New explicitly diagonalizable Hankel matrices

Frantisek Štampach
joint with P. Šťovíček

International Workshop on Operator Theory and its Applications
July 22, 2019

Acknowledgement: Supported by Europ. Reg. Development Fund-Project “Center for Advanced Applied Science” No. CZ.02.1.01/0.0/0.0/16_019/0000778.
Contents

1 Introduction - the Hilbert matrix

2 New results - Hankel matrices and Jacobi matrices from the Askey scheme

3 New results - New diagonalizable Hankel matrices

František Štampach (FIT CTU in Prague)
The semi-infinite matrix H with entries

$$H_{m,n} = h_{m+n},$$

i.e.,

$$H = \begin{pmatrix}
h_0 & h_1 & h_2 & h_3 & \ldots \\
h_1 & h_2 & h_3 & h_4 & \ldots \\
h_2 & h_3 & h_4 & h_5 & \ldots \\
h_3 & h_4 & h_5 & h_6 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix}$$

is called the Hankel matrix.
The semi-infinite matrix H with entries

$$H_{m,n} = h_{m+n},$$

i.e.,

$$H = \begin{pmatrix}
 h_0 & h_1 & h_2 & h_3 & \cdots \\
 h_1 & h_2 & h_3 & h_4 & \cdots \\
 h_2 & h_3 & h_4 & h_5 & \cdots \\
 h_3 & h_4 & h_5 & h_6 & \cdots \\
 \vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix}$$

is called the Hankel matrix.

If $h \in \ell^2(\mathbb{N}_0)$ and real, then H determines a densely defined symmetric operator on $\ell^2(\mathbb{N}_0)$.
The semi-infinite matrix H with entries

$$H_{m,n} = h_{m+n},$$

i.e.,

$$H = \begin{pmatrix}
h_0 & h_1 & h_2 & h_3 & \cdots \\
h_1 & h_2 & h_3 & h_4 & \cdots \\
h_2 & h_3 & h_4 & h_5 & \cdots \\
h_3 & h_4 & h_5 & h_6 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix}$$

is called the Hankel matrix.

- If $h \in \ell^2(\mathbb{N}_0)$ and real, then H determines a densely defined symmetric operator on $\ell^2(\mathbb{N}_0)$.

- Although the general spectral theory of Hankel operators is deeply developed, only very few concrete interesting (=not of finite rank) Hankel matrices with “explicitly” solvable spectral problem.
The Hilbert matrix

- The Hilbert matrix:

\[(H_0)_{m,n} = \frac{1}{m + n + 1},\]

i.e.,

\[
H_0 = \begin{pmatrix}
1 & 1 & 1 & 1 & \
\frac{1}{2} & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \
\frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \
\frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} & \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix}
\]
The Hilbert matrix

- The *(generalized)* Hilbert matrix:

\[
(H_\lambda)_{m,n} = \frac{1}{m + n + 1 + \lambda},
\]

i.e.,

\[
H_\lambda = \begin{pmatrix}
\frac{1}{1+\lambda} & \frac{1}{2+\lambda} & \frac{1}{3+\lambda} & \frac{1}{4+\lambda} & \cdots \\
\frac{1}{1+\lambda} & \frac{1}{2+\lambda} & \frac{1}{3+\lambda} & \frac{1}{4+\lambda} & \cdots \\
\frac{1}{2+\lambda} & \frac{1}{3+\lambda} & \frac{1}{4+\lambda} & \frac{1}{5+\lambda} & \cdots \\
\frac{1}{3+\lambda} & \frac{1}{4+\lambda} & \frac{1}{5+\lambda} & \frac{1}{6+\lambda} & \cdots \\
\frac{1}{4+\lambda} & \frac{1}{5+\lambda} & \frac{1}{6+\lambda} & \frac{1}{7+\lambda} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix}
\]
History of the Hilbert matrix

- Hilbert’s inequality (1908): There is $M > 0$ such that

$$0 \leq \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{a_m a_n}{m + n + 1} \leq M \sum_{n=0}^{\infty} a_n^2,$$

for all real $a \in \ell^2(\mathbb{N}_0)$.

Schur 1911: The optimal value of the constant $M = \pi$.

Perhaps first proof of $\|H_0\| = \pi$.

Magnus 1949 (also Schur): $\|H_\lambda\| = \pi$, $\lambda \geq -\frac{1}{2}$, and $\|H_\lambda\| = \pi |\sin(\lambda \pi)|$, $-1 < \lambda < -\frac{1}{2}$.

Magnus 1950: $\text{spec}(H_0) = [0, \pi]$.

Rosenblum 1958: A complete explicit spectral representation of H_λ for $\lambda > -\frac{1}{2}$.

(Rosenblum applied ideas of the commutator method.)
History of the Hilbert matrix

- Hilbert’s inequality (1908): There is $M > 0$ such that

$$0 \leq \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{a_ma_n}{m+n+1} \leq M \sum_{n=0}^{\infty} a_n^2,$$

for all real $a \in \ell^2(\mathbb{N}_0)$.

- Schur 1911: The optimal value of the constant $M = \pi$.
 (Perhaps first proof of $\|H_0\| = \pi$.)
Hilbert’s inequality (1908): There is $M > 0$ such that

$$0 \leq \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{a_m a_n}{m+n+1} \leq M \sum_{n=0}^{\infty} a_n^2,$$

for all real $a \in \ell^2(\mathbb{N}_0)$.

Schur 1911: The optimal value of the constant $M = \pi$.
(Perhaps first proof of $\|H_0\| = \pi$.)

Magnus 1949 (also Schur):

$$\|H_\lambda\| = \pi, \quad \lambda \geq -1/2,$$

and

$$\|H_\lambda\| = \frac{\pi}{|\sin(\lambda \pi)|}, \quad -1 < \lambda < -1/2.$$
History of the Hilbert matrix

- Hilbert’s inequality (1908): There is $M > 0$ such that

$$0 \leq \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{a_m a_n}{m+n+1} \leq M \sum_{n=0}^{\infty} a_n^2,$$

for all real $a \in \ell^2(\mathbb{N}_0)$.

- Schur 1911: The optimal value of the constant $M = \pi$.
 (Perhaps first proof of $\|H_0\| = \pi$.)

- Magnus 1949 (also Schur):

$$\|H_\lambda\| = \pi, \quad \lambda \geq -1/2, \quad \text{and} \quad \|H_\lambda\| = \frac{\pi}{|\sin(\lambda\pi)|}, \quad -1 < \lambda < -1/2.$$

- Magnus 1950:

$$\text{spec}_c(H_0) = [0, \pi].$$
History of the Hilbert matrix

- Hilbert’s inequality (1908): There is $M > 0$ such that

$$0 \leq \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{a_m a_n}{m + n + 1} \leq M \sum_{n=0}^{\infty} a_n^2,$$

for all real $a \in \ell^2(\mathbb{N}_0)$.

- Schur 1911: The optimal value of the constant $M = \pi$.
 (Perhaps first proof of $\|H_0\| = \pi$.)

- Magnus 1949 (also Schur):

$$\|H_\lambda\| = \pi, \quad \lambda \geq -1/2,$$

and

$$\|H_\lambda\| = \frac{\pi}{|\sin(\lambda \pi)|}, \quad -1 < \lambda < -1/2.$$

- Magnus 1950:

$$\text{spec}_c(H_0) = [0, \pi].$$

- Rosenblum 1958: A complete explicit spectral representation of H_λ for $\lambda > -1$.
 (Rosenblum applied ideas of the commutator method.)
An alternative proof to Rosenblum’s approach

The Hilbert matrix H_0 commutes with the Jacobi matrix

$$J = \begin{pmatrix}
\beta_0 & \alpha_0 \\
\alpha_0 & \beta_1 & \alpha_1 \\
\alpha_1 & \beta_2 & \alpha_2 \\
& \ddots & \ddots & \ddots
\end{pmatrix}$$

where

$$\alpha_n = -(n + 1)^2 \quad \text{and} \quad \beta_n = 2n(n + 1) + 3/4.$$
An alternative proof to Rosenblum’s approach

- The Hilbert matrix H_0 commutes with the Jacobi matrix

$$J = \begin{pmatrix} \beta_0 & \alpha_0 \\ \alpha_0 & \beta_1 & \alpha_1 \\ \alpha_1 & \beta_2 & \alpha_2 \\ \vdots & \vdots & \ddots & \ddots \end{pmatrix}$$

where

$$\alpha_n = -(n+1)^2 \quad \text{and} \quad \beta_n = 2n(n+1) + 3/4.$$

- The associated sequence of ON polynomials $P = \{P_n\}_{n \in \mathbb{N}_0}$, is unambiguously defined as the formal eigenvector of J:

$$JP(x) = xP(x)$$

normalized such that $P_0(x) = 1$.

František Štampach (FIT CTU in Prague)
An alternative proof to Rosenblum’s approach

- The Hilbert matrix H_0 commutes with the Jacobi matrix

$$J = \begin{pmatrix}
\beta_0 & \alpha_0 \\
\alpha_0 & \beta_1 & \alpha_1 \\
\alpha_1 & \beta_2 & \alpha_2 \\
& & \ddots & \ddots & \ddots
\end{pmatrix}$$

where

$$\alpha_n = -(n + 1)^2 \quad \text{and} \quad \beta_n = 2n(n + 1) + 3/4.$$

- The associated sequence of ON polynomials $P = \{P_n\}_{n \in \mathbb{N}_0}$, is unambiguously defined as the formal eigenvector of J:

$$JP(x) = xP(x)$$

normalized such that $P_0(x) = 1$.

- In this case, P_n is a particular case of the Continuous dual Hahn polynomials - a three-parameter family of hypergeometric OG polynomials listed in the Askey scheme.
An alternative proof to Rosenblum’s approach

As a result, we know that \(\{P_n\}_{n \in \mathbb{N}_0} \) is an ONB of \(L^2((0, \infty), \rho(x)dx) \), where

\[
\rho(x) = \frac{\pi \sinh(\pi \sqrt{x})}{\cosh^2(\pi \sqrt{x})}.
\]
An alternative proof to Rosenblum’s approach

As a result, we know that \(\{P_n\}_{n \in \mathbb{N}_0} \) is an ONB of \(L^2((0, \infty), \rho(x)dx) \), where

\[
\rho(x) = \frac{\pi \sinh(\pi \sqrt{x})}{\cosh^2(\pi \sqrt{x})}.
\]

Moreover, the unitary mapping

\[
U : \ell^2(\mathbb{N}_0) \to L^2((0, \infty), \rho(x)dx) : e_n \mapsto P_n
\]

diagonalizes the Jacobi operator \(J \), i.e, \(U J U^{-1} = T_x \).
An alternative proof to Rosenblum’s approach

As a result, we know that \(\{P_n\}_{n \in \mathbb{N}_0} \) is an ONB of \(L^2((0, \infty), \rho(x)dx) \), where

\[
\rho(x) = \frac{\pi \sinh(\pi \sqrt{x})}{\cosh^2(\pi \sqrt{x})}.
\]

Moreover, the unitary mapping

\[
U : \ell^2(\mathbb{N}_0) \to L^2((0, \infty), \rho(x)dx) : e_n \mapsto P_n
\]

diagonalizes the Jacobi operator \(J \), i.e, \(UJU^{-1} = T_x \).

Since \(J \) is a self-adjoint operator with simple spectrum commuting with \(H_0 \),

\[
UH_0U^{-1} = T_f
\]

where \(f \) is a Borel function.
An alternative proof to Rosenblum’s approach

As a result, we know that \(\{P_n\}_{n\in\mathbb{N}_0} \) is an ONB of \(L^2((0, \infty), \rho(x)dx) \), where

\[
\rho(x) = \frac{\pi \sinh(\pi \sqrt{x})}{\cosh^2(\pi \sqrt{x})}.
\]

Moreover, the unitary mapping

\[
U : l^2(\mathbb{N}_0) \rightarrow L^2((0, \infty), \rho(x)dx) : e_n \mapsto P_n
\]

diagonalizes the Jacobi operator \(J \), i.e, \(UJU^{-1} = T_x \).

Since \(J \) is a self-adjoint operator with simple spectrum commuting with \(H_0 \),

\[
UH_0U^{-1} = T_f
\]

where \(f \) is a Borel function.

Determination of \(f \) using a generating function formula for \(P_n \):

\[
f(x) = f(x)P_0(x) = T_fUe_0 = UH_0e_0 = \sum_{n=0}^{\infty} \frac{P_n(x)}{n+1} = \]
An alternative proof to Rosenblum’s approach

- As a result, we know that \(\{ P_n \}_{n \in \mathbb{N}_0} \) is an ONB of \(L^2((0, \infty), \rho(x)dx) \), where
 \[
 \rho(x) = \frac{\pi \sinh(\pi \sqrt{x})}{\cosh^2(\pi \sqrt{x})}.
 \]

- Moreover, the unitary mapping
 \[
 U : l^2(\mathbb{N}_0) \rightarrow L^2((0, \infty), \rho(x)dx) : e_n \mapsto P_n
 \]
diagonalizes the Jacobi operator \(J \), i.e, \(UJU^{-1} = T_x \).

- Since \(J \) is a self-adjoint operator with simple spectrum commuting with \(H_0 \),
 \[
 UH_0U^{-1} = T_f
 \]
where \(f \) is a Borel function.

- Determination of \(f \) using a generating function formula for \(P_n \):
 \[
 f(x) = f(x)P_0(x) = T_f Ue_0 = UH_0 e_0 = \sum_{n=0}^{\infty} \frac{P_n(x)}{n+1} = \frac{\pi}{\cosh(\pi x)}.
 \]
A summary of the commutator method

In total, this approach shows that H_0 is unitarily equivalent to the multiplication operator by function

$$f(x) = \frac{\pi}{\cosh(\pi x)}$$

acting on $L^2((0, \infty), \rho(x)dx)$. This yields the spectral representation of H_0. Particularly,

$$\text{spec}(H_0) = \text{spec}_{ac}(H_0) = [0, \pi].$$

For details, see [Otte 2005 - slides; T. Kalvoda and P. Štovíček 2016].
A summary of the commutator method

- In total, this approach shows that H_0 is unitarily equivalent to the multiplication operator by function
 \[f(x) = \frac{\pi}{\cosh(\pi x)} \]
 acting on $L^2((0, \infty), \rho(x)dx)$. This yields the spectral representation of H_0.
 Particularly,
 \[\text{spec}(H_0) = \text{spec}_{ac}(H_0) = [0, \pi]. \]
 For details, see [Otte 2005 - slides; T. Kalvoda and P. Štovíček 2016].

Two main steps of the commutator method:
A summary of the commutator method

In total, this approach shows that H_0 is unitarily equivalent to the multiplication operator by function

$$f(x) = \frac{\pi}{\cosh(\pi x)}$$

acting on $L^2((0, \infty), \rho(x)dx)$. This yields the spectral representation of H_0. Particularly,

$$\text{spec}(H_0) = \text{spec}_{ac}(H_0) = [0, \pi].$$

For details, see [Otte 2005 - slides; T. Kalvoda and P. Štovíček 2016].

Two main steps of the commutator method:

1. Finding a self-adjoint operator J with simple spectrum and solvable spectral problem that commutes with H.
 (typical sources = Sturm–Liouville operators, Jacobi operators,...)
A summary of the commutator method

- In total, this approach shows that H_0 is unitarily equivalent to the multiplication operator by function

$$f(x) = \frac{\pi}{\cosh(\pi x)}$$

acting on $L^2((0, \infty), \rho(x)dx)$. This yields the spectral representation of H_0. Particularly,

$$\text{spec}(H_0) = \text{spec}_{ac}(H_0) = [0, \pi].$$

For details, see [Otte 2005 - slides; T. Kalvoda and P. Štovíček 2016].

Two main steps of the commutator method:

1. Finding a self-adjoint operator J with simple spectrum and solvable spectral problem that commutes with H.
 (typical sources = Sturm–Liouville operators, Jacobi operators,...)

2. Finding the spectral mapping f.
Contents

1 Introduction - the Hilbert matrix

2 New results - Hankel matrices and Jacobi matrices from the Askey scheme

3 New results - New diagonalizable Hankel matrices
The scope

Goal of the project: To extend the set of known Hankel matrices with explicitly solvable spectral problem.
The scope

Goal of the project: To extend the set of known Hankel matrices with explicitly solvable spectral problem.

- Observation: The generalized Hilbert matrix commutes with a Jacobi matrix from the Askey scheme of hypergeometric OGP s.
The scope

Goal of the project: To extend the set of known Hankel matrices with explicitly solvable spectral problem.

- **Observation**: The generalized Hilbert matrix commutes with a Jacobi matrix from the Askey scheme of hypergeometric OGPs.
- **The Askey scheme** = A list of Jacobi operators with explicitly solvable spectral problem.
The Askey scheme

- Wilson
- Racah
- Continuous dual Hahn
- Continuous Hahn
- Hahn
- Dual Hahn
- Meixner - Pollaczek
- Jacobi
- Meixner
- Krawtchouk
- Laguerre
- Charlier
- Hermite

New results - Hankel matrices and Jacobi matrices from the Askey scheme

František Štampach (FIT CTU in Prague)
The Askey scheme - semi-infinite Jacobi matrices
The scope

Goal of the project: To extend the set of known Hankel matrices with explicitly solvable spectral problem.

- **Observation**: The generalized Hilbert matrix commutes with a Jacobi matrix from the Askey scheme of hypergeometric OGPs.
- **The Askey scheme** = A list of Jacobi operators with explicitly solvable spectral problem.
- **Natural question**: What Hankel matrices commute with the Jacobi matrices from the hypergeometric Askey scheme?
The scope

Goal of the project: To extend the set of known Hankel matrices with explicitly solvable spectral problem.

- **Observation**: The generalized Hilbert matrix commutes with a Jacobi matrix from the Askey scheme of hypergeometric OGPs.
- **The Askey scheme** = A list of Jacobi operators with explicitly solvable spectral problem.
- **Natural question**: What Hankel matrices commute with the Jacobi matrices from the hypergeometric Askey scheme?
- **Answer**: Basically, it is only the generalized Hilbert matrix.
The scope

Goal of the project: To extend the set of known Hankel matrices with explicitly solvable spectral problem.

- **Observation**: The generalized Hilbert matrix commutes with a Jacobi matrix from the Askey scheme of hypergeometric OGPs.
- **The Askey scheme** = A list of Jacobi operators with explicitly solvable spectral problem.
- **Natural question**: What Hankel matrices commute with the Jacobi matrices from the hypergeometric Askey scheme?
- **Answer**: Basically, it is only the generalized Hilbert matrix.

Theorem (A prominent role of the Hilbert matrix)

Let $H = (h_{m+n})$ be a Hankel matrix with rank $H > 1$ and $h \in \ell^2(\mathbb{N}_0)$.
The scope

Goal of the project: To extend the set of known Hankel matrices with explicitly solvable spectral problem.

- **Observation:** The generalized Hilbert matrix commutes with a Jacobi matrix from the Askey scheme of hypergeometric OGPs.
- **The Askey scheme** = A list of Jacobi operators with explicitly solvable spectral problem.
- **Natural question:** What Hankel matrices commute with the Jacobi matrices from the hypergeometric Askey scheme?
- **Answer:** Basically, it is only the generalized Hilbert matrix.

Theorem (A prominent role of the Hilbert matrix)

Let $H = (h_{m+n})$ be a Hankel matrix with rank $H > 1$ and $h \in \ell^2(\mathbb{N}_0)$. Let J be a hermitian semi-infinite non-decomposable Jacobi matrix from the Askey scheme.
The scope

Goal of the project: To extend the set of known Hankel matrices with explicitly solvable spectral problem.

- **Observation:** The generalized Hilbert matrix commutes with a Jacobi matrix from the Askey scheme of hypergeometric OGP.
- **The Askey scheme:** A list of Jacobi operators with explicitly solvable spectral problem.
- **Natural question:** What Hankel matrices commute with the Jacobi matrices from the hypergeometric Askey scheme?
- **Answer:** Basically, it is only the generalized Hilbert matrix.

Theorem (A prominent role of the Hilbert matrix)

Let $H = (h_{m+n})$ be a Hankel matrix with rank $H > 1$ and $h \in \ell^2(\mathbb{N}_0)$. Let J be a hermitian semi-infinite non-decomposable Jacobi matrix from the Askey scheme. If $HJ = JH$, then H is the generalized Hilbert matrix up to a constant multiplier.
Contents

1 Introduction - the Hilbert matrix

2 New results - Hankel matrices and Jacobi matrices from the Askey scheme

3 New results - New diagonalizable Hankel matrices
A class of Jacobi matrices

We consider the class of Jacobi matrices $J = J(a, b, c; \sigma, k)$ with:

$$
\alpha_n = -\sqrt{(n + 1)(n + a + 1)(n + b + 1)(n + c + 1)},
$$

$$
\beta_n = (k^{-1} + k)n(n + \sigma),
$$

for $a, b, c > -1$, $\sigma \in \mathbb{R}$, and $k \in (0, 1)$.

A class of Jacobi matrices

We consider the class of Jacobi matrices $J = J(a, b, c; \sigma, k)$ with:

$$\alpha_n = -\sqrt{(n+1)(n+a+1)(n+b+1)(n+c+1)},$$

$$\beta_n = (k^{-1} + k)n(n+\sigma),$$

for $a, b, c > -1$, $\sigma \in \mathbb{R}$, and $k \in (0, 1)$.

A motivation:

- The corresponding OGPs are closely related to Heun functions.
New results - New diagonalizable Hankel matrices

A class of Jacobi matrices

We consider the class of Jacobi matrices $J = J(a, b, c; \sigma, k)$ with:

$$\alpha_n = -\sqrt{(n+1)(n+a+1)(n+b+1)(n+c+1)},$$
$$\beta_n = (k^{-1} + k)n(n+\sigma),$$

for $a, b, c > -1$, $\sigma \in \mathbb{R}$, and $k \in (0, 1)$.

A motivation:

1. The corresponding OGPs are closely related to Heun functions.
2. For $k = 1$, generalized Hilbert matrix commutes with a particular class of the Jacobi matrix (Wilson, Cont. dual Hahn).
A class of Jacobi matrices

We consider the class of Jacobi matrices $J = J(a, b, c; \sigma, k)$ with:

$$\alpha_n = -\sqrt{(n + 1)(n + a + 1)(n + b + 1)(n + c + 1)},$$
$$\beta_n = (k^{-1} + k)n(n + \sigma),$$

for $a, b, c > -1, \sigma \in \mathbb{R},$ and $k \in (0, 1)$.

A motivation:

1. The corresponding OGPS are closely related to Heun functions.
2. For $k = 1$, generalized Hilbert matrix commutes with a particular class of the Jacobi matrix (Wilson, Cont. dual Hahn).

Theorem

The Jacobi matrix J commutes with a non-trivial Hankel matrix if and only if α_n is a polynomial function of n.

František Štampach (FIT CTU in Prague)
Characterization of commuting Hankel matrices

Theorem

Let J is the Jacobi matrix with

$$
\alpha_n = -(n + 1)(n + a + 1), \quad \beta_n = (k + k^{-1})n(n + \sigma).
$$
Characterization of commuting Hankel matrices

Theorem

Let J is the Jacobi matrix with

$$\alpha_n = -(n + 1)(n + a + 1), \quad \beta_n = (k + k^{-1})n(n + \sigma).$$

Then, up to a constant multiplier, the Hankel matrix $H_{m,n} = h_{m+n}$ with entries

$$h_n = \frac{k^n \Gamma(n + a + 1)}{\Gamma(n + a + \omega(a, \sigma) + 1)} \, _2F_1(n + a + 1, \omega(a, \sigma) - 1; n + a + \omega(a, \sigma) + 1; k^2),$$

where

$$\omega(a, \sigma) = \frac{-2k^2 + (1 + k^2)(\sigma - a)}{1 - k^2},$$

is the only Hankel matrix with $h \in \ell^2(\mathbb{N}_0)$ commuting with J.
New results - New diagonalizable Hankel matrices

Characterization of commuting Hankel matrices

Theorem

Let J is the Jacobi matrix with

\[\alpha_n = -(n + 1)(n + a + 1), \quad \beta_n = (k + k^{-1})n(n + \sigma). \]

Then, up to a constant multiplier, the Hankel matrix $H_{m,n} = h_{m+n}$ with entries

\[h_n = \frac{k^n n! (n + a + 1)}{\Gamma(n + a + \omega(a, \sigma) + 1)} _2F_1(n + a + 1, \omega(a, \sigma) - 1; n + a + \omega(a, \sigma) + 1; k^2), \]

where

\[\omega(a, \sigma) = \frac{-2k^2 + (1 + k^2)(\sigma - a)}{1 - k^2}, \]

is the only Hankel matrix with $h \in \ell^2(\mathbb{N}_0)$ commuting with J. Moreover, H is a trace class operator on $\ell^2(\mathbb{N}_0)$.
Characterization of commuting Hankel matrices

Theorem

Let J is the Jacobi matrix with

$$
\alpha_n = -(n+1)(n+a+1), \quad \beta_n = (k+k^{-1})n(n+\sigma).
$$

Then, up to a constant multiplier, the Hankel matrix $H_{m,n} = h_{m+n}$ with entries

$$
h_n = \frac{k^n\Gamma(n+a+1)}{\Gamma(n+a+\omega(a,\sigma)+1)} \, _2F_1(n+a+1, \omega(a,\sigma) - 1; n+a + \omega(a,\sigma) + 1; k^2),
$$

where

$$
\omega(a,\sigma) = \frac{-2k^2 + (1+k^2)(\sigma-a)}{1-k^2},
$$

is the only Hankel matrix with $h \in \ell^2(\mathbb{N}_0)$ commuting with J. Moreover, H is a trace class operator on $\ell^2(\mathbb{N}_0)$.

- For $\sigma = a+1$ and $k \to 1$, we arrive at the generalized Hankel matrix

 $$
h_n = \frac{1}{n+a+1}.
$$
Following the lines of the commutator method we seek for Jacobi matrices with
\[\alpha_n = -(n+1)(n+a+1), \quad \beta_n = (k + k^{-1})n(n + \sigma) \]
whose spectral properties can be obtained explicitly (or in terms of special functions).
Stieltjes–Carlitz polynomials

- Following the lines of the commutator method we seek for Jacobi matrices with
 \[\alpha_n = -(n + 1)(n + a + 1), \quad \beta_n = (k + k^{-1})n(n + \sigma) \]
 whose spectral properties can be obtained explicitly (or in terms of special functions).

- It turns out that there are at least 4 special Jacobi matrices whose spectral properties can be deduced from the known properties of the Stieltjes–Carlitz polynomials (Carlitz 1960).
Stieltjes–Carlitz polynomials

- Following the lines of the commutator method we seek for Jacobi matrices with
 \[\alpha_n = -(n+1)(n+a+1), \quad \beta_n = (k + k^{-1})n(n + \sigma) \]
 whose spectral properties can be obtained explicitly (or in terms of special functions).

- It turns out that there are at least 4 special Jacobi matrices whose spectral properties can be deduced from the known properties of the Stieltjes–Carlitz polynomials (Carlitz 1960).

- These corresponds to the particular values of the parameters

<table>
<thead>
<tr>
<th></th>
<th>(p)</th>
<th>(q)</th>
<th>(r)</th>
<th>(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>(-1/2)</td>
<td>(1/2)</td>
<td>(-1/2)</td>
<td>(1/2)</td>
</tr>
<tr>
<td>(\sigma)</td>
<td>(1/(k^2 + 1))</td>
<td>((1 + 2k^2)/(k^2 + 1))</td>
<td>(k^2/(k^2 + 1))</td>
<td>((2 + k^2)/(k^2 + 1))</td>
</tr>
</tbody>
</table>
Following the lines of the commutator method we seek for Jacobi matrices with
\[
\alpha_n = -(n + 1)(n + a + 1), \quad \beta_n = (k + k^{-1})n (n + \sigma)
\]
whose spectral properties can be obtained explicitly (or in terms of special functions).

It turns out that there are at least 4 special Jacobi matrices whose spectral properties can be deduced from the known properties of the Stieltjes–Carlitz polynomials (Carlitz 1960).

These corresponds to the particular values of the parameters

<table>
<thead>
<tr>
<th></th>
<th>(p)</th>
<th>(q)</th>
<th>(r)</th>
<th>(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>−1/2</td>
<td>1/2</td>
<td>−1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>(\sigma)</td>
<td>1/((k^2 + 1))</td>
<td>(1 + 2(k^2))/((k^2 + 1))</td>
<td>(k^2/(k^2 + 1))</td>
<td>(2 + (k^2))/((k^2 + 1))</td>
</tr>
</tbody>
</table>

Basic elements of the theory of elliptic functions:

\[
K = K(k) := \int_0^{\pi/2} \frac{d\theta}{\sqrt{1 - k^2 \sin^2 \theta}}, \quad K' = K'(k) := K\left(\sqrt{1 - k^2}\right),
\]
and
\[
q = q(k) := \exp\left(-\pi K'(k)/K(k)\right).
\]
Four new diagonalizable Hankel matrices

We introduce four Hankel matrices $H^{(p)}$, $H^{(q)}$, $H^{(r)}$, $H^{(s)}$, depending on a parameter $k \in (0, 1)$,

$$H^{(j)}_{m,n} = h^{(j)}_{m+n}, \quad j = p, q, r, s,$$

for $m, n \in \mathbb{N}_0$, where

- $h^{(p)}_n := \frac{k^n \Gamma(n + 1/2)}{(n + 1)!} 2F_1 \left(\begin{array}{c} n + 1/2, 1/2 \\ n + 2 \end{array} \bigg| k^2 \right) = \frac{4k^n}{\sqrt{\pi}} \int_0^1 t^{2n} \sqrt{\frac{1 - t^2}{1 - k^2 t^2}} \, dt,$$

- $h^{(q)}_n := \frac{k^n \Gamma(n + 3/2)}{(n + 1)!} 2F_1 \left(\begin{array}{c} n + 3/2, -1/2 \\ n + 2 \end{array} \bigg| k^2 \right) = \frac{2k^n}{\sqrt{\pi}} \int_0^1 t^{2n+2} \sqrt{\frac{1 - k^2 t^2}{1 - t^2}} \, dt,$$

- $h^{(r)}_n := \frac{k^n \Gamma(n + 1/2)}{n!} 2F_1 \left(\begin{array}{c} n + 1/2, -1/2 \\ n + 1 \end{array} \bigg| k^2 \right) = \frac{2k^n}{\sqrt{\pi}} \int_0^1 t^{2n} \sqrt{\frac{1 - k^2 t^2}{1 - t^2}} \, dt,$$

- $h^{(s)}_n := \frac{k^n \Gamma(n + 3/2)}{(n + 2)!} 2F_1 \left(\begin{array}{c} n + 3/2, 1/2 \\ n + 3 \end{array} \bigg| k^2 \right) = \frac{4k^n}{\sqrt{\pi}} \int_0^1 t^{2n+2} \sqrt{\frac{1 - t^2}{1 - k^2 t^2}} \, dt.$
Diagonalization of $H^{(p)}$, $H^{(q)}$, $H^{(r)}$, $H^{(s)}$.

Theorem

Each of the Hankel matrices $H^{(j)}$, $j = p, q, r, s$, represents a positive trace class operator on $\ell^2(\mathbb{N}_0)$ with simple eigenvalues which are as follows:

\[
\nu^{(p)}_m = \frac{4\sqrt{\pi}}{k} \frac{q^{m+1/2}}{1 + q^{2m+1}}, \quad m \geq 0,
\]

\[
\nu^{(q)}_m = \frac{2\sqrt{\pi}}{k} \frac{q^{m+1/2}}{1 + q^{2m+1}}, \quad m \geq 0,
\]

\[
\nu^{(r)}_m = 2\sqrt{\pi} \frac{q^m}{1 + q^{2m}}, \quad m \geq 0,
\]

\[
\nu^{(s)}_m = \frac{4\sqrt{\pi}}{k^2} \frac{q^m}{1 + q^{2m}}, \quad m \geq 1.
\]
Diagonalization of $H^{(p)}$, $H^{(q)}$, $H^{(r)}$, $H^{(s)}$.

Theorem

Each of the Hankel matrices $H^{(j)}$, $j = p, q, r, s$, represents a positive trace class operator on $\ell^2(\mathbb{N}_0)$ with simple eigenvalues which are as follows:

$$
\nu^{(p)}_m = \frac{4\sqrt{\pi}}{k} \frac{q^{m+1/2}}{1 + q^{2m+1}}, \quad m \geq 0,
$$

$$
\nu^{(q)}_m = \frac{2\sqrt{\pi}}{k} \frac{q^{m+1/2}}{1 + q^{2m+1}}, \quad m \geq 0,
$$

$$
\nu^{(r)}_m = 2\sqrt{\pi} \frac{q^{m}}{1 + q^{2m}}, \quad m \geq 0,
$$

$$
\nu^{(s)}_m = \frac{4\sqrt{\pi}}{k^2} \frac{q^{m}}{1 + q^{2m}}, \quad m \geq 1.
$$

Moreover, the corresponding eigenvectors and their ℓ^2-norms are expressible in terms of the Stieltjes–Carlitz polynomials and elliptic integrals (not displayed).
Thank you!