Deep Neural Networks

Jan Drchal

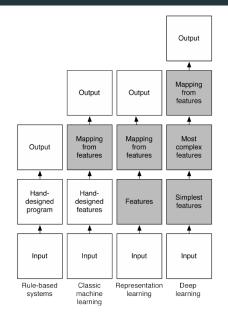
Artificial Intelligence Center Faculty of Electrical Engineering Czech Technical University in Prague

Topics covered in the lecture:

- Deep Architectures
- Convolutional Neural Networks (CNNs)
- Transfer learning

Deep Architectures

Learning Paradigms

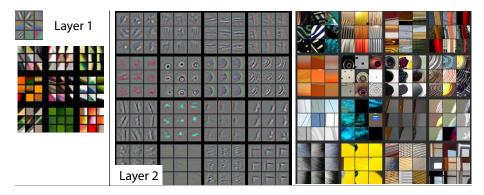


https://rinuboney.github.io/2015/10/18/theoretical-motivations-deep-learning.html

2

Why Deep Architectures?

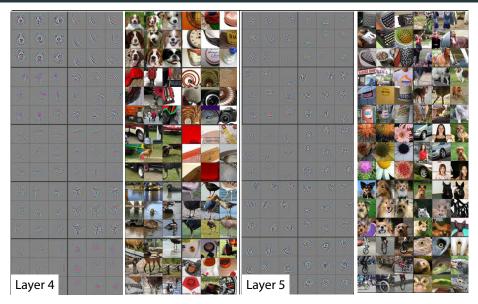
- Is it better to use deep architectures rather than the shallow ones for complex nonlinear mappings?
- We know that deep architectures evolved in Nature (e.g., cortex)
- Universal approximation theorem: one layer is enough so why to bother with more layers?
- Mhaskar et al: *Learning Functions: When Is Deep Better Than Shallow*, 2016:
 - deep neural networks can have exponentially less units than shallow networks for learning the same function
 - functions such as those realized by current deep convolutional neural networks are considered
- Handcrafted features vs. automatic extraction
- Gradually increasing complexity, intermediate representations: each successive layer brings higher abstraction



Zeiler and Fergus: Visualizing and Understanding Convolutional Networks, 2013

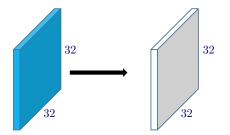
Zeiler and Fergus: Visualizing and Understanding Convolutional Networks, 2013

Features in Deep Neural Networks



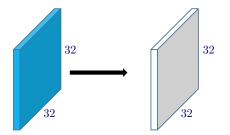
Zeiler and Fergus: Visualizing and Understanding Convolutional Networks, 2013

Processing Images



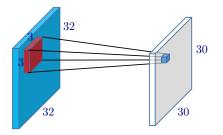
- Input: grayscale image 32×32 pixels
- Output: layer of 32×32 features
- How many parameters do we need when input and output is fully connected?

Processing Images



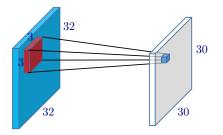
- Input: grayscale image 32×32 pixels
- Output: layer of 32×32 features
- How many parameters do we need when input and output is fully connected? $32^2_{outputs} \times (32^2_{inputs} + \frac{1}{biases}) \approx 1 M$

Locally Connected Layer



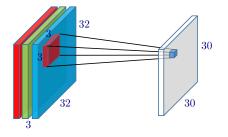
- Motivation: topographical mapping in the visual cortex nearby cells process nearby regions in the visual field
- Each neuron has a receptive field of 3×3 pixels
- It is fully connected only to the corresponding set of 9 inputs
- How many parameters do we need now?

Locally Connected Layer



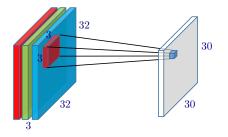
- Motivation: topographical mapping in the visual cortex nearby cells process nearby regions in the visual field
- Each neuron has a receptive field of 3×3 pixels
- It is fully connected only to the corresponding set of 9 inputs
- How many parameters do we need now? $30^2_{_{outputs}}\times(3^2_{_{inputs}}+1)=9k$

Multiple Input Channels



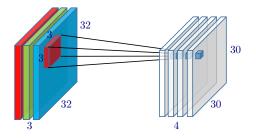
- We can have more input channels, e.g., colors
- Now the input is defined by width, height and depth: $32\times32\times3$
- The number of parameters is $\frac{30^2}{_{outputs}}\times(\frac{3}{_{channels}}\times\frac{3^2}{_{inputs}}+\frac{1}{_{bias}})\approx25k$

Sharing Parameters

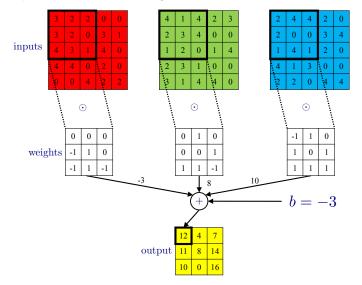


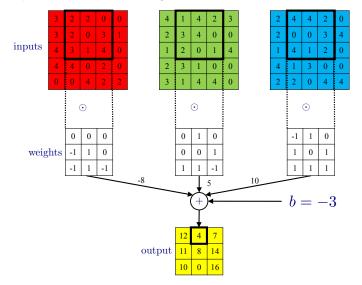
- We can further reduce the number of parameters by sharing weights
- Use the same set of weights and bias for all outputs, define a *filter*
- The number of parameters drops to $3 \times 3^2 + 1_{\text{bias}} = 28$
- Translation equivariance

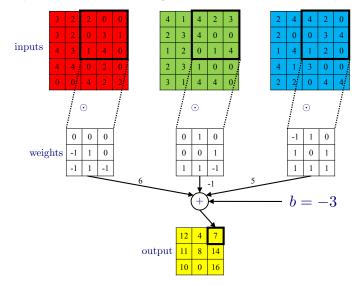
Multiple Output Channels

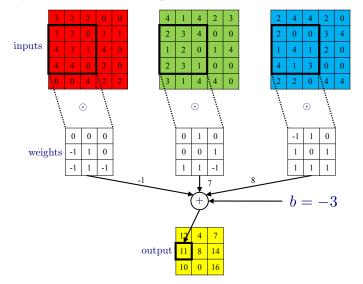


- Extract multiple different of features
- Use multiple *filters* to get more *feature maps*
- For 4 filters we have $\underset{inputs}{4}\times(3\times3^2+\underset{bias}{1})=112$ parameters
- This is the convolutional layer
- Processes volume into volume

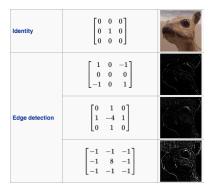








Convolution Applied to an Image

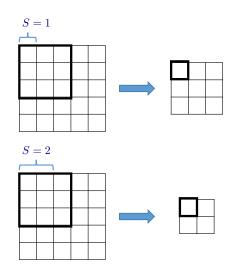


Sharpen	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	
Box blur (normalized)	$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	S
Gaussian blur (approximation)	$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$	C.

https://en.wikipedia.org/wiki/Kernel_(image_processing)

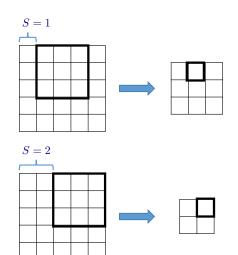
Stride

- Stride hyper parameter, typically $S \in \{1,2\}$
- Higher stride produces smaller output volumes spatially



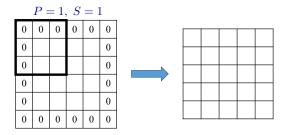
Stride

- Stride hyper parameter, typically $\mathcal{S} \in \{1,2\}$
- Higher stride produces smaller output volumes spatially



Zero Padding

- Convolutional layer reduces the spatial size of the output w.r.t. the input
- For many layers this might be a problem
- This is often fixed by zero padding the input
- The size of the zero padding is denoted P



Convolutional Layer Summary

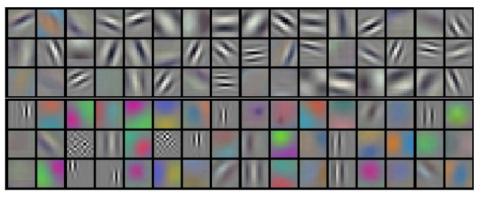
- Input volume: $W_{input} \times H_{input} \times C$
- Output volume: $W_{\text{output}} \times H_{\text{output}} \times D$
- Having *D* filters:
 - receptive field of $F \times F$ units,
 - stride S
 - zero padding P

$$W_{\text{output}} = (W_{\text{input}} - F + 2P)/S + 1$$
$$H_{\text{output}} = (H_{\text{input}} - F + 2P)/S + 1$$

- Needs F^2CD weights and D biases
- The number of activations and δ s to store: $W_{\text{output}} imes H_{\text{output}} imes D$

Convolution: Weights Visualization

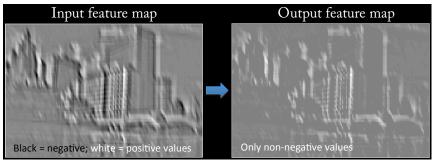
• Filters of the first layer



Krizhevsky, Sutskever, Hinton: ImageNet Classification with Deep Convolutional Neural Networks, 2012

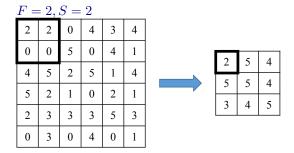
Convolutional Layer: Nonlinearities

- In most cases a nonlinearity (sigmoid, tanh, ReLU) is applied to the outputs of the convolutional layer
- Example: ReLU units

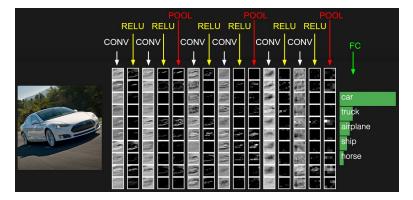


Rob Fergus: MLSS 2015 Summer School

- Reduces spatial resolution \rightarrow less parameters \rightarrow helps with overfitting
- Introduces translation invariance and invariance to small rotations
- Depth is not affected



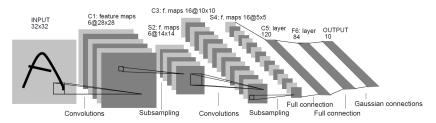
Convolutional Neural Networks (CNNs)



http://cs231n.github.io/convolutional-networks/

LeNet-5 (1998)

- Yann LeCun
- CNN for written character recognition dataset MNIST
- Training set 60,000, testing set 10,000 examples



LeCun et al.: Gradient-based learning applied to document recognition, 1998

Errors by LeNet-5

- 82 errors of 10k test samples (current best 21)
- Human error expected to be between 20 to 30



LeCun et al.: Gradient-based learning applied to document recognition, 1998

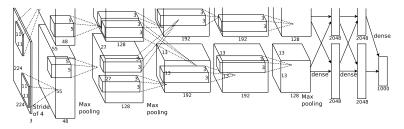
- Dataset of high-resolution color images: 15M training examples, 22k classes
- ImageNet Large Scale Visual Recognition Challenge (ILSVRC) uses subset of the ImageNet: 1.3M training, 50k validation, 100k testing samples, 1000 classes



(a) Siberian husky (b) Eskimo dog Szegedy et al.: Going deeper with convolutions, 2014

AlexNet 2012

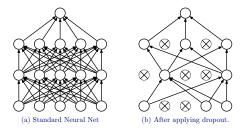
- Two separate streams for 2 GPUs (GTX 580), 60M parameters
- Data augmentation (increasing dataset size): 224 × 224 patches (+ mirrored) of 256 × 256 original images, altering RGB intensities
- Uses ReLU and dropout
- Top five error 18.2% for the basic net decreased to 15.4% for an ensemble of 7 CNNs, pre-CNN best was 25.6%



Krizhevsky et al.: ImageNet Classification with Deep Convolutional Neural Networks, 2012

Dropout

- Idea: average many neural networks, share weights
- For each training example omit a unit with probability p (often p = 0.5)
- This is like sampling from 2^U networks where U is the number of units
- Typically only a small amount of 2^U networks is actually sampled
- Prevents coadaptation of feature detectors



Srivastava et al.: A Simple Way to Prevent Neural Networks from Overfitting, 2014

Dropout (contd.)

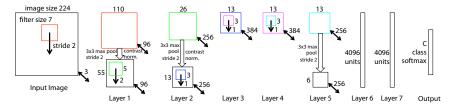
- How to make predictions with networks using dropout?
- Scale outputs (output weights) of all affected units by p
- For a linear unit taking inputs from the dropout layer we have:

$$egin{aligned} &s = \sum_{i=1}^n w_i \delta_i x_i, \quad p(\delta_i | p) = ext{Ber}(\delta_i | p) \ &\mathbb{E}(s) = \sum_{i=1}^n w_i \mathbb{E}(\delta_i) x_i = p \sum_{i=1}^n w_i x_i \end{aligned}$$

where the expectation is computed over all 2^n configurations

- For general neural networks we still get a good approximation of the expectation when scaling by *p*
- See Baldi and Sadowski: The Dropout Learning Algorithm, 2014

- Smaller filters for the first convolutional layer CONV1: 7 \times 7, S = 2 instead of 11 \times 11, S = 4
- CONV3-5: more depth
- Top five error 16.5%, 14.8% for an ensemble of 6 CNN



Zeiler and Fergus: Visualizing and Understanding Convolutional Networks, 2013

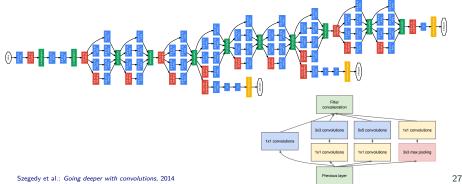
VGGNet 2014

- Simonyan, Zisserman: Very Deep Convolutional Networks for Large-Scale Image Recognition, 2014
- Lowering filter spatial resolution (F = 3, S = 1, P = 1), increasing depth
- A sequence of 3×3 filters can emulate a single large one
- Top five error 7.3%, 6.8% for an ensemble of 2 CNNs

input	conv3-64	conv3-64	MP	conv3-128	conv3-128	MP	conv3-256	conv3-256	conv3-256	MP	conv3-512	conv3-512	conv3-512	MP	conv3-512	conv3-512	conv3-512	MP	FC - 4096	FC - 4096	FC - 1000	softmax
parameters	1.7k	37k		74k	147k		295k	590k	590k		1.2M	2.4M	2.4M		2.4M	2.4M	2.4M		103M	16.7M	4M	
activations 150k	3.2M	3.2M	800k	1.6M	1.6M	400k	800k	800k	800k	200k	400k	400k	400k	100k	100k	100k	100k	25k	4096	4096	1000	1000
224 x 224 x 3	224 x 224 x 64		112×112×64	112×112×128		56 x 56 x 128	56 x 56 x 256			28×28×256	28 x 28 x 512			14×14 512	$14 \times 14 \times 512$			7×7×512	1××1×4096	1×1×4096	$1 \times 1 \times 1000$	

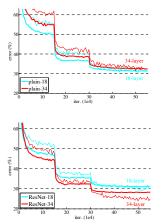
GoogLeNet 2014

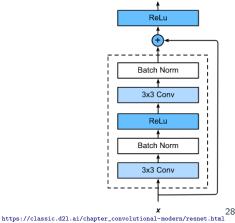
- Use of inception layers instead of pure convolutional ones
- Fully connected output layer preceded by the global average pooling: the last layer before average pooling has $7\times7\times1024$ it is spatially reduced to $1\times1\times1024$
- Only 5M parameters (60M AlexNet)
- Auxiliary classifiers: their losses are added with discount weight
- Top five error 6.7%



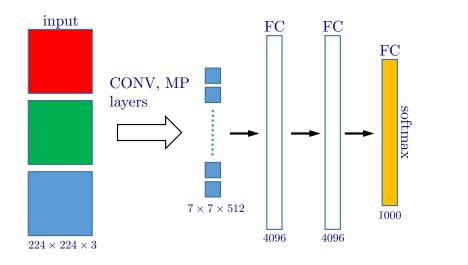
ResNet 2015

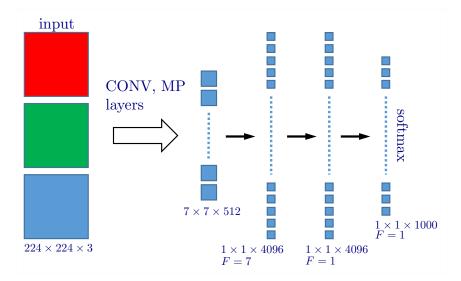
- He et al.: Deep Residual Learning for Image Recognition, 2015
- 152 layers (2-3 weeks on 8 GPUs)
- Degradation problem \Rightarrow skip connections
- Batch normalization instead of dropout
- Top five error 3.6% (human performance 5.1% expected)

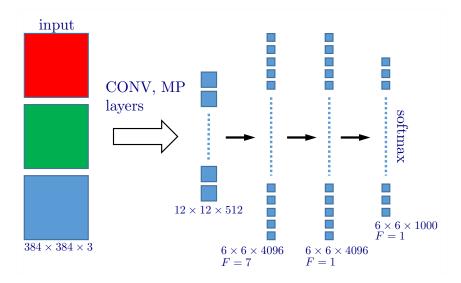


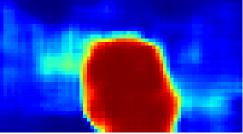


- Convolutional layer can be simply transformed to a Fully-connected layer \rightarrow sparse weight matrix
- The other direction is also possible:
 FC layer of D units following a F × F × C convolutional layer can be replaced by a 1 × 1 × D convolutional layer using F × F filters (P = 0, S = 1)
- In both cases you do not have to recompute the weights, you just rearrange them



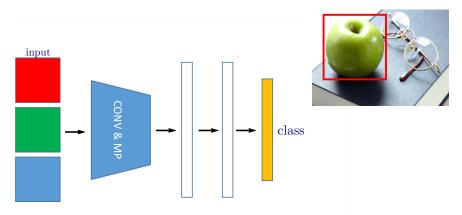




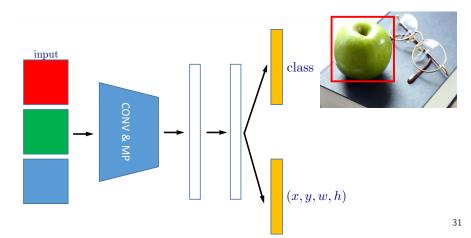


https://github.com/gabrieldemarmiesse/heatmaps

- Idea: use an existing model as a base to solve a similar problem
- Often used when not enough data available to solve the target problem directly
- Example: reuse an ImageNet network for object localization



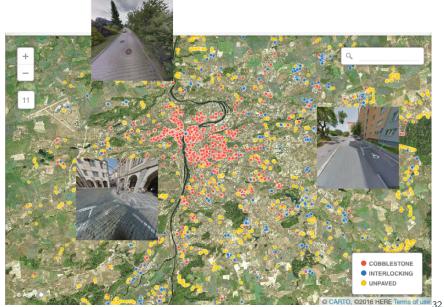
- Idea: use an existing model as a base to solve a similar problem
- Often used when not enough data available to solve the target problem directly
- Example: reuse an ImageNet network for object localization



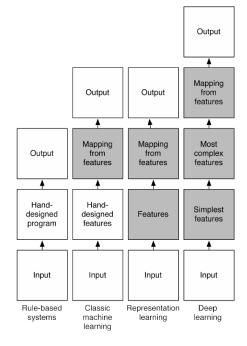
- Idea: use an existing model as a base to solve a similar problem
- Often used when not enough data available to solve the target problem directly
- Example: reuse an ImageNet network for object localization

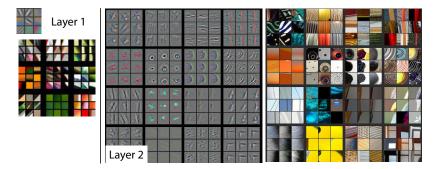
- Idea: use an existing model as a base to solve a similar problem
- Often used when not enough data available to solve the target problem directly
- Example: reuse an ImageNet network for object localization

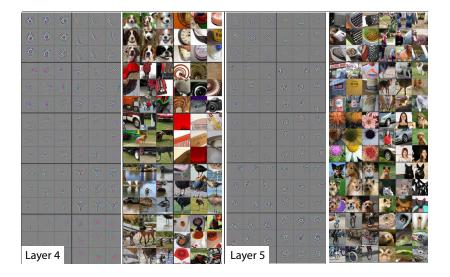
Road Type Classification by Transfer Learning

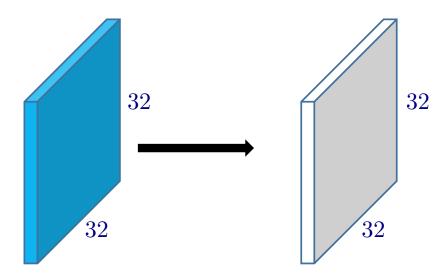


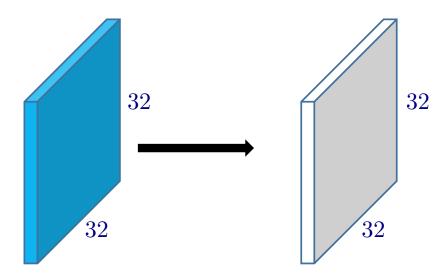
AICENTER

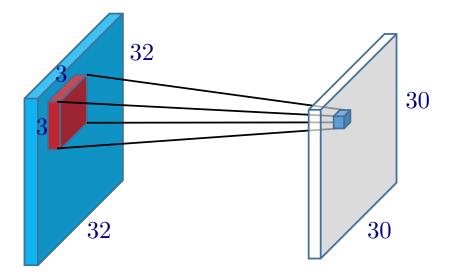


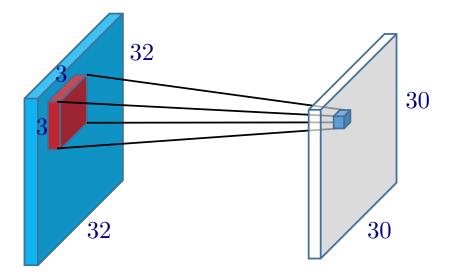


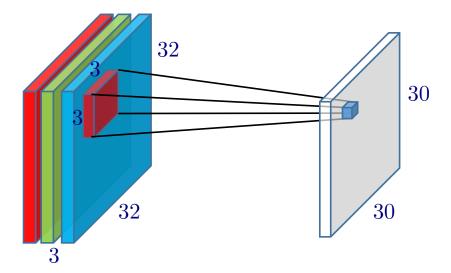


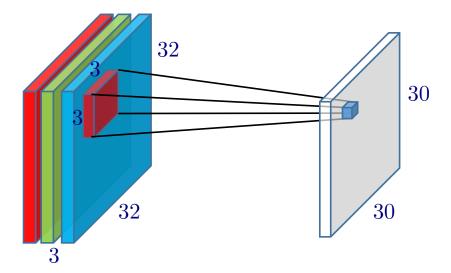


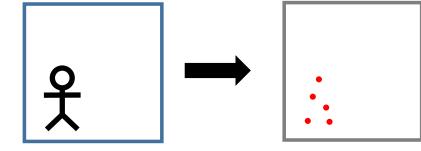


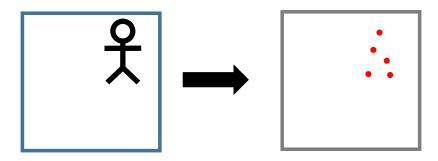


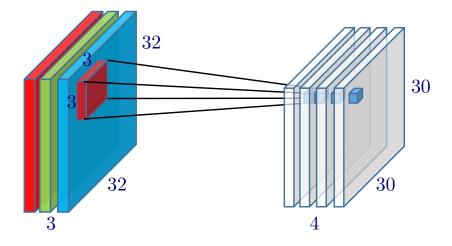


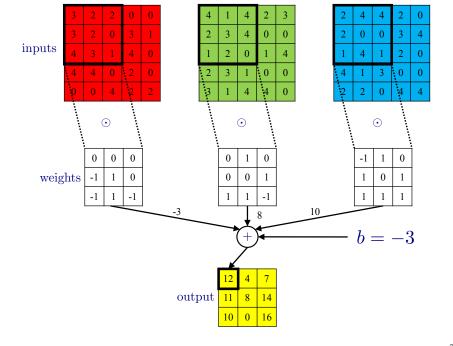


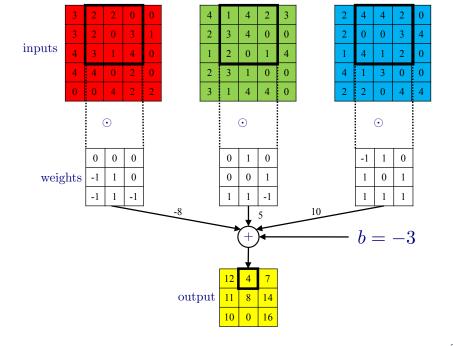


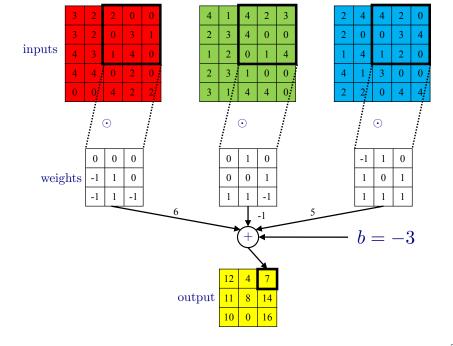


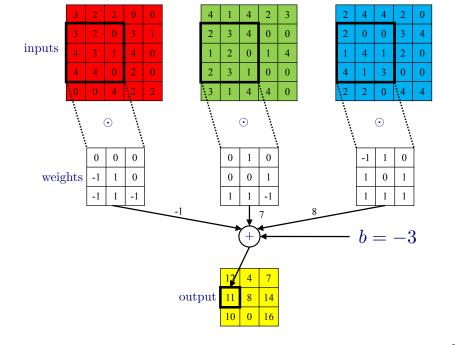






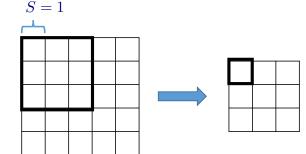


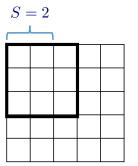


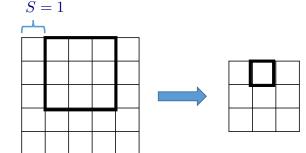


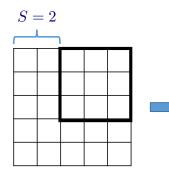
Identity	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	
Edge detection	$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$	
	$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$	
	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$	

Sharpen	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	
Box blur (normalized)	$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	C.
Gaussian blur (approximation)	$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$	

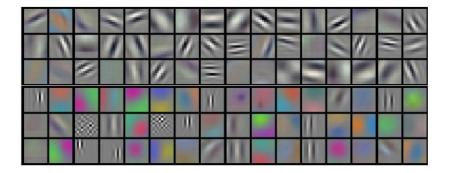


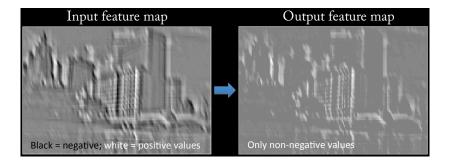




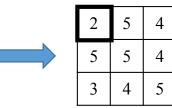


P = 1, S = 1					
0	0	0	0	0	0
0					0
0					0
0					0
0					0
0	0	0	0	0	0

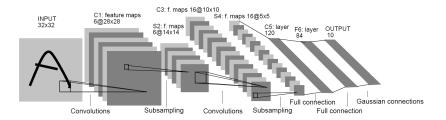


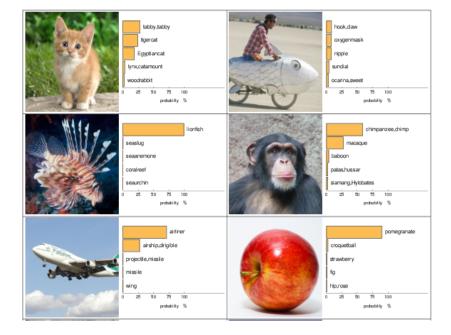


F = 2, S = 2					
2	2	0	4	3	4
0	0	5	0	4	1
4	5	2	5	1	4
5	2	1	0	2	1
2	3	3	3	5	3
0	3	0	4	0	1



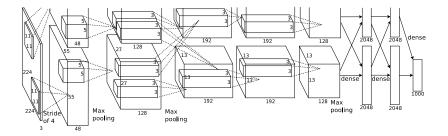


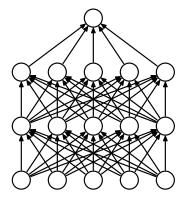




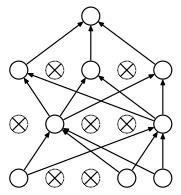
(a) Siberian husky

(b) Eskimo dog





(a) Standard Neural Net



(b) After applying dropout.

