional Manin triples, i.e. 3–dimensional Lie bialgebras.

Starting point for our computations is the well known classification
of 3–dimensional real Lie algebras (see e.g. [9] or [4]). Non–isomorphic
Lie algebras are written in 11 classes, traditionally known as Bianchi
algebras. Their commutation relations are:

[X1, X2] = −aX2 + n3X3, [X2, X3] = n1X1, [X3, X1] = n2X2 + aX3,
(11)

2The Jacobi identities [Xi, [X̃j , X̃k]] + cyclic = 0 lead to both (10) (terms proportional
to X̃ l) and (9) (terms proportional to Xl).
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where the parameters a, n1, n2, n3 have the following values

Class a n1 n2 n3

I 0 0 0 0
II 0 1 0 0

V II0 0 1 1 0
V I0 0 1 -1 0
IX 0 1 1 1

V III 0 1 1 -1
V 1 0 0 0
IV 1 0 0 1

V IIa (a > 0) a 0 1 1
III 1 0 1 -1

V Ia (a > 0, a 6= 1) a 0 1 -1

Therefore the 1st subalgebra G of the Manin triple D must be one
of the Bianchi algebras given above and we can choose its basis so
that the Lie brackets are of the form (11). In the 2nd subalgebra G̃ we
choose the dual basis X̃i so that (3) holds, and treat nine independent
components of structure coefficients f̃ ij

k of the 2nd subalgebra G̃ in the
basis X̃i as unknowns. We cannot assume that the f̃ ij

k are of the form
(11) as well because it can be incompatible with (3). Then we solve the
mixed Jacobi identities (10) (these relations form a system of linear
equations in f̃ ij

k ) and the Jacobi identities for the dual algebra (9) (i.e.
quadratic in f̃ ij

k ).
As a result, we have found all structure coefficients of G̃ consistent

with the definition of Manin triple and the next step was to determine
the Bianchi classes of obtained algebras G̃. Finally we have found
the the non–isomorphic Manin triples by considering Manin triples
connected by the transformations (4) (i.e. change of basis in G ac-
companied by the dual change of basis in G̃ with respect to 〈, 〉) as
equivalent and choosing one representant in each equivalence class.

In computations computer algebra systems Maple V and Mathe-
matica 4 were independently used for manipulating expressions and
solving sets of linear and quadratic equations, their results were checked
one against the other.

Before listing our results, we shall give an example showing the
progress of computation in some detail.
Example: Let us consider the algebra V III, i.e. G = sl(2,<).

[X1, X2] = −X3, [X2, X3] = X1, [X3, X1] = X2.

When one solves the mixed Jacobi identities (10), he finds that the
2nd subalgebra must have the form

[X̃1, X̃2] = −αX̃1+βX̃2, [X̃2, X̃3] = γX̃2+αX̃3, [X̃3, X̃1] = −γX̃1−βX̃3.
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The Jacobi identities in the 2nd subalgebra (9) in this case don’t
impose any further condition on the structure constants f̃ ij

k, i.e. we
have already found the structure of all possible 2nd subalgebras G̃ in
the Manin triple.

Next we find the Bianchi forms of G̃. It turns out that the 2nd
algebra is of the Bianchi type I (f̃ ij

k = 0) if α = β = γ = 0 and of
type V otherwise.

Then we find values of f̃ ij
k that allow transformation (4) leading

to the rescaled Bianchi form V of the 2nd subalgebra G̃ and leaving the
Bianchi form of the 1st subalgebra sl(2,<) invariant. This is possible
only for

α2 + β2 − γ2 > 0

(for α2 + β2 − γ2 < 0 the transformation matrix would be complex,
not real, for α2 +β2−γ2 = 0 it would be singular). Therefore we have
in the case α2 + β2 − γ2 > 0 a one–parametric set of non–equivalent
Manin triples

[X̃1, X̃2] = −bX̃2, [X̃2, X̃3] = 0, [X̃3, X̃1] = bX̃3, b > 0

and we must find representants of remaining classes of possible Manin
triples. We choose the forms

[X̃1, X̃2] = 0, [X̃2, X̃3] = bX̃2, [X̃3, X̃1] = −bX̃1, b > 0

for α2 + β2 − γ2 < 0 and

[X̃1, X̃2] = X̃2, [X̃2, X̃3] = X̃2, [X̃3, X̃1] = −(X̃1 + X̃3)

for α2 + β2 − γ2 = 0, α 6= 0 ∨ β 6= 0 ∨ γ 6= 0 and easily verify that
every possible 2nd subalgebra G̃ can be taken to one of the given forms
by transformation (4) which doesn’t change the structure constants of
the 1st subalgebra G = sl(2,<).

Details of computations for each Bianchi algebra are given in the
Appendix.

4 Results: 6–dimensional Manin triples

The forms of non–equivalent Manin triples were choosen according to
the following criteria: The 1st subalgebra is in the Bianchi form, the
2nd is in the form closest to Bianchi, i.e. Bianchi form if possible,
or the structure constants are multiple of the Bianchi ones, or form a
permution of the Bianchi ones, or, if neither is possible, are choosen
to be as many zeros and small integers as possible.

56



In order to shorten the list, we have not explicitly written out
the structure of algebras that can be found by the duality transform
G ↔ G̃ from the ones given in the list.

1. Dual algebras to Bianchi algebra IX:

[X1, X2] = X3, [X2, X3] = X1, [X3, X1] = X2.

Dual algebras:

(a) Bianchi algebra I

[X̃1, X̃2] = 0, [X̃2, X̃3] = 0, [X̃3, X̃1] = 0.

(b) Bianchi algebra V

[X̃1, X̃2] = −bX̃2, [X̃2, X̃3] = 0, [X̃3, X̃1] = bX̃3, b > 0.

2. Dual algebras to Bianchi algebra V III:

[X1, X2] = −X3, [X2, X3] = X1, [X3, X1] = X2.

Dual algebras:

(a) Bianchi algebra I

[X̃1, X̃2] = 0, [X̃2, X̃3] = 0, [X̃3, X̃1] = 0.

(b) Bianchi algebra V

i. [X̃1, X̃2] = −bX̃2, [X̃2, X̃3] = 0, [X̃3, X̃1] = bX̃3, b >
0.

ii. [X̃1, X̃2] = 0, [X̃2, X̃3] = bX̃2, [X̃3, X̃1] = −bX̃1, b >
0.

iii. [X̃1, X̃2] = X̃2, [X̃2, X̃3] = X̃2, [X̃3, X̃1] = −(X̃1 +
X̃3).

3. Dual algebras to Bianchi algebra V IIa:

[X1, X2] = −aX2+X3, [X2, X3] = 0, [X3, X1] = X2+aX3, a > 0.

Dual algebras:

(a) Bianchi algebra I

[X̃1, X̃2] = 0, [X̃2, X̃3] = 0, [X̃3, X̃1] = 0.

(b) Bianchi algebra II

i. [X̃1, X̃2] = 0, [X̃2, X̃3] = X̃1, [X̃3, X̃1] = 0.

ii. [X̃1, X̃2] = 0, [X̃2, X̃3] = −X̃1, [X̃3, X̃1] = 0.
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(c) Bianchi algebra V II1/a

[X̃1, X̃2] = b(− 1
aX̃2 + X̃3), [X̃2, X̃3] = 0,

[X̃3, X̃1] = b(X̃2 + 1
aX̃3), b ∈ < − {0}.

4. Dual algebras to Bianchi algebra V II0:

[X1, X2] = 0, [X2, X3] = X1, [X3, X1] = X2.

Dual algebras:

(a) Bianchi algebra I

[X̃1, X̃2] = 0, [X̃2, X̃3] = 0, [X̃3, X̃1] = 0.

(b) Bianchi algebra II

i. [X̃1, X̃2] = X̃3, [X̃2, X̃3] = 0, [X̃3, X̃1] = 0.

ii. [X̃1, X̃2] = −X̃3, [X̃2, X̃3] = 0, [X̃3, X̃1] = 0.

(c) Bianchi algebra IV

[X̃1, X̃2] = b(−X̃2+X̃3), [X̃2, X̃3] = 0, [X̃3, X̃1] = bX̃3, b ∈ <−{0}.

(d) Bianchi algebra V

i. [X̃1, X̃2] = −X̃2, [X̃2, X̃3] = 0, [X̃3, X̃1] = X̃3, .

ii. [X̃1, X̃2] = 0, [X̃2, X̃3] = bX̃2, [X̃3, X̃1] = −bX̃1, b >
0.

5. Dual algebras to Bianchi algebra V Ia:

[X1, X2] = −aX2−X3, [X2, X3] = 0, [X3, X1] = X2+aX3, a > 0, a 6= 1.

Dual algebras:

(a) Bianchi algebra I

[X̃1, X̃2] = 0, [X̃2, X̃3] = 0, [X̃3, X̃1] = 0.

(b) Bianchi algebra II

[X̃1, X̃2] = 0, [X̃2, X̃3] = X̃1, [X̃3, X̃1] = 0.

(c) Bianchi algebra V I1/a

i. [X̃1, X̃2] = −b( 1
aX̃2 + X̃3), [X̃2, X̃3] = 0, [X̃3, X̃1] =

b(X̃2 + 1
aX̃3), b ∈ < − {0}.

ii. [X̃1, X̃2] = X̃1, [X̃2, X̃3] = a+1
a−1(X̃2 + X̃3), [X̃3, X̃1] =

X̃1.
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iii. [X̃1, X̃2] = X̃1, [X̃2, X̃3] = a−1
a+1(−X̃2+X̃3), [X̃3, X̃1] =

−X̃1.

6. Dual algebras to Bianchi algebra V I0:

[X1, X2] = 0, [X2, X3] = X1, [X3, X1] = −X2.

Dual algebras:

(a) Bianchi algebra I

[X̃1, X̃2] = 0, [X̃2, X̃3] = 0, [X̃3, X̃1] = 0.

(b) Bianchi algebra II

[X̃1, X̃2] = X̃3, [X̃2, X̃3] = 0, [X̃3, X̃1] = 0.

(c) Bianchi algebra IV

i. [X̃1, X̃2] = b(−X̃2 + X̃3), [X̃2, X̃3] = 0, [X̃3, X̃1] =
bX̃3, b ∈ < − {0}.

ii. [X̃1, X̃2] = (−X̃1+X̃2+X̃3), [X̃2, X̃3] = X̃3, [X̃3, X̃1] =
−X̃3.

(d) Bianchi algebra V

i. [X̃1, X̃2] = −X̃2, [X̃2, X̃3] = 0, [X̃3, X̃1] = X̃3.

ii. [X̃1, X̃2] = −X̃1 + X̃2, [X̃2, X̃3] = X̃3, [X̃3, X̃1] =
−X̃3.

iii. [X̃1, X̃2] = 0, [X̃2, X̃3] = −X̃2, [X̃3, X̃1] = X̃1.

7. Dual algebras to Bianchi algebra V :

[X1, X2] = −X2, [X2, X3] = 0, [X3, X1] = X3.

Dual algebras:

(a) Bianchi algebra I

[X̃1, X̃2] = 0, [X̃2, X̃3] = 0, [X̃3, X̃1] = 0.

(b) Bianchi algebra II

i. [X̃1, X̃2] = 0, [X̃2, X̃3] = X̃1, [X̃3, X̃1] = 0.

ii. [X̃1, X̃2] = X̃3, [X̃2, X̃3] = 0, [X̃3, X̃1] = 0.

and dual algebras (G ↔ G̃) to algebras given above for V I0,
V II0, V III, IX.

8. Dual algebras to Bianchi algebra IV :

[X1, X2] = −X2 + X3, [X2, X3] = 0, [X3, X1] = X3.

Dual algebras:
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(a) Bianchi algebra I

[X̃1, X̃2] = 0, [X̃2, X̃3] = 0, [X̃3, X̃1] = 0.

(b) Bianchi algebra II

i. [X̃1, X̃2] = 0, [X̃2, X̃3] = X̃1, [X̃3, X̃1] = 0.

ii. [X̃1, X̃2] = 0, [X̃2, X̃3] = −X̃1, [X̃3, X̃1] = 0.

iii. [X̃1, X̃2] = 0, [X̃2, X̃3] = 0, [X̃3, X̃1] = bX̃2, b ∈ < −
{0}.

and dual algebras (G ↔ G̃) to algebras given above for V I0,
V II0.

9. Dual algebras to Bianchi algebra III:

[X1, X2] = −X2 −X3, [X2, X3] = 0, [X3, X1] = X2 + X3.

Dual algebras:

(a) Bianchi algebra I

[X̃1, X̃2] = 0, [X̃2, X̃3] = 0, [X̃3, X̃1] = 0.

(b) Bianchi algebra II

[X̃1, X̃2] = 0, [X̃2, X̃3] = X̃1, [X̃3, X̃1] = 0.

(c) Bianchi algebra III

i. [X̃1, X̃2] = −b(X̃2 + X̃3), [X̃2, X̃3] = 0, [X̃3, X̃1] =
b(X̃2 + X̃3), b ∈ < − {0}.

ii. [X̃1, X̃2] = 0, [X̃2, X̃3] = X̃2 + X̃3, [X̃3, X̃1] = 0.

iii. [X̃1, X̃2] = X̃1, [X̃2, X̃3] = 0, [X̃3, X̃1] = −X̃1.

10. Dual algebras to Bianchi algebra II:

[X1, X2] = 0, [X2, X3] = X1, [X3, X1] = 0.

Dual algebras:

(a) Bianchi algebra I

[X̃1, X̃2] = 0, [X̃2, X̃3] = 0, [X̃3, X̃1] = 0.

(b) Bianchi algebra II

i. [X̃1, X̃2] = X̃3, [X̃2, X̃3] = 0, [X̃3, X̃1] = 0.

ii. [X̃1, X̃2] = −X̃3, [X̃2, X̃3] = 0, [X̃3, X̃1] = 0.

and dual algebras (G ↔ G̃) to algebras given above for III, IV ,
V I0, V Ia, V II0, V IIa.

11. Dual algebras to Bianchi algebra I:

[X1, X2] = 0, [X2, X3] = 0, [X3, X1] = 0.

Dual algebras: all Bianchi algebras (in their Bianchi forms)
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5 Conclusions

We have classified 6–dimensional Manin triples or, equivalently, 3–
dimensional Lie bialgebras. In computations computer algebra sys-
tems Maple V and Mathematica 4 were used for solving the sets of
linear and quadratic equations that follow from the Jacobi identities
and similarity transformations. The results were calculated indepen-
dently in both systems and afterwards were checked one against the
other. The complete list consists of 78 classes of Manin triples (if one
considers dual Lie bialgebras equivalent, then the count is 44). An
open problem that remains is detecting the Manin triples that belong
to the same Drinfeld double or, in other words, the classification of
the 6-dimensional Drinfeld doubles.

One of interesting results is the number of possible Lie bialgebra
structures for the algebra V III, i.e. sl(2,<). In this case there are
up to rescaling 3 non–equivalent Manin triples. As mentioned in the
Introduction, to every Manin triple correspond a pair of Poisson–Lie
T–dual models. Therefore, there should exist 3 different pairs of non-
abelian Poisson-Lie T-dual models for sl(2,<). Only one of them
appeared in the literature so far [10]. There is a natural question
whether these models are equivalent (i.e. whether they correspond
to the decomposition of one Drinfeld double) and if they lead after
quantisation to the same quantum model.

Appendix: Most general form of G̃ of

Manin triple with given G
In this Appendix we present our computations in some detail. For each
Bianchi algebra we give solutions of the mixed Jacobi identities (10),
i.e. linear equations in f̃ , the remaining non–trivial Jacobi identities
in G̃ (9), i.e. in general quadratic equations in f̃ and their solutions,
in general depending on several parameters α, β, . . . Finally we specify
values of parameters allowing transformation (4) of G̃ into forms of G̃
given in the list of non–isomorphic Manin triples.

• G = IX
The mixed Jacobi identities (10) imply

˜f23
3 = − ˜f12

1,
˜f23

2 = ˜f13
1,

˜f13
3 = ˜f12

2,
˜f23

1 = 0, ˜f12
3 = 0, ˜f13

2 = 0.

The Jacobi identities in G̃ (9) in this case don’t impose any new
condition. The general form of G̃ is therefore

[X̃1, X̃2] = αX̃1 + βX̃2, [X̃2, X̃3] = γX̃2 − αX̃3,
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[X̃3, X̃1] = −γX̃1 − βX̃3

G̃ can be transformed into

– Bianchi algebra I in the standard form IX (a) if α = β =
γ = 0,

– Bianchi algebra V in the rescaled standard form IX (b) with
b =

√
α2 + β2 + γ2 otherwise.

• G = V III
The mixed Jacobi identities (10) imply

˜f12
1 = − ˜f23

3,
˜f13

1 = ˜f23
2,

˜f12
2 = ˜f13

3,
˜f23

1 = 0, ˜f13
2 = 0, ˜f12

3 = 0.

The Jacobi identities in G̃ (9) in this case don’t impose any new
condition. The general form of G̃ is therefore

[X̃1, X̃2] = −αX̃1 + βX̃2, [X̃2, X̃3] = γX̃2 + αX̃3,

[X̃3, X̃1] = −γX̃1 − βX̃3.

G̃ can be transformed into

– Bianchi algebra I in the standard form V III (a) if α = β =
γ = 0,

– Bianchi algebra V

∗ in the rescaled standard form V III (b) i. with b =√
α2 + β2 − γ2 if α2 + β2 − γ2 > 0,

∗ in the form V III (b) ii. with b =
√
−(α2 + β2 − γ2) if

α2 + β2 − γ2 < 0,
∗ in the form V III (b) iii. if α2 + β2 − γ2 = 0, and

α 6= 0 ∨ β 6= 0 ∨ γ 6= 03.

• G = V IIa

The mixed Jacobi identities (10) imply

˜f13
2 = a ˜f13

3,
˜f12

2 = ˜f13
3,

˜f23
3 = −a2 ˜f23

2 + a2 ˜f13
1 − ˜f23

2 + ˜f13
1

2a
,

˜f12
1 = −a2 ˜f23

2 + a2 ˜f13
1 + ˜f23

2 − ˜f13
1

2a
, ˜f12

3 = −a ˜f13
3.

The Jacobi identities in G̃ (9) reduce to

4a ˜f23
1

˜f13
3 + (a ˜f23

2)
2 + 2a2 ˜f23

2
˜f13

1 + ( ˜f23
2)

2 − 2 ˜f23
2

˜f13
1+

+(a ˜f13
1)

2 + ( ˜f13
1)

2 = 0.

The solutions of this equation give the following general forms
of G̃:

3In order to avoid abundant parentheses, logical conjuctions written in terms of symbols
are considered with higher priority than that written by words and, or.
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1.

[X̃1, X̃2] = − 1
2a

(a2α + βa2 + α− β)X̃1 + γX̃2 − γaX̃3,

[X̃2, X̃3] = − 1
4γa

(a2α2 + 2αβa2 + α2 − 2αβ + β2a2 + β2)X̃1

+αX̃2 − 1
2a

(a2α + βa2 − α + β)X̃3,

[X̃3, X̃1] = −βX̃1 − γaX̃2 − γX̃3.

G̃ can be transformed into
– Bianchi algebra V II1/a in the rescaled standard form

V IIa (c) with b = −aγ.
2. [X̃1, X̃2] = 0, [X̃2, X̃3] = αX̃1, [X̃3, X̃1] = 0.

G̃ can be transformed into
– Bianchi algebra I in the standard form V IIa (a) if α =

0,
– Bianchi algebra II

∗ in the standard form V IIa (b) i. if α > 0,
∗ in the form V IIa (b) ii. if α < 0.

• G = V II0

The mixed Jacobi identities (10) imply

˜f12
1 = − ˜f23

3,
˜f12

2 = ˜f13
3,

˜f23
2 = ˜f13

1,
˜f13

2 = 0, ˜f23
1 = 0.

The Jacobi identities in G̃ (9) reduce to

˜f12
3

˜f13
1 = 0.

The solutions of this equation give the following most general
forms of G̃:

1.

[X̃1, X̃2] = −αX̃1 + βX̃2 + γX̃3,

[X̃2, X̃3] = αX̃3,

[X̃3, X̃1] = −βX̃3.

G̃ can be transformed into
– Bianchi algebra I in the standard form V II0 (a) if γ =

β = α = 0,
– Bianchi algebra II

∗ in the form V II0 (b) i. if γ > 0 and β = α = 0,
∗ in the form V II0 (b) ii. if γ < 0 and β = α = 0,
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– Bianchi algebra IV in the rescaled standard form V II0

(c) with b = −β2+α2

γ if γ 6= 0 and β 6= 0 ∨ α 6= 0,
– Bianchi algebra V in the standard form V II0 (d) i. with

if γ = 0 and β 6= 0 ∨ α 6= 0.
2.

[X̃1, X̃2] = −αX̃1 + βX̃2,

[X̃2, X̃3] = γX̃2 + αX̃3,

[X̃3, X̃1] = −γX̃1 − βX̃3.

G̃ can be transformed into
– Bianchi algebra I in the standard form V II0 (a) if α =

β = γ = 0,
– Bianchi algebra V

∗ in the standard form V II0 (d) i. if γ = 0,
∗ in the form V II0 (d) ii. with b = |γ| if γ 6= 0.

• G = V Ia

The mixed Jacobi identities (10) imply

˜f13
1 = −−a2 ˜f12

1 + a2 ˜f23
3 − ˜f23

3 − ˜f12
1

2a
, ˜f12

3 = a ˜f12
2,

˜f13
3 = ˜f12

2,

˜f13
2 = a ˜f12

2,
˜f23

2 =
−a2 ˜f12

1 + a2 ˜f23
3 + ˜f23

3 + ˜f12
1

2a
.

The Jacobi identities in G̃ (9) reduce to

4a ˜f23
1

˜f12
2 + (a ˜f12

1)
2 − 2a2 ˜f12

1
˜f23

3 − 2 ˜f12
1

˜f23
3 − ( ˜f12

1)
2+

+(a ˜f23
3)

2 − ( ˜f23
3)

2 = 0.

The solutions of this equation give the following most general
forms of G̃:

1.

[X̃1, X̃2] = αX̃1 + βX̃2 + aβX̃3,

[X̃2, X̃3] = −a2α2 − 2αγa2 − 2αγ − α2 + γ2a2 − γ2

4aβ
X̃1

+
(−a2α + γa2 + γ + α)

2a
X̃2 + γX̃3,

[X̃3, X̃1] =
−a2α + γa2 − γ − α

2a
X̃1 − aβX̃2 − βX̃3.

G̃ can be transformed into
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– Bianchi algebra V I1/a in the rescaled standard form V Ia

(c) with b = −aβ.
2.

[X̃1, X̃2] = αX̃1,

[X̃2, X̃3] = βX̃1 + α
a + 1
a− 1

X̃2 + α
a + 1
a− 1

X̃1,

[X̃3, X̃1] = αX̃1.

G̃ can be transformed into
– Bianchi algebra I in the standard form V Ia (a) if α =

β = 0,
– Bianchi algebra II in the standard form V Ia (b) if α = 0

and β 6= 0.
– Bianchi algebra V I1/a in the form V Ia (c) ii. if α 6= 0.

3.

[X̃1, X̃2] = αX̃1,

[X̃2, X̃3] = βX̃1 − α
a− 1
a + 1

X̃2 + α
a− 1
a + 1

X̃3,

[X̃3, X̃1] = −αX̃1.

G̃ can be transformed into
– Bianchi algebra I in the standard form V Ia (a) if α =

β = 0,
– Bianchi algebra II in the standard form V Ia (b) if α = 0

and β 6= 0.
– Bianchi algebra V I1/a in the form V Ia (c) ii. if α 6= 0.

• G = V I0

The mixed Jacobi identities (10) imply

˜f13
3 = ˜f12

2,
˜f13

1 = ˜f23
2,

˜f12
1 = − ˜f23

3,
˜f13

2 = 0, ˜f23
1 = 0.

The Jacobi identities in G̃ (9) reduce to

˜f12
3

˜f23
2 = 0.

The solutions of this equation give the following most general
forms of G̃:

1.

[X̃1, X̃2] = −αX̃1 + βX̃2 + γX̃3,

[X̃2, X̃3] = αX̃3,

[X̃3, X̃1] = −βX̃3.

G̃ can be transformed into
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– Bianchi algebra I in the standard form V I0 (a) if α =
β = γ = 0,

– Bianchi algebra II in the form V I0 (b) if γ 6= 0 and
α = β = 0,

– Bianchi algebra IV

∗ in the rescaled standard form V I0 (c) i. with b =
α2−β2

γ if γ 6= 0 and α2 6= β2,

∗ in the form V I0 (c) ii. with if γ 6= 0 and α2 = β2 6= 0,
– Bianchi algebra V

∗ in the standard form V I0 (d) i. if γ = 0 and α2 6= β2,
∗ in the form V I0 (d) ii. if γ = 0 and α2 = β2 6= 0,

2.

[X̃1, X̃2] = −αX̃1 + βX̃2,

[X̃2, X̃3] = γX̃2 + αX̃3,

[X̃3, X̃1] = −γX̃1 − βX̃3.

G̃ can be transformed into
– Bianchi algebra I in the standard form V I0 (a) if α =

β = γ = 0,
– Bianchi algebra V

∗ in the form V I0 (d) i. if γ = 0 and α2 6= β2,
∗ in the form V I0 (d) ii. if γ = 0 and α2 = β2,
∗ in the form V I0 (d) iii. with b = |γ| if γ 6= 0.

• G = V
The mixed Jacobi identities (10) imply

˜f12
1 = ˜f23

3,
˜f13

3 = − ˜f12
2,

˜f23
2 = − ˜f13

1.

The Jacobi identities in G̃ (9) in this case don’t impose any new
condition. The general form of G̃ is therefore

[X̃1, X̃2] = αX̃1 + βX̃2 + γX̃3,

[X̃2, X̃3] = δX̃1 − εX̃2 + αX̃3,

[X̃3, X̃1] = −εX̃1 − ζX̃2 + βX̃3.

Finding the Bianchi forms of this algebra for all values of param-
eters seems to be rather complicated, because this case contains
also all 2nd subalgebras of duals of Manin triples (D,G, G̃) with
G̃ ≡ V given above. Therefore we compute only the values of
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parameters for which G̃ is isomorphic to I, . . . , V . We find that
G̃ can be transformed into4

– Bianchi algebra I in the standard form V (a) if α = β =
γ = δ = ε = ζ = 0,

– Bianchi algebra II

∗ in the form V (b) i. if
· ∃x, y s.t. α = xγ, β = yγ, ε = −xyγ, ζ = −y2γ, δ =

x2γ, γ 6= 0
· or α = β = γ = 0 and ∃x s.t. ε = −xδ, ζ = −x2δ, x 6=

0, δ 6= 0
· or α = β = γ = δ = ε = 0, ζ 6= 0,

∗ in the form V (b) ii. if α = β = γ = ε = ζ = 0 and
δ 6= 0.

• G = IV
The mixed Jacobi identities (10) imply

˜f12
3 = 0, ˜f12

2 = 0, ˜f23
2 = − ˜f13

1 − 2 ˜f12
1,

˜f23
3 = ˜f12

1,
˜f13

3 = 0.

The Jacobi identities in G̃ (9) reduce to

( ˜f12
1)

2 = 0.

The solution of this equation gives the most general form of G̃:

[X̃1, X̃2] = 0,

[X̃2, X̃3] = αX̃1 − βX̃2,

[X̃3, X̃1] = −βX̃1 − γX̃2.

G̃ can be transformed into

– Bianchi algebra I in the standard form IV (a) if α = β =
γ = 0,

– Bianchi algebra II

∗ in the standard form IV (b) i. if γ = β = 0 and α > 0,
∗ in the form IV (b) ii. if γ = β = 0 and α < 0,
∗ in the form IV (b) iii. with b = −γ if γ 6= 0 and

β2 + αγ = 0,
– Bianchi algebra V I0

∗ in the rescaled standard form with b = γ if γ 6= 0 and
β2 +αγ > 0. The corresponding Manin triple is dual to
the triple V I0 (c) i.

4It is helpful to exploit the fact that the commutant of II is one–dimensional, i.e.
suitably written matrix of structure coefficients has rank 1.
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∗ in the form

[X̃1, X̃2] = 0, [X̃2, X̃3] = X̃2, [X̃3, X̃1] = X̃1

if γ = 0 and β 6= 0. The corresponding Manin triple is
dual to the triple V I0 (c) ii.

– Bianchi algebra V II0 in the rescaled standard form with
b = γ if γ 6= 0 and β2 + αγ < 0. The corresponding Manin
triple is dual to the triple V II0 (c) i.

• G = III
The mixed Jacobi identities (10) imply

˜f13
3 = ˜f12

2,
˜f12

1 = ˜f13
1,

˜f12
3 = ˜f12

2,
˜f13

2 = ˜f12
2,

˜f23
3 = ˜f23

2.

The Jacobi identities in G̃ (9) reduce to

˜f23
1

˜f12
2 − ˜f13

1
˜f23

3 = 0.

The solutions of this equation give the following most general
forms of G̃:

1.

[X̃1, X̃2] = αX̃1 + βX̃2 + βX̃3,

[X̃2, X̃3] =
αγ

β
X̃1 + γX̃2 + γX̃3,

[X̃3, X̃1] = −αX̃1 − βX̃2 − βX̃3.

G̃ can be transformed into
– Bianchi algebra III in the rescaled standard form III

(c) i. with b = 1/β.
2.

[X̃1, X̃2] = 0,

[X̃2, X̃3] = αX̃1 + βX̃2 + βX̃3,

[X̃3, X̃1] = 0.

G̃ can be transformed into
– Bianchi algebra I in the standard form III (a) if α =

β = 0,
– Bianchi algebra II in the form III (b) i. if β = 0 and

α 6= 0,
– Bianchi algebra III in the form III (c) ii. if β 6= 0.
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3.

[X̃1, X̃2] = αX̃1,

[X̃2, X̃3] = βX̃1,

[X̃3, X̃1] = −αX̃1.

G̃ can be transformed into
– Bianchi algebra I in the standard form III (a) if α =

β = 0,
– Bianchi algebra II in the form III (b) i. if α = 0 and

β 6= 0,
– Bianchi algebra III in the form III (c) iii. if α 6= 0.

• G = II
Finding the Bianchi forms of the 2nd algebra for all values of pa-
rameters again seems to be rather complicated, because it con-
tains also all 2nd subalgebras of duals of Manin triples (D,G, G̃)
with G̃ ≡ II given above. Therefore we compute only the values
of parameters for which possible G̃s are isomorphic to I, II.
The mixed Jacobi identities (10) imply

˜f13
1 = ˜f23

2,
˜f23

1 = 0, ˜f12
1 = − ˜f23

3.

The Jacobi identities in G̃ (9) reduce to

− ˜f13
3

˜f23
3 + ˜f23

3
˜f12

2 − 2 ˜f12
3

˜f23
2 = 0,

−2 ˜f13
2

˜f23
3 − ˜f12

2
˜f23

2 + ˜f23
2

˜f13
3 = 0.

The solutions of these equations give the following most general
forms of G̃:

1.

[X̃1, X̃2] = −αX̃1 − 2βα− γδ

γ
X̃2 − α2β

γ2
X̃3,

[X̃2, X̃3] = γX̃2 + αX̃3,

[X̃3, X̃1] = −γX̃1 − βX̃2 − δX̃3.

G̃ of this form represents Bianchi algebras IV, V only.
2.

[X̃1, X̃2] = αX̃2 + βX̃3,

[X̃2, X̃3] = 0,

[X̃3, X̃1] = −γX̃2 − δX̃3.
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– Bianchi algebra I in the standard form V (a) if α = β =
γ = δ = 0,

– Bianchi algebra II

∗ in the form II (b) i. if ∃x : γ = −x2β, δ = −xβ, α =
xβ, β > 0 or δ = α = β = 0, γ < 0,

∗ in the form II (b) ii. if ∃x : γ = −x2β, δ = −xβ, α =
xβ, β < 0 or δ = α = β = 0, γ > 0,

Bianchi algebras III, IV, V, V Ia, V I0, V IIa, V II0 otherwise.
3.

[X̃1, X̃2] = −αX̃1 + βX̃2 + γX̃1,

[X̃2, X̃3] = αX̃3,

[X̃3, X̃1] = −βX̃3.

– Bianchi algebra I in the standard form V (a) if α = β =
γ = 0,

– Bianchi algebra II

∗ in the form II (b) i. if α = β = 0, γ > 0,
∗ in the form II (b) ii. if α = β = 0, γ < 0,

Bianchi algebras IV, V otherwise.

• G = I
G̃ might be any 3–dimensional Lie algebra, it can be brought to
its Bianchi form by the transformation (4).
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Chapter 6

Classification of 6–dimensional
real Drinfeld doubles

accepted for publication in International Jour-

nal of Modern Physics A.

In this paper we classified all 6–dimensional real Drinfeld doubles, i.e. we
identified Manin triples giving rise to the same Drinfeld double.

Our investigation is based on the invariants of the underlying Lie algebra
D, i.e. rank of its Killing form and dimensions of derived subalgebras Di,
Di. These invariants give a coarse sorting into classes of Manin triples that
might possibly lead to the same Drinfeld doubles. Manin triples in each of
these classes are then studied and the (non)equivalence of the corresponding
Drinfeld doubles is rigorously proven.

Interesting conclusion is that not only rather different Manin triples might
lead to the same Drinfeld double, but also the same underlying Lie algebra
D may be equipped, e.g. for D semisimple, with different bilinear forms and
define different Drinfeld doubles. 1

1This paper is presented in the form of the proof before publication, the final version
is not yet available. Therefore, in case of any doubts please consult the list of corrections
at the end.
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Starting from the classification of real Manin triples we look for those that are isomorphic
as six-dimensional Drinfeld doubles i.e. Lie algebras with the ad-invariant form used for
construction of the Manin triples. We use several invariants of the Lie algebras to distin-
guish the nonisomorphic structures and give the explicit form of maps between Manin
triples that are decompositions of isomorphic Drinfeld doubles. The result is a complete
list of six-dimensional real Drinfeld doubles. It consists of 22 classes of nonisomorphic
Drinfeld doubles.
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1. Introduction

In recent years, the study of T -duality in string theory has led to the discovery

of Poisson–Lie T -dual sigma models. Klimč́ık and Ševera have found a procedure

allowing us to construct the dual models from Manin triples (D,G, G̃), i.e. a decom-

positions of a Lie algebra D (it must be even-dimensional) into two maximally

isotropic subalgebras G, G̃ w.r.t. a bilinear form. The construction of the Poisson–

Lie T -dual sigma models is described in Refs. 1 and 2.

The Lie group possessing a Lie algebra that can be written as a Manin triple

is called the Drinfeld double. The classification of the two-dimensional Drinfeld

doubles is trivial and the four-dimensional Drinfeld doubles can be found e.g. in

the paper Ref. 3 together with the corresponding two-dimensional T -dual models.

Examples of six-dimensional Drinfeld doubles and three-dimensional dual models

were given e.g. in Refs. 4–6. There was an attempt to classify the six-dimensional

Drinfeld doubles by the Bianchi forms of their three-dimensional isotropic sub-

algebras in Ref. 6 but it is not sufficient for the specification of the Drinfeld

double.

As we shall see Manin triples are equivalent to Lie bialgebras and the classifi-

cation of the three-dimensional Lie bialgebras (i.e. six-dimensional Manin triples)

was given in Ref. 7. Without knowledge of this this work we have performed a

1
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classification of the six-dimensional Manin triples in Ref. 8. The consequent com-

parison proved that the results are identical even though we have started from a

different description of the three-dimensional algebras and used a completely dif-

ferent method. It means that in Ref. 8 we have done an independent check of Ref. 7

and on the other hand, expressed the results in a different form, namely as Manin

triples.

The goal of this paper is to find which of the Manin triples represent decom-

position of the same (or more precisely isomorphic) Drinfeld doubles. We use the

notation of Ref. 8 because the less compact sorting of the triples into parametrized

classes turned out more appropriate for the classification. The result is a complete

list of the real nonisomorphic six-dimensional Drinfeld doubles. Let us note that

the Drinfeld double is defined not only by its Lie structure but also by a bilinear

form. There are e.g. two classes of Drinfeld doubles for so(1, 3) as we shall see.

In the following sections, we first recall the definitions of Manin triple, Lie

bialgebra and Drinfeld double, then briefly explain the approach we have used

to distinguish the nonisomorphic structures. The main result of the paper is the

classification theorem in Sec. 3. Explicit forms of maps between Manin triples that

are decompositions of the isomorphic Drinfeld doubles are contained in the proof

of the theorem.

2. Manin Triples, Lie Bialgebras, Drinfeld Doubles

The Drinfeld double D is defined as a connected Lie group such that its Lie algebra

D equipped by a symmetric ad-invariant nondegenerate bilinear form 〈· , ·〉 can be

decomposed into a pair of subalgebras G, G̃ maximally isotropic w.r.t. 〈· , ·〉 and

D as a vector space is the direct sum of G and G̃. This ordered triple of algebras

(D,G, G̃) is called Manin triple.

One can see that the dimensions of the subalgebras are equal and that bases

{Xi}, {X̃i}, i = 1, 2, 3 in the subalgebras can be chosen so that

〈Xi,Xj〉 = 0 , 〈Xi, X̃
j〉 = 〈X̃j ,Xi〉 = δji , 〈X̃i, X̃j〉 = 0 . (1)

This canonical form of the bracket is invariant with respect to the transformations

X ′i = XkA
k
i , X̃ ′j = (A−1)jkX̃

k . (2)

The Manin triples that are related by the transformation (2) are considered isomor-

phic. Due to the ad-invariance of 〈· , ·〉 the algebraic structure of D is determined

by the structure of the maximally isotropic subalgebras because in the basis {Xi},
{X̃i} the Lie product is given by

[Xi,Xj ] = fij
kXk ,

[X̃i, X̃j] = f̃ ijkX̃
k ,

[Xi, X̃
j] = fki

jX̃k + ˜f jkiXk .

(3)
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It is clear that to any Manin triple (D,G, G̃) one can construct the dual one by

interchanging G ↔ G̃, i.e. interchanging the structure coefficients fij
k ↔ f̃ ijk. All

properties of Lie algebras (the nontrivial being the Jacobi identities) remain to be

satisfied. On the other hand for given Drinfeld double more than two Manin triples

can exist and we shall see many examples of that.

One can rewrite the structure of a Manin triple also in another, equivalent, but

for certain considerations more suitable, form of a Lie bialgebra defined as a Lie

algebra g equipped also by a Lie cobracketa δ : g → g ⊗ g : δ(x) =
∑
x[1] ⊗ x[2]

such that ∑
x[1] ⊗ x[2] = −

∑
x[2] ⊗ x[1] , (4)

(id⊗ δ) ◦ δ(x) + cyclic permutations of tensor indices = 0 , (5)

δ([x, y]) =
∑

[x, y[1]]⊗ y[2] + y[1] ⊗ [x, y[2]]

− [y, x[1]]⊗ x[2] − x[1] ⊗ [y, x[2]] (6)

(for detailed account on Lie bialgebras see e.g. Ref. 9 or 10, Chapter 8).

The correspondence between a Manin triple and a Lie bialgebra can now be

formulated in the following way. Because both subalgebras G, G̃ of the Manin triple

are of the same dimension and are connected by nondegenerate pairing, it is natural

to consider G̃ as a dual G∗ to G and to use the Lie bracket in G̃ to define the Lie

cobracket in G; δ(x) is given by 〈δ(x), ỹ ⊗ z̃〉 = 〈x, [ỹ, z̃]〉, ∀ỹ, z̃ ∈ G∗, i.e. δ(Xi) =

f̃ jki Xj ⊗Xk. The Jacobi identities in G̃

f̃klm f̃
ij
l + f̃ ilmf̃

jk
l + f̃ jlmf̃kil = 0 (7)

are then equivalent to the property of cobracket (5) and the G̃-component of the

mixed Jacobi identitiesb

f̃ jklfmi
l + f̃klmfli

j + f̃ jliflm
k + f̃ jlmfil

k + f̃kliflm
j = 0 (8)

are equivalent to (6).

From now on, we will use the formulation in terms of Manin triples, Lie bialge-

bra formulation of all results can be easily derived from it. We also consider only

algebraic structure, the Drinfeld doubles as the Lie groups can be obtained in prin-

ciple by means of exponential map and usual theorems about relation between Lie

groups and Lie algebras apply, e.g. there is a one to one correspondence between

(finite-dimensional) Lie algebras and connected and simply connected Lie groups.

The group structure of the Drinfeld double can be deduced e.g. by taking matrix

exponential of adjoint representation of its algebra.

aSummation index is suppressed.
bThe Jacobi identities [Xi, [X̃j , X̃k ]]+ cyclic = 0 lead to both (8) (terms proportional to X̃l) and
(7) (terms proportional to Xl).
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We shall consider two Drinfeld doubles isomorphic if they have isomorphic alge-

braic structure and there is an isomorphism transforming one ad-invariant bilinear

form to the other. As mentioned above we can always choose a basis so that the

bilinear form have canonical form (1) and the Lie product is then given by (3). The

Drinfeld doubles D and D′ with these special bases Ya = (X1,X2,X3, X̃
1, X̃2, X̃3),

Y ′a = (X ′1,X
′
2,X

′
3, X̃

′1, X̃ ′2, X̃ ′3) are isomorphic iff there is an invertible 6×6 matrix

Ca
b such that the linear map given by

Y ′a = Ca
bYb (9)

transforms the Lie multiplication of D into that of D′ and preserves the canonical

form of the bilinear form 〈· , ·〉. This is equivalent to

Ca
pCb

qBpq = Bab , Ca
pCb

qFpq
r = F ′ab

c
Cc

r , (10)

where Fab
c, F ′ab

c
, a, b, c = 1, . . . , 6 are structure coefficients of the doubles D and

D′ and

B =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0


. (11)

3. Method and Result of Classification

As mentioned in the Introduction, there are 78 nonisomorphic classes of Manin

triples.8 If we take into account the duality transformation (D,G, G̃) 7→ (D, G̃,G)
the number is reduced to 44. Their explicit form is given in App. B. It follows from

(1) and (3) that the structure of the Manin triple can be given by the structure

coefficients fkij , f̃
ij
k of G and G̃ in the special basis where relations (1) hold. That

is why we usually denote the Manin triples (D,G, G̃) by (G|G̃) or (G|G̃|b) when a

scaling parameter b occurs in the definition of the Lie product. Let us note that

(G|G̃|b) and (G|G̃|b′) are isomorphic up to rescaling of 〈· , ·〉.
It is clear that a direct check which of 44 Manin triples are decomposition of

isomorphic Drinfeld doubles is a tremendous task. That is why we first evaluate as

many invariants of the algebras as possible and then sort them into smaller subsets

according to the values of the invariants. It is clear that only the Manin triples in

these subsets can be decomposition of the same Drinfeld double. The invariants we

have used are:

• signature (numbers of positive, negative and zero eigenvalues) of the Killing form,

• dimensions of the comutant [D,D] ≡ D1 ≡ D1 and subalgebras created by the

repeated Lie multiplication Di+1 = [Di,D], (up to i = 3, it turns out that for

i ≥ 3 Di+1 = Di). (We have for completeness determined also dimensions of

Di+1 = [Di,Di], but they does not lead to refinement of our partition.)
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Table 1. Invariants of Manin triples.

Signature Dim. of Dim. of Dim. of Manin triples

of K [D,D] D2, D3 D2, D3

(3, 3, 0) 6 6, 6 6, 6 (9|5|b), (8|5.ii|b),
(7a|71/a|b), (70|5.ii|b)

(4, 2, 0) 6 6, 6 6, 6 (8|5.i|b), (6a|61/a.i|b),
(60|5.iii|b)

(0, 3, 3) 6 6, 6 6, 6 (9|1)

(2, 1, 3) 6 6, 6 6, 6 (8|1), (8|5.iii), (70|4|b),
(70|5.i), (60|4.i|b), (60|5.i),
(5|2.ii), (4|2.iii|b),

3 3, 3 3, 3 (3|3.i)

(1, 0, 5) 5 5, 5 1, 0 (7a|1), (7a|2.i), (7a|2.ii), a > 1

(6a|1), (6a|2), (6a|61/a.ii),

(6a|61/a.iii), (60|1), (60|2),
(60|4.ii), (60|5.ii), (5|1), (5|2.i),
(4|1), (4|2.i), (4|2.ii)

3 3, 3 1, 0 (3|1), (3|2), (3|3.ii), (3|3.iii)

(0, 1, 5) 5 5, 5 1, 0 (7a|1), (7a|2.i), (7a|2.ii), a < 1

(70|1), (70|2.i), (70|2.ii)

(0, 0, 6) 5 5, 5 1, 0 (7a|1), (7a|2.i), (7a|2.ii), a = 1

3 0, 0 0,0 (2|2)

2, 0 0, 0 (2|2.i), (2|2.ii)

0 0, 0 0, 0 (1|1)

The partition of the list of Manin triples according to the values of invariants is

in Table 1. The final distinction between nonisomorphic Drinfeld doubles and their

decomposition into Manin triples provides the following theorem.

Theorem 1. Any six-dimensional real Drinfeld double belongs just to one of the

following 22 classes and allows decomposition into all Manin triples listed in the

class and their duals (G ↔ G̃). If the class contains parameter a or b, the Drinfeld

doubles with different values of this parameter are nonisomorphic.

(1) (9|5|b) ∼= (8|5.ii|b) ∼= (70|5.ii|b), b > 0,

(2) (8|5.i|b) ∼= (60|5.iii|b), b > 0,

(3) (7a|71/a|b) ∼= (71/a|7a|b), a ≥ 1, b ∈ R− {0},
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(4) (6a|61/a.i|b) ∼= (61/a.i|6a|b), a > 1, b ∈ R− {0},
(5) (9|1),

(6) (8|1) ∼= (8|5.iii) ∼= (70|5.i) ∼= (60|5.i) ∼= (5|2.ii),
(7) (70|4|b) ∼= (4|2.iii|b) ∼= (60|4.i| − b), b ∈ R− {0},
(8) (3|3.i),
(9) (7a|1) ∼= (7a|2.i) ∼= (7a|2.ii), a > 1,

(10) (6a|1) ∼= (6a|2) ∼= (6a|61/a.ii) ∼= (6a|61/a.iii), a > 1,

(11) (60|1) ∼= (60|5.ii) ∼= (5|1) ∼= (5|2.i),
(12) (60|2) ∼= (60|4.ii) ∼= (4|1) ∼= (4|2.i) ∼= (4|2.ii),
(13) (3|1) ∼= (3|2) ∼= (3|3.ii) ∼= (3|3.iii),
(14) (7a|1) ∼= (7a|2.i) ∼= (7a|2.ii), 0 < a < 1,

(15) (70|1),

(16) (70|2.i),
(17) (70|2.ii),
(18) (71|1) ∼= (71|2.i) ∼= (71|2.ii),
(19) (2|1),

(20) (2|2.i),
(21) (2|2.ii),
(22) (1|1).

4. The Proof of Theorem 1

The essence of the proof is to find which of the 78 nonisomorphic Manin triples

found in Ref. 8 and displayed in App. B yield isomorphic Drinfeld doubles. The iso-

morphisms are given by the explicit form of the transformation matrices C [see (9)]

that were found by solution of Eq. (10). In this part we have used the computer

programs Maple V and Mathematica 4. The solutions are not unique and here we

present only a simple examples of them. The nonisomorphic Drinfeld doubles are

distinguished by investigation of their various subalgebras and properties of 〈· , ·〉
and the Killing form on them.

In the next subsection we analyze the subsets of nonisomorphic Manin triples

characterized by invariants described in Sec. 3 and displayed in Table 1.

4.1. Manin triples with the Killing form of signature (3, 3, 0)

In this case the signature of the Killing form itself fixes the Lie algebraD of the Drin-

feld double uniquely. It is the well-known so(3, 1) which is simple as a real Lie alge-

bra and its complexification is semisimple; it decomposes into two copies of sl(2,C).

The Drinfeld doubles corresponding to (9|5|b), (8|5.ii|b), (70|5.ii|b), (7a|71/a|b) can

consequently differ only by the bilinear form 〈· , ·〉.
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We can find a necessary condition for equivalence of semisimple Drinfeld doubles

from the fact that any invariant symmetric bilinear form on a complex simple Lie

algebra is a multiple of the Killing form and that any invariant symmetric bilinear

form on a semisimple Lie algebra is a sum of invariant symmetric bilinear forms on

its simple components. (Proof: Let G = ⊕iGi be the decomposition into simple com-

ponents, X ∈ Gi, Y ∈ Gj , i 6= j. Then ∃Ak, Bk ∈ Gj s.t. Y =
∑
k[Ak, Bk] and from

the ad-invariance of the form 〈X,Y 〉 =
∑
k〈X, [Ak, Bk]〉 = −

∑
k〈[Ak,X], Bk〉 =

−
∑
k〈0, Bk〉 = 0.)

We therefore consider the complexification DC of the Drinfeld double algebra

and write both the Killing form on DC and the bilinear form 〈· , ·〉 in terms of

Killing forms K1, K2 of still unspecified simple components sl(2,C)1, sl(2,C)2

(DC = sl(2,C)1 ⊕ sl(2,C)2)

K = K1 +K2 , 〈 , 〉 = αK1 + βK2 .

We trivially extend the Killing forms K1, K2 to the whole Drinfeld double algebra

DC and express them as

K1 =
〈 , 〉 − βK
α− β , K2 =

αK − 〈 , 〉
α− β .

Because K1, K2 are trivially extended Killing forms, they must have three-

dimensional nullspace [sl(2,C)2 in the case of K1 and sl(2,C)1 in the case of

K2]. These two conditions on dimensions of nullspaces fix the coefficients α, β

uniquely up to a permutation. Therefore, the necessary condition for equivalence

of two semisimple six-dimensional Drinfeld doubles is the equality of their sets of

coefficients {α, β}.
We compute the coefficients α, β for the Manin triples in this class and find that

in three cases (9|5|b), (8|5.ii|b), (70|5.ii|b) is

{α, β} =

{
i

4b
,− i

4b

}
and for (7a|71/a|b) is

{α, β} =

{
ia

4b(a− i)2
,− ia

4b(i+ a)2

}
.

We see that the Manin triple (7a|71/a|b) defines for any a, b Drinfeld doubles dif-

ferent from any of the Drinfeld doubles associated to the Manin triples (9|5|b),
(8|5.ii|b), (70|5.ii|b) and that Drinfeld doubles corresponding to (7a|71/a|b) with

different values of a and b are different except the case a′ = 1/a, b′ = b. The

Manin triples (7a|71/a|b) and (71/a|7a|b) are mutually dual, correspond to G ↔ G̃
and therefore give the same Drinfeld double. The Manin triple (71|71|b) is of course

self-dual.
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8 L. Šnobl & L. Hlavatý

Also one sees that the Manin triples (9|5|b), (8|5.ii|b), (70|5.ii|b) with different

b cannot lead to the same Drinfeld double. For the Manin triples (9|5|b), (8|5.ii|b),
(70|5.ii|b) with equal b, the transformations (9) between Drinfeld doubles exist, but

may contain complex numbers since up to now we have considered only complexi-

fications of the original Manin triples.

However, one can check that the following real transformation matrices C guar-

antee the equivalence of the Drinfeld doubles in this class for fixed value of b.

(9|5|b)→ (8|5.ii|b) : C =



0 1 0 0 0
1

b

0 0 1 0 −1

b
0

1 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 1 0 0


,

(9|5|b)→ (70|5.ii|b) : C =



1

2
0 −1

2
0

1

2b
0

0
1

2
0 − 1

2b
0 0

0 0 1 0 0 0

0 b 0 1 0 0

−b 0 −b 0 1 0

0 b 0 0 0 1


.

As mentioned in the beginning of this section, the transformation matrices are not

unique; they contain several free parameters. Here and further we give them in a

simple form setting the parameters zero or one.

4.2. Manin triples with the Killing form of signature (4, 2, 0)

In this case the signature of the Killing form again fixes the Lie algebra D of the

Drinfeld double uniquely, it is sl(2,R) ⊕ sl(2,R), and the Drinfeld doubles may

again differ only by the bilinear form 〈· , ·〉. We use the criterion developed in the

previous subsection for semisimple Drinfeld doubles and find

• (8|5.i|b), (60|5.iii|b) : {α, β} =
{

1
4b ,−

1
4b

}
,

• (6a|61/a.i|b) : {α, β} =
{

a
4b(a−1)2 ,− a

4b(1+a)2

}
.

This shows that the Manin triples might specify isomorphic Drinfeld doubles only

in the following two cases:
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(1) (8|5.i|b) and (60|5.iii|b) for the same value of b. In this case we have found the

transformation matrix C

(8|5.i|b)→ (60|5.iii|b) : C =



0 0 − b
2
−1

2
0 0

− b
2

b

2
0 0 0

1

2

0 −1 0 0 0 0

−1 −1 0 0 0 −1

b

0 0 1 −1

b
0 0

0 0 b 0 −1 0


.

This transformation is real and therefore the Drinfeld doubles are isomorphic,

(8|5.i|b) ∼= (60|5.iii|b).
(2) (6a|61/a.i|b) and (61/a|6a.i|b). One can easily see that these Manin triples are

dual (i.e. can be obtained one from the other by the interchange G ↔ G̃) and

the Drinfeld doubles are therefore isomorphic.

4.3. Manin triples with the Killing form of signature (0, 3, 3)

This class contains only one Manin triple (9|1) and its dual; the corresponding

Drinfeld double is isomorphic to so(3) .R3 since the Killing form has the signature

(0, 3, 3) and dim[D,D] = 3.

4.4. Manin triples with the Killing form of signature (2, 1, 3)

We consider only the Manin triples with dim[D,D] = 6, the other set in this class

contains only one Manin triple (3|3.i), which is isomorphic as a Lie algebra to

sl(2,R)⊕R3 since the Killing form has the signature (2, 1, 3) and dim[D,D] = 3.

The Manin triples in this set (8|1), (8|5.iii), (70|4|b), (70|5.i), (60|4.i|b), (60|5.i),
(5|2.ii), (4|2.iii|b), are neither semisimple (rankK 6= 6) nor solvable ([D,D] = D).

Therefore they have a nontrivial Levi–Maltsev decomposition into semidirect sum

of a semisimple subalgebra S and radical N

D = S . N ,

both of them are three-dimensional. Knowledge of this decomposition turns out to

be helpful in the investigation of equivalence of the Drinfeld doubles.

A rather simple computation shows that the radical is in all these Manin

triples Abelian and maximally isotropic, e.g. for (8|1) the radical is N =

span{X̃1, X̃2, X̃3}, for (4|2.iii|b) the radical is N = span{X3, X̃
1, X̃2}.

Next we find the semisimple component. It turns out that the semisimple sub-

algebra S is in all cases sl(2,R), e.g. for (8|1) it can be evidently chosen S =

span{X1,X2,X3}, for (4|2.iii|b) the most general form of the semisimple subalgebra
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is S = span
{
2X1−2αX3− 2

b X̃
1−2βX̃2,− 2

bX2− 2γ
b X3− 2β

b X̃
1, αX̃1+(2−γ)X̃2+X̃3

}
for any values of α, β, γ.

One can restrict the form 〈· , ·〉 to the semisimple subalgebra S and finds that

for (8|1) 〈· , ·〉S = 0, i.e. S is maximally isotropic, whereas for (4|2.iii|b) and any

choice of α, β, γ is 〈· , ·〉S = −1/bKS, KS being the Killing form on S. This shows

that as Drinfeld doubles (8|1) and (4|2.iii|b) and similarly (4|2.iii|b) for different

values of b are not isomorphic.

Performing the same computation for all Manin triples in this set, we find that

they divide into two subsets.

(1) (8|1), (8|5.iii), (70|5.i), (60|5.i), (5|2.ii) : 〈· , ·〉S = 0

(2) (70|4|b), (60|4.i| − b), (4|2.iii|b) : 〈· , ·〉S = −1/bKS, b ∈ R− {0}

We find the transformation matrices for Manin triples in these subsets and prove

the equivalence of the corresponding Drinfeld doubles:

(8|1)→ (8|5.iii) : C =



−1 0 0 0 0 0

0 −1 0 0 0 0

0 0 1 0 0 0

0 1 0 −1 0 0

−1 0 −1 0 −1 0

0 −1 0 0 0 1


,

(8|1)→ (70|5.i) : C =



0 0 0 0 −1 0

0 0 0 1 0 0

0 0 1 0 0 0

0 −1 0 0 0 0

1 0 1 0 0 0

0 0 0 −1 0 1


,

(8|1)→ (60|5.i) : C =



0 0 0 0 1 0

0 0 0 0 0 −1

1 0 0 0 0 0

0 1 0 0 0 0

1 0 −1 0 0 0

0 0 0 1 0 1


,

(8|1)→ (5|2.ii) : C =



1 −1 −1 −1 −1 0

0 0 0 0 −1 1

0 −1 −1 −1 0 0

0 0 0 1 −1 1

−1 0 1 0 1 0

0 0 0 −1 0 −1


,
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respectively

(4|2.iii|b)→ (70|4|b) : C =



0 0 0
1

b
0 0

0 0 − 1

2b
0 1 0

0
1

2b
0 0 0 1

b 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0


,

(4|2.iii|b)→ (60|4.i| − b) : C =



0 0 0 −1

b
0 0

0 0
1

2b
0 1 0

0 − 1

2b
0 0 0 1

−b 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0


.

Concerning the Lie structure of these Drinfeld doubles, it follows from the sig-

nature of the Killing form and dimension of [D,D] that the Lie algebra of D is

isomorphic in both cases to sl(2,R) . R3 where commutation relations between

subalgebras are given by the unique irreducible representation of sl(2,R) on R3.

4.5. Manin triples with the Killing form of signature (1, 0, 5)

4.5.1. Case dim[D,D] = 5

This set contains the greatest number of Manin triples: (7a>1|1), (7a>1|2.i),
(7a>1|2.ii), (6a|1), (6a|2), (6a|61/a.ii), (6a|61/a.iii), (60|1), (60|5.ii), (5|1), (5|2.i),
(60|2), (60|4.ii), (4|1), (4|2.i), (4|2.ii). In order to shorten our considerations we

firstly present the transformation matrices C showing the equivalence of following

Drinfeld doubles and later we prove that the following classes of Drinfeld doubles

are nonisomorphic:

(1) (7a>1|1) ∼= (7a>1|2.i) ∼= (7a>1|2.ii) for the same value of a

(7a|1)→ (7a|2.i) : C =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 − 1

2a
0 1 0

0
1

2a
0 0 0 1


,
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(7a|1)→ (7a|2.ii) : C =



−1 0 0 0 0 0

0 0 0 0 −2a 0

0 0 0 0 0 2a

0 0 0 −1 0 0

0 − 1

2a
0 0 0 1

0 0
1

2a
0 1 0


.

(2) (6a|1) ∼= (6a|2) ∼= (6a|61/a.ii) ∼= (6a|61/a.iii) for the same value of a

(6a|1)→ (6a|2):

C =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 − 1

2a
0 1 0

0
1

2a
0 0 0 1


,

(6a|1)→ (6a|6 1
a
.ii) :

C =



1 0 0 0 0 1

0 0 1− a a− 1 0 0

0 1− a 0 0 0 0

0 −1 1 0 0 0
1

a− 1
0 0 0 0 0

− 1

a− 1
0 0 0 − 1

a− 1
− 1

a− 1


,

(6a|1)→ (6a|6 1
a
.iii) :

C =



1 0 0 0 0 1

0 0 −1− a a+ 1 0 0

0 −1− a 0 0 0 0

0 1 1 0 0 0

1

a+ 1
0 0 0 0 0

1

a+ 1
0 0 0 − 1

a+ 1

1

a+ 1


.
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(3) (5|1) ∼= (5|2.i) ∼= (60|1) ∼= (60|5.ii)

(5|1)→ (5|2.i) : C =



−1 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 −1 0 0

0 1 0 0 0 −1

2

0 0 1 0
1

2
0


,

(5|1)→ (60|1): C =



0 0 −1

2
0 1 0

0 0
1

2
0 1 0

−1 0 0 0 0 0

0
1

2
0 0 0 −1

0
1

2
0 0 0 1

0 0 0 −1 0 0


,

(5|1)→ (60|5.ii) : C =



0 −1 0 0 0
1

2

0 1 0 1 0
1

2

−1 0 1 0
1

2
0

1 0 0 0 −1 0

1 0 0 0 0 0

0 0 0 0 0 1


.

(4) (4|1) ∼= (4|2.i) ∼= (4|2.ii) ∼= (60|2) ∼= (60|4.ii)

(4|1)→ (4|2.i) : C =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 −1

2
0 1 0

0
1

2
0 0 0 1


,
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(4|1)→ (4|2.ii) : C =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0
1

2
0 1 0

0 −1

2
0 0 0 1


,

(4|1)→ (60|2): C =



0 0
1

2
0 1 0

0 0
1

2
0 −1 0

1 0 0 0 0 0

0
1

2
0 0 0 1

0 −1

2
0 0 0 1

0 0 0 1 0 0


,

(4|1)→ (60|4.ii) : C =



0 0 1 1
1

2
0

0 0 −1 0
1

2
0

−1 1 0 0 0
1

2

1 0 0 0 0 0

1 0 0 0 0 −1

0 0 0 0 1 0


.

In the proof of inequivalence of the above given classes of Manin triples we ex-

ploit the fact that the Drinfeld doubles have at least one decomposition into Manin

triple with the 2nd subalgebra G̃ Abelian; we will use only these representantions

(7a|1), a > 1, (6a|1), (5|1), (4|1) in our considerations.

Firstly we find all maximal isotropic Abelian subalgebras A of each of the given

Drinfeld doubles. The dimension of any suchAmust be 3 from the maximal isotropy.

The commutant is in all these cases D1 = [D,D] = span{X2,X3, X̃
1, X̃2, X̃3} and

the centre is Z(D) = span{X̃1} = D2. One can see that any element of the form

X1+Y , Y ∈ D1 cannot occur in A because X1 commutes only with Z(D) and itself.

Therefore, A ⊂ D1. Further it follows from the maximality that A contains Z(D)

and we conclude that A = span{X̃1, Y1, Y2} where Y1, Y2 ∈ span{X2,X3, X̃
2, X̃3}.

Analyzing the maximal isotropy and replacing Y1, Y2 by their suitable linear

86



May 16, 2002 14:55 WSPC/139-IJMPA 01057

Classification of Six-Dimensional Real Drinfeld Doubles 15

combinations we find that A can be in general expressed in one of the following

forms:

(1) A = span{X̃1,X2, X̃
3},

(2) A = span{X̃1,X2 + αX̃3,X3 − αX̃2},
(3) A = span{X̃1,X2 + αX3,−αX̃2 + X̃3},
(4) A = span{X̃1,X3, X̃

2},
(5) A = span{X̃1, X̃2, X̃3}.

In the next step we check which of these subspaces really form a subalgebra of

the given Manin triple.

• (7a|1): the maximal isotropic Abelian subalgebras are span{X̃1,X2,X3} and

span{X̃1, X̃2, X̃3}. One may easily construct for each of these maximal isotropic

Abelian subalgebras the dual (w.r.t 〈·〉) subalgebra by taking the remaining

elements of the standard basis X1, . . . , X̃
3 and finds that it is isomorphic in

both cases to Bianchi algebra 7a. In other words, we have shown that this class

of Drinfeld doubles is nonisomorphic to the other ones and are mutually non-

isomorphic for different values of a.

• (6a|1): the maximal isotropic Abelian subalgebras are span{X̃1,X2,X3},
span{X̃1,X2+X3,−X̃2+X̃3}, span{X̃1,X2−X3, X̃

2+X̃3}, span{X̃1, X̃2, X̃3}.
By a slightly more complicated construction of the dual subalgebras we find that

they are of the Bianchi type 6a for the same a, i.e. this class of Drinfeld doubles

is nonisomorphic to the other ones and are mutually nonisomorphic for different

values of a.

• (5|1): the maximal isotropic Abelian subalgebras are span{X̃1,X2, X̃
3},

span{X̃1,X2,X3}, span{X̃1,X2 + αX3,−αX̃2 + X̃3}, span{X̃1,X3, X̃
2} and

span{X̃1, X̃2, X̃3}.
• (4|1): the maximal isotropic Abelian subalgebras are span{X̃1,X2 + αX̃3,X3 −
αX̃2}, span{X̃1,X3, X̃

2} and span{X̃1, X̃2, X̃3}.

Already from comparison of number of possible maximal isotropic Abelian sub-

algebras for (5|1) and (4|1) one sees that the corresponding Drinfeld doubles are

nonisomorphic.

It also follows that Drinfeld doubles corresponding to Manin triples (7a|1),

(6a|1), (5|1) and (4|1) are different as Lie algebras, since any maximal isotropic

Abelian subalgebra A of these Manin triples is in fact an Abelian ideal I such

that [D, I] = I and any such three-dimensional ideal is maximal isotropic from ad-

invariance of 〈 , 〉. Therefore we have in fact identified the nonisomorphic Drinfeld

doubles from the knowledge of these ideals I (and in some cases D/I) which does

not depend on the form 〈 , 〉 and the doubles differ already in their Lie algebra

structure.
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4.5.2. Case dim[D,D] = 3

All Manin triples of this subset are decomposition of one Drinfeld double, i.e. they

can be transformed one into another by the transformation (9). Below are the corre-

sponding matrices.

(3|1)→ (3|2): C =



−1 0 0 0 0 0

0
1

2
−1

2
0 1 1

0 −1

2

1

2
0 1 1

0 0 0 −1 0 0

0
1

2
0 0 0 −1

0
1

2
0 0 0 1


,

(3|1)→ (3|3.ii) : C =



1 0 0 0 0 2

0 1 0 0 0 0

0 0 1 −2 0 0

0 −1

2

1

2
0 0 0

1

2
0 0 0 1 1

−1

2
0 0 0 0 0


,

(3|1)→ (3|3.iii) : C =



−1 0 0 0 0 0

0 0 0 0 0 −2

0 0 0 0 −2 0

0 0 0 −1 1 1

−1

2
0 −1

2
0 0 0

−1

2
−1

2
0 0 0 0


.

4.6. Manin triples with the Killing form of signature (0, 1, 5)

This set contains Manin triples (7a<1|1), (7a<1|2.i), (7a<1|2.ii), (70|1), (70|2.i),
(70|2.ii). As in the Subsec. 4.5.1 we can show that Manin triples (7a<1|1), (7a<1|2.i),
(7a<1|2.ii) are decomposition of isomorphic Drinfeld doubles for the same a; the

transformation matrices given above for a > 1 are meaningful also in this case. It

remains to be investigated whether the Drinfeld doubles induced by (70|1), (70|2.i),
(70|2.ii) are isomorphic as or not.
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We again find all maximal isotropic Abelian subalgebras of these Manin triples.

We find

• (70|1): the maximal isotropic Abelian subalgebras are span{X̃3,X1 +αX̃2,X2−
αX̃1}, span{X̃1, X̃2, X̃3},
• (70|2.i) the only maximal isotropic Abelian subalgebra is span{X̃3,X1,X2}, the

dual subalgebra to it w.r.t 〈· , ·〉 does not exist.

• (70|2.ii) the only maximal isotropic Abelian subalgebra is span{X̃3,X1,X2}, the

dual subalgebra to it w.r.t 〈· , ·〉 does not exist.

This means that Drinfeld double induced by (70|1) has only decompositions into

Manin triple (70|1) and that Drinfeld doubles corresponding to (70|2.i), (70|2.ii)
are not isomorphic to the Drinfeld double corresponding to (7a<1|1) for any value

of a. To prove that also (70|2.i), (70|2.ii) induce nonisomorphic Drinfeld doubles,

we find all isotropic subalgebras of Bianchi type 70 in the Manin triple (70|2.ii).
They are

span{Y1, Y2, Y3} ,

where

Y1 = X1 − αX̃3 , Y2 = X2 − βX̃3 , Y3 = X3 + αX̃1 + βX̃2 , α, β ∈ R ,

and the dual subalgebra w.r.t. 〈· , ·〉 is in general

span{Ỹ1, Ỹ2, Ỹ3} ,

where

Ỹ1 = γX2 + X̃1 − γβX̃3 , Ỹ2 = −γX1 + X̃2 + γαX̃3 , Ỹ3 = X̃2 , γ ∈ R .

Structure coefficients in this new basis Y1, . . . , Ỹ3 are identical with the original

structure coefficients for any α, β, γ, therefore the Drinfeld double corresponding to

(70|2.ii) allows no decomposition into other Manin triples and similarly for (70|2.i).
Concerning the Lie algebra structure, the Drinfeld doubles corresponding to

(70|2.i) and (70|2.ii) are isomorphic as Lie algebras because they differ just by the

sign of the bilinear form 〈 , 〉, and consequently the commutation relations implied

by ad-invariance of 〈 , 〉 are the same. The other Drinfeld doubles specify different

Lie algebras for the same reason as in Subsec. 4.5.1.

4.7. Manin triples with the Killing form of signature (0, 0, 6)

4.7.1. Case dim[D,D] = 5

This set contains Manin triples (71|1), (71|2.i) and (71|2.ii). They specify isomor-

phic Drinfeld doubles. For transformation matrices see Subsec. 4.5.1 and substi-

tute a = 1.
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4.7.2. Case dim[D,D] = 3

In this set, the only Manin triples that can lead to the same Drinfeld double are

(2|2.i) and (2|2.ii). To see that the Drinfeld doubles are different, it is sufficent to

find the centres Z(D) of these Manin triples and restrict the form 〈· , ·〉 to them.

These restricted forms 〈· , ·〉Z(D) have different signatures, therefore the Drinfeld

doubles are nonisomorphic:

(1) (2|2.i) : Z(D) = span{X1,X2 − X̃2, X̃3}, signature of 〈· , ·〉Z(D) = (0, 1, 2).

(2) (2|2.ii) : Z(D) = span{X1,X2 + X̃2, X̃3}, signature of 〈· , ·〉Z(D) = (1, 0, 2).

These Drinfeld doubles are isomorphic as Lie algebras because they differ just by

the sign of the bilinear form 〈 , 〉 and the commutation relations are due to the

ad-invariance the same.

5. Conclusions

In this work we have constructed the complete list of six-dimensional real Drinfeld

doubles up to their isomorphisms i.e. maps preserving both the Lie structure and

an ad-invariant symmetric bilinear form 〈 , 〉 that define the double. The result

is summarized in the theorem at the end of Sec. 3 and claims that there just

22 classes of the nonisomorphic Drinfeld doubles. Some of them contain one or two

real parameters denoted a and b. The number 22 is in a way conditional because

e.g. the classes 9,14,18 could be united into one. The reason why they are given as

separate classes is that they have different values of their invariants, in this case

the signature of the Killing form.

An important point that follows from the classification is that there are several

different Drinfeld doubles corresponding to Lie algebras so(1, 3), sl(2,R)⊕ sl(2,R),

sl(2,R).R3 whereas on solvable Lie algebras the Drinfeld double is unique (in some

cases up to the sign of the bilinear form). On the other hand there are Manin triples

with one isotropic subalgebra Abelian that are equivalent as Drinfeld doubles even

though the other subalgebras are different [see (60|1) and (5|1)]. That is why it

is necessary to investigate the (non)equivalence of the Manin triples of this form.

Moreover the above given examples indicate the diversity of Drinfeld double struc-

tures one may encounter in higher dimensions.

Beside that from the present classification procedure one can find whether a

given six-dimensional Lie algebra can be equipped by a suitable ad-invariant bilinear

form and turned into a Drinfeld double (and how many such forms exist). The

decisive aspects are the signature of the Killing form and the dimensions of the

ideals Dj ,Dj . The necessary condition is that they have the values occuring in

Table 1. The investigation then can be reduced to a direct check of equivalence with

a particular six-dimensional Lie algebra (possibly after determination of Abelian

ideals and the factor algebras as in the Subsec. 4.5.1).
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One can see that for many Drinfeld doubles there are several decompositions

into Manin triples. For each Manin triple there is a pair of dual sigma models. Their

equation of motion 2

〈∂±ll−1, E±〉 = 0 (12)

are given by the Drinfeld double and a three-dimensional subspace E+ ⊂ D so that

all these models (for fixed E+) are equivalent. Moreover the scaling of 〈 , 〉 does not

change the equations of motion (12) and consequently all the models corresponding

to (nonisomorphic) Drinfeld doubles with different b are equal. We can construct

the explicit forms of the equations of motion for every Drinfeld double but without

a physical motivation this does not make much sense.

Let us note that the complete sets of the equivalent sigma models for a fixed

Drinfeld double are given by the so called modular space of the double. The con-

struction of all nonisomorphic Manin triples for the double is the first step in the

construction of the modular spaces.

Appendix A. Bianchi Algebras

It is known that any three-dimensional real Lie algebra can be brought to one of

11 forms by a change of basis. These forms represent nonisomorphic Lie algebras

and are conventionally known as Bianchi algebras. They are denoted by 1, . . . ,5,

6a, 60, 7a, 70, 8, 9 (see e.g. Ref. 11, in literature often uppercase roman numbers

are used instead of arabic ones). The list of Bianchi algebras is given in decreasing

order starting from simple algebras.

9 : [X1,X2] = X3, [X2,X3] = X1, [X3,X1] = X2, (i.e. so(3)) ,

8 : [X1,X2] = −X3, [X2,X3] = X1, [X3,X1] = X2, (i.e. sl(2,R)) ,

7a : [X1,X2] = −aX2 +X3, [X2,X3] = 0, [X3,X1] = X2 + aX3, a > 0 ,

70 : [X1,X2] = 0, [X2,X3] = X1, [X3,X1] = X2 ,

6a : [X1,X2] = −aX2 −X3, [X2,X3] = 0 ,

[X3,X1] = X2 + aX3, a > 0, a 6= 1 ,

60 : [X1,X2] = 0, [X2,X3] = X1, [X3,X1] = −X2 ,

5 : [X1,X2] = −X2, [X2,X3] = 0, [X3,X1] = X3 ,

4 : [X1,X2] = −X2 +X3, [X2,X3] = 0, [X3,X1] = X3 ,

3 : [X1,X2] = −X2 −X3, [X2,X3] = 0, [X3,X1] = X2 +X3 ,

2 : [X1,X2] = 0, [X2,X3] = X1, [X3,X1] = 0 ,

1 : [X1,X2] = 0, [X2,X3] = 0, [X3,X1] = 0 .
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One might use also another classification (used e.g. in Ref. 7). In this notation

the basis of the Lie algebra is usually written as (e0, e1, e2) and the classification is:

R3 = 1 : [e1, e2] = 0, [e0, ei] = 0 ,

n3 = 2 : [e1, e2] = e0, [e0, ei] = 0 ,

r3(ρ) : [e1, e2] = 0, [e0, e1] = e1 ,

[e0, e2] = ρe2, −1 ≤ ρ ≤ 1 .

This algebra is isomorphic to 60 for ρ = −1, 6 ρ+1
ρ−1

for 0 < |ρ| < 1, 3 for ρ = 0

and 5 for ρ = 1.

r′3(1) = 4 : [e1, e2] = 0, [e0, e1] = e1, [e0, e2] = e1 + e2 ,

s3(µ) : [e1, e2] = 0, [e0, e1] = µe1 − e2, [e0, e2] = e1 + µe2, µ ≥ 0 .

This algebra is isomorphic to 70 for µ = 0 and 7µ for µ > 0.

sl(2,R) = 8 , so(3) = 9 .

It is clear that this classification is more compact, on the other hand the classes in

this classification contain algebras with different properties such as dimensions of

commutant etc. and surprisingly the special cases of parameters we need to distin-

guish correspond in most cases to different Bianchi algebras. Therefore we use the

Bianchi classification.

Appendix B. List of Manin Triples

We present a list of Manin triples based on Ref. 8. The label of each Manin triple,

e.g. (8|5.ii|b), indicates the structure of the first subalgebra G, e.g. Bianchi algebra

8, the structure of the second subalgebra G̃, e.g. Bianchi algebra 5; roman num-

bers i, ii etc. (if present) distinguish between several possible pairings 〈· , ·〉 of the

subalgebras G, G̃ and the parameter b indicates the Manin triples differing by the

rescaling of 〈· , ·〉 (if such Manin triples are not isomorphic).

The Lie structures of the subalgebras G and G̃ are written out in mutually dual

bases (X1,X2,X3) and (X̃1, X̃2, X̃3) where the transformation (2) was used to

bring G to the standard Bianchi form. Because of (3) this information specifies the

Manin triple completely.

The dual Manin triples (D, G̃,G) are not written explicitly but can be easily

obtained by Xj ↔ X̃j.

(1) Manin triples with the first subalgebra G = 9:

(9|1) : [X1,X2] = X3, [X2,X3] = X1, [X3,X1] = X2 ,

[X̃1, X̃2] = 0, [X̃2, X̃3] = 0, [X̃3, X̃1] = 0 ,

(9|5|b) : [X1,X2] = X3, [X2,X3] = X1, [X3,X1] = X2 ,

[X̃1, X̃2] = −bX̃2, [X̃2, X̃3] = 0, [X̃3, X̃1] = bX̃3, b > 0 .
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(2) Manin triples with the first subalgebra G = 8:

(8|1) : [X1,X2] = −X3, [X2,X3] = X1, [X3,X1] = X2 ,

v[X̃1, X̃2] = 0, [X̃2, X̃3] = 0, [X̃3, X̃1] = 0 ,

(8|5.i|b) : [X1,X2] = −X3, [X2,X3] = X1, [X3,X1] = X2 ,

[X̃1, X̃2] = −bX̃2, [X̃2, X̃3] = 0, [X̃3, X̃1] = bX̃3, b > 0 ,

(8|5.ii|b) : [X1,X2] = −X3, [X2,X3] = X1, [X3,X1] = X2 ,

[X̃1, X̃2] = 0, [X̃2, X̃3] = bX̃2, [X̃3, X̃1] = −bX̃1, b > 0 ,

(8|5.iii) : [X1,X2] = −X3, [X2,X3] = X1, [X3,X1] = X2 ,

[X̃1, X̃2] = X̃2, [X̃2, X̃3] = X̃2, [X̃3, X̃1] = −(X̃1 + X̃3) .

(3) Manin triples with the first subalgebra G = 7a:

(7a|1) : [X1,X2] = −aX2 +X3, [X2,X3] = 0 ,

[X3,X1] = X2 + aX3, a > 0 ,

[X̃1, X̃2] = 0, [X̃2, X̃3] = 0, [X̃3, X̃1] = 0 ,

(7a|2.i) : [X1,X2] = −aX2 +X3, [X2,X3] = 0 ,

[X3,X1] = X2 + aX3, a > 0 ,

[X̃1, X̃2] = 0, [X̃2, X̃3] = X̃1, [X̃3, X̃1] = 0 ,

(7a|2.ii) : [X1,X2] = −aX2 +X3, [X2,X3] = 0 ,

[X3,X1] = X2 + aX3, a > 0 ,

[X̃1, X̃2] = 0, [X̃2, X̃3] = −X̃1, [X̃3, X̃1] = 0 ,

(7a|71/a|b) : [X1,X2] = −aX2 +X3, [X2,X3] = 0 ,

[X3,X1] = X2 + aX3, a > 0 ,

[X̃1, X̃2] = b
(
− 1
a
X̃2 + X̃3

)
, [X̃2, X̃3] = 0 ,

[X̃3, X̃1] = b
(
X̃2 + 1

a
X̃3
)
, b ∈ R− {0} .

(4) Manin triples with the first subalgebra G = 70:

(70|1) : [X1,X2] = 0, [X2,X3] = X1, [X3,X1] = X2 ,

[X̃1, X̃2] = 0, [X̃2, X̃3] = 0, [X̃3, X̃1] = 0 ,

(70|2.i) : [X1,X2] = 0, [X2,X3] = X1, [X3,X1] = X2 ,

[X̃1, X̃2] = X̃3, [X̃2, X̃3] = 0, [X̃3, X̃1] = 0 ,
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(70|2.ii) : [X1,X2] = 0, [X2,X3] = X1, [X3,X1] = X2 ,

[X̃1, X̃2] = −X̃3, [X̃2, X̃3] = 0, [X̃3, X̃1] = 0 ,

(70|4|b) : [X1,X2] = 0, [X2,X3] = X1, [X3,X1] = X2 ,

[X̃1, X̃2] = b(−X̃2 + X̃3), [X̃2, X̃3] = 0 ,

[X̃3, X̃1] = bX̃3, b ∈ R− {0} ,

(70|5.i) : [X1,X2] = 0, [X2,X3] = X1, [X3,X1] = X2 ,

[X̃1, X̃2] = −X̃2, [X̃2, X̃3] = 0, [X̃3, X̃1] = X̃3 ,

(70|5.ii|b) : [X1,X2] = 0, [X2,X3] = X1, [X3,X1] = X2 ,

[X̃1, X̃2] = 0, [X̃2, X̃3] = bX̃2, [X̃3, X̃1] = −bX̃1 , b > 0 .

(5) Manin triples with the first subalgebra G = 6a:

(6a|1) : [X1,X2] = −aX2 −X3, [X2,X3] = 0 ,

[X3,X1] = X2 + aX3, a > 0 , a 6= 1 ,

[X̃1, X̃2] = 0, [X̃2, X̃3] = 0, [X̃3, X̃1] = 0 ,

(6a|2) : [X1,X2] = −aX2 −X3, [X2,X3] = 0 ,

[X3,X1] = X2 + aX3, a > 0, a 6= 1 ,

[X̃1, X̃2] = 0, [X̃2, X̃3] = X̃1, [X̃3, X̃1] = 0 ,

(6a|61/a.i|b) : [X1,X2] = −aX2 −X3, [X2,X3] = 0 ,

[X3,X1] = X2 + aX3, a > 0, a 6= 1 ,

[X̃1, X̃2] = −b
(

1
a
X̃2 + X̃3

)
, [X̃2, X̃3] = 0 ,

[X̃3, X̃1] = b
(
X̃2 + 1

a
X̃3), b ∈ R− {0} ,

(6a|61/a.ii) : [X1,X2] = −aX2 −X3, [X2,X3] = 0 ,

[X3,X1] = X2 + aX3, a > 0, a 6= 1 ,

[X̃1, X̃2] = X̃1, [X̃2, X̃3] = a+1
a−1 (X̃2 + X̃3) ,

[X̃3, X̃1] = X̃1 ,

(6a|61/a.iii) : [X1,X2] = −aX2 −X3, [X2,X3] = 0 ,

[X3,X1] = X2 + aX3, a > 0, a 6= 1 ,

[X̃1, X̃2] = X̃1, [X̃2, X̃3] = a−1
a+1 (−X̃2 + X̃3) ,

[X̃3, X̃1] = −X̃1 .
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(6) Manin triples with the first subalgebra G = 60:

(60|1) : [X1,X2] = 0, [X2,X3] = X1, [X3,X1] = −X2 ,

[X̃1, X̃2] = 0, [X̃2, X̃3] = 0, [X̃3, X̃1] = 0 ,

(60|2) : [X1,X2] = 0, [X2,X3] = X1, [X3,X1] = −X2 ,

[X̃1, X̃2] = X̃3, [X̃2, X̃3] = 0, [X̃3, X̃1] = 0 ,

(60|4.i|b) : [X1,X2] = 0, [X2,X3] = X1, [X3,X1] = −X2 ,

[X̃1, X̃2] = b(−X̃2 + X̃3), [X̃2, X̃3] = 0 ,

[X̃3, X̃1] = bX̃3, b ∈ R− {0} ,

(60|4.ii) : [X1,X2] = 0, [X2,X3] = X1, [X3,X1] = −X2 ,

[X̃1, X̃2] = (−X̃1 + X̃2 + X̃3) ,

[X̃2, X̃3] = X̃3, [X̃3, X̃1] = −X̃3 ,

(60|5.i) : [X1,X2] = 0, [X2,X3] = X1, [X3,X1] = −X2 ,

[X̃1, X̃2] = −X̃2, [X̃2, X̃3] = 0, [X̃3, X̃1] = X̃3 ,

(60|5.ii) : [X1,X2] = 0, [X2,X3] = X1, [X3,X1] = −X2 ,

[X̃1, X̃2] = −X̃1 + X̃2, [X̃2, X̃3] = X̃3, [X̃3, X̃1] = −X̃3 ,

(60|5.iii|b) : [X1,X2] = 0, [X2,X3] = X1, [X3,X1] = −X2 ,

[X̃1, X̃2] = 0, [X̃2, X̃3] = −bX̃2, [X̃3, X̃1] = bX̃1, b > 0 .

(7) Manin triples with the first subalgebra G = 5:

(5|1) : [X1,X2] = −X2, [X2,X3] = 0, [X3,X1] = X3 ,

[X̃1, X̃2] = 0, [X̃2, X̃3] = 0, [X̃3, X̃1] = 0 ,

(5|2.i) : [X1,X2] = −X2, [X2,X3] = 0, [X3,X1] = X3 ,

[X̃1, X̃2] = 0, [X̃2, X̃3] = X̃1, [X̃3, X̃1] = 0 ,

(5|2.ii) : [X1,X2] = −X2, [X2,X3] = 0, [X3,X1] = X3 ,

[X̃1, X̃2] = X̃3, [X̃2, X̃3] = 0, [X̃3, X̃1] = 0

and dual Manin triples (G ↔ G̃) to Manin triples given above for G = 60, 70,

8, 9.

95



May 16, 2002 14:55 WSPC/139-IJMPA 01057
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(8) Manin triples with the first subalgebra G = 4:

(4|1) : [X1,X2] = −X2 +X3, [X2,X3] = 0, [X3,X1] = X3 ,

[X̃1, X̃2] = 0, [X̃2, X̃3] = 0, [X̃3, X̃1] = 0 ,

(4|2.i) : [X1,X2] = −X2 +X3, [X2,X3] = 0, [X3,X1] = X3 ,

[X̃1, X̃2] = 0, [X̃2, X̃3] = X̃1, [X̃3, X̃1] = 0 ,

(4|2.ii) : [X1,X2] = −X2 +X3, [X2,X3] = 0, [X3,X1] = X3 ,

[X̃1, X̃2] = 0, [X̃2, X̃3] = −X̃1, [X̃3, X̃1] = 0 ,

(4|2.iii|b) : [X1,X2] = −X2 +X3, [X2,X3] = 0, [X3,X1] = X3 ,

[X̃1, X̃2] = 0, [X̃2, X̃3] = 0, [X̃3, X̃1] = bX̃2, b ∈ R− {0}

and dual Manin triples (G ↔ G̃) to Manin triples given above for G = 60, 70.

(9) Manin triples with the first subalgebra G = 3:

(3|1) : [X1,X2] = −X2 −X3, [X2,X3] = 0, [X3,X1] = X2 +X3 ,

[X̃1, X̃2] = 0, [X̃2, X̃3] = 0, [X̃3, X̃1] = 0 ,

(3|2) : [X1,X2] = −X2 −X3, [X2,X3] = 0, [X3,X1] = X2 +X3 ,

[X̃1, X̃2] = 0, [X̃2, X̃3] = X̃1, [X̃3, X̃1] = 0 ,

(3|3.i) : [X1,X2] = −X2 −X3, [X2,X3] = 0, [X3,X1] = X2 +X3 ,

[X̃1, X̃2] = −b(X̃2 + X̃3), [X̃2, X̃3] = 0 ,

[X̃3, X̃1] = b(X̃2 + X̃3), b ∈ R− {0} ,

(3|3.ii) : [X1,X2] = −X2 −X3, [X2,X3] = 0, [X3,X1] = X2 +X3 ,

[X̃1, X̃2] = 0, [X̃2, X̃3] = X̃2 + X̃3, [X̃3, X̃1] = 0 ,

(3|3.iii) : [X1,X2] = −X2 −X3, [X2,X3] = 0, [X3,X1] = X2 +X3 ,

[X̃1, X̃2] = X̃1, [X̃2, X̃3] = 0, [X̃3, X̃1] = −X̃1 .

(10) Manin triples with the first subalgebra G = 2:

(2|1) : [X1,X2] = 0, [X2,X3] = X1, [X3,X1] = 0 ,

[X̃1, X̃2] = 0, [X̃2, X̃3] = 0, [X̃3, X̃1] = 0 ,

(2|2.i) : [X1,X2] = 0, [X2,X3] = X1, [X3,X1] = 0 ,

[X̃1, X̃2] = X̃3, [X̃2, X̃3] = 0, [X̃3, X̃1] = 0 ,

(2|2.ii) : [X1,X2] = 0, [X2,X3] = X1, [X3,X1] = 0 ,

[X̃1, X̃2] = −X̃3, [X̃2, X̃3] = 0, [X̃3, X̃1] = 0

and dual Manin triples (G ↔ G̃) to Manin triples given above for G = 3, 4,

60, 6a, 70, 7a.
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(11) Manin triples with the first subalgebra G = 1:

(1|1) : [X1,X2] = 0, [X2,X3] = 0, [X3,X1] = 0 ,

[X̃1, X̃2] = 0, [X̃2, X̃3] = 0, [X̃3, X̃1] = 0

and dual Manin triples (G ↔ G̃) to Manin triples given above for G = 2–9.
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6.1 Errata

This paper is presented in the form of the proof, the final version is not yet
available. Because it was impossible to edit the PDF file directly, I present
here a list of corrections that will appear in the published text:

• On page 1, last line: “this this” should read “this”

• On page 4, last line: lower the indices in “Di+1 = [Di,Di]”

• On page 5, Table 1, the third line from below “(2|2)” should read
“(2|1)”

• On page 5, Theorem 1, “of this parameter” should read “of these pa-
rameters”

• On page 6, line (10) in Theorem 1: before “a > 1” should stand “and
the Manin triples with a→ 1

a
”

• On page 6, section 4, 2nd paragraph, 1st line: “In the next subsection”
should read “In the following subsections”

• On page 12, the line (2) “for the same value of a” should read “for the
same value of a and for a′ = 1

a
”

• On page 14, 1st paragraph, line 3: “representations” should read “rep-
resentatives”

• On page 15, the part (6a|1) line 4: “they are of the Bianchi type 6a for
the same a” should read “they are of the Bianchi type 6a for the same
a (the duals of span{X̃1, X2, X3} and span{X̃1, X̃2, X̃3}) and 6 1

a
(the

duals of the rest)”.

• On page 15, the part (6a|1) last line: “for different values of a” should
read “for different values of a > 1”

• On page 21, part (2) (8|1) 2nd line: “v” should be omitted
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