On the localization of spectra of complex sampling Jacobi matrices and open problems

Frantisek Štampach

Stockholm University
and

MAFIA

Quantum circle
Introduction

Experiments

Attempts to prove the Conjecture

The case of uniform grid

The story of Toeplitz matrices

The circle example

Equipotential measures
Definition:
- Let $a, b \in C([0, 1])$ be complex-valued functions.
Sampling matrices

Definition:

- Let \(a, b \in C([0, 1]) \) be complex-valued functions.
- Let \(\Delta_n \in \{(t_1, t_2, \ldots, t_n) \mid 0 \leq t_1 < t_2 < \cdots < t_n \leq 1\} \) be a partition of the interval \([0, 1]\).
Sampling matrices

Definition:

- Let $a, b \in C([0, 1])$ be complex-valued functions.
- Let $\Delta_n \in \{(t_1, t_2, \ldots, t_n) \mid 0 \leq t_1 < t_2 < \cdots < t_n \leq 1\}$ be a partition of the interval $[0, 1]$.
- We call the matrix

\[
J_{a,b}(\Delta_n) := \begin{pmatrix}
 b(t_1) & a(t_1) \\
 a(t_1) & b(t_2) & a(t_2) \\
 a(t_2) & b(t_3) & a(t_3) \\
 & \ddots & \ddots & \ddots \\
 a(t_{n-2}) & b(t_{n-1}) & a(t_{n-1}) \\
 a(t_{n-1}) & b(t_n)
\end{pmatrix}
\]

a sampling Jacobi matrix.
Sampling matrices

Definition:

▶ Let $a, b \in C([0, 1])$ be complex-valued functions.
▶ Let $\Delta_n \in \{(t_1, t_2, \ldots, t_n) \mid 0 \leq t_1 < t_2 < \cdots < t_n \leq 1\}$ be a partition of the interval $[0, 1]$.
▶ We call the matrix

$$J_{a,b}(\Delta_n) := \begin{pmatrix} b(t_1) & a(t_1) \\ a(t_1) & b(t_2) & a(t_2) \\ a(t_2) & b(t_3) & a(t_3) \\ & \ddots \ddots \ddots \\ & & a(t_{n-2}) & b(t_{n-1}) & a(t_{n-1}) \\ & & & a(t_{n-1}) & b(t_n) \end{pmatrix}$$

a sampling Jacobi matrix.

Where they appear:

▶ Discrete approximations of 1-d BVP (grid, finite difference scheme),
▶ random matrices.

Problem:
Localization of $\text{spec}(J_{a,b}(\Delta_n))$ in terms of a, b.

Sampling matrices

Definition:

- Let $a, b \in C([0, 1])$ be complex-valued functions.
- Let $\Delta_n \in \{(t_1, t_2, \ldots, t_n) \mid 0 \leq t_1 < t_2 < \cdots < t_n \leq 1\}$ be a partition of the interval $[0, 1]$.
- We call the matrix

$$J_{a,b}(\Delta_n) := \begin{pmatrix}
 b(t_1) & a(t_1) \\
 a(t_1) & b(t_2) & a(t_2) \\
 a(t_2) & b(t_3) & a(t_3) \\
 \vdots & \vdots & \vdots \\
 a(t_{n-2}) & b(t_{n-1}) & a(t_{n-1}) \\
 a(t_{n-1}) & b(t_n)
\end{pmatrix}$$

a sampling Jacobi matrix.

Where they appear:

- Discrete approximations of 1-d BVP (grid, finite difference scheme),
Sampling matrices

Definition:

- Let $a, b \in C([0, 1])$ be complex-valued functions.
- Let $\Delta_n \in \{(t_1, t_2, \ldots, t_n) \mid 0 \leq t_1 < t_2 < \cdots < t_n \leq 1\}$ be a partition of the interval [0, 1].
- We call the matrix

\[
J_{a,b}(\Delta_n) := \begin{pmatrix}
 b(t_1) & a(t_1) \\
 a(t_1) & b(t_2) & a(t_2) \\
 a(t_2) & b(t_3) & a(t_3) \\
 \vdots & \vdots & \vdots \\
 a(t_{n-2}) & b(t_{n-1}) & a(t_{n-1}) \\
 a(t_{n-1}) & b(t_n)
\end{pmatrix}
\]

a sampling Jacobi matrix.

Where they appear:

- Discrete approximations of 1-d BVP (grid, finite difference scheme),
- random matrices.
Sampling matrices

Definition:

- Let \(a, b \in C([0, 1]) \) be complex-valued functions.
- Let \(\Delta_n \in \{(t_1, t_2, \ldots, t_n) \mid 0 \leq t_1 < t_2 < \cdots < t_n \leq 1\} \) be a partition of the interval \([0, 1]\).
- We call the matrix

\[
J_{a,b}(\Delta_n) := \begin{pmatrix}
 b(t_1) & a(t_1) \\
 a(t_1) & b(t_2) & a(t_2) \\
 a(t_2) & b(t_3) & a(t_3) \\
 & \ddots & \ddots & \ddots \\
 & & a(t_{n-2}) & b(t_{n-1}) & a(t_{n-1}) \\
 & & a(t_{n-1}) & b(t_n)
\end{pmatrix}
\]

a **sampling Jacobi matrix**.

Where they appear:

- Discrete approximations of 1-d BVP (grid, finite difference scheme),
- random matrices.

Problem:

Localization of \(\text{spec}(J_{a,b}(\Delta_n)) \) in terms of \(a, b \).
Contents

Introduction

Experiments

Attempts to prove the Conjecture

The case of uniform grid

The story of Toeplitz matrices

The circle example

Equipotential measures
Square: $a(t) = i/2, \ b(t) = 1 - 2t$.
Circle: \(a(t) = i \sqrt{t(1 - t)} \), \(b(t) = 1 - 2t \).
Butterfly:

\[a(t) = \frac{i}{2} \left(-40320 + 198971 t^2 - 163647 t^4 + 53837 t^6 - 9488 t^8 \right) \]

\[b(t) = 40320(1 - 2t) \]
Fish: \[a(t) = 4it - 4it^2 - it^3 \]

\[b(t) = -3 - 5t - 4t^2 - t^3 - t^4 + t^5 - 4t^6 - 3t^7 + 3t^8 + 5t^9 + 3t^{10} - 2t^{11} - 3t^{13} + 4t^{14} \]
Fallen snowman: $a(t) = \ldots \text{complicated} \ldots$, $b(t) = \ldots \text{complicated} \ldots$
A random object:

\[a(t) = (-4 - 2i) + (5 + 5i)t - (4 + 3i)t^2 + (4 + 5i)t^3 \]

\[b(t) = (-4 + i) - 2t - (3 + i)t^2 - (3 + 2i)t^3 \]
It seems the eigenvalues are somewhat localized ...
Estimations for the localization domain

One has

\[\|J(\Delta_n)\| \leq \|b\|_\infty + 2\|a\|_\infty, \quad \forall n, \forall \Delta_n, \forall a, b \in C([0,1]). \]
Estimations for the localization domain

- One has

\[\| J(\Delta_n) \| \leq \| b \|_\infty + 2\| a \|_\infty, \quad \forall n, \forall \Delta_n, \forall a, b \in C([0, 1]). \]

- Thus,

\[\text{spec}(J_{a,b}(\Delta_n)) \subset D(0, \| b \|_\infty + 2\| a \|_\infty). \]
Estimations for the localization domain

-one has

\[\|J(\Delta_n)\| \leq \|b\|_\infty + 2\|a\|_\infty, \quad \forall n, \forall \Delta_n, \forall a, b \in C([0, 1]). \]

- Thus,

\[\text{spec}(J_{a,b}(\Delta_n)) \subset D(0, \|b\|_\infty + 2\|a\|_\infty). \]

- This is very rough estimation ... much better job is done by Gerschrogin's theorem:
Estimations for the localization domain

One has
\[\| J(\Delta_n) \| \leq \| b \|_\infty + 2\| a \|_\infty, \quad \forall n, \forall \Delta_n, \forall a, b \in C([0, 1]). \]

Thus,
\[\text{spec}(J_{a,b}(\Delta_n)) \subset D(0, \| b \|_\infty + 2\| a \|_\infty). \]

This is very rough estimation ... much better job is done by Gerschrogin's theorem:

Gerschrogin circle theorem:

Let \(A = (a_{i,j}) \in \mathbb{C}^{n,n} \) and
\[R_i = \sum_{j \neq i} |a_{i,j}|, \]
then
\[\text{spec}(A) \subset \bigcup_{i=1}^{n} D(a_{i,i}, R_i). \]
Estimations for the localization domain

- One has
 \[\|J(\Delta_n)\| \leq \|b\|_\infty + 2\|a\|_\infty, \quad \forall n, \forall \Delta_n, \forall a, b \in C([0, 1]). \]

- Thus,
 \[\text{spec}(J_{a,b}(\Delta_n)) \subset D(0, \|b\|_\infty + 2\|a\|_\infty). \]

- This is very rough estimation ... much better job is done by Gerschrogin’s theorem:

Gerschrogin circle theorem:

Let \(A = (a_{i,j}) \in \mathbb{C}^{n,n} \) and
\[
R_i = \sum_{j \neq i} |a_{i,j}|,
\]
then
\[
\text{spec}(A) \subset \bigcup_{i=1}^{n} D(a_{i,i}, R_i).
\]

Applying Gerschrogin’s theorem we obtain much better localization:
\[
\text{spec}(J_{a,b}(\Delta_n)) \subset \bigcup_{0 \leq t \leq 1} D(b(t), 2a(t)) \quad \forall n, \forall \Delta_n
\]
Let $\Delta = \{\Delta_n\}_{n=1}^{\infty}$ be a sequence of partitions of $[0, 1]$. Put

$$\Lambda_{a,b}(\Delta) := \{ z \in \mathbb{C} | \liminf_{n \to \infty} \text{dist}(z, \text{spec}(J_{a,b}(\Delta_n))) = 0 \}.$$
Weaker formulation and the optimal localization

Let $\Delta = \{\Delta_n\}_{n=1}^{\infty}$ be a sequence of partitions of $[0, 1]$. Put

$$\Lambda_{a,b}(\Delta) := \{z \in \mathbb{C} \mid \liminf_{n \to \infty} \text{dist}(z, \text{spec}(J_{a,b}(\Delta_n))) = 0\}.$$

So, $\lambda \in \Lambda_{a,b}(\Delta)$ iff

$$\exists \{n_k\} \subset \mathbb{N} \quad \exists \lambda_k \in \text{spec}(J_{a,b}(\Delta_{n_k})) \text{ such that } \lim_{k \to \infty} \lambda_{n_k} = \lambda.$$
Weaker formulation and the optimal localization

Let $\Delta = \{\Delta_n\}_{n=1}^\infty$ be a sequence of partitions of $[0, 1]$. Put

$$\Lambda_{a,b}(\Delta) := \{z \in \mathbb{C} \mid \liminf_{n \to \infty} \text{dist}(z, \text{spec}(J_{a,b}(\Delta_n))) = 0\}.$$

So, $\lambda \in \Lambda_{a,b}(\Delta)$ iff

$$\exists \{n_k\} \subset \mathbb{N} \quad \exists \lambda_k \in \text{spec}(J_{a,b}(\Delta_{n_k})) \text{ such that } \lim_{k \to \infty} \lambda_{n_k} = \lambda.$$

Conjecture:

For all $a, b \in C([0, 1])$ and Δ a sequence of partitions of $[0, 1]$, it holds

$$\Lambda_{a,b}(\Delta) \subset S_{a,b} := \bigcup_{0 \leq t \leq 1} [b(t) - 2a(t), b(t) + 2a(t)]$$

and this localization is optimal.
Let \(\Delta = \{\Delta_n\}_{n=1}^{\infty} \) be a sequence of partitions of \([0, 1]\). Put

\[
\Lambda_{a,b}(\Delta) := \{ z \in \mathbb{C} \mid \liminf_{n \to \infty} \text{dist}(z, \text{spec}(J_{a,b}(\Delta_n))) = 0 \}.
\]

So, \(\lambda \in \Lambda_{a,b}(\Delta) \) iff

\[
\exists \{n_k\} \subset \mathbb{N} \quad \exists \lambda_k \in \text{spec}(J_{a,b}(\Delta_{n_k})) \text{ such that } \lim_{k \to \infty} \lambda_{n_k} = \lambda.
\]

Conjecture:

For all \(a, b \in C([0, 1]) \) and \(\Delta \) a sequence of partitions of \([0, 1]\), it holds

\[
\Lambda_{a,b}(\Delta) \subset S_{a,b} := \bigcup_{0 \leq t \leq 1} [b(t) - 2a(t), b(t) + 2a(t)]
\]

and this localization is optimal.

Equivalently the statement says: \(\forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n \geq n_0, \) one has

\[
\text{spec}(J_{a,b}(\Delta_n)) \subset U_\epsilon(S_{a,b}).
\]
Let’s take a look on pictures...
Square: \(a(t) = \frac{i}{2}, \ b(t) = 1 - 2t. \)
Square: $a(t) = i/2$, $b(t) = 1 - 2t$.
Circle: $a(t) = i \sqrt{t(1 - t)}, \quad b(t) = 1 - 2t.$
Circle: \(a(t) = i \sqrt{t(1-t)} \), \(b(t) = 1 - 2t \).
Butterfly: \[a(t) = \frac{i}{2} \left(-40320 + 198971t^2 - 163647t^4 + 53837t^6 - 9488t^8 \right) \]
\[b(t) = 40320(1 - 2t) \]
Butterfly: \[a(t) = \frac{i}{2} \left(-40320 + 198971t^2 - 163647t^4 + 53837t^6 - 9488t^8 \right) \]
\[b(t) = 40320(1 - 2t) \]
Fish: \[a(t) = 4it - 4it^2 - it^3 \]
\[b(t) = -3 - 5t - 4t^2 - t^3 - t^4 + t^5 - 4t^6 - 3t^7 + 3t^8 + 5t^9 + 3t^{10} - 2t^{11} - 3t^{13} + 4t^{14} \]
Fish: \[a(t) = 4it - 4it^2 - it^3 \]
\[b(t) = -3 - 5t - 4t^2 - t^3 - t^4 + t^5 - 4t^6 - 3t^7 + 3t^8 + 5t^9 + 3t^{10} - 2t^{11} - 3t^{13} + 4t^{14} \]
Fallen snowman: \(a(t) = \ldots \) complicated \ldots, \(b(t) = \ldots \) complicated \ldots
Fallen snowman: \[a(t) = \ldots \text{complicated} \ldots, \quad b(t) = \ldots \text{complicated} \ldots \]
A random object:

\[a(t) = (-4 - 2i) + (5 + 5i)t - (4 + 3i)t^2 + (4 + 5i)t^3 \]

\[b(t) = (-4 + i) - 2t - (3 + i)t^2 - (3 + 2i)t^3 \]
A random object:

\[a(t) = (-4 - 2i) + (5 + 5i)t - (4 + 3i)t^2 + (4 + 5i)t^3 \]

\[b(t) = (-4 + i) - 2t - (3 + i)t^2 - (3 + 2i)t^3 \]
An attempt to prove the Conjecture

Idea:

1. To replace $J_{a,b}(\Delta_n)$ by a matrix of “simpler structure” which is close (in norm) to $J_{a,b}(\Delta_n)$ and use some perturbation arguments, but in non-self-adjoint setting!
An attempt to prove the Conjecture

Idea:

1. To replace $J_{a,b}(\Delta_n)$ by a matrix of “simpler structure” which is close (in norm) to $J_{a,b}(\Delta_n)$ and use some perturbation arguments, but in non-self-adjoint setting!

2. Similar approach has been successfully used by Tilli in 1998 solving the similar problem for the so called locally Toeplitz matrices. However, all his results concerning eigenvalues are derived under the self-adjointness assumption!
An attempt to prove the Conjecture

Idea:

1. To replace $J_{a,b}(\Delta_n)$ by a matrix of “simpler structure” which is close (in norm) to $J_{a,b}(\Delta_n)$ and use some perturbation arguments, but in non-self-adjoint setting!

2. Similar approach has been successfully used by Tilli in 1998 solving the similar problem for the so called locally Toeplitz matrices. However, all his results concerning eigenvalues are derived under the self-adjointness assumption!

3. For instance, one can consider one can divide $[0, 1]$ to $m(\leq n)$ subintervals, decompose $n = n_1 + \cdots + n_m$, and introduce the following matrices (the frozen boxes idea):

$$A_n^{(m)} = \bigoplus_{i=1}^{m} J_{n_i}(a_i, b_i) + \sum_{i=1}^{m-1} x_i \left(e_{N_i} e_{N_i+1}^T + e_{N_i+1} e_{N_i}^T \right)$$

where $N_i = n_1 + \cdots + n_i$ and $a_i = a(t_{n_i})$, $b_i = b(t_{n_i})$ and $J_{n_i}(a_i, b_i)$ is a tridiagonal Toeplitz $n_i \times n_i$ matrix. Treat the problem for $A_n^{(m)}$.
An attempt to prove the Conjecture

Idea:

1. To replace $J_{a,b}(\Delta_n)$ by a matrix of “simpler structure” which is close (in norm) to $J_{a,b}(\Delta_n)$ and use some perturbation arguments, but in non-self-adjoint setting!

2. Similar approach has been successfully used by Tilli in 1998 solving the similar problem for the so called locally Toeplitz matrices. However, all his results concerning eigenvalues are derived under the self-adjointness assumption!

3. For instance, one can consider one can divide $[0, 1]$ to $m(\leq n)$ subintervals, decompose $n = n_1 + \cdots + n_m$, and introduce the following matrices (the frozen boxes idea):

$$A_n^{(m)} = \bigoplus_{i=1}^{m} J_{n_i}(a_i, b_i) + \sum_{i=1}^{m-1} x_i \left(e_{N_i} e_{N_i+1}^T + e_{N_i+1} e_{N_i}^T \right)$$

where $N_i = n_1 + \cdots + n_i$ and $a_i = a(t_{n_i})$, $b_i = b(t_{n_i})$ and $J_{n_i}(a_i, b_i)$ is a tridiagonal Toeplitz $n_i \times n_i$ matrix. Treat the problem for $A_n^{(m)}$.

4. However, it is to say that picture is very incomplete now and several pieces are missing!
Asymptotic eigenvalue distribution of $A_n^{(m)}$

Here we put $x_i = \sqrt{a_i a_{i+1}}$.

Theorem:

Let $m \in \mathbb{N}$ and for all $j \in \{1, \ldots, m\}$, let $n_j : \mathbb{N} \to \mathbb{N}$ be such that $n_j(n) \to \infty$, as $n \to \infty$, and $N = n_1 + \cdots + n_m$.

Then
\[
\lim_{n \to \infty} \det(A_n^{(m)}(N(n)) - z) \prod_{j=1}^m a_{n_j(n)} U_{n_j(n)}(b_j - z^2 a_j) = m - 1 \prod_{j=1}^m \left[1 - \frac{1}{f(b_j - z^2 a_j)} f(b_j + 1 - z^2 a_j + 1)\right]
\]

where $f(z) = z - \sqrt{z - 1} \sqrt{z + 1}$ and $U_n(\cdot)$ stands for the Chebyshev polynomials of the 2nd kind, and the convergence is local uniform in $z \in \mathbb{C} \cup m_j = 1 [b_j - 2 a_j, b_j + 2 a_j]$.

Corollary:

"The set of limit points of $\text{spec}(A_n^{(m)}(N(n)))$, as $n \to \infty" = m \bigcup_{j=1}^m [b_j - 2 a_j, b_j + 2 a_j]."
Here we put $x_i = \sqrt{a_i a_{i+1}}$.

Theorem:

Let $m \in \mathbb{N}$ and for all $j \in \{1, \ldots, m\}$, $n_j : \mathbb{N} \to \mathbb{N}$ be such that $n_j(n) \to \infty$, as $n \to \infty$, and $N = n_1 + \cdots + n_m$.

Corollary:
Asymptotic eigenvalue distribution of $A^{(m)}_n$

Here we put $x_i = \sqrt{a_ia_{i+1}}$.

Theorem:

Let $m \in \mathbb{N}$ and for all $j \in \{1, \ldots, m\}$, $n_j : \mathbb{N} \rightarrow \mathbb{N}$ be such that $n_j(n) \rightarrow \infty$, as $n \rightarrow \infty$, and $N = n_1 + \cdots + n_m$. Then

$$\lim_{n \rightarrow \infty} \frac{\det \left(A^{(m)}_{N(n)} - z \right)}{\prod_{j=1}^{m} \left(a_j^{n_j(n)} U_{n_j(n)} \left(\frac{b_j - z}{2a_j} \right) \right)} = \prod_{j=1}^{m-1} \left[1 - f \left(\frac{b_j - z}{2a_j} \right) f \left(\frac{b_{j+1} - z}{2a_{j+1}} \right) \right]$$

where $f(z) = z - \sqrt{z - 1} \sqrt{z + 1}$ and $U_n(\cdot)$ stands for the Chebyshev polynomials of the 2nd kind, and the convergence is local uniform in $z \in \mathbb{C} \setminus \bigcup_{j=1}^{m} [b_j - 2a_j, b_j + 2a_j]$.

Corollary:

"The set of limit points of $\text{spec} \left(A^{(m)}_{N(n)} \right)$, as $n \rightarrow \infty$" $= \bigcup_{j=1}^{m} [b_j - 2a_j, b_j + 2a_j]$.

Asymptotic eigenvalue distribution of $A_n^{(m)}$

Here we put $x_i = \sqrt{a_i a_{i+1}}$.

Theorem:

Let $m \in \mathbb{N}$ and for all $j \in \{1, \ldots, m\}$, $n_j : \mathbb{N} \to \mathbb{N}$ be such that $n_j(n) \to \infty$, as $n \to \infty$, and $N = n_1 + \cdots + n_m$. Then

$$
\lim_{n \to \infty} \frac{\det \left(A_{N(n)}^{(m)} - z \right)}{\prod_{j=1}^{m} a_j^{n_j(n)} U_{n_j(n)} \left(\frac{b_j - z}{2a_j} \right)} = \prod_{j=1}^{m-1} \left[1 - f \left(\frac{b_j - z}{2a_j} \right) f \left(\frac{b_{j+1} - z}{2a_{j+1}} \right) \right]
$$

where $f(z) = z - \sqrt{z - 1} \sqrt{z + 1}$ and $U_n(\cdot)$ stands for the Chebyshev polynomials of the 2nd kind, and the convergence is local uniform in $z \in \mathbb{C} \setminus \bigcup_{j=1}^{m} [b_j - 2a_j, b_j + 2a_j]$.

Corollary:

“The set of limit points of $\text{spec} \left(A_{N(n)}^{(m)} \right)$, as $n \to \infty$” $= \bigcup_{j=1}^{m} [b_j - 2a_j, b_j + 2a_j]$
The limit of eigenvalue-counting measures of $A_n^{(m)}$

- In case of matrices $A_{N(n)}^{(m)}$, we can prove much more.
The limit of eigenvalue-counting measures of $A_n^{(m)}$

- In case of matrices $A_{N(n)}^{(m)}$, we can prove much more.
- Denote $\mu_n^{(m)}$ the eigenvalue-counting measure of $A_{N(n)}^{(m)}$, i.e.,

$$
\mu_n^{(m)} = \sum_\lambda \frac{1}{\nu_a(\lambda)} \delta_\lambda
$$

where $\nu_a(\lambda)$ is the algebraic multiplicity of the eigenvalue λ.

The limit of eigenvalue-counting measures of $A^{(m)}_n$

- In case of matrices $A^{(m)}_{N(n)}$, we can prove much more.
- Denote $\mu^{(m)}_n$ the eigenvalue-counting measure of $A^{(m)}_{N(n)}$, i.e.,

$$\mu^{(m)}_n = \sum_{\lambda} \frac{1}{\nu_a(\lambda)} \delta_\lambda$$

where $\nu_a(\lambda)$ is the algebraic multiplicity of the eigenvalue λ.

Theorem:

Let $m \in \mathbb{N}$ and for all $j \in \{1, \ldots, m\}$, $n_j : \mathbb{N} \to \mathbb{N}$ be such that

$$\lim_{n \to \infty} n_j(n) = \infty \quad \text{and} \quad \lim_{n \to \infty} n_j(n+1) - n_j(n) = \ell_j \in \mathbb{N}.$$
The limit of eigenvalue-counting measures of $A_n^{(m)}$

- In case of matrices $A_{N(n)}^{(m)}$, we can prove much more.
- Denote $\mu_n^{(m)}$ the eigenvalue-counting measure of $A_{N(n)}^{(m)}$, i.e.,

$$\mu_n^{(m)} = \sum_{\lambda} \frac{1}{\nu_a(\lambda)} \delta_\lambda$$

where $\nu_a(\lambda)$ is the algebraic multiplicity of the eigenvalue λ.

Theorem:

Let $m \in \mathbb{N}$ and for all $j \in \{1, \ldots, m\}$, $n_j : \mathbb{N} \to \mathbb{N}$ be such that

$$\lim_{n \to \infty} n_j(n) = \infty \quad \text{and} \quad \lim_{n \to \infty} n_j(n + 1) - n_j(n) = \ell_j \in \mathbb{N}.$$

Then

$$\omega - \lim_{n \to \infty} \mu_n^{(m)} = \sum_{j=1}^{m} \ell_j \omega_{a_j, b_j}$$

where $\omega_{a, b}$ is the absolutely continuous measure supported on $[b - 2a, b + 2a]$ with density

$$\frac{d\omega_{a,b}}{dz}(z) = \frac{1}{2a} \frac{d\omega}{dx}\left(\frac{b - z}{2a}\right) \quad \text{and} \quad \frac{d\omega}{dx}(x) = \frac{\chi(-1,1)(x)}{\pi \sqrt{1 - x^2}}.$$
The case of uniform grid

- Take the sequence Δ of uniform partitions of $[0, 1]$, i.e.,

$$t_j^{(n)} = \frac{j}{n}, \quad j = 1, \ldots, n.$$
The case of uniform grid

- Take the sequence Δ of uniform partitions of $[0, 1]$, i.e.,

 $$t_j^{(n)} = \frac{j}{n}, \quad j = 1, \ldots, n.$$

- It seems the spectra of $J_{a,b}(\Delta_n)$ asymptotically approaches to certain curves in $S_{a,b}$.
The case of uniform grid

- Take the sequence Δ of uniform partitions of $[0, 1]$, i.e.,

$$t_j^{(n)} = \frac{j}{n}, \quad j = 1, \ldots, n.$$

- It seems the spectra of $J_{a,b}(\Delta_n)$ asymptotically approaches to certain curves in $S_{a,b}$.

See the pictures . . .
The square
The square - uniform grid
The circle
The circle - uniform grid
The butterfly
The butterfly-uniform grid
The fish
The fish - uniform grid
Fallen snowman
Fallen snowman - uniform grid
The random object
The random object - uniform grid
Open problems

Previous numerical observations give rise to many questions:

▶ Is it possible to find a description of the curves in terms of a and b?
▶ What are (topological, analytical,...) properties of these curves?
▶ Does the weak limit of eigenvalue-counting measures exist?
▶ If so, what can be said about the limiting measure?

Except few very special examples, all these questions remain open...
Open problems

Previous numerical observations give rise to many questions:

- Is possible to find a description of the curves in terms of a and b?
Previous numerical observations give rise to many questions:

- Is possible to find a description of the curves in terms of a and b?
- What are (topological, analytical,...) properties of these curves?
Previous numerical observations give rise to many questions:

- Is possible to find a description of the curves in terms of a and b?
- What are (topological, analytical,...) properties of these curves?
- Does the weak limit of eigenvalue-counting measures exist?
Open problems

Previous numerical observations give rise to many questions:

- Is possible to find a description of the curves in terms of a and b?
- What are (topological, analytical,...) properties of these curves?
- Does the weak limit of eigenvalue-counting measures exist?
- If, so what can be said about the limiting measure?
Previous numerical observations give rise to many questions:

- Is possible to find a description of the curves in terms of a and b?
- What are (topological, analytical, ...) properties of these curves?
- Does the weak limit of eigenvalue-counting measures exist?
- If, so what can be said about the limiting measure?

Except few very special examples, all these questions remain open . . .
Contents

Introduction

Experiments

Attempts to prove the Conjecture

The case of uniform grid

The story of Toeplitz matrices

The circle example

Equipotential measures
Band Toeplitz matrices

- **History:** Schmidt and Spitzer (1960), Hirschman (1967), Ullman (1967) and Widom (1990,1994).
Band Toeplitz matrices

- **History:** Schmidt and Spitzer (1960), Hirschman (1967), Ullman (1967) and Widom (1990, 1994).
- Let $T(b)$ stands for the banded Toeplitz operator determined by the symbol

$$b(t) = \sum_{j=-r}^{s} b_j t^j, \quad r, s \geq 1, \quad b_{-r} \neq 0, \quad b_s \neq 0,$$
Band Toeplitz matrices

History: Schmidt and Spitzer (1960), Hirschman (1967), Ullman (1967) and Widom (1990,1994).

Let $T(b)$ stands for the banded Toeplitz operator determined by the symbol

$$b(t) = \sum_{j=-r}^{s} b_j t^j, \quad r, s \geq 1, \quad b_{-r} \neq 0, \quad b_s \neq 0,$$

i.e.,

$$T(b) = \begin{pmatrix}
 b_0 & b_{-1} & b_{-2} & \cdots & b_{-r} \\
 b_1 & b_0 & b_{-1} & & \ddots \\
 b_2 & b_1 & b_0 & \ddots & \ddots \\
 & \ddots & \ddots & \ddots & \ddots \\
 b_s & & & & \\
\end{pmatrix}.$$
Band Toeplitz matrices

History: Schmidt and Spitzer (1960), Hirschman (1967), Ullman (1967) and Widom (1990, 1994).

Let $T(b)$ stands for the banded Toeplitz operator determined by the symbol

$$b(t) = \sum_{j=-r}^{s} b_j t^j, \quad r, s \geq 1, \quad b_{-r} \neq 0, \quad b_s \neq 0,$$

i.e.,

$$T(b) = \begin{pmatrix}
 b_0 & b_{-1} & b_{-2} & \cdots & b_{-r} \\
 b_1 & b_0 & b_{-1} & \ddots & \vdots \\
 b_2 & b_1 & b_0 & \ddots & \vdots \\
 \vdots & \ddots & \ddots & \ddots & \vdots \\
 b_s & \vdots & \ddots & b_0 & \ddots \\
\end{pmatrix}.$$

The $n \times n$ principle submatrix of $T(b)$ is denoted by $T_n(b)$.
Towards the limiting set

The limiting set of spectra $\text{spec}(T_n(b))$:

$$\Lambda(b) = \{ z \in \mathbb{C} | \lim_{n \to \infty} \text{dist}(z, \text{spec}(T_n(b))) = 0 \}.$$
Towards the limiting set

* The limiting set of spectra $\text{spec}(T_n(b))$:

$$\Lambda(b) = \{ z \in \mathbb{C} \mid \lim_{n \to \infty} \inf \text{dist}(z, \text{spec}(T_n(b))) = 0 \}.$$

* One might think that

$$\Lambda(b) = \text{spec}(T(b)).$$
Towards the limiting set

- The limiting set of spectra $\text{spec}(T_n(b))$:

\[\Lambda(b) = \{ z \in \mathbb{C} \mid \liminf_{n \to \infty} \text{dist}(z, \text{spec}(T_n(b))) = 0 \} . \]

- However, we have only the inclusion:

\[\Lambda(b) \subset \text{spec}(T(b)). \]
Towards the limiting set

- The limiting set of spectra $\text{spec}(T_n(b))$:

$$\Lambda(b) = \{ z \in \mathbb{C} \mid \liminf_{n \to \infty} \text{dist}(z, \text{spec}(T_n(b))) = 0 \}.$$

- However, we have only the inclusion:

$$\Lambda(b) \subseteq \text{spec}(T(b)).$$

- If

$$b_\rho(t) := b(\rho t), \quad \rho > 0,$$

then $T_n(b)$ and $T_n(b_\rho)$ are similar matrices since

$$T_n(b_\rho) = \text{diag}(\rho, \rho^2, \ldots, \rho^n) T_n(b) \text{ diag}(\rho^{-1}, \rho^{-2}, \ldots, \rho^{-n})$$
Towards the limiting set

- The limiting set of spectra $\text{spec}(T_n(b))$:

 \[
 \Lambda(b) = \{ z \in \mathbb{C} \mid \liminf_{n \to \infty} \text{dist}(z, \text{spec}(T_n(b))) = 0 \}.
 \]

- However, we have only the inclusion:

 \[
 \Lambda(b) \subseteq \text{spec}(T(b)).
 \]

- If

 \[
 b_{\rho}(t) := b(\rho t), \quad \rho > 0,
 \]

 then $T_n(b)$ and $T_n(b_{\rho})$ are similar matrices since

 \[
 T_n(b_{\rho}) = \text{diag}(\rho, \rho^2, \ldots, \rho^n) T_n(b) \text{diag}(\rho^{-1}, \rho^{-2}, \ldots, \rho^{-n})
 \]

- Therefore $\text{spec}(T_n(b)) = \text{spec}(T_n(b_{\rho}))$. Hence,

 \[
 \Lambda(b) \subseteq \bigcap_{\rho > 0} \text{spec}(T(b_{\rho})).
 \]
Towards the limiting set

- The limiting set of spectra \(\text{spec}(T_n(b)) \):
 \[
 \Lambda(b) = \{ z \in \mathbb{C} \mid \lim_{n \to \infty} \inf \text{dist}(z, \text{spec}(T_n(b))) = 0 \}.
 \]

- However, we have only the inclusion:
 \[
 \Lambda(b) \subset \text{spec}(T(b)).
 \]

- If
 \[
 b_\rho(t) := b(\rho t), \quad \rho > 0,
 \]
 then \(T_n(b) \) and \(T_n(b_\rho) \) are similar matrices since
 \[
 T_n(b_\rho) = \text{diag}(\rho, \rho^2, \ldots, \rho^n) T_n(b) \text{diag}(\rho^{-1}, \rho^{-2}, \ldots, \rho^{-n})
 \]

- Therefore \(\text{spec}(T_n(b)) = \text{spec}(T_n(b_\rho)) \). Actually we have
 \[
 \Lambda(b) = \bigcap_{\rho > 0} \text{spec}(T(b_\rho)).
 \]
Structure of the limiting set

- However, there is a much more useful description of $\Lambda(b)$. Define

$$Q(z; \lambda) := z^r (b(z) - \lambda).$$

Theorem (Schmidt and Spitzer):

$$\Lambda(b) = \left\{ \lambda \in \mathbb{C} : |z^r(\lambda)| = |z^r+1(\lambda)| \right\}$$

Based on this description of $\Lambda(b)$, it was proved that...

Theorem (Schmidt, Spitzer, Ullman):

$\Lambda(b)$ is a connected set that equals the union of a finite number of pairwise disjoint open analytic arcs and a finite number of the so called exceptional points (roughly speaking: branching points and endpoints).
Structure of the limiting set

- However, there is a much more useful description of $\Lambda(b)$. Define

$$Q(z; \lambda) := z^r (b(z) - \lambda).$$

- $Q(z; \lambda)$ is polynomial in z of degree $r + s$.

Theorem (Schmidt and Spitzer):

$\Lambda(b) = \{\lambda \in \mathbb{C} | |z_1(\lambda)| = |z_2(\lambda)| = \ldots = |z_{r+s}(\lambda)|\}$

Based on this description of $\Lambda(b)$, it was proved that...

Theorem (Schmidt, Spitzer, Ullman):

$\Lambda(b)$ is a connected set that equals the union of a finite number of pairwise disjoint open analytic arcs and a finite number of the so called exceptional points (roughly speaking: branching points and endpoints).
Structure of the limiting set

- However, there is a much more useful description of $\Lambda(b)$. Define

\[Q(z; \lambda) := z^r (b(z) - \lambda). \]

- $Q(z; \lambda)$ is polynomial in z of degree $r + s$.
- Denote $z_1(\lambda), \ldots, z_{r+s}(\lambda)$ the zeros of $Q(\cdot, \lambda)$, repeated according to their multiplicity, labeled such that

\[|z_1(\lambda)| \leq |z_2(\lambda)| \leq \ldots \leq |z_{r+s}(\lambda)|. \]
However, there is a much more useful description of $\Lambda(b)$. Define

$$Q(z; \lambda) := z^r (b(z) - \lambda).$$

$Q(z; \lambda)$ is polynomial in z of degree $r + s$.

Denote $z_1(\lambda), \ldots, z_{r+s}(\lambda)$ the zeros of $Q(\cdot, \lambda)$, repeated according to their multiplicity, labeled such that

$$|z_1(\lambda)| \leq |z_2(\lambda)| \leq \ldots \leq |z_{r+s}(\lambda)|.$$

Theorem (Schmidt and Spitzer):

$$\Lambda(b) = \{ \lambda \in \mathbb{C} \mid |z_r(\lambda)| = |z_{r+1}(\lambda)| \}$$
Structure of the limiting set

- However, there is a much more useful description of $\Lambda(b)$. Define

$$Q(z; \lambda) := z^r (b(z) - \lambda).$$

- $Q(z; \lambda)$ is polynomial in z of degree $r + s$.
- Denote $z_1(\lambda), \ldots, z_{r+s}(\lambda)$ the zeros of $Q(\cdot, \lambda)$, repeated according to their multiplicity, labeled such that

$$|z_1(\lambda)| \leq |z_2(\lambda)| \leq \ldots |z_{r+s}(\lambda)|.$$

Theorem (Schmidt and Spitzer):

$$\Lambda(b) = \{ \lambda \in \mathbb{C} \mid |z_r(\lambda)| = |z_{r+1}(\lambda)| \}$$

Based on this description of $\Lambda(b)$, it was proved that . . .
However, there is a much more useful description of \(\Lambda(b) \). Define

\[
Q(z; \lambda) := z^r (b(z) - \lambda).
\]

\(Q(z; \lambda) \) is polynomial in \(z \) of degree \(r + s \).

Denote \(z_1(\lambda), \ldots, z_{r+s}(\lambda) \) the zeros of \(Q(\cdot, \lambda) \), repeated according to their multiplicity, labeled such that

\[
|z_1(\lambda)| \leq |z_2(\lambda)| \leq \ldots |z_{r+s}(\lambda)|.
\]

Theorem (Schmidt and Spitzer):

\[
\Lambda(b) = \{ \lambda \in \mathbb{C} \mid |z_r(\lambda)| = |z_{r+1}(\lambda)| \}
\]

Based on this description of \(\Lambda(b) \), it was proved that \ldots

Theorem (Schmidt, Spitzer, Ullman):

\(\Lambda(b) \) is a connected set that equals the union of a finite number of pairwise disjoint open analytic arcs and a finite number of the so called exceptional points (roughly speaking: branching points and endpoints).
An example (7-diagonal Toeplitz)
Towards the limiting measure

If $\lambda \notin \Lambda(b)$ then one can find $\rho > 0$ such that

$$|z_r(\lambda)| < \rho < |z_{r+1}(\lambda)|$$
Towards the limiting measure

- If $\lambda \notin \Lambda(b)$ then one can find $\rho > 0$ such that

$$|z_r(\lambda)| < \rho < |z_{r+1}(\lambda)|$$

Define function $g : \mathbb{C} \setminus \Lambda(b) \to (0, \infty)$ by the formula

$$g(\lambda) = \exp \left(\frac{1}{2\pi} \int_0^{2\pi} \log |b(\rho e^{i\theta}) - \lambda| \, d\theta \right).$$

It can be shown that $g(\lambda)$ does not depend on the specific choice of ρ.

Theorem (Hirschman): The sequence of eigenvalue-counting measures of $T_n(b)$ converges weakly to a measure μ supported on $\Lambda(b)$. In addition, $d\mu(\lambda) = \frac{1}{2\pi} g(\lambda) |\partial g(\lambda)/\partial n_1 + \partial g(\lambda)/\partial n_2| ds(\lambda)$, for $\lambda \in \Lambda(b)$ a nonexceptional point (for such points, the outer normal vector derivatives $\partial g(\lambda)/\partial n_1$ and $\partial g(\lambda)/\partial n_2$ with respect to the two components separated by the respective arc of $\Lambda(b)$ exist) Here, ds stands for the arc length measure.
Towards the limiting measure

- If \(\lambda \notin \Lambda(b) \) then one can find \(\rho > 0 \) such that
 \[
 |z_r(\lambda)| < \rho < |z_{r+1}(\lambda)|
 \]

Define function \(g : \mathbb{C} \setminus \Lambda(b) \to (0, \infty) \) by the formula

\[
g(\lambda) = \exp \left(\frac{1}{2\pi} \int_0^{2\pi} \log \left| b(\rho e^{i\theta}) - \lambda \right| d\theta \right).
\]

It can be shown that \(g(\lambda) \) does not depend on the specific choice of \(\rho \).

Theorem (Hirschman):

The sequence of eigenvalue-counting measures of \(T_n(b) \) converges weakly to a measure \(\mu \) supported on \(\Lambda(b) \). In addition,

\[
d\mu(\lambda) = \frac{1}{2\pi} \frac{1}{g(\lambda)} \left| \frac{\partial g(\lambda)}{\partial n_1} + \frac{\partial g(\lambda)}{\partial n_2} \right| ds(\lambda),
\]

for \(\lambda \in \Lambda(b) \) a nonexceptional point (for such points, the outer normal vector derivatives \(\partial g/\partial n_1 \) and \(\partial g/\partial n_2 \) with respect to the two components separated by the respective arc of \(\Lambda(b) \) exist) Here, \(ds \) stands for the arc length measure.
Contents

Introduction

Experiments

Attempts to prove the Conjecture

The case of uniform grid

The story of Toeplitz matrices

The circle example

Equipotential measures
Unit disk and the Szegö curve
Contents

Introduction

Experiments

Attempts to prove the Conjecture

The case of uniform grid

The story of Toeplitz matrices

The circle example

Equipotential measures
The logarithmic potential

Let μ be a finite positive measure compactly supported in \mathbb{C}. The logarithmic potential is defined as

$$U^\mu(z) = \int_{\mathbb{C}} \log |z - \xi| d\mu(\xi).$$

(U^μ is harmonic in $\mathbb{C} \setminus \text{supp } \mu$ and subharmonic in \mathbb{C}.)
Let μ be a finite positive measure compactly supported in \mathbb{C}. The logarithmic potential is defined as

$$U^\mu(z) = \int_\mathbb{C} \log |z - \xi|d\mu(\xi).$$

(U^μ is harmonic in $\mathbb{C} \setminus \text{supp } \mu$ and subharmonic in \mathbb{C}.)

Two measures μ and ν are called equipotential iff

$$U^\mu(z) = U^\nu(z), \quad \forall z \in \mathbb{C} \setminus (\text{supp } \mu \cup \text{supp } \nu).$$
Theorem

Let μ_n be the eigenvalue-counting measures of $J_{a,b}(\Delta_n)$ with uniform partitions Δ_n. Then there is a neighborhood U of ∞ such that

$$\lim_{n \to \infty} U^{\mu_n}(z) = U^{\sigma}(z), \quad \forall z \in U$$
Equipotential measures

Theorem

Let μ_n be the eigenvalue-counting measures of $J_{a,b}(\Delta_n)$ with uniform partitions Δ_n. Then there is a neighborhood U of ∞ such that

$$\lim_{n \to \infty} U^{\mu_n}(z) = U^{\sigma}(z), \quad \forall z \in U$$

where

$$\sigma = \int_0^1 \omega_{a(t),b(t)} \, dt.$$
Theorem

Let μ_n be the eigenvalue-counting measures of $J_{a,b}(\Delta_n)$ with uniform partitions Δ_n. Then there is a neighborhood U of ∞ such that

$$\lim_{n \to \infty} U^{\mu_n}(z) = U^\sigma(z), \quad \forall z \in U$$

where

$$\sigma = \int_0^1 \omega_{a(t),b(t)} \, dt.$$

and

$$\frac{d\omega_{a,b}}{dz}(z) = \frac{1}{2a} \frac{d\omega}{dx} \left(\frac{b - z}{2a} \right) \quad \text{and} \quad \frac{d\omega}{dx}(x) = \frac{\chi(-1,1)(x)}{\pi \sqrt{1 - x^2}}.$$
Equipotential measures

Theorem

Let μ_n be the eigenvalue-counting measures of $J_{a,b}(\Delta_n)$ with uniform partitions Δ_n. Then there is a neighborhood U of ∞ such that

$$\lim_{n \to \infty} U^{\mu_n}(z) = U^{\sigma}(z), \quad \forall z \in U$$

where

$$\sigma = \int_0^1 \omega_{a(t),b(t)} \, dt.$$

and

$$\frac{d\omega_{a,b}}{dz}(z) = \frac{1}{2a} \frac{d\omega}{dx} \left(\frac{b - z}{2a} \right) \quad \text{and} \quad \frac{d\omega}{dx}(x) = \frac{\chi(-1,1)(x)}{\pi \sqrt{1 - x^2}}.$$

Corollary

If the Conjecture stating $\Lambda_{a,b}(\Delta) \subset S_{a,b}$ holds true and the weak* limit μ of measures μ_n exists. Then the measures μ and σ are equipotential.
Veselé Velikonoce