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Overview

Extract from Hierarchical Bayesian Models, FJFI summer

Lecture 1: How to be a Bayesian
Lecture 2: Approximations and computational tools

Lecture 3: Application to Deep Active Learning

Lecture 1:
Bayesian theory
» philosophy
» calculus
Examples:

> Linear regression
» Model averaging
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Bayesian = someone who uses probability calculus to
quantify uncertainty.

Justification: Uncertainty and randomness have the
same effect on decision-making.

Gravitational acceleration:

constant g = 9.80665
range g = 9.80665 + 0.00001
distribution g ~ N(9.80665,0.00001)

(std = 0.00001)

77 Is gravitational acceleration a random quantity?
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P(x) # trials

1Book: The Theory That Would Not Die: How Bayes' Rule Cracked the Enigma Code,
Hunted Down Russian Submarines, and Emerged Triumphant from Two Centuries of Controversy



Probability of an event

Probability=Frequency of an event:

__ ##realizations

P(x) # trials

1Book: The Theory That Would Not Die: How Bayes' Rule Cracked the Enigma Code,
Hunted Down Russian Submarines, and Emerged Triumphant from Two Centuries of Controversy



Probability of an event

Probability=Frequency of an event:

__ ##realizations

P(x) # trials

1Book: The Theory That Would Not Die: How Bayes’ Rule Cracked the Enigma Code,
Hunted Down Russian Submarines, and Emerged Triumphant from Two Centuries of Controversy



Probability of an event

Probability=Frequency of an event:

## realizations

P(x) = # trials

1Book: The Theory That Would Not Die: How Bayes’ Rule Cracked the Enigma Code,
Hunted Down Russian Submarines, and Emerged Triumphant from Two Centuries of Controversy



Probability of an event
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Probability of an event

Frequentist:

Bayesian:
Probability=Frequency of an event:

P(x) = # realizations
T 4trials

0 Frequency:
og P(Sparta beats Slavia) = % ~ 45%
‘ﬂ Px—1) = Degree (state) of belief:

pxldy — PP

> P(dIx)P(x)
P(Sparta vs. Slavia=1) =1/1.8
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Probability of an event

Frequentist:

Bayesian:
Probability=Frequency of an event:

P(x) = # realizations
T 4trials

og Frequency:
0 P(Sparta beats Slavia) = % 45%
‘ﬂ P( 1) Degree (state) of belief:
x=1)=
P(d|x)P(x)
P(x|d) =
> P(dIx)P(x)
P(Sparta vs. Slavia=1) =1/1.8

Same probability calculus

Different ! role of prior P(x), applications and methods

1Book: The Theory That Would Not Die: How Bayes’ Rule Cracked the Enigma Code,
Hunted Down Russian Submarines, and Emerged Triumphant from Two Centuries of Controversy



Probability calculus: discrete

Random variables:

XG{X17...7XM}
Y € {y1>"'7.yL}

Joint probability
nij

N
where N (N — o0) is the number of realizations and n; ; is the number of trials
where X = x;, Y = y;.

PX=x,Y=y)=

Rules:

1. sum rule

L
P(X=x)=) P(X=x,Y=y),
j=1

2. product rule
P(X,Y) = p(Y|X)p(X)



All you need is rules: Rules of probability

1. Product rule (Chain rule) 2. Sum rule (Marginalization)
PX,Y) = PXIY)P(Y), PX) = 2 PIXY)
P(X)P(YIX) P(Y) = XxP(X.Y)

p(X,Y) p(Y)

-'.‘..3.'-.|t"'.‘" :

p(X) p(X[Y =1)

JiiL. RN




Cancer example

» Approximately 1% of women aged 40-50 have breast cancer.
» A woman with breast cancer has a 90% chance of a positive test.

» A woman without cancer has a 10% chance of a false positive result.

What is the probability a woman has breast cancer given that she just had a
positive test?
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Cancer example

» Approximately 1% of women aged 40-50 have breast cancer.

» A woman with breast cancer has a 90% chance of a positive test.

» A woman without cancer has a 10% chance of a false positive result.

What is the probability a woman has breast cancer given that she just had a

positive test?

» X =1 if a woman has cancer
» Y =1 if the test is positive
We want to know

P(X =1y =1) = Y

P(Y[X)P(X)

P(Y =1|X =1) =0.9,

P(X =1) = 0.01,

P(Y) =2 x P(YIX)P( )
P(Y|X = 1)P(X = 1)+
P(Y|X = 0)P(X =0)

=0.9%0.01+0.1%0.99 = 0.108

P(X=1]Y =1) = 2% —83%



Probability calculus: continuous
Random variable: x € (—o0, o)
Probability that it is in an interval (a, b) is

b
p(x € (a,b)) = [*p(x)dx,

where p(x) probability density function

p() > 1, / px)dx = 1,
Cumulative function

P(y) = ffoop(x)dx

Expected value:

Eole() = [ a()p)on

Quantiles:

Q(p) = inf {x: p < P(x)} .

0.8

06

0.4

02

pdf(x)

cdf(x)




Probability calculus: multivariate continuous

Joint probability distribution p(x,y)

1. sum rule
p(X):/p(X,y)dy,
2. product rule

p(x,y) = p(y|x)p(x)

3. change of variables:

x = f(y), with px(x)

py(y) = p(F))IF ().

marginal p(y)

P(x.y)

x
marginal p(x)

:\

S




Multivariate Normal distribution

Multivariate normal distribution:
x = [x1, x]

o= ([ [7 2]

Example:

w=1[5;5];

_1 1 _
o« |Z| 72 exp <_§(X _ M)TZ 1(x — u)) , marginal pix )

Marginals
p(xi) = N(p, Zu1), p(xa) = N(p2, X2),
Conditional:

pixalx) = N (@, ),

=+ X155 (0 — o)
Y=Y, — 2122521221.

Matrix N., Generalized N., GP ...

Yiu=Yp=1

Y12=0

marginéﬂp(x 1)

/
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Multivariate Normal distribution

Multivariate normal distribution:
x = [x1, x]

o= ([ [7 2]

Example:

w=1[5;5];

_1 1 _
o« |Z| 72 exp <_§(X _ M)TZ 1(x — u)) , marginal pix )

Marginals
p(xi) = N(p, Zu1), p(xa) = N(p2, X2),
Conditional:

pixalx) = N (@, ),

=+ X155 (0 — o)
Y=Y, — 2122521221.

Matrix N., Generalized N., GP ...

Yiu=Yp=1

>12 =0.99

Pl ;X ,)

marginéﬂp(x 1)
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Bayes Rule

From chain rule:

P(X|Y)P(Y) = P(Y|X)P(X).
PX|Y) = P(YI|D>(<3/P)(X).

Application: 6 is a parameter, D is a random observation

p(D]0)p(0)

p(0ID) = PR

Philosophical issue:

Frequentists: parameter is NOT a random quantity, p(6) should not exist.

Bayesian: p(0|D) is our degree of belief in parameter values.



Example: curve fitting

Fit by a linear function: 6 pata
O data
z
yi =axi +bl, +e .
yo =axx +bl e, o
. . . . \
> 6 o,
. . T 4 // o
In matrix notation 6 = [a, b] ": o %
2 Vit
y= X@ + €, 0 ,///
2 Il
L 2 T, o
Minimize ). ef =e'e: al : :



Example: curve fitting

Fit by a linear function: Data

=axy +bl, +e i:
=ax> -+bl +e, 0 -
. . . 8 o]
In matrix notation 6 = |[a, b]T: 4 o ce
= X6 =+ e, 0
Minimize Y. e/ =e’e: e . . .
d T
(o) _y
do
d T
— — X0 —X0))=0
9ty - x6)"(y - x0))

< yy—0"X"y—y'X0+6"X"X0)=0
do

~XTy+X"X6=0

15



Example: curve fitting

Fit by a linear function: " pata
=ax1 +bl, +ea i:
=ax; +bl e, o -
. . . 8 o
In matrix notation 8 = [a, b]": ¢ o 7 e
= X0 + e, 0
Minimize Y. e/ =e’e: ke : : - )
d(e'e)
=0.
J dof Solution:
iy = X0 (y = X0)) = A -

%(yTy —0"XTy—y X0+ 0"X"X0)=0

~XTy+X"X6=0



Prediction

Prediction with LS estimate:
g=X0+e.

Known variance of e.
Why it does not extrapolate well?

Data

O data
-~ true f
— predition
95% interval
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Prediction

Prediction with LS estimate:
g=X0+e.

Known variance of e.
Why it does not extrapolate well?

Bayesian explanation
Prediction

A

¥~ p(y'0),

assumes certainty in estimate of 6.

» All that is certain is the data!
¥~ p(y'ly,X)

» Working out the rules:

p(y'ly, X) :/P(y'|9)P(9\y,X)d9

Data

O data
- —true f

— predition
95% interval




Intuition behind marginalizaton

Definitely not exact math! 6 € {©1,0,}

p(y’, 0y, X) p(Oly, X)
AR K
* » ‘ L4
[Frfk]-
@- L)
y/
p(y'ly, X) p(y'|0 = ©2)

L) ol




Bayesian Prediction

» Bayesian prediction:

p(y’\y,X):/p(y’\G)p(b‘\y,X)dt9
» Posterior probability
p(bly, X) o p(y|0, X)p(6)
for choices:
p(yl0, X) = N(X0,1),

1
log p(y10, X) = =5 (y = X0)" (v = X0) + c,
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Bayesian Prediction

» Bayesian prediction:

p(y/ Iy, X) = / p(y/10)p(6ly, X)d6
» Posterior probability

p(Bly. X) o p(y 16, X)p(9) =

for choices: 1o,

p(yl0, X) = N(X0,1),

1
log p(y10, X) = =5 (y = X0)" (v = X0) + c,

» Solution
p(0|y7X) = N(évsn)7
6 = (X'X)'X'y, S,=(X'X)""
y' = + /14 [1,x]Ss[1,x]Te



Challenge:

curve fitting

Data




Challenge: curve fitting

Data

Fit by 3th polynomial, %(e)=10.9465
7

/

Fit by 2th polynomial, %(e)=37.8339




What is wrong with minimization?

1. The error of the fit is minimized
> over-fitting,
2. Model complexity is not taken into account

3. How the humans decide?
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What is wrong with minimization?

sy

. The error of the fit is minimized
> over-fitting,

N

. Model complexity is not taken into account

w

. How the humans decide?

v

Potentially many answers

> penalization / regularization terms,
» information criteria
» cross validation testing / training data,

v

Bayesian answer:

» admit that the model order is unknown.



Bayesian Model Selection

> Unknown quantity: model order r has distribution p(rl|y, X)
» Known data: y, X with model p(y|0, X, r) = N(X6,1),

Looking for p(rly, X):

1. Bayes rule
p(y| X, r)p(r)

PUNX) = 5= 01X, p(r)’

p(r) =7
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Bayesian Model Selection

> Unknown quantity: model order r has distribution p(rl|y, X)
» Known data: y, X with model p(y|0, X, r) = N(X6,1),
Looking for p(rly, X):

1. Bayes rule
p(y| X, r)p(r)

PUNX) = 5= 01X, p(r)’

p(r) =7
2. Marginalization

p(y| X, r)=/p(y,9|X7 r)do
3. Chain rule

p(y, 01X, r) = p(yl0, X, r)p(8]r), p(0|r) =7



Bayesian Model Selection

» Unknown quantity: model order r has distribution p(rl|y, X)
» Known data: y, X with model p(y|0, X, r) = N(X6,1),

Looking for p(rly, X):

1. Bayes rule

p(y|X; r)p(r)

Py X) = S~ §TX. (D)

p(r) =1/ rimax
2. Marginalization
ply1X.r) = [ ply.01x. )t
3. Chain rule
p(y, 01X, r) = p(yl0, X, r)p(6]r),  p(0]r) = N(O, )
Solution:

p(rly, X, @) oc | XTX +al] " exp (,%g (XTX + al) 9)



Application of the polynomial
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Application of the polynomial

& o ‘ | a [ le-8 [ le-6 [ le-4 H “best” ‘
* ] Px=2)| 44% | 8% | 1% 44%
* ] P(x=3) | 55% | 92% | 99% 55%

%0 ° P(x=4)| 0% | 0% | 0% 0%

40 1

30 ©

20 O

10 o

0 o ¢ o © :

How to choose «?

» assume « an unknown hyperparametr
» uncertainty => hierarchical prior p(a) = I'(7, 9).
> solve p(rly,X) = [ p(rly,x,a)p(a)da

» works for v = § = 0 which is Jeffrey’s improper prior p(a) o< 1/c,
> Recursion ends! no need for next hierarchy.



Bayesian prediction:
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Bayesian prediction:

Data

Fit by 3th polynomial, p(r=3]y,X)=0.55

200

Fit by 2th polynomial, p(r=2|y,X)=0.45

200




Take home message

» Bayesians represent uncertainty by probability
» Prior knowledge is problem specific
> previously observed data
> different source of data
» structural information (positivity)
» Uncertainty of any kinds should be acknowledged and respected,
> marginalize!
» key computational difficulty
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