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What is a Random Matrix?

Definition. A random matrix is a matrix whose entries are random

variables, not necessarily independent.

A random matrix in captivity:
0.0000 −1.3077 −1.3499 0.2050 0.0000
1.8339 0.0000 −1.3077 0.0000 0.2050

−2.2588 1.8339 0.0000 −1.3077 −1.3499
2.7694 0.0000 1.8339 0.0000 −1.3077
0.0000 2.7694 −2.2588 1.8339 0.0000



What do we want to understand?

§ Eigenvalues
§ Eigenvectors

§ Singular values
§ Singular vectors

§ Operator norms
§ . . .

Sources: Muirhead 1982; Mehta 2004; Nica & Speicher 2006; Bai & Silverstein 2010; Vershynin 2010; Tao 2011; Kemp 2013; Tropp 2015; ...
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Random Matrices in Statistics

38 The Generalised Product Moment Distribution in Samples

We may simplify this expression by writing
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It is to be noted that | abc | is equal to «,'«,•»»' | rpqI. p. ? = li 2, 3.

This is the fundamental frequency distribution for the three variate case, and
in a later section the calculation of its moment coeflScients will be dealt with.

3. Multi-varvite Distribution. Use of Quadratic co-ordinates.

A comparison of equation (8) with the corresponding results (1) and (2) for
uni-variate and bi-variate sampling, respectively, indicates the form the general
result may be expected to take. In fact, we have for the simultaneous distribution
in random samples of the n variances (squared standard deviations) and the

— product moment coefficients the following expression:

dp =
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•(9),

where Opq = SpSgVpg, and

I ••• dm

N A
', A being the determinant

\Pp<i\,p,q°l, 2,3, ...n,
and Ap, the minor of pm in A.

John Wishart

§ Sample covariance matrix for the multivariate normal distribution

Sources: Wishart, Biometrika 1928. Photo from apprendre-math.info.
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Random Matrices in Numerical Linear Algebra

195I] NUMERICAL INVERTING OF MATRICES OF HIGH ORDER. II 191 

1~l/2 
(8.* 5) 4)(X) < - X Tr112 kn-3/2e-1/20,2 (8.5) < 

~~( 2T2)n8-112(r (n/2) ) 2 

With the help of (8.5) and the substitution 2-2, = X - 2o2rn we find 
that 

Prob (X > 2u-2rn) 

r0 oo 1/2 . o 
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Finally we recall with the help of Stirling's formula that 

/ /\2 7rnn-l 
(8.7) n2)) > en-22 (n = 1, 2,* 

now combining (8.6) and (8.7) we obtain our desired result: 

(rn) n- 1/2e-rn7rl /2en . 2n-2 

Prob (X > 2Cr2rn) < 

(8.8) 7rn-l(r -1)n 

- 
(er. 4(r - 1)(rrn)12 

We sum up in the following theorem: 

(8.9) The probability that the upper bound jA j of the matrix A 
of (8.1) exceeds 2.72o-n 12 is less than .027X2-n"n-12, that is, with 
probability greater than 99% the upper bound of A is less than 
2.72an 12 for n = 2, 3, * . 

This follows at once by taking r = 3.70. 

8.2 An estimate for the length of a vector. It is well known that 

(8.10) If a1, a2, * * *, an are independent random variables each of 
which is normally distributed with mean 0 and dispersion a2 and if 
I a| is the length of the vector a= (a,, a2, . , an), then 

John von Neumann

§ Model for floating-point errors in LU decomposition

Sources: von Neumann & Goldstine, Bull. AMS 1947 and Proc. AMS 1951. Photo ©IAS Archive.
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Random Matrices in Nuclear Physics

552 EUGENE P. WIGNER 

Multiplication with VW" and summation over X yields by means of (7) the well 
known equation 

(9a) (HV)>,/; = , XXv"\()X) 

Setting m = k = 0 herein and summing over all matrices of the set gives 

(9b) M1V =9 F' Zset (HV)oo -Av(Hv)oo . 
Av will denote the average of the succeeding expression over all matrices of 
the set. 

The M, will be calculated in the following section for a certain set of matrices 
in the limiting case that the dimension 2N + 1 of these matrices becomes in- 
finite. It will be shown, then, that S(x), which is a step function for every finite 
N, becomes a differentiable function and its derivative S'(x) = O-(x) will 
be called the strength function. In the last section, infinite sets of infinite 
matrices will be considered. However, all powers of these matrices will be defined 
and (HV)oo involves, for every P, only a finite part of the matrix. It will be seen 
that the definition of the average of this quantity for the infinite set of H does 
not involve any difficulty. However, a similar transition to a limiting case N -* 
co Will be carried out with this set as with the aforementioned set and this tran- 
sition will not be carried through in a rigorous manner in either case. 

The expression "strength function" originates from the fact that the absorp- 
tion of an energy level depends, under certain conditions, only on the square of a 
definite component of the corresponding characteristic vector. This component 
was taken, in (8), to be the 0 component. Hence S(x1) - S(x2) is the average 
strength of absorption by all energy levels in the (xI , x2) interval. 

Random sign symmetric matrix 
The matrices to be considered are 2N + 1 dimensional real symmetric matrices; 

N is a very large number. The diagonal elements of these matrices are zero, 
the non diagonal elements Vik = Vkit = ?v have all the same absolute value but 
random signs. There are = 2N(2N+l) such matrices. We shall calculate, after 
an introductory remark, the averages of (H')oo and hence the strength function 
S'(x) = a(x). This has, in the present case, a second interpretation: it also 
gives the density of the characteristic values of these matrices. This will be 
shown first. 

Let us consider one of the above matrices and choose a characteristic value 
X with characteristic vector 4/s6). Clearly, X will be a characteristic value also of 
all those matrices which are obtained from the chosen one by renumbering 
rows and columns. However, the components 41(i of the corresponding charac- 
teristic vectors will be all possible permutations of the components of the original 
matrix' characteristic vector. It follows that if we average (+p0)2 over the afore- 
mentioned matrices, the result will be independent of k. Because of the nor- 
malization condition (7), it will be equal to 1/(2N + 1). 

Let us denote now the average number of characteristic values of the matrices 

This content downloaded by the authorized user from 192.168.52.73 on Thu, 29 Nov 2012 18:29:16 PM
All use subject to JSTOR Terms and Conditions

Eugene Wigner

§ Model for the Hamiltonian of a heavy atom in a slow nuclear reaction

Sources: Wigner, Ann. Math. 1955. Photo from Nobel Foundation.
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Classical RMT
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Wigner (n = 7)

-60 -40 -20 0 20 40 60
0.000

0.002

0.004

0.006

0.008

0.010

Distribution of eigenvalues (n = 103)

§ Highly symmetric models
§ Very precise results
§ Strong resonances with other fields of mathematics
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Contemporary Applications of RMT

§ Numerical linear algebra
§ Numerical analysis
§ Uncertainty quantification
§ High-dimensional statistics
§ Econometrics
§ Approximation theory
§ Sampling theory
§ Machine learning

§ Learning theory
§ Mathematical signal processing
§ Optimization
§ Computer graphics and vision
§ Quantum information theory
§ Theory of algorithms
§ Combinatorics
§ . . .

Sources: (Drawn at random, nonuniformly) Halko et al. 2011; March & Biros 2014; Constantine & Gleich 2015; Koltchinskii 2011; Chen &
Christensen 2013; Cohen et al. 2013; Bass & Groechenig 2013; Djolonga et al. 2013; Lopez-Paz et al. 2014; Fornasier et al. 2012; Morvant et
al. 2012; Chen et al. 2014; Cheung et al. 2012; Chen et al. 2014; Holevo 2012; Harvey & Olver 2014; Cohen et al. 2014; Oliveira 2014.
Per Google Scholar, at least 26,100 papers on RMT since 2000! Equivalent to search for donald trump junior fredo corleone.
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Contemporary RMT


0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1


↓ (sample random columns) ↓


0 0 0 0 0 1 1 1
0 0 1 1 1 0 1 1
0 1 0 0 1 1 0 1
1 0 0 1 1 0 0 0



§ Wide range of examples, many data-driven
§ Results may sacrifice precision for applicability
§ Theory is still developing
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Thesis Statement

Modern applications demand
new random matrix models

and new analytical tools

Joel A. Tropp (Caltech), Applied RMT, Foundations of Computational Mathematics (FoCM), Barcelona, 13 July 2017 9



Matrix Concentration

§ Goal: For a random matrix Z , find probabilistic bounds for

‖Z −EZ ‖
§ An upper bound on this quantity ensures that

§ Singular values of Z and EZ are close
§ Singular vectors of Z and EZ are close (for isolated singular values)
§ Linear functionals of Z and EZ are close
§ Spectral norm of Z is controlled: ‖Z ‖ = ‖EZ ‖±‖Z −EZ ‖

‖·‖ = spectral norm = largest singular value = `2 operator norm
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The Independent Sum Model

Z =∑
k Sk

with Sk independent

Useful observation: EZ =∑
k ESk

Exercise: Express the sample covariance matrix in this model
Exercise: Express column sampling (with replacement) from a fixed matrix
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The Bernstein Inequality

Fact 1 (Bernstein 1920s). Suppose

§ S1,S2,S3, . . . are independent real random variables
§ Each one is centered: ESk = 0

§ Each one is bounded: |Sk| ≤ L

Then, for t > 0,

P
{∣∣∑

k Sk

∣∣≥ t
} ≤ 2 ·exp

( −t 2/2

v +Lt/3

)
where the variance proxy is

v = Var
(∑

k Sk

)=∑
k ES2

k

Sources: Bernstein 1927; Boucheron et al. 2013.
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The Matrix Bernstein Inequality I

Theorem 2 (T 2011). Suppose

§ S1,S2,S3, . . . are independent random matrices with dimension d1×d2

§ Each one is centered: ESk = 0

§ Each one is bounded: ‖Sk‖ ≤ L

Then, for t > 0,

P
{∥∥∑

k Sk

∥∥≥ t
} ≤ (d1+d2) ·exp

( −t 2/2

v +Lt/3

)
where the matrix variance proxy is

v = max
{∥∥∑

k E(SkS∗
k )

∥∥ ,
∥∥∑

k E(S∗
k Sk)

∥∥}
Sources: Tomczak–Jaegermann 1973; Lust-Piquard 1986; Pisier 1998; Rudelson 1999; Ahlswede & Winter 2002; Junge & Xu 2003, 2008;
Rudelson & Vershynin 2005; Gross 2011; Recht 2011; Oliveira 2011; Tropp 2011–2015.
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The Matrix Bernstein Inequality II

Theorem 3 (T 2011). Suppose

§ S1,S2,S3, . . . are independent random matrices with dimension d1×d2

§ Each one is centered: ESk = 0

§ Each one is bounded: ‖Sk‖ ≤ L

Then

E
∥∥∑

k Sk

∥∥ ≤
√

2v · log(d1+d2) + 1

3
L · log(d1+d2)

where the matrix variance proxy is

v = max
{∥∥∑

k E(SkS∗
k )

∥∥ ,
∥∥∑

k E(S∗
k Sk)

∥∥}
Sources: Tomczak–Jaegermann 1973; Lust-Piquard 1986; Pisier 1998; Rudelson 1999; Ahlswede & Winter 2002; Junge & Xu 2003, 2008;
Rudelson & Vershynin 2005; Gross 2011; Recht 2011; Oliveira 2011; Tropp 2011–2015.
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Example: Matrix Sparsification

A =


1 2 3 4
2 4 6 8
3 6 9 12
4 8 12 16

 −→ Â =


2
4 8

3 6 9 12
12 16



§ Goal: Find a sparse matrix Â for which ‖A − Â‖ is small

§ Approach: Non-uniform randomized sampling

Sources: Achlioptas & McSherry 2001, 2007; Arora et al. 2006; d’Asprémont 2008; Gittens & Tropp 2009; Nguyen et al. 2009; Drineas &
Zouzias 2011; Achlioptas et al. 2013; Kundu & Drineas 2014; Tropp 2015.

Joel A. Tropp (Caltech), Applied RMT, Foundations of Computational Mathematics (FoCM), Barcelona, 13 July 2017 15



Sparsification: Sampling Model

§ Let A be a fixed d1×d2 matrix
§ Construct a probability mass {pi j } on the matrix indices
§ Define a 1-sparse random matrix S where

S = ai j

pi j
Ei j with probability pi j

§ The random matrix S is an unbiased estimator for A

ES =∑
i j

ai j

pi j
Ei j ·pi j =

∑
i j ai j Ei j = A

§ To reduce the variance, average r independent copies of S

Âr = 1

r

∑r

k=1 Sk where Sk ∼ S

§ By construction, Âr has at most r nonzero entries and approximates A
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Sparsification: Analysis

§ Recall: S = (ai j /pi j )Ei j with probability pi j

§ Bound for spectral norm:

‖S −ES‖ ≤ 2 ·max
i j

|ai j |
pi j

§ Bound for variance:

∥∥E(S −ES)(S −ES)∗
∥∥≤ ∥∥ESS∗∥∥=

∥∥∥∥∥∑
i

(∑
j

|ai j |2
pi j

)
Ei i

∥∥∥∥∥= max
i

∑
j

|ai j |2
pi j∥∥E(S −ES)∗(S −ES)

∥∥≤ ∥∥ES∗S
∥∥=

∥∥∥∥∥∑
j

(∑
i

|ai j |2
pi j

)
E j j

∥∥∥∥∥= max
j

∑
i

|ai j |2
pi j

§ Construct probability mass pi j ∝|ai j |+ |ai j |2 to control all terms
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Sparsification: Result

Proposition 4 (Kundu & Drineas 2014; T 2015). Suppose

r ≥ ε−2 · srank(A) ·max{d1,d2} log(d1+d2) (0 < ε≤ 1)

Then the relative error in the r -sparse approximation Âr satisfies

E‖A − Âr‖
‖A‖ ≤ 4ε

The stable rank

srank(A) := ‖A‖2
F

‖A‖2 ≤ rank(A)

§ The proof is an immediate consequence of matrix Bernstein
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Application: Fast Laplacian Solvers

Theorem 5 (Kyng & Sachdeva 2016). Suppose

§ G is a weighted, undirected graph with n vertices and m edges
§ L is the combinatorial Laplacian of the graph G

Then, with high probability, the SPARSECHOLESKY algorithm produces

§ A lower-triangular matrix C withO (m log3 n) nonzero entries that satisfies

1

2
L 4CC∗4

3

2
L

§ The running time isO (m log3 n)

In particular, we can solve Lx = b to relative error ε in timeO (m log3 n log(1/ε))
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SPARSECHOLESKY (Caricature)

L =
[

a u∗

u L2

]
n×n

→ L2−a−1

 uu∗


(n−1)×(n−1)

Subtract rank-1

→ L2−a−1

 ×
× ×

× ×


(n−1)×(n−1)

Sparsify rank-1

§ Direct computation of Cholesky factorization requiresO (n2) operations per step
§ Randomized approximation inO ((m/n) log3 n) operations per step (amortized)
§ Sampling probabilities are computed using graph theory
§ Proof depends on Bernstein inequality for matrix martingales!

Sources: Pisier & Xu 1997; Junge & Xu 2003, 2008; Oliveira 2011; Tropp 2011; Kyng & Sachdeva 2016.
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A Virtuous Cycle

Models −→ Theory
↖ ↙
Applications
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Workshop B5: Random Matrices

Organizers: Michel Ledoux, Sheehan Olver, Joel A. Tropp

§ Semi-plenaries:

§ Ioana Dumitriu: “Spectra of Random Regular and Quasi-Regular Graphs”
§ Amit Singer: “Variations on PCA”

§ Talks:

§ Folkmar Bornemann
§ Djalil Chafaï
§ Alan Edelman
§ Noureddine El Karoui
§ Elizabeth Meckes
§ Mark Meckes

§ Ramis Movassagh
§ Raj Rao Nadakuditi
§ Jelani Nelson
§ Konstantin Tikhomirov
§ Thomas Trogdon
§ Ke Wang

§ Poster: Plamen Koev
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Contact & Papers

email: jtropp@cms.caltech.edu
web: http://users.cms.caltech.edu/~jtropp

Monograph:

§ An Introduction to Matrix Concentration Inequalities. Found. Trends Mach. Learn., 2015. Preprint: arXiv:1501.01571

Papers:

§ “User-friendly tail bounds for sums of random matrices.” FoCM, 2011
§ “User-friendly tail bounds for matrix martingales.” Caltech ACM Report 2011-01
§ “Freedman’s inequality for matrix martingales.” ECP, 2011
§ “From the joint convexity of relative entropy to a concavity theorem of Lieb.” PAMS, 2012
§ “Improved analysis of the subsampled randomized Hadamard transform.” AADA, 2011
§ “The masked sample covariance estimator” with R. Chen & A. Gittens. I&I, 2012
§ “Tail bounds for all eigenvalues of a sum of random matrices” with A. Gittens. Caltech ACM Report 2014-02
§ “Matrix concentration inequalities via the method of exchangeable pairs” with L. Mackey et al. Ann. Probab., 2014
§ “Subadditivity of matrix ϕ-entropy and concentration of random matrices” with R. Chen. EJP, 2014
§ “Efron–Stein inequalities for random matrices” with D. Paulin & L. Mackey. Ann. Probab., 2016
§ “Second-order matrix concentration inequalities.” ACHA, 2016
§ “The expected norm of a sum of independent random matrices: An elementary approach,” HDP 7, 2016
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