Non-self-adjoint Toeplitz matrices with purely real spectrum and related problems

František Štampach

International Conference on Special Functions: Theory, Computation, and Applications
Hong Kong

June 5-9, 2017

Based on: B. Shapiro, F. Štampach: Non-self-adjoint Toeplitz matrices whose principal submatrices have real spectrum, arXiv:1702.00741 [math.CA]
Contents

1 Toeplitz matrices with real spectrum

2 The asymptotic eigenvalue distribution

3 Connections to the Hamburger Moment Problem and Orthogonal Polynomials
Toeplitz matrix

- **Toeplitz matrix:**

\[
T_n(a) = \left(a_{j-k} \right)_{j,k=0}^{n-1} = \begin{pmatrix}
a_0 & a_{-1} & a_{-2} & \cdots & a_{-n+1} \\
a_1 & a_0 & a_{-1} & \cdots & a_{-n+2} \\
a_2 & a_1 & a_0 & \cdots & a_{-n+3} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n-1} & a_{n-2} & a_{n-3} & \cdots & a_0
\end{pmatrix},
\]

where \(a_n \in \mathbb{C} \).
Toeplitz matrix

- **Toeplitz matrix:**

\[
T_n(a) = (a_{j-k})_{j,k=0}^{n-1} = \begin{pmatrix}
a_0 & a_{-1} & a_{-2} & \ldots & a_{-n+1} \\
a_1 & a_0 & a_{-1} & \ldots & a_{-n+2} \\
a_2 & a_1 & a_0 & \ldots & a_{-n+3} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n-1} & a_{n-2} & a_{n-3} & \ldots & a_0
\end{pmatrix},
\]

where \(a_n \in \mathbb{C}\).

- **Symbol of \(T(a)\):**

\[
a(z) = \sum_{n=-\infty}^{\infty} a_n z^n.
\]
Toeplitz matrix

- **Toeplitz matrix:**

 \[T_n(a) = (a_{j-k})_{j,k=0}^{n-1} = \begin{pmatrix}
 a_0 & a_1 & a_2 & \ldots & a_{n-1} \\
 a_1 & a_0 & a_1 & \ldots & a_{n-2} \\
 a_2 & a_1 & a_0 & \ldots & a_{n-3} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 a_{n-1} & a_{n-2} & a_{n-3} & \ldots & a_0
 \end{pmatrix}, \]

 where \(a_n \in \mathbb{C} \).

- **Symbol of** \(T(a) \):

 \[a(z) = \sum_{n=-\infty}^{\infty} a_n z^n. \]

- **Question:** For what symbol \(a \) are the eigenvalues of \(T_n(a) \) “asymptotically real”, as \(n \to \infty \)?
Toeplitz matrix

- Toeplitz matrix:

\[T_n(a) = (a_{j-k})_{j,k=0}^{n-1} = \begin{pmatrix}
 a_0 & a_{-1} & a_{-2} & \ldots & a_{-n+1} \\
 a_1 & a_0 & a_{-1} & \ldots & a_{-n+2} \\
 a_2 & a_1 & a_0 & \ldots & a_{-n+3} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 a_{n-1} & a_{n-2} & a_{n-3} & \ldots & a_0
\end{pmatrix}, \]

where \(a_n \in \mathbb{C} \).

- Symbol of \(T(a) \):

\[a(z) = \sum_{n=-\infty}^{\infty} a_n z^n. \]

- **Question:** For what symbol \(a \) are the eigenvalues of \(T_n(a) \) “asymptotically real”, as \(n \to \infty \)?

More precisely, let

\[\Lambda(a) := \{ \lambda \in \mathbb{C} \mid \liminf_{n \to \infty} \text{dist} (\lambda, \text{spec}(T_n(a))) = 0 \} \]

i.e., \(\lambda \in \Lambda(a) \) if and only if \(\exists n_k \nearrow \infty \exists \lambda_k \in \text{spec}(T_{n_k}(a)) \) s.t. \(\lambda_k \to \lambda \).
Toeplitz matrices with real spectrum

Toeplitz matrix

- **Toeplitz matrix**:

 $$T_n(a) = \left(a_{j-k} \right)_{j,k=0}^{n-1} = \begin{pmatrix} a_0 & a_1 & a_2 & \cdots & a_{n-1} \\ a_1 & a_0 & a_1 & \cdots & a_{n-2} \\ a_2 & a_1 & a_0 & \cdots & a_{n-3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n-1} & a_{n-2} & a_{n-3} & \cdots & a_0 \end{pmatrix},$$

 where $a_n \in \mathbb{C}$.

- **Symbol of $T(a)$**:

 $$a(z) = \sum_{n=-\infty}^{\infty} a_n z^n.$$

Question: For what symbol a are the eigenvalues of $T_n(a)$ “asymptotically real”, as $n \to \infty$?

More precisely, let

$$\Lambda(a) := \{ \lambda \in \mathbb{C} \mid \lim \inf_{n \to \infty} \text{dist} (\lambda, \text{spec}(T_n(a))) = 0 \}$$

i.e., $\lambda \in \Lambda(a)$ if and only if $\exists n_k \uparrow \infty \ \forall \lambda_k \in \text{spec}(T_{n_k}(a))$ s.t. $\lambda_k \to \lambda$.

The question: determine the class of symbols a for which

$$\Lambda(a) \subset \mathbb{R}.$$
Clearly, if $T_n(a)$ is Hermitian for all n, then $\Lambda(a) \subset \mathbb{R}$.
Clearly, if $T_n(a)$ is Hermitian for all n, then $\Lambda(a) \subset \mathbb{R}$.

\[T_n(a) = T_n^*(a), \; \forall n \in \mathbb{N} \iff a(\mathbb{T}) \subset \mathbb{R}. \]
Clearly, if $T_n(a)$ is Hermitian for all n, then $\Lambda(a) \subset \mathbb{R}$.

\[T_n(a) = T_n^*(a), \forall n \in \mathbb{N} \iff a(T) \subset \mathbb{R}. \]

In other words: \textit{In the Hermitian case, there exists a Jordan curve in \mathbb{C} (namely, the unit circle) on which the symbol is a real-valued function.}
Clearly, if $T_n(a)$ is Hermitian for all n, then $\Lambda(a) \subset \mathbb{R}$.

$$T_n(a) = T_n^*(a), \quad \forall n \in \mathbb{N} \iff a(T) \subset \mathbb{R}.$$

In other words: In the Hermitian case, there exists a Jordan curve in \mathbb{C} (namely, the unit circle) on which the symbol is a real-valued function.

And this is the clue ...
Clearly, if $T_n(a)$ is Hermitian for all n, then $\Lambda(a) \subset \mathbb{R}$.

$$T_n(a) = T_n^*(a), \; \forall n \in \mathbb{N} \iff a(T) \subset \mathbb{R}.$$

In other words: In the Hermitian case, there exists a Jordan curve in \mathbb{C} (namely, the unit circle) on which the symbol is a real-valued function.

And this is the clue ...

Theorem:

1. Let the symbol a be given by the Laurent series $\sum_n a_n z^n$ which is absolutely convergent in an annulus $r \leq |z| \leq R$, where $r \leq 1$ and $R \geq 1$.

Clearly, if $T_n(a)$ is Hermitian for all n, then $\Lambda(a) \subset \mathbb{R}$.

$$T_n(a) = T_n^*(a), \ \forall n \in \mathbb{N} \iff a(T) \subset \mathbb{R}.$$

In other words: In the Hermitian case, there exists a Jordan curve in \mathbb{C} (namely, the unit circle) on which the symbol is a real-valued function.

And this is the clue ...

Theorem:

1. Let the symbol a be given by the Laurent series $\sum_n a_n z^n$ which is absolutely convergent in an annulus $r \leq |z| \leq R$, where $r \leq 1$ and $R \geq 1$.

2. Let the above annulus contain (an image of) a Jordan curve γ such that $a \circ \gamma$ is real-valued.
Clearly, if $T_n(a)$ is Hermitian for all n, then $\Lambda(a) \subset \mathbb{R}$.

$$T_n(a) = T_n^*(a), \ \forall n \in \mathbb{N} \iff a(T) \subset \mathbb{R}.$$

In other words: \textit{In the Hermitian case, there exists a Jordan curve in \mathbb{C} (namely, the unit circle) on which the symbol is a real-valued function.}

And this is the clue ...

\textbf{Theorem:}

\begin{enumerate}
\item Let the symbol a be given by the Laurent series $\sum_n a_n z^n$ which is absolutely convergent in an annulus $r \leq |z| \leq R$, where $r \leq 1$ and $R \geq 1$.
\item Let the above annulus contain (an image of) a Jordan curve γ such that $a \circ \gamma$ is real-valued.
\end{enumerate}

Then $\Lambda(a) \subset \mathbb{R}$.
Clearly, if $T_n(a)$ is Hermitian for all n, then $\Lambda(a) \subset \mathbb{R}$.

In other words: *In the Hermitian case, there exists a Jordan curve in \mathbb{C} (namely, the unit circle) on which the symbol is a real-valued function.*

And this is the clue ...

Theorem:

1. Let the symbol a be given by the Laurent series $\sum_n a_n z^n$ which is absolutely convergent in an annulus $r \leq |z| \leq R$, where $r \leq 1$ and $R \geq 1$.
2. Let the above annulus contain (an image of) a Jordan curve γ such that $a \circ \gamma$ is real-valued.

Then $\Lambda(a) \subset \mathbb{R}$. In fact, one has much more:

$$\text{spec}(T_n(a)) \subset \mathbb{R}, \quad \forall n \in \mathbb{N}.$$
Clearly, if $T_n(a)$ is Hermitian for all n, then $\Lambda(a) \subset \mathbb{R}$.

In other words: In the Hermitian case, there exists a Jordan curve in \mathbb{C} (namely, the unit circle) on which the symbol is a real-valued function.

And this is the clue ...

Theorem:

1. Let the symbol a be given by the Laurent series $\sum_n a_n z^n$ which is absolutely convergent in an annulus $r \leq |z| \leq R$, where $r \leq 1$ and $R \geq 1$.
2. Let the above annulus contain (an image of) a Jordan curve γ such that $a \circ \gamma$ is real-valued.

Then $\Lambda(a) \subset \mathbb{R}$. In fact, one has much more:

$$\text{spec}(T_n(a)) \subset \mathbb{R}, \quad \forall n \in \mathbb{N}. $$

Remark:

If a is analytic in $\mathbb{C} \setminus \{0\}$ (especially, if a is a Laurent polynomial), then the assumption 1 can be omitted.
The case of banded Toeplitz matrices

Question: If $\Lambda(a) \subseteq \mathbb{R}$, can the set $\Lambda(a)$ be approached from the complex plane? That is, can $\text{spec}(T_n(a))$ contain non-real eigenvalues for some n?
The case of banded Toeplitz matrices

- **Question:** If $\Lambda(a) \subset \mathbb{R}$, can the set $\Lambda(a)$ be approached from the complex plane? That is, can $\text{spec}(T_n(a))$ contain non-real eigenvalues for some n?

- **Answer:** No, if a is a Laurent polynomial!
The case of banded Toeplitz matrices

Question: If $\Lambda(a) \subset \mathbb{R}$, can the set $\Lambda(a)$ be approached from the complex plane? That is, can $\text{spec}(T_n(a))$ contain non-real eigenvalues for some n?

Answer: No, if a is a Laurent polynomial!

Theorem:

Let $b = b(z)$ be a Laurent polynomial which is neither a polynomial in z nor in $1/z$. The following claims are equivalent:

1. $\Lambda(b) \subset \mathbb{R}$;
2. The set $b^{-1}(\mathbb{R})$ contains a Jordan curve (with 0 in its interior);
3. For all $n \in \mathbb{N}$, $\text{spec}(T_n(b)) \subset \mathbb{R}$.

Remark: It is a very surprising feature of banded Toeplitz matrices that the asymptotic reality of the eigenvalues (claim 1) forces all eigenvalues of all $T_n(b)$ to be real (claim 3). Hence, if, for instance, the 2×2 matrix $T_2(b)$ has a non-real eigenvalue, there is no chance for the limiting set $\Lambda(b)$ to be real!
The case of banded Toeplitz matrices

- **Question:** If $\Lambda(a) \subset \mathbb{R}$, can the set $\Lambda(a)$ be approached from the complex plane? That is, can $\text{spec}(T_n(a))$ contain non-real eigenvalues for some n?
- **Answer:** No, if a is a Laurent polynomial!

Theorem:

Let $b = b(z)$ be a Laurent polynomial which is neither a polynomial in z nor in $1/z$. The following claims are equivalent:

1. $\Lambda(b) \subset \mathbb{R}$;

Remark: It is a very surprising feature of banded Toeplitz matrices that the asymptotic reality of the eigenvalues (claim 1) forces all eigenvalues of all $T_n(b)$ to be real (claim 3). Hence, if, for instance, the 2×2 matrix $T_2(b)$ has a non-real eigenvalue, there is no chance for the limiting set $\Lambda(b)$ to be real!
The case of banded Toeplitz matrices

- **Question:** If $\Lambda(a) \subset \mathbb{R}$, can the set $\Lambda(a)$ be approached from the complex plane? That is, can $\text{spec}(T_n(a))$ contain non-real eigenvalues for some n?

- **Answer:** No, if a is a Laurent polynomial!

Theorem:

Let $b = b(z)$ be a Laurent polynomial which is neither a polynomial in z nor in $1/z$. The following claims are equivalent:

1. $\Lambda(b) \subset \mathbb{R}$;
2. The set $b^{-1}(\mathbb{R})$ contains a Jordan curve (with 0 in its interior).
The case of banded Toeplitz matrices

- **Question:** If $\Lambda(a) \subset \mathbb{R}$, can the set $\Lambda(a)$ be approached from the complex plane? That is, can $\text{spec}(T_n(a))$ contain non-real eigenvalues for some n?

- **Answer:** No, if a is a Laurent polynomial!

Theorem:

Let $b = b(z)$ be a Laurent polynomial which is neither a polynomial in z nor in $1/z$. The following claims are equivalent:

1. $\Lambda(b) \subset \mathbb{R}$;
2. The set $b^{-1}(\mathbb{R})$ contains a Jordan curve (with 0 in its interior).
3. For all $n \in \mathbb{N}$, $\text{spec}(T_n(b)) \subset \mathbb{R}$.

Remark: It is a very surprising feature of banded Toeplitz matrices that the asymptotic reality of the eigenvalues (claim 1) forces all eigenvalues of all $T_n(b)$ to be real (claim 3). Hence, if, for instance, the 2×2 matrix $T_2(b)$ has a non-real eigenvalue, there is no chance for the limiting set $\Lambda(b)$ to be real!
The case of banded Toeplitz matrices

- **Question:** If $\Lambda(a) \subset \mathbb{R}$, can the set $\Lambda(a)$ be approached from the complex plane? That is, can $\text{spec}(T_n(a))$ contain non-real eigenvalues for some n?

- **Answer:** No, if a is a Laurent polynomial!

Theorem:

Let $b = b(z)$ be a Laurent polynomial which is neither a polynomial in z nor in $1/z$. The following claims are equivalent:

1. $\Lambda(b) \subset \mathbb{R}$;
2. The set $b^{-1}(\mathbb{R})$ contains a Jordan curve (with 0 in its interior).
3. For all $n \in \mathbb{N}$, $\text{spec}(T_n(b)) \subset \mathbb{R}$.

Remark:

It is a very surprising feature of banded Toeplitz matrices that the asymptotic reality of the eigenvalues (claim 1) forces all eigenvalues of all $T_n(b)$ to be real (claim 3). Hence, if, for instance, the 2×2 matrix $T_2(b)$ has a non-real eigenvalue, there is no chance for the limiting set $\Lambda(b)$ to be real!
Examples

1. **Tridiagonal Toeplitz matrix:**

 \[b(z) = z^{-1} + az, \quad (a \in \mathbb{C} \setminus \{0\}). \]

 Then
 \[\Lambda(b) \subset \mathbb{R} \iff a > 0. \]
Examples

1. Tridiagonal Toeplitz matrix:

\[b(z) = z^{-1} + az, \quad (a \in \mathbb{C} \setminus \{0\}). \]

Then

\[\Lambda(b) \subset \mathbb{R} \iff a > 0. \]

2. Four-diagonal Toeplitz matrix:

\[b(z) = z^{-1} + az + bz^2, \quad (a \in \mathbb{C}, b \in \mathbb{C} \setminus \{0\}). \]

Then

\[\Lambda(b) \subset \mathbb{R} \iff a^3 \geq 27b^2 > 0. \]

And many more...
Examples

1. Tridiagonal Toeplitz matrix:

\[b(z) = z^{-1} + az, \quad (a \in \mathbb{C} \setminus \{0\}). \]

Then

\[\Lambda(b) \subset \mathbb{R} \iff a > 0. \]

2. Four-diagonal Toeplitz matrix:

\[b(z) = z^{-1} + az + bz^2, \quad (a \in \mathbb{C}, b \in \mathbb{C} \setminus \{0\}). \]

Then

\[\Lambda(b) \subset \mathbb{R} \iff a^3 \geq 27b^2 > 0. \]

3. A banded Toeplitz matrix:

\[b(z) = z^{-r} (1 + az)^{r+s}, \quad (r, s \in \mathbb{N}, a \in \mathbb{R} \setminus \{0\}). \]

Then \(\Lambda(b) \subset \mathbb{R}. \)

4. And many more...
Examples

1. **Tridiagonal Toeplitz matrix:**

 \[b(z) = z^{-1} + az, \quad (a \in \mathbb{C} \setminus \{0\}). \]

 Then
 \[\Lambda(b) \subset \mathbb{R} \iff a > 0. \]

2. **Four-diagonal Toeplitz matrix:**

 \[b(z) = z^{-1} + az + bz^2, \quad (a \in \mathbb{C}, b \in \mathbb{C} \setminus \{0\}). \]

 Then
 \[\Lambda(b) \subset \mathbb{R} \iff a^3 \geq 27b^2 > 0. \]

3. **A banded Toeplitz matrix:**

 \[b(z) = z^{-r} (1 + az)^{r+s}, \quad (r, s \in \mathbb{N}, a \in \mathbb{R} \setminus \{0\}). \]

 Then \(\Lambda(b) \subset \mathbb{R} \).

4. And many more...
Numerical examples

\[b(z) = z^{-3} - z^{-2} + 7z^{-1} + 9z - 2z^2 + 2z^3 - z^4 \]
Numerical examples

\[b(z) = z^{-3} - z^{-2} + 7z^{-1} + 9z - 2z^2 + 2z^3 - z^4 \]

\[b(z) = z^{-3} - z^{-2} + 7z^{-1} + 9z + 2z^2 + 2z^3 - z^4 \]
1 Toeplitz matrices with real spectrum

2 The asymptotic eigenvalue distribution

3 Connections to the Hamburger Moment Problem and Orthogonal Polynomials
History on the topic

- We consider **banded** Toeplitz matrices only \rightarrow the classical topic;

$$b(z) = \sum_{k=-r}^{s} a_k z^k, \text{ where } a_{-r} a_s \neq 0 \text{ and } r, s \in \mathbb{N}.$$
History on the topic

- We consider **banded** Toeplitz matrices only \(\rightarrow \) the classical topic;

\[
b(z) = \sum_{k=-r}^{s} a_k z^k, \text{ where } a_{-r} a_s \neq 0 \text{ and } r, s \in \mathbb{N}.
\]

- The set \(\Lambda(b) \) can be described in terms of zeros of the polynomial \(z \mapsto z^r (b(z) - \lambda) \) [Schmidt and Spitzer, 1960].
History on the topic

- We consider **banded** Toeplitz matrices only \rightarrow the classical topic;

\[b(z) = \sum_{k=-r}^{s} a_k z^k, \text{ where } a_{-r} a_s \neq 0 \text{ and } r, s \in \mathbb{N}. \]

- The set $\Lambda(b)$ can be described in terms of zeros of the polynomial $z \mapsto z^r (b(z) - \lambda)$ [Schmidt and Spitzer, 1960].

- The weak limit of the eigenvalue-counting measures of $T_n(b)$:

\[\mu_n = \frac{1}{n} \sum_{k=1}^{n} \delta \lambda_k^{(n)} \]

exists, as $n \rightarrow \infty$, and is absolutely continuous measure μ supported on $\Lambda(b)$ whose density can be expressed in terms of zeros of $z \mapsto z^r (b(z) - \lambda)$ [Hirschman Jr., 1967].
1. Let $T_n(b)$ be a banded Toeplitz matrix with real elements:

$$b(z) = \sum_{k=-r}^{s} a_k z^k, \quad \text{where } a_{-r} a_s \neq 0 \text{ and } r, s \in \mathbb{N}.$$

(Then both $\Lambda(b)$ and $b^{-1}(\mathbb{R})$ are symmetric w.r.t. \mathbb{R}.)
Let $T_n(b)$ be a banded Toeplitz matrix with real elements:

$$b(z) = \sum_{k=-r}^{s} a_k z^k,$$

where $a_{-r} a_s \neq 0$ and $r, s \in \mathbb{N}$.

(Then both $\Lambda(b)$ and $b^{-1}(\mathbb{R})$ are symmetric w.r.t. \mathbb{R}.)

Suppose the Jordan curve γ is present in $b^{-1}(\mathbb{R})$ and assume, additionally, that γ admits a polar parametrization:

$$\gamma(t) = \rho(t)e^{it}, \quad t \in [-\pi, \pi].$$
Let $T_n(b)$ be a banded Toeplitz matrix with real elements:

$$b(z) = \sum_{k=-r}^{s} a_k z^k,$$

where $a_{-r}a_s \neq 0$ and $r, s \in \mathbb{N}$. (Then both $\Lambda(b)$ and $b^{-1}(\mathbb{R})$ are symmetric w.r.t. \mathbb{R}.)

Suppose the Jordan curve γ is present in $b^{-1}(\mathbb{R})$ and assume, additionally, that γ admits a polar parametrization:

$$\gamma(t) = \rho(t)e^{it}, \quad t \in [-\pi, \pi].$$

Theorem:

Let $b'(\gamma(t)) \neq 0$ for all $t \in (0, \pi)$. Then $b \circ \gamma$ restricted to $(0, \pi)$ is either strictly increasing or decreasing; the limiting measure μ is supported on the interval $[\alpha, \beta] := b(\gamma([0, \pi]))$ and its density satisfies

$$\frac{d\mu}{dx}(x) = \pm \frac{1}{\pi} \frac{d}{dx}(b \circ \gamma)^{-1}(x),$$

for $x \in (\alpha, \beta)$, where the $+$ sign is used when $b \circ \gamma$ increases on $(0, \pi)$, and the $-$ sign is used otherwise.
Numerical illustration - the Jordan curve without critical points of b

$$b(z) = z^{-3} - z^{-2} + 7z^{-1} + 9z - 2z^2 + 2z^3 - z^4,$$
Numerical illustration - the Jordan curve without critical points of b

$$b(z) = z^{-3} - z^{-2} + 7z^{-1} + 9z - 2z^2 + 2z^3 - z^4,$$
Numerical illustration - the Jordan curve without critical points of b

$$b(z) = z^{-3} - z^{-2} + 7z^{-1} + 9z - 2z^2 + 2z^3 - z^4,$$
Numerical illustration - the Jordan curve without critical points of b

\[b(z) = z^{-3} - z^{-2} + 7z^{-1} + 9z - 2z^2 + 2z^3 - z^4, \]
Numerical illustration - the Jordan curve without critical points of b

$$b(z) = z^{-3} - z^{-2} + 7z^{-1} + 9z - 2z^2 + 2z^3 - z^4,$$
Numerical illustration - the Jordan curve without critical points of b

\[b(z) = z^{-3} - z^{-2} + 7z^{-1} + 9z - 2z^2 + 2z^3 - z^4, \]
The asymptotic eigenvalue distribution

The limiting measure and the Jordan curve with critical points

If $\gamma((0, \pi))$ contains some critical points of b, then the description of μ is slightly more complicated.
The limiting measure and the Jordan curve with critical points

If $\gamma((0, \pi))$ contains some critical points of b, then the description of μ is slightly more complicated.
The limiting measure and the Jordan curve with critical points

If $\gamma((0, \pi))$ contains some critical points of b, then the description of μ is slightly more complicated.

Theorem:
The limiting measure and the Jordan curve with critical points

- If \(\gamma((0, \pi)) \) contains some critical points of \(b \), then the description of \(\mu \) is slightly more complicated.

Theorem:

Suppose that \(b \) and \(\gamma \) are as before and let

\[
\ell \in \mathbb{N}_0 \text{ be the number of critical points of } b \text{ in } \gamma((0, \pi)) \quad \text{and} \quad 0 =: \phi_0 < \phi_1 < \cdots < \phi_{\ell} < \phi_{\ell+1} =: \pi
\]

such that \(b'(\gamma(\phi_j)) = 0 \) for all \(0 \leq j \leq \ell+1 \).

Then \(b \circ \gamma \) restricted to \((\phi_i-1, \phi_i) \) is strictly monotone for all \(1 \leq i \leq \ell+1 \), and the limiting measure \(\mu = \mu_1 + \mu_2 + \cdots + \mu_{\ell+1} \), where \(\mu_i \) is an absolutely continuous measure supported on \([\alpha_i, \beta_i] := b(\gamma([\phi_i-1, \phi_i])) \) whose density is given by

\[
d\mu_i d\nu(x) = \pm \frac{1}{\pi} d\nu(b \circ \gamma) - \frac{1}{\pi} (x)
\]

for all \(x \in (\alpha_i, \beta_i) \) and all \(i \in \{1, 2, \ldots, \ell+1\} \). The + sign is used when \(b \circ \gamma \) increases on \((\alpha_i, \beta_i) \), and the − sign is used otherwise.
The asymptotic eigenvalue distribution

The limiting measure and the Jordan curve with critical points

- If $\gamma((0, \pi))$ contains some critical points of b, then the description of μ is slightly more complicated.

Theorem:

Suppose that b and γ are as before and let $\ell \in \mathbb{N}_0$ be the number of critical points of b in $\gamma((0, \pi))$ and $0 =: \phi_0 < \phi_1 < \cdots < \phi_\ell < \phi_{\ell+1} := \pi$ are such that $b'(\gamma(\phi_j)) = 0$ for all $0 \leq j \leq \ell + 1$.

František Štampach (Stockholm University)
If $\gamma((0, \pi))$ contains some critical points of b, then the description of μ is slightly more complicated.

Theorem:

Suppose that b and γ are as before and let $\ell \in \mathbb{N}_0$ be the number of critical points of b in $\gamma((0, \pi))$ and $0 =: \phi_0 < \phi_1 < \cdots < \phi_\ell < \phi_{\ell+1} := \pi$ are such that $b'(\gamma(\phi_j)) = 0$ for all $0 \leq j \leq \ell + 1$. Then $b \circ \gamma$ restricted to (ϕ_{i-1}, ϕ_i) is strictly monotone for all $1 \leq i \leq \ell + 1$, and the limiting measure $\mu = \mu_1 + \mu_2 + \cdots + \mu_{\ell+1}$, where μ_i is an absolutely continuous measure supported on $[\alpha_i, \beta_i] := b(\gamma([\phi_{i-1}, \phi_i]))$ whose density is given by

$$\frac{d\mu_i}{dx}(x) = \pm \frac{1}{\pi} \frac{d}{dx} (b \circ \gamma)^{-1}(x)$$

for all $x \in (\alpha_i, \beta_i)$ and all $i \in \{1, 2, \ldots, \ell + 1\}$. The $+$ sign is used when $b \circ \gamma$ increases on (α_i, β_i), and the $-$ sign is used otherwise.
Numerical illustration - the Jordan curve with critical points of b

\[b(z) = z^{-3} + z^{-2} + z^{-1} + z + z^2 + z^3 \]
Numerical illustration - the Jordan curve with critical points of b

$$b(z) = z^{-3} + z^{-2} + z^{-1} + z + z^2 + z^3$$
The asymptotic eigenvalue distribution

Numerical illustration - the Jordan curve with critical points of b

$$b(z) = z^{-3} + z^{-2} + z^{-1} + z + z^2 + z^3$$
Numerical illustration - the Jordan curve with critical points of b

$$b(z) = z^{-3} + z^{-2} + z^{-1} + z + z^2 + z^3$$
Numerical illustration - the Jordan curve with critical points of b

$$b(z) = z^{-3} + z^{-2} + z^{-1} + z + z^{2} + z^{3}$$
Numerical illustration - the Jordan curve with critical points of b

$$b(z) = z^{-3} + z^{-2} + z^{-1} + z + z^2 + z^3$$
Numerical illustration - the Jordan curve with critical points of b

\[b(z) = z^{-3} + z^{-2} + z^{-1} + z + z^2 + z^3 \]
Numerical illustration - the Jordan curve with critical points of b

$$b(z) = z^{-3} + z^{-2} + z^{-1} + z + z^2 + z^3$$
Numerical illustration - the Jordan curve with critical points of \(b \)

\[b(z) = z^{-3} + z^{-2} + z^{-1} + z + z^2 + z^3 \]

\[\mu = \mu_1 + \mu_2 + \mu_3 \]
Numerical illustration - the Jordan curve with critical points of b

\[b(z) = z^{-3} + z^{-2} + z^{-1} + z + z^2 + z^3 \]

\[\mu = \mu_1 + \mu_2 + \mu_3 \]
Contents

1. Toeplitz matrices with real spectrum
2. The asymptotic eigenvalue distribution
3. Connections to the Hamburger Moment Problem and Orthogonal Polynomials
Connections to the Hamburger Moment Problem and Orthogonal Polynomials

The limiting measure as a solution of the HMP

- We consider real Laurent polynomial symbols:

\[b(z) = \sum_{k=-r}^{s} a_k z^k, \text{ where } a_{-r}a_s \neq 0 \text{ and } r, s \in \mathbb{N}. \]
The limiting measure as a solution of the HMP

We consider real Laurent polynomial symbols:

\[b(z) = \sum_{k=-r}^{s} a_k z^k, \quad \text{where } a_{-r} a_s \neq 0 \text{ and } r, s \in \mathbb{N}. \]

Proposition:

Let \(b^{-1}(\mathbb{R}) \) contains a Jordan curve. Then the limiting measure \(\mu \) coincides with the unique solution of the determinate HMP with moments

\[h_m := \frac{1}{2\pi} \int_{-\pi}^{\pi} b^m(e^{it}) \, dt, \quad m \in \mathbb{N}_0. \]
The limiting measure as a solution of the HMP

We consider real Laurent polynomial symbols:

\[b(z) = \sum_{k=-r}^{s} a_k z^k, \quad \text{where } a_{-r}a_s \neq 0 \text{ and } r, s \in \mathbb{N}. \]

Proposition:

Let \(b^{-1}(\mathbb{R}) \) contains a Jordan curve. Then the limiting measure \(\mu \) coincides with the unique solution of the determinate HMP with moments

\[h_m := \frac{1}{2\pi} \int_{-\pi}^{\pi} b^m(e^{it}) \, dt, \quad m \in \mathbb{N}_0. \]

Corollary:

If \(b^{-1}(\mathbb{R}) \) contains a Jordan curve, then the moment Hankel matrix \(H_n := (h_{i+j})_{i,j=0}^{n-1} \) is positive-definite for all \(n \in \mathbb{N}_0. \)
The limiting measure as a solution of the HMP

- We consider real Laurent polynomial symbols:

\[b(z) = \sum_{k=-r}^{r} a_k z^k, \quad \text{where } a_{-r} a_s \neq 0 \text{ and } r, s \in \mathbb{N}. \]

Proposition:

Let \(b^{-1}(\mathbb{R}) \) contains a Jordan curve. Then the limiting measure \(\mu \) coincides with the unique solution of the determinate HMP with moments

\[h_m := \frac{1}{2\pi} \int_{-\pi}^{\pi} b^m(e^{it}) \, dt, \quad m \in \mathbb{N}_0. \]

Corollary:

If \(b^{-1}(\mathbb{R}) \) contains a Jordan curve, then the moment Hankel matrix \(H_n := (h_{i+j})_{i,j=0}^{n-1} \) is positive-definite for all \(n \in \mathbb{N}_0 \).

Open problem: The opposite implication: \(H_n > 0, \forall n \in \mathbb{N}_0 \implies \Lambda(b) \subset \mathbb{R}. \)
The limiting measure as a solution of the HMP

- We consider real Laurent polynomial symbols:

\[b(z) = \sum_{k=-r}^{s} a_k z^k, \quad \text{where } a_{-r}a_s \neq 0 \text{ and } r, s \in \mathbb{N}. \]

Proposition:

Let \(b^{-1}(\mathbb{R}) \) contains a Jordan curve. Then the limiting measure \(\mu \) coincides with the unique solution of the determinate HMP with moments

\[h_m := \frac{1}{2\pi} \int_{-\pi}^{\pi} b^m(e^{it}) \, dt, \quad m \in \mathbb{N}_0. \]

Corollary:

If \(b^{-1}(\mathbb{R}) \) contains a Jordan curve, then the moment Hankel matrix \(H_n := (h_{i+j})_{i,j=0}^{n-1} \) is positive-definite for all \(n \in \mathbb{N}_0 \).

Open problem: The opposite implication: \(H_n \succ 0, \forall n \in \mathbb{N}_0 \quad \Rightarrow \quad \Lambda(b) \subset \mathbb{R}. \)

(If a counter-example exists, \(\mathbb{C} \setminus \Lambda(b) \) has to be disconnected.)
The limiting measure as the orthogonality measure of OGPs

- If $b^{-1}(\mathbb{R})$ contains a Jordan curve, then there is a family of OGPs $\{p_n\}_{n=0}^{\infty}$ orthogonal w.r.t. the limiting measure μ.

František Štampach (Stockholm University)
Spectral analysis of Jacobi operators
June 5-9, 2017 16 / 21
The limiting measure as the orthogonality measure of OGPs

- If \(b^{-1}(\mathbb{R}) \) contains a Jordan curve, then there is a family of OGPs \(\{p_n\}_{n=0}^{\infty} \) orthogonal w.r.t. the limiting measure \(\mu \).
- What are the properties of \(p_n \)?
The limiting measure as the orthogonality measure of OGPs

- If $b^{-1}(\mathbb{R})$ contains a Jordan curve, then there is a family of OGPs $\{p_n\}_{n=0}^{\infty}$ orthogonal w.r.t. the limiting measure μ.
- What are the properties of p_n?
- What can be said about the mapping $b \mapsto (\{a_n\}, \{b_n\})$, where

$$p_{n+1}(x) = (x - b_{n+1})p_n(x) - a_n^2 p_{n-1}(x), \quad n \in \mathbb{N}?$$
The limiting measure as the orthogonality measure of OGPs

- If $b^{-1}(\mathbb{R})$ contains a Jordan curve, then there is a family of OGPs $\{p_n\}_{n=0}^{\infty}$ orthogonal w.r.t. the limiting measure μ.
- What are the properties of p_n?
- What can be said about the mapping $b \mapsto (\{a_n\}, \{b_n\})$, where

\[p_{n+1}(x) = (x - b_{n+1})p_n(x) - a_n^2 p_{n-1}(x), \quad n \in \mathbb{N} \]

Proposition:

Let $b^{-1}(\mathbb{R})$ contains a Jordan curve and let no non-real critical point of b is located on this Jordan curve. Then
The limiting measure as the orthogonality measure of OGPs

- If $b^{-1}(\mathbb{R})$ contains a Jordan curve, then there is a family of OGPs $\{p_n\}_{n=0}^{\infty}$ orthogonal w.r.t. the limiting measure μ.
- What are the properties of p_n?
- What can be said about the mapping $b \mapsto (\{a_n\}, \{b_n\})$, where
 \[
 p_{n+1}(x) = (x - b_{n+1})p_n(x) - a_n^2 p_{n-1}(x), \quad n \in \mathbb{N}.
 \]

Proposition:

Let $b^{-1}(\mathbb{R})$ contains a Jordan curve and let no non-real critical point of b is located on this Jordan curve. Then

1. the Jordan curve intersects \mathbb{R} at exactly two points whose b-images are the endpoints of the interval $\Lambda(b) = [\alpha, \beta]$;
The limiting measure as the orthogonality measure of OGPs

- If $b^{-1}(\mathbb{R})$ contains a Jordan curve, then there is a family of OGPs $\{p_n\}_{n=0}^{\infty}$ orthogonal w.r.t. the limiting measure μ.
- What are the properties of p_n?
- What can be said about the mapping $b \mapsto (\{a_n\}, \{b_n\})$, where

$$p_{n+1}(x) = (x - b_{n+1})p_n(x) - a_n^2 p_{n-1}(x), \quad n \in \mathbb{N}?$$

Proposition:

Let $b^{-1}(\mathbb{R})$ contains a Jordan curve and let no non-real critical point of b is located on this Jordan curve. Then

1. the Jordan curve intersects \mathbb{R} at exactly two points whose b-images are the endpoints of the interval $\Lambda(b) = [\alpha, \beta]$;
2. the OGPs $\{p_n\}$ belong to the Blumenthal–Nevai class $M((\beta - \alpha)/2, (\alpha + \beta)/2)$, i.e.,

$$\lim_{n \to \infty} a_n = \frac{\beta - \alpha}{4} \quad \text{and} \quad \lim_{n \to \infty} b_n = \frac{\alpha + \beta}{2}.$$
Example 1/4

Let

\[b(z) = \frac{1}{z^r} (1 + az)^{r+s}, \quad (a > 0, r, s \in \mathbb{N}). \]
Example 1/4

Let

\[b(z) = \frac{1}{z^r} (1 + az)^{r+s}, \quad (a > 0, r, s \in \mathbb{N}). \]

Jordan curve (wlog \(a = 1 \)):

\[\gamma(t) = \frac{\sin \frac{r}{r+s} t}{\sin \frac{s}{r+s} t} e^{it}, \quad t \in [-\pi, \pi]. \]
Example 1/4

Let

\[b(z) = \frac{1}{z^r} (1 + az)^{r+s}, \quad (a > 0, r, s \in \mathbb{N}). \]

Jordan curve (wlog \(a = 1 \)):

\[\gamma(t) = \frac{\sin \frac{r}{r+s} t}{\sin \frac{s}{r+s} t} e^{it}, \quad t \in [-\pi, \pi]. \]

\[b(\gamma(t)) = \frac{\sin^{r+s} t}{\sin^r \left(\frac{r}{r+s} t \right) \sin^s \left(\frac{s}{r+s} t \right)} \in \mathbb{R}, \quad \forall t \in [-\pi, \pi], \]
Example 1/4

Let

\[b(z) = \frac{1}{z^r} (1 + az)^{r+s}, \quad (a > 0, r, s \in \mathbb{N}). \]

Jordan curve (wlog \(a = 1 \)):

\[\gamma(t) = \frac{\sin \frac{r}{r+s} t}{\sin \frac{s}{r+s} t} e^{it}, \quad t \in [-\pi, \pi]. \]

\[b(\gamma(t)) = \frac{\sin r+s t}{\sin r \left(\frac{r}{r+s} t \right) \sin s \left(\frac{s}{r+s} t \right)} \in \mathbb{R}, \quad \forall t \in [-\pi, \pi], \]

\[b'(\gamma(t)) \neq 0 \text{ for all } t \in (0, \pi) \text{ and } b(\gamma(0)) = (r + s)^{r+s} r^{-r} s^{-s} \text{ and } b(\gamma(\pi)) = 0. \text{ Hence} \]
Example 1/4

Let
\[b(z) = \frac{1}{z^r} (1 + az)^{r+s}, \quad (a > 0, r, s \in \mathbb{N}). \]

Jordan curve (wlog \(a = 1 \)):
\[\gamma(t) = \frac{\sin \frac{r}{r+s} t}{\sin \frac{s}{r+s} t} e^{it}, \quad t \in [-\pi, \pi]. \]

\[b(\gamma(t)) = \frac{\sin^{r+s} t}{\sin^r \left(\frac{r}{r+s} t \right) \sin^s \left(\frac{s}{r+s} t \right) } \in \mathbb{R}, \quad \forall t \in [-\pi, \pi], \]
\[b'(\gamma(t)) \neq 0 \text{ for all } t \in (0, \pi) \text{ and } b(\gamma(0)) = (r + s)^{r+s} r^{-r} s^{-s} \text{ and } b(\gamma(\pi)) = 0. \]
Hence
\[\Lambda(b) = \text{supp } \mu = \left[0, \frac{(r + s)^{r+s} r^{-r} s^{-s}}{r^{r} s^{s}} \right] \]
Example 1/4

Let

\[b(z) = \frac{1}{z^r} (1 + az)^{r+s}, \quad (a > 0, r, s \in \mathbb{N}). \]

Jordan curve (wlog \(a = 1 \)):

\[\gamma(t) = \sin \frac{r}{r+s} t e^{it}, \quad t \in [-\pi, \pi]. \]

\[b(\gamma(t)) = \frac{\sin^{r+s} t}{\sin^r \left(\frac{r}{r+s} t \right) \sin^s \left(\frac{s}{r+s} t \right)} \in \mathbb{R}, \quad \forall t \in [-\pi, \pi], \]

\[b'(\gamma(t)) \neq 0 \text{ for all } t \in (0, \pi) \text{ and } b(\gamma(0)) = (r + s)^{r+s} r^{-r} s^{-s} \text{ and } b(\gamma(\pi)) = 0. \]

Hence

\[\Lambda(b) = \text{supp } \mu = \left[0, \frac{(r + s)^{r+s}}{r^r s^s} \right] \supset \text{spec } T_n(b) \quad \forall n \in \mathbb{N}. \]
The limiting measure \(\mu \) is the solution of the moment problem with moments

\[
h_m = \frac{1}{2\pi} \int_0^{2\pi} b^m (e^{i\theta}) \, d\theta = \binom{r + s}{rm}, \quad m \in \mathbb{N}_0.
\]
Example 2/4

- The limiting measure μ is the solution of the moment problem with moments

$$h_m = \frac{1}{2\pi} \int_0^{2\pi} b^m(e^{i\theta}) \, d\theta = \binom{(r + s)m}{rm}, \quad m \in \mathbb{N}_0.$$

- To obtain μ, one has to invert the function

$$b(\gamma(t)) = \frac{\sin^{r+s} t}{\sin^{r} \left(\frac{r}{r+s} t \right) \sin^{s} \left(\frac{s}{r+s} t \right)}, \quad t \in (0, \pi),$$

which cannot be done explicitly in general.
Example 2/4

- The limiting measure μ is the solution of the moment problem with moments
 \[h_m = \frac{1}{2\pi} \int_0^{2\pi} b^m (e^{i\theta}) \, d\theta = \binom{(r + s)m}{rm}, \quad m \in \mathbb{N}_0. \]

- To obtain μ, one has to invert the function
 \[b(\gamma(t)) = \frac{\sin^{r+s} t}{\sin^r \left(\frac{r}{r+s} t \right) \sin^s \left(\frac{s}{r+s} t \right)}, \quad t \in (0, \pi), \]
 which cannot be done explicitly in general.

- But the main result yields that for the distribution function of μ, $F_\mu := \mu ([0, \cdot))$, one has
 \[F_\mu (b(\gamma(t))) = 1 - \frac{t}{\pi}, \quad \text{for } t \in [0, \pi]. \]
The limiting measure μ is the solution of the moment problem with moments

$$h_m = \frac{1}{2\pi} \int_0^{2\pi} b^m(e^{i\theta}) \, d\theta = \binom{(r + s)m}{rm}, \quad m \in \mathbb{N}_0.$$

To obtain μ, one has to invert the function

$$b(\gamma(t)) = \frac{\sin^{r+s} t}{\sin^r \left(\frac{r}{r+s} t \right) \sin^s \left(\frac{s}{r+s} t \right)}, \quad t \in (0, \pi),$$

which cannot be done explicitly in general.

But the main result yields that for the distribution function of μ, $F_\mu := \mu([0, \cdot))$, one has

$$F_\mu(b(\gamma(t))) = 1 - \frac{t}{\pi}, \quad \text{for} \ t \in [0, \pi].$$

Explicit formulas for the Jacobi parameters a_n and b_n are not known in general but we have

$$2 \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = \frac{(r + s)^{r+s}}{2r^r s^s}.$$
Example 3/4

- Special cases that admit more explicit results: \((r, s) = (1, 1), (1, 2), (2, 2)\).
Special cases that admit more explicit results: \((r, s) = (1, 1), (1, 2), (2, 2)\).

The symbol:

\[
b(z) = \frac{1}{z} (1 + az)^3.
\]
Example 3/4

- Special cases that admit more explicit results: \((r, s) = (1, 1), (1, 2), (2, 2)\).
- The symbol:
 \[
 b(z) = \frac{1}{z} (1 + az)^3.
 \]
- Here we put \(a = 4/27\). Then one has
 \[
 \frac{d\mu}{dx}(x) = \frac{\sqrt{3}}{4\pi} \frac{(1 + \sqrt{1-x})^{1/3} - (1 - \sqrt{1-x})^{1/3}}{x^{2/3} \sqrt{1-x}}, \quad x \in (0, 1).
 \]

(This density appeared earlier: Kuijlaars, Van Assche, ...
Example 3/4

- Special cases that admit more explicit results: \((r, s) = (1, 1), (1, 2), (2, 2)\).
- The symbol:
 \[
 b(z) = \frac{1}{z} (1 + az)^3.
 \]
- Here we put \(a = 4/27\). Then one has
 \[
 \frac{d\mu}{dx}(x) = \frac{\sqrt{3}}{4\pi} \left(\frac{1 + \sqrt{1-x}}{x^{2/3}\sqrt{1-x}} \right)^{1/3} - \left(\frac{1 - \sqrt{1-x}}{x^{2/3}\sqrt{1-x}} \right)^{1/3}, \quad x \in (0, 1).
 \]
 (This density appeared earlier: Kuijlaars, Van Assche, ...)
- Jacobi parameters:
 \[
 a_1^2 = 6a^2, \quad a_k^2 = \frac{9(6k - 5)(6k - 1)(3k - 1)(3k + 1)}{4(4k - 3)(4k - 1)^2(4k + 1)} a^2, \quad \text{for } k > 1.
 \]
 and
 \[
 b_1 = 3a, \quad b_k = \frac{3(36k^2 - 54k + 13)}{2(4k - 5)(4k - 1)} a, \quad \text{for } k > 1.
 \]
Example 4/4

- Polynomials p_n can be expressed as a combination of the associated Jacobi polynomials $P_n^{(\alpha,\beta)}(x; c)$ studied by J.Wimp (1987).
Example 4/4

- Polynomials p_n can be expressed as a combination of the associated Jacobi polynomials $P_n^{(\alpha,\beta)}(x; c)$ studied by J.Wimp (1987).
- Recall that the associated Jacobi polynomials $P_n^{(\alpha,\beta)}(x; c)$ constitute a three-parameter family of orthogonal polynomials generated by the same recurrence as the Jacobi polynomials $P_n^{(\alpha,\beta)}(x)$, but every occurrence of n in the coefficients of the recurrence relation defining $P_n^{(\alpha,\beta)}(x)$ is replaced by $n + c$.

$$
2^n p_n(x) = r_n^{(\alpha,\beta)}(x; c) - 4 \cdot \frac{r_{n-1}}{729} r_n^{(\alpha,\beta)}(x+1) - 256 \cdot \frac{729}{4} r_{n-2} r_n^{(\alpha,\beta)}(x+2), \quad n \in \mathbb{N},
$$

where $\alpha = \frac{1}{2}$, $\beta = -\frac{2}{3}$, and $c = -\frac{1}{6}$. This relation and the known properties of the associated Jacobi polynomials allow to derive other formulas for p_n such as: an explicit representation, a generating function, ...
Example 4/4

- Polynomials p_n can be expressed as a combination of the associated Jacobi polynomials $P_n^{(\alpha,\beta)}(x; c)$ studied by J. Wimp (1987).

- Recall that the associated Jacobi polynomials $P_n^{(\alpha,\beta)}(x; c)$ constitute a three-parameter family of orthogonal polynomials generated by the same recurrence as the Jacobi polynomials $P_n^{(\alpha,\beta)}(x)$, but every occurrence of n in the coefficients of the recurrence relation defining $P_n^{(\alpha,\beta)}(x)$ is replaced by $n + c$.

- Then, if we denote
 \[
 r_n^{(\alpha,\beta)}(x; c) := \frac{2^n (c + \alpha + \beta + 1)n(c + 1)n}{(2c + \alpha + \beta + 1)2^n} P_n^{(\alpha,\beta)}(2x - 1; c), \quad n \in \mathbb{N}_0,
 \]
Example 4/4

- Polynomials p_n can be expressed as a combination of the associated Jacobi polynomials $P_n^{(\alpha,\beta)}(x; c)$ studied by J.Wimp (1987).

- Recall that the associated Jacobi polynomials $P_n^{(\alpha,\beta)}(x; c)$ constitute a three-parameter family of orthogonal polynomials generated by the same recurrence as the Jacobi polynomials $P_n^{(\alpha,\beta)}(x)$, but every occurrence of n in the coefficients of the recurrence relation defining $P_n^{(\alpha,\beta)}(x)$ is replaced by $n + c$.

- Then, if we denote

$$r_n^{(\alpha,\beta)}(x; c) := \frac{2^n (c + \alpha + \beta + 1) n (c + 1) n}{(2c + \alpha + \beta + 1) 2n} P_n^{(\alpha,\beta)}(2x - 1; c), \quad n \in \mathbb{N}_0,$$

it holds

$$2^n p_n(x) = r_n^{(\alpha,\beta)}(x; c) - \frac{4}{27} r_{n-1}^{(\alpha,\beta)}(x; c + 1) - \frac{256}{729} r_{n-2}^{(\alpha,\beta)}(x; c + 2), \quad n \in \mathbb{N},$$

where $\alpha = 1/2$, $\beta = -2/3$, and $c = -1/6$.
Example 4/4

- Polynomials p_n can be expressed as a combination of the associated Jacobi polynomials $P_n^{(\alpha,\beta)}(x; c)$ studied by J.Wimp (1987).

- Recall that the associated Jacobi polynomials $P_n^{(\alpha,\beta)}(x; c)$ constitute a three-parameter family of orthogonal polynomials generated by the same recurrence as the Jacobi polynomials $P_n^{(\alpha,\beta)}(x)$, but every occurrence of n in the coefficients of the recurrence relation defining $P_n^{(\alpha,\beta)}(x)$ is replaced by $n + c$.

- Then, if we denote
 \[
 r_n^{(\alpha,\beta)}(x; c) := \frac{2^n(c + \alpha + \beta + 1)n(c + 1)n}{(2c + \alpha + \beta + 1)2^n} P_n^{(\alpha,\beta)}(2x - 1; c), \quad n \in \mathbb{N}_0,
 \]
 it holds
 \[
 2^n p_n(x) = r_n^{(\alpha,\beta)}(x; c) - \frac{4}{27} r_{n-1}^{(\alpha,\beta)}(x; c + 1) - \frac{256}{729} r_{n-2}^{(\alpha,\beta)}(x; c + 2), \quad n \in \mathbb{N},
 \]
 where $\alpha = 1/2$, $\beta = -2/3$, and $c = -1/6$.

- This relation and the known properties of the associated Jacobi polynomials allow to derive other formulas for p_n such as: an explicit representation, a generating function, ...
Thank you!