Continued Fractions Appearing Naturally in Spectral Analysis of Jacobi Operators

František Štampach

Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague
Combinatorics on Words and Mathematical Physics

May 2013
Outline

1. Function ψ and its properties

2. Stieltjes continued fractions and formal power series

3. The Rogers-Ramanujan continued fraction

4. A note on the role of continued fractions in spectral analysis of Jacobi operators
Function \mathcal{E}

Definition

Define $\mathcal{E} : \ell^1(\mathbb{N}) \to \mathbb{C}$ by

$$\mathcal{E}(y) = 1 + \sum_{m=1}^{\infty} (-1)^m \sum_{k_1=1}^{\infty} \sum_{k_2=k_1+2}^{\infty} \cdots \sum_{k_m=k_{m-1}+2}^{\infty} y_{k_1} y_{k_2} \cdots y_{k_m}.$$

- For a finite number of complex variables we identify $\mathcal{E}(y_1, y_2, \ldots, y_n)$ with $\mathcal{E}(y)$ where $y = (y_1, y_2, \ldots, y_n, 0, 0, 0, \ldots)$.

František Štampach (FNSPE, CTU)
Continued Fraction in Spectral Analysis
May 2013
Define $\mathcal{E} : \ell^1(\mathbb{N}) \to \mathbb{C}$ by

$$\mathcal{E}(y) = 1 + \sum_{m=1}^{\infty} (-1)^m \sum_{k_1=1}^{\infty} \sum_{k_2=k_1+2}^{\infty} \ldots \sum_{k_m=k_{m-1}+2}^{\infty} y_{k_1} y_{k_2} \ldots y_{k_m}.$$

- For a finite number of complex variables we identify $\mathcal{E}(y_1, y_2, \ldots, y_n)$ with $\mathcal{E}(y)$ where $y = (y_1, y_2, \ldots, y_n, 0, 0, 0, \ldots)$.
- \mathcal{E} is well defined on $\ell^1(\mathbb{N})$ due to estimation

$$|\mathcal{E}(y)| \leq \exp \|y\|_1.$$
For a finite number of complex variables we identify $\mathcal{E}(y_1, y_2, \ldots, y_n)$ with $\mathcal{E}(y)$ where $y = (y_1, y_2, \ldots, y_n, 0, 0, 0, \ldots)$.

\mathcal{E} is well defined on $\ell^1(\mathbb{N})$ due to estimation

$$|\mathcal{E}(y)| \leq \exp \|y\|_1.$$

\mathcal{E} is a continuous functional on $\ell^1(\mathbb{N})$ which is not linear. Especially, for any $y \in \ell^1(\mathbb{N})$, it satisfies limit relations

$$\lim_{n \to \infty} \mathcal{E}(y_1, y_2, \ldots, y_n) = \mathcal{E}(y) \quad \text{and} \quad \lim_{n \to \infty} \mathcal{E}(T^n y) = 1$$

where T stands for unilateral right-shift operator on the space of complex sequence.
Function \mathcal{E}

Definition

Define $\mathcal{E}: \ell^1(\mathbb{N}) \to \mathbb{C}$ by

$$\mathcal{E}(y) = 1 + \sum_{m=1}^{\infty} (-1)^m \sum_{k_1=1}^{\infty} \sum_{k_2=k_1+2}^{\infty} \cdots \sum_{k_m=k_{m-1}+2}^{\infty} y_{k_1} y_{k_2} \cdots y_{k_m}.$$

- For a finite number of complex variables we identify $\mathcal{E}(y_1, y_2, \ldots, y_n)$ with $\mathcal{E}(y)$ where $y = (y_1, y_2, \ldots, y_n, 0, 0, 0, \ldots)$.
- \mathcal{E} is well defined on $\ell^1(\mathbb{N})$ due to estimation
 $$|\mathcal{E}(y)| \leq \exp \|y\|_1.$$
- \mathcal{E} is a continuous functional on $\ell^1(\mathbb{N})$ which is **not** linear. Especially, for any $y \in \ell^1(\mathbb{N})$, it satisfies limit relations
 $$\lim_{n \to \infty} \mathcal{E}(y_1, y_2, \ldots, y_n) = \mathcal{E}(y) \quad \text{and} \quad \lim_{n \to \infty} \mathcal{E}(T^n y) = 1$$
 where T stands for unilateral right-shift operator on the space of complex sequence.
- Function \mathcal{E} fulfills many nice and simple algebraic and combinatorial identities.
Function \mathcal{E}

Definition

Define $\mathcal{E} : \ell^1(\mathbb{N}) \to \mathbb{C}$ by

$$
\mathcal{E}(y) = 1 + \sum_{m=1}^{\infty} (-1)^m \sum_{k_1=1}^{\infty} \sum_{k_2=k_1+2}^{\infty} \cdots \sum_{k_m=k_{m-1}+2}^{\infty} y_{k_1} y_{k_2} \cdots y_{k_m}.
$$

- For a finite number of complex variables we identify $\mathcal{E}(y_1, y_2, \ldots, y_n)$ with $\mathcal{E}(y)$ where $y = (y_1, y_2, \ldots, y_n, 0, 0, 0, \ldots)$.
- \mathcal{E} is well defined on $\ell^1(\mathbb{N})$ due to estimation
 $$
 |\mathcal{E}(y)| \leq \exp \|y\|_1.
 $$
- \mathcal{E} is a continuous functional on $\ell^1(\mathbb{N})$ which is **not** linear. Especially, for any $y \in \ell^1(\mathbb{N})$, it satisfies limit relations
 $$
 \lim_{n \to \infty} \mathcal{E}(y_1, y_2, \ldots, y_n) = \mathcal{E}(y) \quad \text{and} \quad \lim_{n \to \infty} \mathcal{E}(T^n y) = 1
 $$
 where T stands for unilateral right-shift operator on the space of complex sequence.
- Function \mathcal{E} fulfills many nice and simple algebraic and combinatorial identities.
- Function \mathcal{E} have been developed for investigation of various spectral properties of Jacobi operators and it found many application here (not the scope of this talk).
For $y \in \ell^1(\mathbb{N})$, \mathcal{E} satisfies recurrence rule

$$
\mathcal{E}(y) = \mathcal{E}(Ty) - y_1 \mathcal{E}(T^2y).
$$

Consequently, function \mathcal{E} is related to the Stieltjes continued fraction (S-fraction). For a given $y \in \ell^1(\mathbb{N})$ such that $\mathcal{E}(y) \neq 0$, it holds

$$
\mathcal{E}(Ty) \mathcal{E}(y) = \frac{1}{1 - y_1 \frac{1}{1 - y_2 \frac{1}{1 - \ldots}}}
$$

The LHS of the last identity can be viewed as a formal power series in countably many indeterminates $y = \{y_k\}_{k=1}^{\infty}$. They form the ring $\mathbb{C}\llbracket y \rrbracket$.

People realized there is certain connection between an S-fraction and formal power series a long time ago:

Particularly, they study cases when $y_k = xe_k$ where e_k is a fixed complex sequence and x is a complex variable: L.J. Rogers: *On the representation of certain asymptotic series as convergent continued fractions*, 1907.
For \(y \in \ell^1(\mathbb{N}) \), \(\varepsilon \) satisfies recurrence rule

\[
\varepsilon(y) = \varepsilon(Ty) - y_1 \varepsilon(T^2y).
\]

Consequently, function \(\varepsilon \) is related to the Stieltjes continued fraction (S-fraction). For a given \(y \in \ell^1(\mathbb{N}) \) such that \(\varepsilon(y) \neq 0 \), it holds

\[
\frac{\varepsilon(Ty)}{\varepsilon(y)} = \frac{1}{1 - \frac{y_1}{1 - \frac{y_2}{1 - \frac{y_3}{1 - \ldots}}}}.
\]
For $y \in \ell^1(\mathbb{N})$, \mathcal{E} satisfies recurrence rule

$$\mathcal{E}(y) = \mathcal{E}(Ty) - y_1 \mathcal{E}(T^2 y).$$

Consequently, function \mathcal{E} is related to the Stieltjes continued fraction (S-fraction). For a given $y \in \ell^1(\mathbb{N})$ such that $\mathcal{E}(y) \neq 0$, it holds

$$\frac{\mathcal{E}(Ty)}{\mathcal{E}(y)} = \frac{1}{1 - \frac{y_1}{1 - \frac{y_2}{1 - \frac{y_3}{1 - \ldots}}}}.$$

The LHS of the last identity can be viewed as a formal power series in countably many indeterminates $y = \{y_k\}_{k=1}^{\infty}$. They forms the ring $\mathbb{C}[[y]]$.

People realized there is certain connection between an S-fraction and formal power series a long time ago:

T.J. Stieltjes: *Recherches sur les fractions continues*, 1894-95. Particularly, they study cases when $y_k = xe^k$ where e^k is a fixed complex sequence and x is a complex variable:

L.J. Rogers: *On the representation of certain asymptotic series as convergent continued fractions*, 1907.
For $y \in \ell^1(\mathbb{N})$, \mathcal{E} satisfies recurrence rule

$$\mathcal{E}(y) = \mathcal{E}(Ty) - y_1 \mathcal{E}(T^2y).$$

Consequently, function \mathcal{E} is related to the Stieltjes continued fraction (S-fraction). For a given $y \in \ell^1(\mathbb{N})$ such that $\mathcal{E}(y) \neq 0$, it holds

$$\frac{\mathcal{E}(Ty)}{\mathcal{E}(y)} = \frac{1}{1 - \frac{y_1}{1 - \frac{y_2}{1 - \frac{y_3}{1 - \ldots}}}}.$$

The LHS of the last identity can be viewed as a formal power series in countably many indeterminates $y = \{y_k\}_{k=1}^{\infty}$. They forms the ring $\mathbb{C}[[y]]$.

People realized there is certain connection between an S-fraction and formal power series a long time ago:

Particularly, they study cases when $y_k = xe_k$ where e_k is a fixed complex sequence and x is a complex variable:

L.J.Rogers: *On the representation of certain asymptotic series as convergent continued fractions*, 1907.
But how exactly one associates the S-fraction with a formal power series?

Let \(a = \{a_k\}_{k=1}^{\infty} \subset \mathbb{C} \). The formal Stieltjes continued fraction

\[
\frac{1}{1 - a_1 \frac{1}{1 - a_2 \frac{1}{1 - a_3 \ddots}}}
\]

is regarded here as a sequence of convergents \(\frac{A_n}{B_n}, n = 0, 1, 2, \ldots \), with \(A_n, B_n \in \mathbb{C}[a] \) defined by the usual recurrence rules

\[
A_0 = 0, \quad A_1 = 1, \quad B_0 = B_1 = 1, \quad A_n = A_{n-1} - a_{n-1} A_{n-2}, \quad B_n = B_{n-1} - a_{n-1} B_{n-2}, \quad n \geq 2.
\]

Since the constant term of \(B_n \) equals 1 for any \(n \), the convergents \(\frac{A_n}{B_n} \) can also be treated as formal power series \(A_n/B_n \).

Sequence \(A_n/B_n \) is always convergent in \(\mathbb{C}[a] \) equipped with canonical (product) topology.

Thus with every formal S-fraction there is naturally associated a unique formal power series \(f(a) \) in the indeterminates \(a \).

František Štampach (FNSPE, CTU)
Continued Fraction in Spectral Analysis
May 2013 5 / 15
But how exactly one associates the S-fraction with a formal power series?

Let \(a = \{a_k\}_{k=1}^\infty \subset \mathbb{C} \). The formal Stieltjes continued fraction

\[
\frac{1}{1 - \frac{a_1}{1 - \frac{a_2}{1 - \frac{a_3}{\ddots}}}}
\]

is regarded here as a sequence of convergents \(A_n/B_n, n = 0, 1, 2, \ldots \), with \(A_n, B_n \in \mathbb{C}[a] \) defined by the usual recurrence rules \(A_0 = 0, A_1 = 1, B_0 = B_1 = 1 \), and

\[
A_n = A_{n-1} - a_{n-1}A_{n-2}, \quad B_n = B_{n-1} - a_{n-1}B_{n-2}, \quad n \geq 2.
\]
But how exactly one associates the S-fraction with a formal power series?

Let \(a = \{a_k\}_{k=1}^{\infty} \subset \mathbb{C} \). The formal Stieltjes continued fraction

\[
\frac{1}{1 - \frac{a_1}{1 - \frac{a_2}{1 - \frac{a_3}{1 - \cdots}}}}
\]

is regarded here as a sequence of convergents \(\frac{A_n}{B_n}, n = 0, 1, 2, \ldots \), with \(A_n, B_n \in \mathbb{C}[a] \) defined by the usual recurrence rules \(A_0 = 0, A_1 = 1, B_0 = B_1 = 1 \), and

\[
A_n = A_{n-1} - a_{n-1}A_{n-2}, \quad B_n = B_{n-1} - a_{n-1}B_{n-2}, \quad n \geq 2.
\]

Since the constant term of \(B_n \) equals 1 for any \(n \), the convergents \(\frac{A_n}{B_n} \) can also be treated as formal power series \(A_n B_n^{-1} \).
But how exactly one associates the S-fraction with a formal power series?

Let \(a = \{a_k\}_{k=1}^\infty \subset \mathbb{C} \). The formal Stieltjes continued fraction

\[
\frac{1}{1 - \frac{a_1}{1 - \frac{a_2}{1 - \frac{a_3}{\ldots}}}}
\]

is regarded here as a sequence of convergents \(\frac{A_n}{B_n} \), \(n = 0, 1, 2, \ldots \), with \(A_n, B_n \in \mathbb{C}[a] \) defined by the usual recurrence rules \(A_0 = 0, A_1 = 1, B_0 = B_1 = 1 \), and

\[
A_n = A_{n-1} - a_{n-1}A_{n-2}, \quad B_n = B_{n-1} - a_{n-1}B_{n-2}, \quad n \geq 2.
\]

Since the constant term of \(B_n \) equals 1 for any \(n \), the convergents \(A_n/B_n \) can also be treated as formal power series \(A_nB_n^{-1} \).

Sequence \(A_nB_n^{-1} \) is always convergent in \(\mathbb{C}[[a]] \) equipped with canonical (product) topology.
Formal S-fraction and formal power series

But how exactly one associates the S-fraction with a formal power series?

Let $a = \{a_k\}_{k=1}^{\infty} \subset \mathbb{C}$. The formal Stieltjes continued fraction

$$\frac{1}{1 - \frac{a_1}{1 - \frac{a_2}{1 - \frac{a_3}{\cdots}}}}$$

is regarded here as a sequence of convergents A_n/B_n, $n = 0, 1, 2, \ldots$, with $A_n, B_n \in \mathbb{C}[a]$ defined by the usual recurrence rules $A_0 = 0$, $A_1 = 1$, $B_0 = B_1 = 1$, and

$$A_n = A_{n-1} - a_{n-1}A_{n-2}, \quad B_n = B_{n-1} - a_{n-1}B_{n-2}, \quad n \geq 2.$$

Since the constant term of B_n equals 1 for any n, the convergents A_n/B_n can also be treated as formal power series $A_nB_n^{-1}$.

Sequence $A_nB_n^{-1}$ is always convergent in $\mathbb{C}[[a]]$ equipped with canonical (product) topology.

Thus with every formal S-fraction there is naturally associated a unique formal power series $f(a)$ in the indeterminates a.
Explicit expression for $f(a)$

- For a multiindex $m \in \mathbb{N}^\ell$ denote by $|m| = \sum_{j=1}^{\ell} m_j$ its order and by $d(m) = \ell$ its length.

\[f(a) = 1 + \sum_{N=1}^{\infty} \sum_{m \in \mathcal{M}(N)} \beta(m) d(m) \prod_{j=1}^{\ell} a_{m_j} \]

Surprisingly, the explicit formula for $f(a)$ has been derived much later:

- P. Flajolet: Combinatorial aspects of continued fractions, 1980.
Explicit expression for $f(a)$

- For a multiindex $m \in \mathbb{N}^{\ell}$ denote by $|m| = \sum_{j=1}^{\ell} m_j$ its order and by $d(m) = \ell$ its length.

- For $N \in \mathbb{N}$ define

$$\mathcal{M}(N) = \left\{ m \in \bigcup_{\ell=1}^{N} \mathbb{N}^{\ell}; |m| = N \right\}.$$
Explicit expression for $f(a)$

- For a multiindex $m \in \mathbb{N}^\ell$ denote by $|m| = \sum_{j=1}^{\ell} m_j$ its order and by $d(m) = \ell$ its length.
- For $N \in \mathbb{N}$ define
 $$\mathcal{M}(N) = \left\{ m \in \bigcup_{\ell=1}^{N} \mathbb{N}^\ell; |m| = N \right\}.$$
- For a multiindex $m \in \mathbb{N}^\ell$ put
 $$\beta(m) := \prod_{j=1}^{\ell-1} \left(m_j + m_{j+1} - 1 \right), \quad \alpha(m) := \frac{\beta(m)}{m_1}.$$
Explicit expression for $f(a)$

- For a multiindex $m \in \mathbb{N}^\ell$ denote by $|m| = \sum_{j=1}^\ell m_j$ its order and by $d(m) = \ell$ its length.
- For $N \in \mathbb{N}$ define
 \[\mathcal{M}(N) = \left\{ m \in \bigcup_{\ell=1}^N \mathbb{N}^\ell; |m| = N \right\}. \]
- For a multiindex $m \in \mathbb{N}^\ell$ put
 \[\beta(m) := \prod_{j=1}^{\ell-1} \left(m_j + m_{j+1} - 1 \right), \quad \alpha(m) := \frac{\beta(m)}{m_1}. \]

Theorem

The formal power series $f(a) \in \mathbb{C}[[a]]$ associated with the formal Stieltjes continued fraction is given by the formula

\[
f(a) = 1 + \sum_{N=1}^{\infty} \sum_{m \in \mathcal{M}(N)} \beta(m) \prod_{j=1}^{d(m)} a_j^{m_j}.\]
Explicit expression for \(f(a) \)

- For a multiindex \(m \in \mathbb{N}^\ell \) denote by \(|m| = \sum_{j=1}^{\ell} m_j\) its order and by \(d(m) = \ell \) its length.
- For \(N \in \mathbb{N} \) define
 \[
 \mathcal{M}(N) = \left\{ m \in \bigcup_{\ell=1}^{N} \mathbb{N}^\ell; \ |m| = N \right\}.
 \]
- For a multiindex \(m \in \mathbb{N}^\ell \) put
 \[
 \beta(m) := \prod_{j=1}^{\ell-1} \left(m_j + m_{j+1} - 1 \right), \quad \alpha(m) := \frac{\beta(m)}{m_1}.
 \]

Theorem

The formal power series \(f(a) \in \mathbb{C}[[a]] \) associated with the formal Stieltjes continued fraction is given by the formula

\[
f(a) = 1 + \sum_{N=1}^{\infty} \sum_{m \in \mathcal{M}(N)} d(m) \beta(m) \prod_{j=1}^{\ell} a_j^{m_j}.
\]

Surprisingly, the explicit formula for \(f(a) \) has been derived much later:
Explicit expression for $f(a)$

- For a multiindex $m \in \mathbb{N}^\ell$ denote by $|m| = \sum_{j=1}^\ell m_j$ its order and by $d(m) = \ell$ its length.
- For $N \in \mathbb{N}$ define
 \[
 \mathcal{M}(N) = \left\{ m \in \bigcup_{\ell=1}^N \mathbb{N}^\ell; |m| = N \right\}.
 \]
- For a multiindex $m \in \mathbb{N}^\ell$ put
 \[
 \beta(m) := \prod_{j=1}^{\ell-1} \left(m_j + m_{j+1} - 1 \right), \quad \alpha(m) := \frac{\beta(m)}{m_1}.
 \]

Theorem

The formal power series $f(a) \in \mathbb{C}[[a]]$ associated with the formal Stieltjes continued fraction is given by the formula

\[
 f(a) = 1 + \sum_{N=1}^\infty \sum_{m \in \mathcal{M}(N)} \beta(m) \prod_{j=1}^{d(m)} a_j^{m_j}.
\]

Surprisingly, the explicit formula for $f(a)$ has been derived much later:

Theorem

In the ring of formal power series in the indeterminates y_1, \ldots, y_n, one has

$$\log \varepsilon(y_1, \ldots, y_n) = - \sum_{N=1}^{\infty} \sum_{\substack{m \in \mathcal{M}(N) \colon \frac{d(m)}{d(m)} < n}} \alpha(m) \sum_{k=1}^{n-d(m)} \prod_{j=1}^{d(m)} y_{k+j-1}^m.$$

For a complex sequence $y = \{y_k\}_{k=1}^{\infty}$ such that $\|y\|_1 < \log 2$ one has

$$\log \varepsilon(y) = - \sum_{N=1}^{\infty} \sum_{m \in \mathcal{M}(N)} \alpha(m) \sum_{k=1}^{d(m)} \prod_{j=1}^{m_j} y_{k+j-1}^m.$$
Theorem

In the ring of formal power series in the indeterminates y_1, \ldots, y_n, one has

$$\log \mathcal{E}(y_1, \ldots, y_n) = -\sum_{N=1}^{\infty} \sum_{\substack{m \in \mathcal{M}(N) \\colon d(m) < n}} \alpha(m) \sum_{k=1}^{n-d(m)} \prod_{j=1}^{d(m)} y_{k+j-1}^{m_j}.$$

For a complex sequence $y = \{y_k\}_{k=1}^{\infty}$ such that $\|y\|_1 < \log 2$ one has

$$\log \mathcal{E}(y) = -\sum_{N=1}^{\infty} \sum_{m \in \mathcal{M}(N)} \alpha(m) \sum_{k=1}^{\infty} \prod_{j=1}^{d(m)} y_{k+j-1}^{m_j}.$$

Main ingredients for the proof:
Theorem

In the ring of formal power series in the indeterminates y_1, \ldots, y_n, one has

$$
\log \mathcal{C}(y_1, \ldots, y_n) = - \sum_{N=1}^{\infty} \sum_{m \in \mathcal{M}(N)} \alpha(m) \sum_{k=1}^{n-d(m)} \prod_{j=1}^{d(m)} y_{k+j-1}^{m_j}.
$$

For a complex sequence $y = \{y_k\}_{k=1}^{\infty}$ such that $\|y\|_1 < \log 2$ one has

$$
\log \mathcal{C}(y) = - \sum_{N=1}^{\infty} \sum_{m \in \mathcal{M}(N)} \alpha(m) \sum_{k=1}^{\infty} \prod_{j=1}^{d(m)} y_{k+j-1}^{m_j}.
$$

Main ingredients for the proof:
- It holds identity $\mathcal{C}(y_1, \ldots, y_n) = \det(I + Y)$ where Y is an $(n + 1) \times (n + 1)$ with elements in terms of y_1, \ldots, y_n.
Theorem

In the ring of formal power series in the indeterminates y_1, \ldots, y_n, one has

$$\log \mathcal{E}(y_1, \ldots, y_n) = - \sum_{N=1}^{\infty} \sum_{m \in \mathcal{M}(N)} \alpha(m) \sum_{k=1}^{n-d(m)} \prod_{j=1}^{d(m)} y_{k+j-1}^{m_j}.$$

For a complex sequence $y = \{y_k\}_{k=1}^{\infty}$ such that $\|y\|_1 < \log 2$ one has

$$\log \mathcal{E}(y) = - \sum_{N=1}^{\infty} \sum_{m \in \mathcal{M}(N)} \alpha(m) \sum_{k=1}^{\infty} \prod_{j=1}^{d(m)} y_{k+j-1}^{m_j}.$$

Main ingredients for the proof:

- It holds identity $\mathcal{E}(y_1, \ldots, y_n) = \det(I + Y)$ where Y is an $(n+1) \times (n+1)$ with elements in terms of y_1, \ldots, y_n.
- Since $\det \exp(A) = \exp(\text{Tr } A)$ and so $\log \det(I + Y) = \text{Tr } \log(I + Y)$, one gets

$$\log \mathcal{E}(y_1, \ldots, y_n) = \text{Tr } \log(I + Y) = - \sum_{N=1}^{\infty} \frac{1}{N} \text{Tr } Y^N.$$
Theorem

In the ring of formal power series in the indeterminates y_1, \ldots, y_n, one has

$$\log \mathcal{E}(y_1, \ldots, y_n) = -\sum_{N=1}^{\infty} \sum_{m \in M(N)} \sum_{d(m) < n}^{\infty} \alpha(m) \sum_{k=1}^{n-d(m)} \prod_{j=1}^{d(m)} y_{k+j-1}^{m_j}.$$

For a complex sequence $y = \{y_k\}_{k=1}^{\infty}$ such that $\|y\|_1 < \log 2$ one has

$$\log \mathcal{E}(y) = -\sum_{N=1}^{\infty} \sum_{m \in M(N)}^{\infty} \alpha(m) \sum_{k=1}^{d(m)} \prod_{j=1}^{d(m)} y_{k+j-1}^{m_j}.$$

Main ingredients for the proof:

- It holds identity $\mathcal{E}(y_1, \ldots, y_n) = \det(I + Y)$ where Y is an $(n+1) \times (n+1)$ with elements in terms of y_1, \ldots, y_n.
- Since $\det \exp(A) = \exp(\text{Tr} A)$ and so $\log \det(I + Y) = \text{Tr} \log(I + Y)$, one gets
 $$\log \mathcal{E}(y_1, \ldots, y_n) = \text{Tr} \log(I + Y) = -\sum_{N=1}^{\infty} \frac{1}{N} \text{Tr} Y^N.$$
- To find an expression for $\text{Tr} Y^N$ is a hard combinatorial work of the proof.
As a consequence of the formula for logarithm of ϵ and its relation with an S-fraction one gets the following identity.

Theorem

Let $f(a) \in \mathbb{C}[a]$ be the formal power series expansion of the formal Stieltjes continued fraction. Then

$$\log f(a) = \sum_{N=1}^{\infty} \sum_{m \in M(N)} \alpha(m) d(m) \prod_{j=1}^{m} a_{m,j}.$$
As a consequence of the formula for logarithm of \mathcal{C} and its relation with an S-fraction one gets the following identity.

Theorem

Let $f(a) \in \mathbb{C}[[a]]$ be the formal power series expansion of the formal Stieltjes continued fraction. Then

$$\log f(a) = \sum_{N=1}^{\infty} \sum_{m \in \mathcal{M}(N)} \alpha(m) \prod_{j=1}^{d(m)} a_j^{m_j}.$$
Logarithm of the power series of S-fraction

- As a consequence of the formula for logarithm of ξ and its relation with an S-fraction one gets the following identity.

Theorem

Let $f(a) \in \mathbb{C}[[a]]$ be the formal power series expansion of the formal Stieltjes continued fraction. Then

$$
\log f(a) = \sum_{N=1}^{\infty} \sum_{m \in M(N)} \alpha(m) \prod_{j=1}^{d(m)} a_j^{m_j}.
$$

- This formula seems to be new. (Really?)
Logarithm of the power series of S-fraction

As a consequence of the formula for logarithm of \mathcal{C} and its relation with an S-fraction one gets the following identity.

Theorem

Let $f(a) \in \mathbb{C}[[a]]$ be the formal power series expansion of the formal Stieltjes continued fraction. Then

$$\log f(a) = \sum_{N=1}^{\infty} \sum_{m \in \mathcal{M}(N)} \alpha(m) \prod_{j=1}^{d(m)} a_j^{m_j}.$$

This formula seems to be new. (Really?)

By using this result one can rediscover the power series expansion $f(a)$ which has been found in 1975.
Perhaps the simplest example is obtained if we set $a_j = z$, for all $j \in \mathbb{N}$, in the formal S-fraction. The formula for logarithm then yields

$$\log \left(\frac{1}{1 - \frac{z}{1 - \frac{z}{1 - \frac{z}{1 - \cdots}}} \right) = \sum_{N=1}^{\infty} \frac{1}{2N} \binom{2N}{N} z^N = \log \frac{2}{1 + \sqrt{1 - 4z}}.$$
Perhaps the simplest example is obtained if we set $a_j = z$, for all $j \in \mathbb{N}$, in the formal S-fraction. The formula for logarithm then yields

$$\log\left(\frac{1}{1 - \frac{z}{1 - \frac{z}{1 - \frac{z}{1 - \ldots}}}
ight) = \sum_{N=1}^{\infty} \frac{1}{2N} \binom{2N}{N} z^N = \log \frac{2}{1 + \sqrt{1 - 4z}}.$$

Since $c(z) = 2/(1 + \sqrt{1 - 4z})$ is known to be the generating function for the Catalan numbers, one derives this way an identity relating $\beta(m)$ with Catalan numbers,

$$\sum_{m \in \mathcal{M}(N)} \beta(m) = C_N := \frac{1}{N+1} \binom{2N}{N}.$$
The Rogers-Ramanujan continued fraction

The generalized Rogers-Ramanujan continued fraction

\[
\frac{1}{1 + \frac{z}{1 + \frac{qz}{1 + \frac{q^2z}{1 + \frac{q^3z}{1 + \cdots}}}}}
\]

represents a more involved example.
The Rogers-Ramanujan continued fraction

- The generalized Rogers-Ramanujan continued fraction

\[
\frac{1}{1 + \frac{z}{1 + \frac{qz}{1 + \frac{q^2z}{1 + \frac{q^3z}{\ddots}}}}}
\]

represents a more involved example.

Theorem

The power series expansion \(R(z; q) \) in the variable \(z \) of the generalized Rogers-Ramanujan continued fraction fulfills

\[
R(z; q) = 1 + \sum_{N=1}^{\infty} \left(\sum_{m \in \mathcal{M}(N)} \beta(m) q^{\epsilon_1(m)} \right) (-z)^N
\]

and

\[
\log R(z; q) = \sum_{N=1}^{\infty} \left(\sum_{m \in \mathcal{M}(N)} \alpha(m) q^{\epsilon_1(m)} \right) (-z)^N
\]

where

\[
\epsilon_1(m) = \sum_{j=1}^{d(m)} (j - 1)m_j.
\]
For $0 < q < 1$ and $z \in \mathbb{C}$, it can be shown

$$e \left(\{-zq^{k-1}\}_{k=1}^\infty \right) = _0\phi_1(0; q, z).$$
The Rogers-Ramanujan continued fraction

For $0 < q < 1$ and $z \in \mathbb{C}$, it can be shown

$$e \left(\{-zq^k\}_{k=1}^{\infty} \right) = \phi_1(0; q, z).$$

Consequently, for $R(z; q)$ it holds

$$R(z; q) = \phi_1(0; q, qz) / \phi_1(0; q, z).$$
For $0 < q < 1$ and $z \in \mathbb{C}$, it can be shown

$$
\mathcal{E} \left(\{-zq^k\}_{k=1}^{\infty} \right) = {}_0\phi_1(0; q, z).
$$

Consequently, for $R(z; q)$ it holds

$$
R(z; q) = {}_0\phi_1(0; q, qz) / {}_0\phi_1(0; q, z).
$$

By putting $z = q$ one arrives at the Rogers-Ramanujan continued fraction

$$
\frac{1}{1 + \frac{q}{1 + \frac{q^2}{1 + \frac{q^3}{1 + \ldots}}}}.
$$
For $0 < q < 1$ and $z \in \mathbb{C}$, it can be shown
\[e \left(\{ -zq^k \}_{k=1}^{\infty} \right) = \phi_1(0; 0, q, z). \]

Consequently, for $R(z; q)$ it holds
\[R(z; q) = \phi_1(0; 0, q, qz)/\phi_1(0; 0, q, z). \]

By putting $z = q$ one arrives at the Rogers-Ramanujan continued fraction
\[\frac{1}{1 + \frac{q}{1 + \frac{q^2}{1 + \frac{q^3}{1 + \cdots}}}}. \]

Its convergents are expressible in terms of the q-Fibonacci numbers of the first and second kind:

\[F_0(q) = 0, \quad F_1(q) = 1, \quad F_n(q) = F_{n-1}(q) + q^{n-2}F_{n-2}(q) \quad \text{for } n \geq 2, \]

and
\[\hat{F}_0(q) = 0, \quad \hat{F}_1(q) = 1, \quad \hat{F}_n(q) = \hat{F}_{n-1}(q) + q^{n-1}\hat{F}_{n-2}(q) \quad \text{for } n \geq 2. \]

The Rogers-Ramanujan continued fraction

For $0 < q < 1$, there exists the limits

$$F_\infty(q) = \lim_{n \to \infty} F_n(q) = 1 + q + q^2 + q^3 + 2q^4 + 2q^5 + 3q^6 + 3q^7 + 4q^8 + 5q^9 + \ldots,$$

$$\hat{F}_\infty(q) = \lim_{n \to \infty} \hat{F}_n(q) = 1 + q^2 + q^3 + q^4 + q^5 + 2q^6 + 2q^7 + 3q^8 + 3q^9 + 4q^{10} + \ldots.$$
For $0 < q < 1$, there exists the limits

$$F_{\infty}(q) = \lim_{n \to \infty} F_n(q) = 1 + q + q^2 + q^3 + 2q^4 + 2q^5 + 3q^6 + 3q^7 + 4q^8 + 5q^9 + \ldots,$$

$$\hat{F}_{\infty}(q) = \lim_{n \to \infty} \hat{F}_n(q) = 1 + q^2 + q^3 + q^4 + q^5 + 2q^6 + 2q^7 + 3q^8 + 3q^9 + 4q^{10} + \ldots.$$

By using the relation between ζ and ζ_0 again, one finds well known identities

$$F_{\infty}(q) = \zeta_0(; 0; q, q), \quad \hat{F}_{\infty}(q) = \zeta_0(; 0; q, q^2).$$
The Rogers-Ramanujan continued fraction

For $0 < q < 1$, there exists the limits

$$F_{\infty}(q) = \lim_{n \to \infty} F_n(q) = 1 + q + q^2 + q^3 + 2q^4 + 2q^5 + 3q^6 + 3q^7 + 4q^8 + 5q^9 + \ldots,$$

$$\hat{F}_{\infty}(q) = \lim_{n \to \infty} \hat{F}_n(q) = 1 + q^2 + q^3 + q^4 + q^5 + 2q^6 + 2q^7 + 3q^8 + 3q^9 + 4q^{10} + \ldots.$$

By using the relation between \mathcal{C} and $0 \phi_1$ again, one finds well known identities

$$F_{\infty}(q) = 0 \phi_1(; 0; q, q), \quad \hat{F}_{\infty}(q) = 0 \phi_1(; 0; q, q^2).$$

Consequently, one arrives at the known relation

$$R(q) := R(q, q) = \hat{F}_{\infty}(q)/F_{\infty}(q).$$
The Rogers-Ramanujan continued fraction

- For $0 < q < 1$, there exists the limits
 \[
 F_\infty(q) = \lim_{n \to \infty} F_n(q) = 1 + q + q^2 + q^3 + 2q^4 + 2q^5 + 3q^6 + 3q^7 + 4q^8 + 5q^9 + \ldots,
 \]
 \[
 \hat{F}_\infty(q) = \lim_{n \to \infty} \hat{F}_n(q) = 1 + q^2 + q^3 + q^4 + q^5 + 2q^6 + 2q^7 + 3q^8 + 3q^9 + 4q^{10} + \ldots.
 \]

- By using the relation between φ and $0\phi_1$ again, one finds well known identities
 \[
 F_\infty(q) = 0\phi_1(; 0; q, q), \quad \hat{F}_\infty(q) = 0\phi_1(; 0; q, q^2).
 \]

- Consequently, one arrives at the known relation
 \[
 R(q) := R(q, q) = \hat{F}_\infty(q)/F_\infty(q).
 \]

- The celebrated Rogers-Ramanujan identities extend this identity to a much stronger result by showing
 \[
 0\phi_1(; 0; q, q) = \prod_{\mathbb{N} \ni n \equiv 1, 4 \text{ mod } 5} (1 - q^n)^{-1}
 \]
 and
 \[
 0\phi_1(; 0; q, q^2) = \prod_{\mathbb{N} \ni n \equiv 2, 3 \text{ mod } 5} (1 - q^n)^{-1}.
 \]
The Rogers-Ramanujan continued fraction

- Power series formulas for \(R(q) \) and \(\log R(q) \) yields

\[
R(q) = 1 + \sum_{\ell=1}^{\infty} \sum_{m \in \mathbb{N}^\ell} (-1)^{|m|} \beta(m) q^{m_1+2m_2+\ldots+\ell m_\ell}
\]

and

\[
\log R(q) = \sum_{\ell=1}^{\infty} \sum_{m \in \mathbb{N}^\ell} (-1)^{|m|} \alpha(m) q^{m_1+2m_2+\ldots+\ell m_\ell}.
\]
The Rogers-Ramanujan continued fraction

- Power series formulas for \(R(q) \) and \(\log R(q) \) yields

\[
R(q) = 1 + \sum_{\ell=1}^{\infty} \sum_{m \in \mathbb{N}^{\ell}} (-1)^{|m|} \beta(m) q^{m_1 + 2m_2 + \ldots + \ell m_\ell}
\]

and

\[
\log R(q) = \sum_{\ell=1}^{\infty} \sum_{m \in \mathbb{N}^{\ell}} (-1)^{|m|} \alpha(m) q^{m_1 + 2m_2 + \ldots + \ell m_\ell}.
\]

- The summands can be expressed in terms of \(q \)-Fibonacci numbers:

\[
\sum_{m \in \mathbb{N}^{\ell}} (-1)^{|m|} \beta(m) q^{m_1 + 2m_2 + \ldots + \ell m_\ell} = (-1)^{\ell} q^{(\ell+1)\ell/2} \frac{F_{\ell+1}(q)F_{\ell+2}(q)}{F_{\ell+1}(q)F_{\ell+2}(q)}
\]

and

\[
\sum_{m \in \mathbb{N}^{\ell}} (-1)^{|m|} \alpha(m) q^{m_1 + 2m_2 + \ldots + \ell m_\ell} = \log \left(\frac{\hat{F}_{\ell+1}(q)F_{\ell+1}(q)}{\hat{F}_{\ell}(q)F_{\ell+2}(q)} \right),
\]

for \(\ell \in \mathbb{N} \).
Under some assumptions on sequences $\{a_n\}$ and $\{b_n\}$, the generalized continued fraction

$$
\frac{1}{z - b_1} - \frac{a_1^2}{z - b_2} - \frac{a_2^2}{z - b_3} - \frac{a_3^2}{z - b_4} - \ldots
$$

converges locally uniformly on $\mathbb{C} \setminus \mathbb{R}$.
Under some assumptions on sequences \(\{a_n\} \) and \(\{b_n\} \), the generalized continued fraction

\[
\frac{1}{z - b_1} \frac{a_1^2}{z - b_2} \frac{a_2^2}{z - b_3} \frac{a_3^2}{z - b_4} \ldots
\]

converges locally uniformly on \(\mathbb{C} \setminus \mathbb{R} \).

This function, known as the Weyl \(m \)-function \(m(z) \) in the theory of Jacobi operators, plays a fundamental role in the spectral theory of those operators.
Under some assumptions on sequences \(\{a_n\} \) and \(\{b_n\} \), the generalized continued fraction

\[
\frac{1}{z - b_1} - \frac{a_1^2}{z - b_2} - \frac{a_2^2}{z - b_3} - \frac{a_3^2}{z - b_4} - \ldots
\]

converges locally uniformly on \(\mathbb{C} \setminus \mathbb{R} \).

This function, known as the \textit{Weyl m-function} \(m(z) \) in the theory of Jacobi operators, plays a fundamental role in the spectral theory of those operators.

Since \(m(z) \) is the Stieltjes transform of a Borel measure \(\mu_J \), which is closely related with the spectral measure of Jacobi operator \(J \), it encodes many information about the spectrum of \(J \).
Under some assumptions on sequences \(\{a_n\} \) and \(\{b_n\} \), the generalized continued fraction

\[
\frac{1}{z - b_1} - \frac{a_1^2}{z - b_2} - \frac{a_2^2}{z - b_3} - \frac{a_3^2}{z - b_4} - \ldots
\]

converges locally uniformly on \(\mathbb{C} \setminus \mathbb{R} \).

This function, known as the Weyl m-function \(m(z) \) in the theory of Jacobi operators, plays a fundamental role in the spectral theory of those operators.

Since \(m(z) \) is the Stieltjes transform of a Borel measure \(\mu_J \), which is closely related with the spectral measure of Jacobi operator \(J \), it encodes many information about the spectrum of \(J \).

Function \(m(z) \) is of significant importance also in the theory of Orthogonal Polynomials or the Moment Problem.
Under some assumptions on sequences \(\{a_n\} \) and \(\{b_n\} \), the generalized continued fraction

\[
\frac{1}{z - b_1} - \frac{a_1^2}{z - b_2} - \frac{a_2^2}{z - b_3} - \frac{a_3^2}{z - b_4} - \ldots
\]

converges locally uniformly on \(\mathbb{C} \setminus \mathbb{R} \).

This function, known as the Weyl \(m \)-function \(m(z) \) in the theory of Jacobi operators, plays a fundamental role in the spectral theory of those operators.

Since \(m(z) \) is the Stieltjes transform of a Borel measure \(\mu_J \), which is closely related with the spectral measure of Jacobi operator \(J \), it encodes many information about the spectrum of \(J \).

Function \(m(z) \) is of significant importance also in the theory of Orthogonal Polynomials or the Moment Problem.

Consequently, results concerning continued fractions are of much interest even in the Mathematical Physics community!
Thank you, and enjoy Beskydy!