How Pusheen uses computer to do mathematics

František Štampach

STIGMA, Kruh u Jilemnice, Czech Republic

May 21, 2015
1089 and 2178, the magic numbers!
Such fundamental objects like *integers* are still a field of significant interest particularly for Number theorists or Computational mathematicians,

\[\mathbb{N} = \{1, 2, 3, \ldots \}. \]
Such fundamental objects like *integers* are still a field of significant interest particularly for Number theorists or Computational mathematicians,

\[\mathbb{N} = \{1, 2, 3, \ldots \}. \]

Question: Is there an integer \(n \) such that if it is written in the reverse order (in decimal base), the resulting number is a multiple of \(n \)?
Reverse multiples

Such fundamental objects like *integers* are still a field of significant interest particularly for Number theorists or Computational mathematicians,

\[\mathbb{N} = \{1, 2, 3, \ldots \} \].

Question: Is there an integer \(n \) such that if it is written in the reverse order (in decimal base), the resulting number is a multiple of \(n \)?

A while for hard-thinking...
Such fundamental objects like integers are still a field of significant interest particularly for Number theorists or Computational mathematicians,

\[\mathbb{N} = \{1, 2, 3, \ldots \} \].

Question: Is there an integer \(n \) such that if it is written in the reverse order (in decimal base), the resulting number is a multiple of \(n \)?

A while for hard-thinking...

Got it! For example:

if \(n = 3 \), then \(3 = 1 \times 3 \),
Such fundamental objects like integers are still a field of significant interest particularly for Number theorists or Computational mathematicians,

\[\mathbb{N} = \{1, 2, 3, \ldots \}. \]

Question: Is there an integer \(n \) such that if it is written in the reverse order (in decimal base), the resulting number is a multiple of \(n \)?

A while for hard-thinking...

Got it! For example:

if \(n = 3 \), then \(3 = 1 \times 3 \),

or

if \(n = 757 \), then \(757 = 1 \times 757 \).
Reverse multiples

Such fundamental objects like integers are still a field of significant interest particularly for Number theorists or Computational mathematicians,

\[\mathbb{N} = \{1, 2, 3, \ldots \} \]

Question: Is there an integer \(n \) such that if it is written in the reverse order (in decimal base), the resulting number is a multiple of \(n \)?

A while for hard-thinking...

Got it! For example:

if \(n = 3 \), then \(3 = 1 \times 3 \),

or

if \(n = 757 \), then \(757 = 1 \times 757 \).

We observed that if \(n \) is a palindromic number then

\[\text{rev}_{10}(n) = 1 \times n \]

where \(\text{rev}_{10}(n) \) denotes the reverse order number \(n \) in the decimal base, i.e.,

if \(n = (\alpha_N \ldots \alpha_1\alpha_0)_{10} \), then \(\text{rev}_{10}(n) = (\alpha_0\alpha_1 \ldots \alpha_N)_{10} \).
Palindromic numbers

- Palindromic numbers represent another field of interest within the realm of \mathbb{N}.

- People are interested particularly in:

 Palindromic primes:
 - 2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, ...

 "It is not known if there are infinitely many of them."

 Palindromic squares:
 - 1, 4, 9, 121, 484, 676, 10201, 12321, 14641, 40804, 44944, 69696, 94249, ...

 Palindromic cubes and higher powers...

 Conjecture (G. J. Simons): "There is no palindrome of the form n^ℓ for $\ell > 4$.

 Conjecture (N. J. A. Sloane?): "If k^4 is a palindrome, then $k = 100...001$."
Palindromic numbers

- Palindromic numbers represent another field of interest within the realm of \mathbb{N}.
- Several first (decimal) palindromic numbers are:

$$1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 101, 111, 121, 131, \ldots$$
Palindromic numbers

- Palindromic numbers represent another field of interest within the realm of \mathbb{N}.
- Several first (decimal) palindromic numbers are:

 $1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 101, 111, 121, 131, \ldots$

People are interested particularly in:

- *Palindromic primes:*

 $2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, \ldots$
Palindromic numbers

- Palindromic numbers represent another field of interest within the realm of \(\mathbb{N} \).
- Several first (decimal) palindromic numbers are:

 \[
 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 101, 111, 121, 131, \ldots
 \]

People are interested particularly in:

- **Palindromic primes:**

 \[
 2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, \ldots
 \]

 “It is not known if there are infinitely many of them.”
Palindromic numbers

- Palindromic numbers represent another field of interest within the realm of \mathbb{N}.
- Several first (decimal) palindromic numbers are:

 $1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 101, 111, 121, 131, \ldots$

People are interested particularly in:

- *Palindromic primes*:

 $2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, \ldots$

 “It is not known if there are infinitely many of them.”

- *Palindromic squares*:

 $1, 4, 9, 121, 484, 676, 10201, 12321, 14641, 40804, 44944, 69696, 94249, \ldots$
Palindromic numbers

- Palindromic numbers represent another field of interest within the realm of \mathbb{N}.
- Several first (decimal) palindromic numbers are:

 $1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 101, 111, 121, 131, \ldots$

People are interested particularly in:

- **Palindromic primes:**

 $2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, \ldots$

 “It is not known if there are infinitely many of them.”

- **Palindromic squares:**

 $1, 4, 9, 121, 484, 676, 10201, 12321, 14641, 40804, 44944, 69696, 94249, \ldots$

- **Palindromic cubes and higher powers...**
Palindromic numbers

- Palindromic numbers represent another field of interest within the realm of \mathbb{N}.
- Several first (decimal) palindromic numbers are:

 $$1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 101, 111, 121, 131, \ldots$$

People are interested particularly in:

- **Palindromic primes:**

 $$2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, \ldots$$

 “It is not known if there are infinitely many of them.”

- **Palindromic squares:**

 $$1, 4, 9, 121, 484, 676, 10201, 12321, 14641, 40804, 44944, 69696, 94249, \ldots$$

- **Palindromic cubes and higher powers...**
 Conjecture (G. J. Simons): “There is no palindrome of the form n^ℓ for $\ell > 4$.”
Palindromic numbers

- Palindromic numbers represent another field of interest within the realm of \(\mathbb{N} \).
- Several first (decimal) palindromic numbers are:

\[1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 101, 111, 121, 131, \ldots \]

People are interested particularly in:

- **Palindromic primes:**

\[2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, \ldots \]

“It is not known if there are infinitely many of them.”

- **Palindromic squares:**

\[1, 4, 9, 121, 484, 676, 10201, 12321, 14641, 40804, 44944, 69696, 94249, \ldots \]

- **Palindromic cubes and higher powers...**
 - Conjecture (G. J. Simons): “There is no palindrome of the form \(n^\ell \) for \(\ell > 4 \).”
 - Conjecture (N. J. A. Sloane?): “If \(k^4 \) is a palindrome, then \(k = 100 \ldots 001 \).”
Let $g \geq 2$ and $1 \leq k < g$. A number n is called a (g, k)-reverse multiple iff

$$\text{rev}_g(n) = k \times n.$$
Back to reverse multiples

Formal definition

Let $g \geq 2$ and $1 \leq k < g$. A number n is called a (g, k)-reverse multiple iff

$$\text{rev}_g(n) = k \times n.$$

- We have already observed the following characterization of $(10, 1)$-reverse multiples.
Formal definition

Let $g \geq 2$ and $1 \leq k < g$. A number n is called a (g, k)-reverse multiple iff

$$\text{rev}_g(n) = k \times n.$$

We have already observed the following characterization of $(10, 1)$-reverse multiples.

Theorem

An integer is $(10, 1)$-reverse multiple iff it is a palindromic number.
Back to reverse multiples

Formal definition
Let \(g \geq 2 \) and \(1 \leq k < g \). A number \(n \) is called a \((g, k)\)-reverse multiple iff

\[
\text{rev}_g(n) = k \times n.
\]

- We have already observed the following characterization of \((10, 1)\)-reverse multiples.

Theorem
An integer is \((10, 1)\)-reverse multiple iff it is a palindromic number.

- But what if the quotient \(k \neq 1 \)? Does any such number exists?
Formal definition

Let $g \geq 2$ and $1 \leq k < g$. A number n is called a (g, k)-reverse multiple iff

$$\text{rev}_g(n) = k \times n.$$

- We have already observed the following characterization of $(10, 1)$-reverse multiples.

Theorem

An integer is $(10, 1)$-reverse multiple iff it is a palindromic number.

- But what if the quotient $k \neq 1$? Does any such number exists?
- A while for hard-thinking ...
Back to reverse multiples

Formal definition
Let $g \geq 2$ and $1 \leq k < g$. A number n is called a (g, k)-reverse multiple iff

$$\text{rev}_g(n) = k \times n.$$

- We have already observed the following characterization of $(10, 1)$-reverse multiples.

Theorem
An integer is $(10, 1)$-reverse multiple iff it is a palindromic number.

- But what if the quotient $k \neq 1$? Does any such number exists?
- A while for hard-thinking ...
- ... well, we probably have nothing ...
Formal definition

Let \(g \geq 2 \) and \(1 \leq k < g \). A number \(n \) is called a \((g, k)\)-reverse multiple iff

\[
\text{rev}_g(n) = k \times n.
\]

- We have already observed the following characterization of \((10, 1)\)-reverse multiples.

Theorem

An integer is \((10, 1)\)-reverse multiple iff it is a palindromic number.

- But what if the quotient \(k \neq 1 \)? Does any such number exists?
- A while for hard-thinking ...
- ... well, we probably have nothing ...
- ... so, we write a program!
Between numbers 1 – 999 we find no \((10, k)\)-reverse multiples (with \(k > 1\)).
Between numbers 1 – 999 we find no \((10, k)\)-reverse multiples (with \(k > 1\)).

Between 4-digit numbers we have two solutions:
Between numbers 1 – 999 we find no \((10, k)\)-reverse multiples (with \(k > 1\)).

Between 4-digit numbers we have **two** solutions:

\[
9801 = 9 \times 1089 \quad \text{and} \quad 8712 = 4 \times 2178.
\]
Between numbers 1 – 999 we find no (10, k)-reverse multiples (with \(k > 1 \)).

Between 4-digit numbers we have two solutions:

\[9801 = 9 \times 1089 \quad \text{and} \quad 8712 = 4 \times 2178. \]

For \(10^4 \leq n < 10^8 \), we find:
Between numbers 1 – 999 we find no \((10, k) \)-reverse multiples (with \(k > 1 \)).

Between 4-digit numbers we have two solutions:

\[
9801 = 9 \times 1089 \quad \text{and} \quad 8712 = 4 \times 2178.
\]

For \(10^4 \leq n < 10^8 \), we find:

\[
\begin{align*}
98901 &= 9 \times 10989 \\
989901 &= 9 \times 109989 \\
9899901 &= 9 \times 1099989 \\
98999901 &= 9 \times 10999989 \\
98019801 &= 9 \times 10891089
\end{align*}
\]
Between numbers 1 – 999 we find no (10, k)-reverse multiples (with k > 1).

Between 4-digit numbers we have two solutions:

\[9801 = 9 \times 1089 \quad \text{and} \quad 8712 = 4 \times 2178. \]

For \(10^4 \leq n < 10^8\), we find:

\[
\begin{align*}
98901 &= 9 \times 10989 & 87912 &= 4 \times 21978 \\
989901 &= 9 \times 109989 & 879912 &= 4 \times 219978 \\
9899901 &= 9 \times 1099989 & 8799912 &= 4 \times 2199978 \\
98999901 &= 9 \times 10999989 & 87999912 &= 4 \times 21999978 \\
98019801 &= 9 \times 10891089 & 87128712 &= 4 \times 21782178
\end{align*}
\]
Between numbers 1 – 999 we find no $(10, k)$-reverse multiples (with $k > 1$).

Between 4-digit numbers we have two solutions:

$$9801 = 9 \times 1089 \quad \text{and} \quad 8712 = 4 \times 2178.$$

For $10^4 \leq n < 10^8$, we find:

$$
egin{align*}
98901 &= 9 \times 10989 & 87912 &= 4 \times 21978 \\
989901 &= 9 \times 109989 & 879912 &= 4 \times 219978 \\
9899901 &= 9 \times 1099989 & 8799912 &= 4 \times 2199978 \\
98999901 &= 9 \times 10999989 & 87999912 &= 4 \times 21999978 \\
98019801 &= 9 \times 10891089 & 87128712 &= 4 \times 21782178
\end{align*}
$$

Can you see some pattern?
Between numbers $1 \leq 999$ we find no $(10, k)$-reverse multiples (with $k > 1$).
Between 4-digit numbers we have two solutions:

$$9801 = 9 \times 1089 \quad \text{and} \quad 8712 = 4 \times 2178.$$

For $10^4 \leq n < 10^8$, we find:

$$
egin{align*}
98901 & = 9 \times 10989 & 87912 & = 4 \times 21978 \\
989901 & = 9 \times 109989 & 879912 & = 4 \times 219978 \\
9899901 & = 9 \times 1099989 & 8799912 & = 4 \times 2199978 \\
98999901 & = 9 \times 10999989 & 87999912 & = 4 \times 21999978 \\
98019801 & = 9 \times 10891089 & 87128712 & = 4 \times 21782178
\end{align*}
$$

Can you see some pattern?
There is something, indeed...
First, we observe that the quotient k is either 4 or 9 (or 1).
First, we observe that the quotient k is either 4 or 9 (or 1).
An this is true, indeed...
First, we observe that the quotient k is either 4 or 9 (or 1).

An this is true, indeed...

Theorem [A. L. Young FQ92]

If n is a $(10, k)$-reverse multiple, then k is 1, 4, or 9.
First, we observe that the quotient k is either 4 or 9 (or 1).

An this is true, indeed...

Theorem [A. L. Young FQ92]

If n is a $(10, k)$-reverse multiple, then k is 1, 4, or 9.

Further, numbers 1089 and 2178 seems to play a special role.
First, we observe that the quotient k is either 4 or 9 (or 1).
An this is true, indeed...

Theorem [A. L. Young FQ92]

If n is a $(10, k)$-reverse multiple, then k is 1, 4, or 9.

Further, numbers 1089 and 2178 seems to play a special role.
It seems that if we insert some 9s between, for example, 10 and 89, then we get a $(10, 9)$-reverse multiple. And similarly for 2178.
First, we observe that the quotient k is either 4 or 9 (or 1).

And this is true, indeed...

Theorem [A. L. Young FQ92]

If n is a $(10, k)$-reverse multiple, then k is 1, 4, or 9.

Further, numbers 1089 and 2178 seems to play a special role.

It seems that if we insert some 9s between, for example, 10 and 89, then we get a $(10, 9)$-reverse multiple. And similarly for 2178.

And this is true, indeed.
First, we observe that the quotient \(k\) is either 4 or 9 (or 1).

An this is true, indeed...

Theorem [A. L. Young FQ92]

If \(n\) is a \((10, k)\)-reverse multiple, then \(k\) is 1, 4, or 9.

Further, numbers 1089 and 2178 seems to play a special role.

It seems that if we insert some 9s between, for example, 10 and 89, then we get a \((10, 9)\)-reverse multiple. And similarly for 2178.

And this is true, indeed.

By this way, however, we do not get all of them.
First, we observe that the quotient k is either 4 or 9 (or 1).

An this is true, indeed...

Theorem [A. L. Young FQ92]

If n is a $(10, k)$-reverse multiple, then k is 1, 4, or 9.

Further, numbers 1089 and 2178 seems to play a special role.

It seems that if we insert some 9s between, for example, 10 and 89, then we get a $(10, 9)$-reverse multiple. And similarly for 2178.

And this is true, indeed.

By this way, however, we do not get all of them.

Let's take a look to another numbers...
9-digit:
 219999978
 217802178

10-digit:
 2199999978
 2178002178
 2197821978

11-digit:
 21999999978
 21780002178

12-digit:
 219999999978
 217800002178
 21997800219978
 2199997821999978
 217821782178
9-digit:
219999978
217802178

10-digit:
2199999978
2178002178
2197821978

11-digit:
21999999978
21780002178
21978021978

12-digit:
219999999978
217800002178
21997800219978
2199997821999978
217821782178

Are you still able to follow the pattern?
9-digit:
- 219999978
- 217802178

10-digit:
- 2199999978
- 2178002178
- 2197821978

11-digit:
- 21999999978
- 21780002178
- 21997800219978
- 2199997821999978
- 217821782178

12-digit:
- 219999999978
- 217800002178
- 219997800219978
- 2199997821999978
- 217821782178

Are you still able to follow the pattern?
- 9-digit:
 219999978
 217802178

- 10-digit:
 2199999978
 2178002178
 2197821978

- 11-digit:
 21999999978
 21780002178
 2199780021978
 2199997821999978
 217821782178

- 12-digit:
 219999999978
 217800002178
 2199997821999978
 217821782178

Are you still able to follow the pattern?
To understand the pattern of general (10, 4)-reverse multiple, it is better to start from the middle:
To understand the pattern of general \((10, 4)\)-reverse multiple, it is better to start from the middle:

Case 1:

\[
\underbrace{0 \ldots 0}_{m_1}
\]
To understand the pattern of general \((10, 4)\)-reverse multiple, it is better to start from the middle:

Case 1:

\[
\underbrace{219 \ldots 978}_k \quad \underbrace{0219 \ldots 978}_m
\]
To understand the pattern of general \((10, 4)\)-reverse multiple, it is better to start from the middle:

Case 1:

\[
\cdots 0 \ldots 0^{219} \ldots 9^{780} \ldots 0^{219} \ldots 9^{780} \ldots 0 \cdots
\]

\[m_2 \quad k_1 \quad m_1 \quad k_1 \quad m_2\]
To understand the pattern of general \((10, 4)\)-reverse multiple, it is better to start from the middle:

Case 1:

\[
\cdots 0 \ldots 0219 \ldots 9780 \ldots 0219 \ldots 9780 \ldots 0 \cdots
\]

\[
\underbrace{m_2}_{m_i} \quad \underbrace{k_1}_{m_1} \quad \underbrace{m_2}_{m_i}
\]

\[
\cdots 0 \ldots 0 \cdots
\]

\[
\underbrace{m_i}_{m_i}
\]
To understand the pattern of general \((10, 4)\)-reverse multiple, it is better to start from the middle:

Case 1:

\[
\cdots 0 \ldots 0219 \ldots 9780 \ldots 0219 \ldots 9780 \ldots 0 \cdots
\]

\[
\begin{array}{c}
\underbrace{219 \ldots 9780 \ldots 0 \cdots}_{k_i m_i} \\
\underbrace{m_2 k_1 m_1 k_1 m_2}_{m_2 k_1 m_1 k_1 m_2}
\end{array}
\]

\[
\begin{array}{c}
\underbrace{\cdots 0 \ldots 0219 \ldots 978}_{m_i k_i}
\end{array}
\]
The final result

To understand the pattern of general \((10, 4)\)-reverse multiple, it is better to start from the middle:

Case 1:

\[
\cdots 0 \cdots 0219 \cdots 9780 \cdots 0219 \cdots 9780 \cdots 0 \cdots
\]

\[
\underbrace{m_2}_{m_1} \underbrace{k_1}_{m_1} \underbrace{m_1}_{k_1} \underbrace{k_1}_{m_2}
\]

\[
219 \cdots 9780 \cdots 0 \cdots
\]

\[
\underbrace{k_i}_{m_i} \underbrace{m_i}_{k_i}
\]

Case 2:

\[
219 \cdots 978
\]

\[
\underbrace{k_1}_{m_i}
\]
To understand the pattern of general \((10, 4)\)-reverse multiple, it is better to start from the middle:

Case 1:

\[
\cdots 0 \cdots 0219 \cdots 9780 \cdots 0219 \cdots 9780 \cdots 0 \cdots
\]

\[
\underbrace{219 \cdots 9780 \cdots 0 \cdots}_{k_i} \quad \underbrace{\cdots 0 \cdots 0219 \cdots 9780 \cdots 0 \cdots}_{m_i}
\]

Case 2:

\[
0 \cdots 0219 \cdots 9780 \cdots 0
\]

\[
\underbrace{0 \cdots 0219 \cdots 9780 \cdots 0 \cdots}_{m_1} \quad \underbrace{\cdots 0 \cdots 0219 \cdots 9780 \cdots 0 \cdots}_{k_1}
\]
To understand the pattern of general \((10, 4)\)-reverse multiple, it is better to start from the middle:

Case 1:

\[
\begin{array}{cccccccc}
\cdots & 0 & \cdots & 0 & 219 & \cdots & 978 & 0 & \cdots & 219 & \cdots & 978 & 0 & \cdots \\
m_2 & & k_1 & & m_1 & & k_1 & & m_2 & & & & & \\
& 219 & \cdots & 978 & 0 & \cdots & & & & & & \cdots & \cdots & 0 & \cdots & 219 & \cdots & 978 \\
k_i & & m_i & & & & & & & & k_i & & m_i & & & \\
\end{array}
\]

Case 2:

\[
\begin{array}{cccccccc}
\cdots & 219 & \cdots & 978 & 0 & \cdots & 0 & 219 & \cdots & 978 & 0 & \cdots & 219 & \cdots & 978 & \cdots \\
k_2 & & m_1 & & k_1 & & m_1 & & k_2 & & & & & & & \\
& 219 & \cdots & 978 & 0 & \cdots & & & & & & \cdots & \cdots & 0 & \cdots & 219 & \cdots & 978 & \cdots \\
k_i & & m_i & & & & & & & & k_i & & m_i & & & & \\
\end{array}
\]
The final result

To understand the pattern of general (10, 4)-reverse multiple, it is better to start from the middle:

Case 1:

\[
\cdots \underbrace{0\ldots0}_{m_2} \underbrace{219\ldots978}_{k_1} \underbrace{0\ldots0}_{m_1} \underbrace{219\ldots978}_{k_1} \underbrace{0\ldots0}_{m_2} \cdots
\]

\[
\underbrace{219\ldots978}_{k_i} \underbrace{0\ldots0}_{m_i} \cdots
\]

Case 2:

\[
\cdots \underbrace{219\ldots978}_{k_2} \underbrace{0\ldots0}_{m_1} \underbrace{219\ldots978}_{k_1} \underbrace{0\ldots0}_{m_1} \underbrace{219\ldots978}_{k_2} \cdots
\]

\[
\underbrace{0\ldots0}_{m_{i-1}} \cdots
\]

\[
\underbrace{0\ldots0}_{m_{i-1}} \cdots
\]
To understand the pattern of general \((10, 4)\)-reverse multiple, it is better to start from the middle:

Case 1:

\[
\begin{align*}
\cdots & 0 \cdots 219 \cdots 9780 \cdots 0219 \cdots 9780 \cdots 0 \cdots \\
& \underbrace{m_2}_{m_i} \underbrace{k_1}_{k_i} \underbrace{m_1}_{m_{i-1}} \underbrace{k_1}_{k_i} \underbrace{m_2}_{m_i} \\
219 \cdots 9780 \cdots 0 \cdots & \underbrace{m_i}_{m_i} \underbrace{k_i}_{k_i}
\end{align*}
\]

Case 2:

\[
\begin{align*}
\cdots & 219 \cdots 9780 \cdots 0219 \cdots 9780 \cdots 0219 \cdots 978 \cdots \\
& \underbrace{k_2}_{m_i} \underbrace{m_1}_{k_i} \underbrace{k_1}_{m_{i-1}} \underbrace{m_1}_{k_i} \underbrace{k_2}_{m_i} \\
219 \cdots 9780 \cdots 0 \cdots & \underbrace{m_{i-1}}_{m_{i-1}} \underbrace{k_i}_{k_i}
\end{align*}
\]

...and similarly for the case of \((10, 9)\)-reverse multiples with numbers 1089.
The final result

To understand the pattern of general \((10, 4)\)-reverse multiple, it is better to start from the middle:

Case 1:

\[
\begin{align*}
\cdots & 0 \cdots 0219 \cdots 9780 \cdots 0219 \cdots 9780 \cdots 0 \cdots \\
 & m_2 \quad k_1 \quad m_1 \quad k_1 \quad m_2
\end{align*}
\]

\[
\begin{align*}
& 219 \cdots 9780 \cdots 0 \cdots \\
 & k_i \quad m_i
\end{align*}
\]

\[
\begin{align*}
& \cdots 0 \cdots 0219 \cdots 978 \\
 & m_i \quad k_i
\end{align*}
\]

Case 2:

\[
\begin{align*}
\cdots & 219 \cdots 9780 \cdots 0219 \cdots 9780 \cdots 0219 \cdots 978 \cdots \\
 & k_2 \quad m_1 \quad k_1 \quad m_1 \quad k_2
\end{align*}
\]

\[
\begin{align*}
& 219 \cdots 9780 \cdots 0 \cdots \\
 & k_i \quad m_{i-1}
\end{align*}
\]

\[
\begin{align*}
& \cdots 0 \cdots 0219 \cdots 978 \\
 & m_{i-1} \quad k_i
\end{align*}
\]

...and similarly for the case of \((10, 9)\)-reverse multiples with numbers 1089.
Theorem

An integer n is a $(10, k)$ multiple if and only if one of the following condition holds:

1. $k = 1$ and n is palindromic.
2. $k = 4$ and n has the form as indicated in the Case 1 or Case 2.
3. $k = 9$ and n has the form as indicated in the Case 1 or Case 2 where 2178 is replace by 1089.
Theorem

An integer \(n \) is a \((10, k)\) multiple if and only if one of the following condition holds:

1. \(k = 1 \) and \(n \) is palindromic.
An integer n is a $(10, k)$ multiple if and only if one of the following condition holds:

1. $k = 1$ and n is palindromic.
2. $k = 4$ and n has the form as indicated in the Case 1 or Case 2.
Theorem

An integer n is a $(10, k)$ multiple if and only if one of the following condition holds:

1. $k = 1$ and n is palindromic.
2. $k = 4$ and n has the form as indicated in the Case 1 or Case 2.
3. $k = 9$ and n has the form as indicated in the Case 1 or Case 2 where 2178 is replace by 1089.

References:

Theorem

An integer n is a $(10, k)$ multiple if and only if one of the following condition holds:

1. $k = 1$ and n is palindromic.
2. $k = 4$ and n has the form as indicated in the Case 1 or Case 2.
3. $k = 9$ and n has the form as indicated in the Case 1 or Case 2 where 2178 is replace by 1089.

References:

What is so special on numbers 1089 or 2178?
What is so special on numbers 1089 or 2178?
Well...they are magic!

Definition
A number is called magic if it is used by magicians to do their tricks.

1089 is magic, indeed!
Proof:
Write down a non-palindromic 3-digit number ABC.
Reverse the order of digits CBA.
Subtract the lower one from the bigger one getting DEF.
Reverse the order once more, FED.
Finally, compute DEF + FED = ...
and now you known why 1089 is magic!
A magic trick

- What is so special on numbers 1089 or 2178?
- Well...they are magic!
- Come on...we do serious math here!
A magic trick

- What is so special on numbers 1089 or 2178?
- Well...they are magic!
- Come on...we do serious math here!
- OK...

Definition

A number is called *magic* if it is used by magicians to do their tricks.
A magic trick

- What is so special on numbers 1089 or 2178?
- Well...they are magic!
- Come on...we do serious math here!
- OK...

Definition

A number is called *magic* if it is used by magicians to do their tricks.

1089 is magic, indeed! **Proof:**

Write down a non-palindromic 3-digit number ABC.
Reverse the order of digits CBA.
Subtract the lower one from the bigger one getting DEF.
Reverse the order once more, FED.
Finally, compute $DEF + FED = ...$ and now you known why 1089 is magic!
What is so special on numbers 1089 or 2178?
Well...they are magic!
Come on...we do serious math here!
OK...

Definition

A number is called *magic* if it is used by magicians to do their tricks.

1089 is magic, indeed! **Proof:**

- Write down a non-palindromic 3-digit number *ABC*.
What is so special on numbers 1089 or 2178?
- Well...they are magic!
- Come on...we do serious math here!
- OK...

Definition

A number is called *magic* if it is used by magicians to do their tricks.

1089 is magic, indeed! **Proof:**

- Write down a non-palindromic 3-digit number ABC.
- Reverse the order of digits CBA.
A magic trick

- What is so special on numbers 1089 or 2178?
- Well...they are magic!
- Come on...we do serious math here!
- OK...

Definition

A number is called *magic* if it is used by magicians to do their tricks.

1089 is magic, indeed! **Proof:**

- Write down a non-palindromic 3-digit number *ABC*.
- Reverse the order of digits *CBA*.
- Subtract the lower one from the bigger one getting *DEF*.
A magic trick

What is so special on numbers 1089 or 2178?
Well...they are magic!
Come on...we do serious math here!
OK...

Definition

A number is called *magic* if it is used by magicians to do their tricks.

1089 is magic, indeed! **Proof:**

- Write down a non-palindromic 3-digit number *ABC*.
- Reverse the order of digits *CBA*.
- Subtract the lower one from the bigger one getting *DEF*.
- Reverse the order once more, *FED*.
A magic trick

- What is so special on numbers 1089 or 2178?
- Well...they are magic!
- Come on...we do serious math here!
- OK...

Definition

A number is called *magic* if it is used by magicians to do their tricks.

1089 is magic, indeed! **Proof:**

- Write down a non-palindromic 3-digit number ABC.
- Reverse the order of digits CBA.
- Subtract the lower one from the bigger one getting DEF.
- Reverse the order once more, FED.
- Finally, compute $DEF + FED = \ldots$
What is so special on numbers 1089 or 2178?
Well...they are magic!
Come on...we do serious math here!
OK...

Definition

A number is called *magic* if it is used by magicians to do their tricks.

1089 is magic, indeed! **Proof:**

- Write down a non-palindromic 3-digit number ABC.
- Reverse the order of digits CBA.
- Subtract the lower one from the bigger one getting DEF.
- Reverse the order once more, FED.
- Finally, compute $DEF + FED = \ldots$ and now you known why 1089 is magic!
1089 and 2178, the magic numbers!

CoCon 2015
There are still a huge number of open questions concerning integers.
There are still a huge number of open questions concerning integers. For instance, integer solutions of various Diophantine equation...
A factorial decomposed into factorials

- There are still a huge number of open questions concerning integers.
- For instance, integer solutions of various Diophantine equation...
- Consider the following problem: Is there any nontrivial solution of the equation

\[n! = m! \cdot k! \]

where \(n, m, k \in \mathbb{N} \)? If so, can you describe the set of all solutions?
There are still a huge number of open questions concerning integers.

For instance, integer solutions of various Diophantine equation...

Consider the following problem: Is there any nontrivial solution of the equation

\[n! = m! \cdot k! \]

where \(n, m, k \in \mathbb{N} \)? If so, can you describe the set of all solutions?

A while for hard-thinking...
There are still a huge number of open questions concerning integers.

For instance, integer solutions of various Diophantine equation...

Consider the following problem: Is there any nontrivial solution of the equation

\[n! = m! \cdot k! \]

where \(n, m, k \in \mathbb{N} \)? If so, can you describe the set of all solutions?

A while for hard-thinking...

One thing can be done:

If \(n = m! \), for some \(m \in \mathbb{N} \), then

\[n! = n \cdot (n - 1)! = m! \cdot (n - 1)! \]
There are still a huge number of open questions concerning integers. For instance, integer solutions of various Diophantine equations...

Consider the following problem: Is there any nontrivial solution of the equation

$$n! = m! \cdot k!$$

where $n, m, k \in \mathbb{N}$? If so, can you describe the set of all solutions?

A while for hard-thinking...

One thing can be done:

if $n = m!$, for some $m \in \mathbb{N}$, then

$$n! = n \cdot (n-1)! = m! \cdot (n-1)!$$

For example: since $120 = 5!$, one has

$$120! = 5! \cdot 119!$$
There are still a huge number of open questions concerning integers. For instance, integer solutions of various Diophantine equation... Consider the following problem: Is there any nontrivial solution of the equation

\[n! = m! \cdot k! \]

where \(n, m, k \in \mathbb{N} \)? If so, can you describe the set of all solutions?

A while for hard-thinking...

One thing can be done:

if \(n = m! \), for some \(m \in \mathbb{N} \), then

\[n! = n \cdot (n - 1)! = m! \cdot (n - 1)! \]

For example: since \(120 = 5! \), one has

\[120! = 5! \cdot 119! \]

Thus, there is an infinite number of solutions: numbers which are factorials of an integer.
Besides the above mentioned solutions \((m! = n - 1)\), is there any other solution of \(n! = m! \cdot k!\)?

There is, indeed, since \(10! = 6! \cdot 7!\).

Question: What can be said about the set
\[\mathcal{A} = \{n \in \mathbb{N} | \exists m, k \in \{2, 3, \ldots, n - 2\} \text{ such that } n! = m! \cdot k!\}\]

We do not know much about \(\mathcal{A}\). In fact, only \(10 \in \mathcal{A}\)

There are few more statements concerning the factors \(m\) and \(k\). These results, however, only slightly restrict the set of possible solutions. For example, it can be shown (and it is not very hard) that if \(n \in \mathcal{A}\), then \(m + k > n + 1\).
Besides the above mentioned solutions \((m! = n - 1)\), is there any other solution of

\[n! = m! \cdot k! \]?

There is, indeed, since

\[10! = 6! \cdot 7! \]
Besides the above mentioned solutions \(m! = n - 1 \), is there any other solution of

\[n! = m! \cdot k! \]?

There is, indeed, since

\[10! = 6! \cdot 7! \]

Question: What can be said about the set

\[\mathcal{A} = \{ n \in \mathbb{N} \mid \exists m, k \in \{2, 3, \ldots, n - 2\} \text{ such that } n! = m! \cdot k! \}? \]
Besides the above mentioned solutions \((m! = n - 1)\), is there any other solution of

\[n! = m! \cdot k! \]?

There is, indeed, since

\[10! = 6! \cdot 7! \]

Question: What can be said about the set

\[\mathcal{A} = \{ n \in \mathbb{N} \mid \exists m, k \in \{2, 3, \ldots, n - 2\} \text{ such that } n! = m! \cdot k! \} \]?

We do not know much about \(\mathcal{A}\). In fact, only

\[10 \in \mathcal{A}. \]
Besides the above mentioned solutions \((m! = n - 1)\), is there any other solution of

\[n! = m! \cdot k! ? \]

There is, indeed, since

\[10! = 6! \cdot 7! \]

Question: What can be said about the set

\[A = \{ n \in \mathbb{N} | \exists m, k \in \{2, 3, \ldots, n - 2\} \text{ such that } n! = m! \cdot k! \} \]

We do not know much about \(A\). In fact, only

\[10 \in A \]

There are few more statements concerning the factors \(m\) and \(k\). These results, however, only slightly restrict the set of possible solutions.
Besides the above mentioned solutions \(m! = n - 1 \), is there any other solution of \(n! = m! \cdot k! \)?

There is, indeed, since
\[
10! = 6! \cdot 7!
\]

Question: What can be said about the set
\[
\mathcal{A} = \{ n \in \mathbb{N} \mid \exists m, k \in \{2, 3, \ldots, n - 2\} \text{ such that } n! = m! \cdot k! \}\?
\]

We do not known much about \(\mathcal{A} \). In fact, only
\[
10 \in \mathcal{A}.
\]

There are few more statements concerning the factors \(m \) and \(k \). These results, however, only slightly restrict the set of possible solutions.

For example, it can be shown (and it is not very hard) that if \(n \in \mathcal{A} \), then
\[
m + k > n + 1.
\]
The systematic solution of the Diophantine equation $n! = m! \cdot k!$ is far from what is known today.
The systematic solution of the Diophantine equation \(n! = m! \cdot k! \) is far from what is known today.

Even the special case of equation \(n(n - 1) = m! \) is still out of reach [D. Berend, J. E. Harmse, TAMS06].
The systematic solution of the Diophantine equation $n! = m! \cdot k!$ is far from what is known today.

Even the special case of equation $n(n - 1) = m!$ is still out of reach [D. Berend, J. E. Harmse, TAMS06].

Nevertheless, there is a strong belief that \mathcal{A} is finite.
The systematic solution of the Diophantine equation $n! = m! \cdot k!$ is far from what is known today.

Even the special case of equation $n(n - 1) = m!$ is still out of reach [D. Berend, J. E. Harmse, TAMS06].

Nevertheless, there is a strong belief that A is finite.

And I have also encountered the heretic opinion that A consists of the number 10 only!
Satan conjecture

- The systematic solution of the Diophantine equation $n! = m! \cdot k!$ is far from what is known today.
- Even the special case of equation $n(n - 1) = m!$ is still out of reach [D. Berend, J. E. Harmse, TAMS06].
- Nevertheless, there is a strong belief that A is finite.
- And I have also encountered the heretic opinion that A consists of the number 10 only!

\[A = \{10\}. \]
... with the aid of computer one could possibly disprove the Satan conjecture.
… with the aid of computer one could possible disprove the Satan conjecture.

At the beginning of 90’s, J. Shallit and M. Easter showed that between numbers

\[1 \leq n \leq 18160 \]

only the number 10 belongs to \(\mathcal{A} \). They investigate, however, a somewhat more general problem.
... with the aid of computer one could possibly disprove the Satan conjecture. At the beginning of 90’s, J. Shallit and M. Easter showed that between numbers $1 \leq n \leq 18160$

only the number 10 belongs to \mathcal{A}. They investigate, however, a somewhat more general problem.

But then ...

TK improved the above result for numbers: $1 \leq n \leq 30000$!
... with the aid of computer one could possible disprove the Satan conjecture. At the begging of 90’s, J. Shallit and M. Easter showed that between numbers $1 \leq n \leq 18160$ only the number 10 belongs to \mathcal{A}. They investigate, however, a somewhat more general problem.

But then ...

... a hero came!
... with the aid of computer one could possible disprove the Satan conjecture.

At the begging of 90’s, J. Shallit and M. Easter showed that between numbers

\[1 \leq n \leq 18160 \]

only the number 10 belongs to \(\mathcal{A} \). They investigate, however, a somewhat more
general problem.

But then ...

TK improved the above result for numbers:

\[1 \leq n \leq 30000 \]

... a hero came!
... with the aid of computer one could possible disprove the Satan conjecture.

At the begging of 90’s, J. Shallit and M. Easter showed that between numbers

\[1 \leq n \leq 18160 \]

only the number 10 belongs to \(\mathcal{A} \). They investigate, however, a somewhat more general problem.

But then ...

TK improved the above result for numbers: \(1 \leq n \leq 30000 \)!

Can you do that better?

... a hero came!
Can you significantly improve the range of numbers that do (not) belong to \mathcal{A}?
Can you disprove the Satan conjecture? What is the respective formula $x!y! = z!$?
Apart from the computational properties, can you show something mathematically interesting about \mathcal{A}?
The End

Starring:
Starring:

Pusheen
The End

Starring:

![Pusheen](image1.png)
Pusheen

![TK](image2.png)TK

Thank you for your attention!
František Štampach (CTU Pusheen club)

How Pusheen uses computer to do mathematics
The End

Starring:

Pusheen

TK

Unhappy cat
Thank you for your attention!