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Who is Bayesian

Bayesian =

someone who uses probability calculus to
quantify uncertainty.

Justification: Uncertainty and randomness have the
same effect on decision-making.

Gravitational acceleration:

constant g = 9.80665
range g = 9.80665± 0.00001
distribution g ∼ N (9.80665, 0.00001)

(std = 0.00001)

?? Is gravitational acceleration a random quantity?
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Probability of an event

Frequentist:

Probability=Frequency of an event:

P(x) = # realizations
# trials

P(x = 1) = 1
6

Bayesian:

Frequency:

P(Sparta beats Slavia) = 133
294 ≈ 45%

Degree (state) of belief:

P(x |d) = P(d |x)P(x)∑
x P(d |x)P(x)

P(Sparta vs. Slavia = 1) = 1/1.8

Same probability calculus
Different 1 role of prior P(x), applications and methods

1Book: The Theory That Would Not Die: How Bayes’ Rule Cracked the Enigma Code,
Hunted Down Russian Submarines, and Emerged Triumphant from Two Centuries of Controversy
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Probability calculus: discrete

Random variables:

X ∈ {x1, . . . , xM}
Y ∈ {y1, . . . , yL}

Joint probability
P(X = xi ,Y = yj ) = ni,j

N
where N (N →∞) is the number of realizations and ni,j is the number of trials
where X = xi ,Y = yj .

Rules:

1. sum rule

P(X = xi ) =
L∑

j=1

P(X = xi ,Y = yi ),

2. product rule
P(X ,Y ) = p(Y |X)p(X)



All you need is rules: Rules of probability
1. Product rule (Chain rule)

P(X ,Y ) = P(X |Y )P(Y ),
= P(X)P(Y |X)

2. Sum rule (Marginalization)

P(X) =
∑

Y P(X ,Y )
P(Y ) =

∑
X P(X ,Y )



Cancer example

I Approximately 1% of women aged 40-50 have breast cancer.
I A woman with breast cancer has a 90% chance of a positive test.
I A woman without cancer has a 10% chance of a false positive result.

What is the probability a woman has breast cancer given that she just had a
positive test?

I X =1 if a woman has cancer
I Y =1 if the test is positive

We want to know

P(X = 1|Y = 1) = P(Y |X)P(X)
P(Y )

P(Y = 1|X = 1) = 0.9,
P(X = 1) = 0.01,
P(Y ) =

∑
X P(Y |X)P(X) =

P(Y |X = 1)P(X = 1)+
P(Y |X = 0)P(X = 0)

= 0.9 ∗ 0.01+0.1 ∗ 0.99 = 0.108

P(X = 1|Y = 1) = 0.009
0.108 = 8.3%
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Probability calculus: continuous

Random variable: x ∈ 〈−∞,∞〉
Probability that it is in an interval 〈a, b〉 is

p (x ∈ 〈a, b〉) =
∫ b

a p(x)dx ,

where p(x) probability density function

p(x) ≥ 1,
∫

p(x)dx = 1,

Cumulative function

P(y) =
∫ y
−∞p(x)dx

Expected value:

Ep(x)(g(x)) =
∫

g(x)p(x)dx ,

Quantiles:

Q(p) = inf {x : p ≤ P(x)} .
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Probability calculus: multivariate continuous

Joint probability distribution p(x , y)
1. sum rule

p(x) =
∫

p(x , y)dy ,

2. product rule

p(x , y) = p(y |x)p(x)

3. change of variables:

x = f (y), with px (x)
py (y) = px (f (y))|f ′(y)|.

p(x,y)
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Multivariate Normal distribution

Multivariate normal distribution:
x = [x1, x2]

p(x) = N
([

µ1
µ2

]
,

[
Σ11 Σ12
Σ21 Σ22

])
∝ |Σ|−

1
2 exp

(
−1
2(x − µ)>Σ−1(x − µ)

)
,

Marginals

p(x1) = N (µ1,Σ11), p(x1) = N (µ2,Σ22),

Conditional:

p(x1|x2) = N (µ,Σ),
µ = µ1 + Σ12Σ−122 (x2 − µ2)
Σ = Σ11 − Σ12Σ−122 Σ21.

Matrix N., Generalized N., GP ...

Example:

µ = [5; 5]; Σ11 = Σ22 = 1.

Σ12 = 0
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Bayes Rule

From chain rule:

P(X |Y )P(Y ) = P(Y |X)P(X).

P(X |Y ) = P(Y |X)P(X).
P(Y )

Application: θ is a parameter, D is a random observation

p(θ|D) = p(D|θ)p(θ)
p(D) .

Philosophical issue:

Frequentists: parameter is NOT a random quantity, p(θ) should not exist.
Bayesian: p(θ|D) is our degree of belief in parameter values.
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Example: curve fitting

Fit by a linear function:

y1 = ax1 +b1, +e1
y2 = ax2 +b1 +e2,
...

...
...

...

In matrix notation θ = [a, b]T :

y = Xθ + e,

Minimize
∑

i e2i = eTe:

d(eTe)
dθ = 0.

d
dθ ((y− Xθ)T (y− Xθ)) = 0

d
dθ (yTy− θT X Ty− yT Xθ + θT X T Xθ) = 0

−X Ty + X T Xθ = 0
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Solution:

θ̂ = (X T X)−1X Ty.
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Prediction

Prediction with LS estimate:

ŷ = X θ̂ + e.

Known variance of e.
Why it does not extrapolate well?

Bayesian explanation
Prediction

ŷ ∼ p(y ′|θ̂),

assumes certainty in estimate of θ.
I All that is certain is the data!

ŷ ∼ p(y ′|y ,X)

I Working out the rules:

p(y ′|y ,X) =
∫

p(y ′|θ)p(θ|y ,X)dθ
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Intuition behind marginalizaton

Definitely not exact math! θ ∈ {Θ1,Θ2}

p(y ′, θ|y ,X) p(θ|y ,X)

Θi
y ′

p(y ′|y ,X) p(y ′|θ = Θ2)



Bayesian Prediction

I Bayesian prediction:

p(y ′|y ,X) =
∫

p(y ′|θ)p(θ|y ,X)dθ

I Posterior probability

p(θ|y ,X) ∝ p(y |θ,X)p(θ)

for choices:

p(y |θ,X) = N (Xθ, 1),

log p(y |θ,X) = −1
2(y − Xθ)>(y − Xθ) + c,

I Solution

p(θ|y ,X) = N (θ̂,Sn),
θ̂ = (X ′X)−1X ′y , Sn = (X ′X)−1.

y ′ = X θ̂ +
√

1 + [1, x ]Sn[1, x ]>e
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Challenge: curve fitting
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What is wrong with minimization?

1. The error of the fit is minimized
I over-fitting,

2. Model complexity is not taken into account
3. How the humans decide?

I Potentially many answers
I penalization / regularization terms,
I information criteria
I cross validation testing / training data,

I Bayesian answer:
I admit that the model order is unknown.
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Bayesian Model Selection

I Unknown quantity: model order r has distribution p(r |y ,X)
I Known data: y,X with model p(y|θ,X , r) = N(Xθ, 1),

Looking for p(r |y,X):

1. Bayes rule
p(r |y,X) = p(y|X , r)p(r)∑

r p(y|X , r)p(r)
, p(r) =?

2. Marginalization

p(y|X , r) =
∫

p(y, θ|X , r)dθ

3. Chain rule

p(y, θ|X , r) = p(y|θ,X , r)p(θ|r), p(θ|r) = N(0, αI)

Solution:

p(r |y,X , α) ∝
∣∣X T X + αI

∣∣−1/2 exp
(
−1
2 θ̂
(
X T X + αI

)
θ̂
)
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Solution:

p(r |y,X , α) ∝
∣∣X T X + αI

∣∣−1/2 exp
(
−1
2 θ̂
(
X T X + αI

)
θ̂
)



Bayesian Model Selection

I Unknown quantity: model order r has distribution p(r |y ,X)
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∣∣X T X + αI
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Application of the polynomial
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α 1e-8 1e-6 1e-4 “best”
P(x = 2) 44% 8% 1% 44%
P(x = 3) 55% 92% 99% 55%
P(x = 4) 0% 0% 0% 0%

How to choose α?

I assume α an unknown hyperparametr
I uncertainty => hierarchical prior p(α) = Γ(γ, δ).
I solve p(r |y ,X) =

∫
p(r |y , x , α)p(α)dα

I works for γ = δ = 0 which is Jeffrey’s improper prior p(α) ∝ 1/α,
I Recursion ends! no need for next hierarchy.
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Bayesian prediction:
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Take home message

I Bayesians represent uncertainty by probability
I Prior knowledge is problem specific

I previously observed data
I different source of data
I structural information (positivity)

I Uncertainty of any kinds should be acknowledged and respected,
I marginalize!
I key computational difficulty
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