人

Algorithms for learning in simple and complex games

Viliam Lisý

Artificial Intelligence Center
Department of Computer Science, Faculty of Electrical Engineering Czech Technical University in Prague

(Sep 24, 2018)

Algorithms for learning in simple and complex games

Brief Introduction to Game Theory

Viliam Lisý

Artificial Intelligence Center
Department of Computer Science, Faculty of Electrical Engineering Czech Technical University in Prague

(Sep 24, 2018)

Game Theory

Mathematical framework studying strategies of players in situations where the outcomes of their actions critically depend on the actions performed by the other players.

Computational Game Theory

Analytic approach
Small model size
Inputs in analytic form
Analysis of system behavior
Complete understanding

Computational approach

Huge model size
Real world data as inputs
Computing optimal strategies
Partial understanding

Matrix (normal form) games

Player 2
Column player
Minimizer

Player 1
Row player
Maximizer

Zero-sum game, pure strategy, mixed strategy
Best response

$$
B R_{i}\left(\sigma_{-i}\right)=\arg \max _{a_{i} \in A_{i}} U_{i}\left(a_{i}, \sigma_{-i}\right)
$$

Nash equilibrium, game value

Non-zero Sum Games

What is the Nash equilibrium?
Equilibrium selection problem
Correlated equilibria, coarse correlated
Stackelberg equilibrium

Extensive-form game

Extensive Form Games

Online learning and prediction
single agent learns to select the best action
Learning in normal form games
the same algorithms used by multiple agents
Learning in extensive form games
generalizing these ideas to sequential games
Brief introduction to neural networks

DeepStack

Algorithms for learning in simple and complex games

Introduction to Online Learning and Prediction

Viliam Lisý

Artificial Intelligence Center
Department of Computer Science, Faculty of Electrical Engineering Czech Technical University in Prague

(Sep 24, 2018)

Introduction

Online learning and prediction

learning from data that become available in sequence
adapting prediction (behavior) after each data point
optimizing overall precision (not only after all data arrive)
Applications
investing in best fond
web advertisements
selecting the best (e.g., page replacement) algorithm

Introduction

Why do we care about online learning in games?
repeated play against an unknown opponent
(repeated) play of an unknown game
understanding how equilibria may occur in real world
computationally efficient equilibrum approximation algorithms

Prediction with expert advice

a_{1}
a_{2}
a_{3}

Problem definition
Set of n actions (experts) $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$
Set of time steps $t=\{1,2, \ldots, T\}$
In each step
Decision-maker selects a mixed strategy σ^{t}
An adversary selects rewards $u^{t}: A \rightarrow[0,1]$ (adaptive vs oblivious)
Action a ${ }^{\mathrm{t}} \in A$ is selected based on σ^{t}
The decision-maker receives reward $u^{t}\left(a^{t}\right)$ (learns the whole u^{t})

External Regret

Goal: play as well as the best expert
Immediate regret at time t for not choosing action i

$$
r^{t}(i)=u^{t}(i)-x^{t}
$$

Cumulative external regret for playing $\sigma^{0}, \sigma^{1} \ldots \sigma^{T}$

$$
R^{T}=\max _{i \in A} \sum_{t=0}^{T} r^{t}(i)=\max _{i \in A} \sum_{t=0}^{T} u^{t}(i)-\sum_{t=0}^{T} x^{t}
$$

Average external regret for playing $\sigma^{0}, \sigma^{1} \ldots \sigma^{T}$

$$
\bar{r}^{T}=\frac{1}{T} R^{T}
$$

Swap Regret

Goal: minimize regret for not playing a $\delta(a)$ instead of a for some $\delta: A \rightarrow A$
Cumulative swap regret for playing $\sigma^{0}, \sigma^{1} \ldots \sigma^{T}$

$$
R^{T}=\max _{\delta} \sum_{t=0}^{T} \sum_{i \in A} \sigma^{t}(i)\left(u^{t}(\delta(i))-u^{t}(i)\right)
$$

Internal regret

 allows switching only all occurrences of a_{i} by a_{j}External \subset Swap, Internal \subset Swap

No-regret algorithms

An algorithm has no regret if for any $u^{0}, u^{1} \ldots u^{T}$ produces $\sigma^{0}, \sigma^{1} \ldots \sigma^{T}$ such that $\bar{r}^{T} \rightarrow 0$ as $T \rightarrow \infty$.

Why not simply to maximize reward?

$$
\operatorname{maximize} \sum_{t=0}^{T} x^{t}
$$

The adversary may choose $\forall i \in A, \quad u^{t}(i)=0$ and we have minimal reward regardless of the used algorithm.

Any algorithm has (optimal) 0 regret.

Regret towards best strategy in hindsightite ill

$$
R_{\text {best }}{ }^{T}=\sum_{t=0}^{T} \max _{i \in A} u^{t}(i)-\sum_{t=0}^{T} x^{t}
$$

Proposition: There is no algorithm with no regret towards the best sequence of choices.
Proof: Let $A=\{U, D\}$. For an arbitrary sequence of strategies σ^{t}, choose a reward vector $u^{t}=(0,1)$ if $\sigma^{t}(U) \geq \frac{1}{2}$ and $u^{t}=(1,0)$ otherwise.
The cumulative reward of the algorithm $\sum_{t=0}^{T} x^{t} \leq \frac{T}{2}$, while the best strategy in hindsight has reward $\sum_{t=0}^{T} \max _{i \in A} u^{t}(i)=T$. Therefore

$$
R_{\text {best }}^{T} \geq \frac{T}{2} \text { and } \bar{r}_{\text {best }}^{T} \rightarrow z \geq \frac{1}{2}
$$

Regret of deterministic algorithms

Proposition: There is no deterministic no-external-regret algorithm.

Proof: We assume that the adversary selects rewards u^{t} knowing strategy σ^{t}. (For example, it can simulate the deterministic algorithm from the beginning.) Therefore, with $n=2$, he can always give reward 0 for the selected action and 1 for the other action. One of the actions got reward 1 at least $T / 2$ times, therefore $\bar{r}^{t} \geq \frac{1}{2}$.

Lower bound on external regret

Theorem:No (randomized) algorithm over n actions has expected external regret vanishing faster than $\Theta(\sqrt{\ln (n) / T})$.

Proof sketch: Assume $\mathrm{n}=2$. Consider an adversary that, independently on each step t, chooses uniformly at random between the cost vectors $(1,0)$ and $(0,1)$ regardless of the decision-making algorithm. The cumulative expected reward is exactly $T / 2$. In hindsight, however, with constant probability one of the two fixed actions has cumulative reward $T / 2+\Theta(\sqrt{T})$. The reason is that T fair coin flips have standard deviation $\Theta(\sqrt{T})$.

Lower bound on external regret

Theorem: There exist no-regret algorithms with expected external regret $O(\sqrt{\ln (n) / T})$.

Proof: We will show Randomized Weighted Majority algorithm.

Corollary: There exists a decision-making algorithm that, for every $\epsilon>0$, has expected regret less than ϵ after $O\left(\ln (n) / \epsilon^{2}\right)$ iterations.

Randomized Weighted Majority

Aka Hedge or multiplicative weights (MW) algorithm. It is easier to analyze in costs $c(i)=(1-u(i))$. The algorithm maintains weights $w(i)$ for each action $i \in A$.

Initialize $w^{1}(i)=1$ for every $i \in A$
For each time $t=1,2, \ldots, T$
Let $W^{t}=\sum_{i \in A} w^{t}(i)$ and play $\sigma^{t}(i)=w^{t}(i) / W^{t}$
Given costs c^{t}, set $w^{t+1}(i)=w^{t}(i)(1-\gamma)^{c^{t}(i)}$ for each $i \in A$
(Equivalently $w^{t+1}(i)=w^{t}(i) e^{-\eta c^{t}(i)}$ for $\eta=-\ln (1-\gamma)$)

Hedge Regret Bound

Theorem: Expected external regret of Hedge is $\bar{r}^{T}<2 \sqrt{\ln (n) / T}$
Proof: W.L.O.G. we assume oblivious adversary.
Let $O P T=\min _{i \in A} \sum_{t=1}^{T} c^{t}(i)$ be the cost for optimal action i^{*} and
$v^{t}=\sum_{i \in A} \sigma^{t}(i) c^{t}(i)=\sum_{i \in A} \frac{w^{t}(i)}{W^{t}} c^{t}(i)$ be the algorithms cost at t.
$W^{T} \geq w^{T}\left(i^{*}\right)=w^{1}\left(i^{*}\right) \prod_{t=1}^{T}(1-\gamma)^{c^{t}\left(i^{*}\right)}=(1-\gamma)^{O P T}$
$W^{t+1}=\sum_{i \in A} w^{t+1}(i)=\sum_{i \in A} w^{t}(i)(1-\gamma)^{c^{t}(i)}$

$$
\leq \sum_{i \in A} w^{t}(i)\left(1-\gamma c^{t}(i)\right)=W^{t}\left(1-\gamma \nu^{t}\right)
$$

$(1-\gamma)^{O P T} \leq W^{T} \leq W^{1} \prod_{t=1}^{T}\left(1-\gamma v^{t}\right)$
$O P T \ln (1-\gamma) \leq \ln n+\sum_{t=1}^{T} \ln \left(1-\gamma \nu^{t}\right)$
$\ldots \sum_{t}^{T} \nu^{t} \leq O P T+\gamma T+\frac{\ln n}{\gamma}=>\frac{1}{T} \sum_{t}^{T} \nu^{t} \leq \frac{O P T}{T}+2 \sqrt{\frac{\ln n}{T}}$

Regret Matching

The algorithm maintains cummulative regrets $\mathrm{R}(i)$ for each action $i \in A$.

Initialize $R^{1}(i)=0$ for every $i \in A$
For each time $t=1,2, \ldots, T$

$$
\text { Let } S^{t}=\sum_{i \in A} \max \left(0, R^{t}(i)\right) \text { and play } \sigma^{t}(i)=\max \left(0, R^{t}(i)\right) / S^{t}
$$

Given rewards u^{t}, for each $i \in A$ set

$$
R^{t+1}(i)=R^{t}(i)+r^{t}(i)=R^{t}(i)+\left(u^{t}(i)-\sum_{j \in A} \sigma^{t}(j) u^{t}(j)\right)
$$

Regret Matching+

The algorithm maintains cumulative regrets-like values $Q(i)$ for each action $i \in A$.

Initialize $Q^{1}(i)=0$ for every $i \in A$
For each time $t=1,2, \ldots, T$

$$
\text { Play } \sigma^{t}(i)=Q^{t}(i) / \sum_{j \in A} Q^{t}(j)
$$

Given rewards u^{t}, for each $i \in A$ set

$$
Q^{t+1}(i)=\max \left(0, Q^{t}(i)+r^{t}(i)\right)=\max \left(0, u^{t}(i)-\sum_{j \in A} \sigma^{t}(j) u^{t}(j)\right)
$$

RM+ Regret Bound

Lemma: Regret-like values $Q^{t}(i)$ are an upper bound on $R^{t}(i)$.
Proof: $Q^{t+1}(i)-Q^{t}(i)=\max \left(0, Q^{t}(i)+r^{t}(i)\right)-Q^{t}(i)$

$$
\geq Q^{t}(i)+r^{t}(i)-Q^{t}(i)=r^{t}(i)
$$

Lemma: For any i and value functions $Q^{T}(i) \leq \sqrt{n T}$.
Proof: $\left(\max _{i \in \mathrm{~A}} Q^{T}(i)\right)^{2}=\max _{i \in \mathrm{~A}} Q^{T}(i)^{2} \leq \sum_{i \in A} Q^{T}(i)^{2}=$
$=\sum_{i \in A} \max \left(0, Q^{T-1}(i)+u^{T}(i)-\sum_{j \in A} \sigma^{T}(j) u^{T}(j)\right)^{2}$

$$
\ldots \leq \sum_{i} Q^{T-1}(i)^{2}+n
$$

By induction $Q^{T}(i)^{2} \leq n T$.

Summary

General setting of prediction with expert advice
Regret as a measure of distance from the optimal strategy
There are no-regret algorithms
Hedge, Regret matching, Regret matching+

Online learning and prediction
single agent learns to select the best action
Learning in normal form games
the same algorithms used by multiple agents
Learning in extensive form games
generalizing these ideas to sequential games
Brief introduction to neural networks

DeepStack

Algorithms for learning in simple and complex games
 Learning in Normal Form Games

Viliam Lisý

Artificial Intelligence Center
Department of Computer Science, Faculty of Electrical Engineering Czech Technical University in Prague
(Sep 24, 2018)

Introduction

How may simple learning agents achieve equilibrium outcomes?

Best Response Dynamics (Fictitious play)
best response to average empirical play
needs to know the game
No-Regret Dynamics
each player uses no-regret algorithm
may now only their own actions and received rewards

Best response dynamics

Fictitious play
Players maintain empirical distribution of past opponent's actions

$$
\bar{\sigma}_{-i}^{T}=\frac{1}{\mathrm{~T}} \sum_{t=1}^{T} \sigma_{-i}^{t} \quad\left(\text { often in form of frequencies } \eta_{i}^{T}\right)
$$

In each round, each player plays $B R$ to these distributions

$$
\sigma_{i}^{t}=\arg \max _{a_{i} \in A_{i}} U_{i}\left(a_{i}, \bar{\sigma}_{-i}^{t}\right)
$$

Player 1 \Player 2	heads	tails	
heads	$(1,-1)$	$(-1,1)$	
tails		$(-1,1)$	$(1,-1)$

Result of FP in case of convergence

Theorem: If the empirical action frequencies of fictitious play converge ($\bar{\sigma}^{t} \rightarrow \sigma^{*}$) they converge to the Nash equilibrium of the game.

Theorem: The empirical frequencies of FP converge to NE in constant-sum games
two player games where each player has up to two actions
games solvable by iterated strict dominance
identical interest games
potential games

Why it may not converge?

Shapley's example in a modified rock-paper-scissors:

	R		S

Unique NE is the uniform strategy for both players.
Let $\eta_{1}^{0}=(1,0,0)$ and $\eta_{2}^{0}=(0,1,0)$.
Play may be (P,R),(P,R)... for k steps until column switches to S.
Then (P, S) follows until row switches to R (for βk steps, $\beta>1$).
Then (R,S) follows until column switches to P (for $\beta^{2} k$ steps).
The play cycles among all 6 non-diagonal profiles with periods of everincreasing length, hence, the empirical frequencies cannot converge.

Convergence of FP

Theorem (Brandt, Fischer, Harrenstein, 2010): In symmetric two-player constant-sum games, FP may require exponentially many rounds (in the size of the representation of the game) before an equilibrium action is eventually played. This holds even for games solvable via iterated strict dominance.

Proof:

	a	b	C
a	0	-1	- ϵ
b	I	0	$-\epsilon$
C	ϵ	ϵ	0

With $\epsilon=2^{-k}$, FP may take 2^{k} rounds to play the equilibrium action c for the first time.

$$
\begin{array}{r}
(\mathrm{a}, \mathrm{a}),(\mathrm{b}, \mathrm{~b}), \ldots,(\mathrm{b}, \mathrm{~b}) \\
2^{k}-1 \text { times }
\end{array}
$$

No-Regret Learning Summary

Immediate regret at time t for not choosing action i

$$
r^{t}(i)=u^{t}(i)-\sigma^{t} \cdot u^{t}
$$

Cumulative external regret for playing $\sigma^{0}, \sigma^{1} \ldots \sigma^{T}$

$$
R^{T}=\max _{i \in A} \sum_{t=0}^{T} r^{t}(i)=\max _{i \in A} \sum_{t=0}^{T} u^{t}(i)-\sum_{t=0}^{T} \sigma^{t} \cdot u^{t}
$$

Average external regret for playing $\sigma^{0}, \sigma^{1} \ldots \sigma^{T}$

$$
\bar{r}^{T}=\frac{1}{T} R^{T}
$$

An algorithm has no regret if for any $u^{0}, u^{1} \ldots u^{T}$ produces $\sigma^{0}, \sigma^{1} \ldots \sigma^{T}$ such that $\bar{r}^{T} \rightarrow 0$ as $T \rightarrow \infty$.

From External to Swap Regret

Cumulative swap regret for playing $\sigma^{0}, \sigma^{1} \ldots \sigma^{T}$

$$
R^{T}=\max _{\delta: A \rightarrow A} \sum_{t=0}^{T} \sum_{i \in A} \sigma^{t}(i)\left(u^{t}(\delta(i))-u^{t}(i)\right)
$$

From External to Swap Regret

Theorem (Blum \& Mansour 2007):If there is a no-external-regret algorithm for a setting, there is also a no-swap-regret algorithm.

Proof: Polynomial black-box reduction.

From External to Swap Regret

Proof: Average expected reward of the overall algorithm

$$
\frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{n} p^{t}(i) u^{t}(i)
$$

No-regret algorithm M_{j} choses $q_{j}^{1}, \ldots, q_{j}^{T}$, gets $p^{1}(j) u^{1}, \ldots, p^{T}(j) u^{T}$.
Thus

$$
\forall k \in A: \frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{n} q_{j}^{t}(i)\left(p^{t}(j) u^{t}(i)\right) \geq \frac{1}{T} \sum_{t=1}^{T} p^{t}(j) u^{t}(k)-\bar{r}_{\mathrm{j}}
$$

Fix an arbitrary $\delta: A \rightarrow A$ and sum over all $j \in A$:

$$
\frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{n} \sum_{j=1}^{n} q_{j}^{t}(i)\left(p^{t}(j) u^{t}(i)\right) \geq \frac{1}{T} \sum_{t=1}^{T} \sum_{j=1}^{n} p^{t}(j) u^{t}(\delta(j))-\sum_{j=1}^{n} \bar{r}_{j}
$$

From External to Swap Regret

We are done if we ensure

$$
p^{t}(i)=\sum_{j=1}^{n} q_{j}^{t}(i) p^{t}(j)
$$

This is true if p^{t} is the eigenvector of matrix given by q_{j}^{t} for $\lambda=1$.
Equivalently, p^{t} are the stationary distribution of Markov chain.
Such vector p^{t} always exists and can be easily found!

From External to Swap Regret

Corollary: Let $\overline{r_{M}}(t) \rightarrow 0$ be the external regret convergence bound for a base algorithm used in the black-box reduction with $|A|$ actions. Than the swap regret of the overall algorithm is

$$
\overline{r_{s w}}(T) \leq|A| \overline{r_{M}}(T)
$$

Corollary: The black-box reduction with Hedge for all actions produces an algorithm with $\overline{r_{s w}}(T) \leq 2|A| \sqrt{\ln |A| / T}$.

No-Regret Dynamics - full information

Definition:

1) Each player i choses independently a mixed strategy σ_{i}^{t} using a no-regret algorithm.
2) Each player receives for all $a_{i} \in A_{i}$ rewards

$$
u_{i}^{t}\left(a_{i}\right)=\mathbf{E}_{a_{-i} \sim \sigma_{-i}}\left[U\left(a_{i}, a_{-i}\right)\right]
$$

No-Regret Dynamics - full information

Theorem: If after T iterations of no-regret dynamics each player has external regret lower then ϵ than $\sigma=\frac{1}{T} \sum_{t}^{T} \sigma^{t}$, where $\sigma^{t}=\prod_{i=1}^{k} \sigma_{i}^{t}$, is an ϵ-coarse correlated equilibrium of the game. I.e., for any $a_{i}^{\prime} \in A_{i}$

$$
\mathbf{E}_{a \sim \sigma}\left[U_{i}(a)\right] \geq \mathbf{E}_{a \sim \sigma}\left[U_{i}\left(a_{i}^{\prime}, a_{-i}\right)\right]-\epsilon
$$

Corollary: If we run Hedge in a game with less than $|A|$ actions for each player for T iterations, the resulting average strategy is an $(\sqrt{\ln (|A|) / T})$-coarse correlated equilibrium of the game.

Corollary: If we run regret matching+ in a game with less than $|A|$ actions for each player for T iterations, the resulting average strategy is an $(\sqrt{|A| / T})$-coarse correlated equilibrium of the game.

Minimax Theorem

Note: In zero-sum games, coarse correlated equilibria are Nash.
Theorem (Minimax Theorem): For any matrix game G

$$
\max _{x} \min _{y} x^{T} G y=\min _{y} \max _{x} x^{T} G y
$$

Proof: For contradiction assume that for some $\alpha>0$

$$
\max _{x} \min _{y} x^{T} G y<\min _{y} \max _{x} x^{T} G y-\alpha .
$$

Set $\epsilon=\frac{\alpha}{2}$ and let both players run Hedge for time $\tau=2 \ln n / \epsilon^{2}$. Let \hat{x}, \hat{y} be the empirical frequencies of their play and v the average reward of the maximizer.

$$
\max _{x} \min _{y} x^{T} G y \geq \min _{y} \hat{x}^{T} G y \geq v-\epsilon \geq \max _{x} x^{T} G \hat{y}-2 \epsilon \geq \min _{y} \max _{x} x^{T} G y-\alpha
$$

No-Regret Dynamics

Theorem: If after T iterations of no-regret dynamics each player has swap regret lower then ϵ than $\sigma=\frac{1}{T} \sum_{t}^{T} \sigma^{t}$, where $\sigma^{t}=$ $\prod_{i=1}^{k} \sigma_{i}^{t}$, is an ϵ-correlated equilibrium of the game. I.e., for any player i and switching function $\delta: A \rightarrow A$

$$
\mathbf{E}_{a \sim \sigma}\left[U_{i}(a)\right] \geq \mathbf{E}_{a \sim \sigma}\left[U_{i}\left(\delta\left(a_{i}\right), a_{-i}\right)\right]-\epsilon
$$

Regret matching+

Regret matching+

Iteration:

Regret matching+

Iteration:

Regret matching+

Iteration:

Regret matching+

Iteration:

σ_{2}		
R_{2}	0	0
r_{2}	-1	1
σ^{t}	0.5	0.5
1	2	0
0	0	1

Regret matching+

Iteration:
$\overline{\sigma_{2}}$
1

Regret matching+

Iteration:

σ_{2}	0	1
R_{2}	0	1
r_{2}		
σ^{t}	0	1
	2	0
	2	0

Regret matching+

Iteration:
2

Regret matching+

Iteration:

σ_{2}	0	1
R_{2}	0	1
r_{2}		
σ^{t}	0	1
0.2	2	0
0.8	0	1

Regret matching+

Iteration:

$\overline{\sigma_{2}}$	0	I
R_{2}	0	1
r_{2}	0.4	0
σ^{t}	0	1
0.2	2	0
0.8	0	1

Regret matching+

Iteration:

Regret matching+

Regret matching+

Iteration:
3

Regret matching+

Iteration:
4

Regret matching+

Iteration:
5

Regret matching+

Iteration:
6

Regret matching+

Iteration:
7

Regret matching+

Iteration:

8

Regret matching+

Online learning and prediction
single agent learns to select the best action
Learning in normal form games
the same algorithms used by multiple agents
Learning in extensive form games
generalizing these ideas to sequential games
Brief introduction to neural networks

DeepStack

Algorithms for learning in simple and complex games

Refresh

Viliam Lisý

Artificial Intelligence Center
Department of Computer Science, Faculty of Electrical Engineering Czech Technical University in Prague

(Sep 25, 2018)

Prediction with expert advice

a_{1}
a_{2}
a_{3}

Problem definition
Set of n actions (experts) $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$
Set of time steps $t=\{1,2, \ldots, T\}$
In each step
Decision-maker selects a mixed strategy σ^{t}
An adversary selects rewards $u^{t}: A \rightarrow[0,1]$ (adaptive vs oblivious)
Action a ${ }^{\mathrm{t}} \in A$ is selected based on σ^{t}
The decision-maker receives reward $u^{t}\left(a^{t}\right)$ (learns the whole u^{t})

Regret Matching+

The algorithm maintains cumulative regrets-like values $Q(i)$ for each action $i \in A$.

Initialize $Q^{1}(i)=0$ for every $i \in A$
For each time $t=1,2, \ldots, T$

$$
\text { Play } \sigma^{t}(i)=Q^{t}(i) / \sum_{j \in A} Q^{t}(j)
$$

Given rewards u^{t}, for each $i \in A$ set

$$
Q^{t+1}(i)=\max \left(0, Q^{t}(i)+r^{t}(i)\right)=\max \left(0, u^{t}(i)-\sum_{j \in A} \sigma^{t}(j) u^{t}(j)\right)
$$

RM+ Regret Bound

Lemma: Regret-like values $Q^{t}(i)$ are an upper bound on $R^{t}(i)$.
Proof: $Q^{t+1}(i)-Q^{t}(i)=\max \left(0, Q^{t}(i)+r^{t}(i)\right)-Q^{t}(i)$

$$
\geq Q^{t}(i)+r^{t}(i)-Q^{t}(i)=r^{t}(i)
$$

Lemma: For any i and value functions $Q^{T}(i) \leq \sqrt{n T}$.
Proof: $\left(\max _{i \in \mathrm{~A}} Q^{T}(i)\right)^{2}=\max _{i \in \mathrm{~A}} Q^{T}(i)^{2} \leq \sum_{i \in A} Q^{T}(i)^{2}=$
$=\sum_{i \in A} \max \left(0, Q^{T-1}(i)+u^{T}(i)-\sum_{j \in A} \sigma^{T}(j) u^{T}(j)\right)^{2}$
$\ldots \leq \sum_{i} Q^{T-1}(i)^{2}+n$
By induction $Q^{T}(i)^{2} \leq n T$.

No-Regret Dynamics - full information

Theorem: If after T iterations of no-regret dynamics each player has external regret lower then ϵ than $\sigma=\frac{1}{T} \sum_{t}^{T} \sigma^{t}$, where $\sigma^{t}=\prod_{i=1}^{k} \sigma_{i}^{t}$, is an ϵ-coarse correlated equilibrium of the game (ϵ-Nash equilibrium in zero-sum). I.e., for any $a_{i}^{\prime} \in A_{i}$

$$
\mathbf{E}_{a \sim \sigma}\left[U_{i}(a)\right] \geq \mathbf{E}_{a \sim \sigma}\left[U_{i}\left(a_{i}^{\prime}, a_{-i}\right)\right]-\epsilon
$$

Corollary: If we run regret matching+ in a game with less than $|A|$ actions for each player for T iterations, the resulting average strategy is an $(\sqrt{|A| / T})$-coarse correlated equilibrium of the game.

Algorithms for learning in simple and complex games

Learning in Extensive Form Games

Viliam Lisý

Artificial Intelligence Center
Department of Computer Science, Faculty of Electrical Engineering Czech Technical University in Prague

(Sep 25, 2018)

Impact on poker performance

1.4×10^{13} Heads-Up Limit Texas Hold'em

Extensive form games

Counterfactual Regret - Motivation

Take the current reach probabilities?
-> undefined belief
Take only opponent's reach probability!
-> defined where necessary

Counterfactual Regret - Definition

Counterfactual value: $\quad v_{i}^{\sigma}(I, a)=\sum_{(h, z) \in Z_{I}} \pi_{-i}^{\sigma}(h) \pi^{\sigma}(h a, z) u_{i}(z)$
Counterfactual regret: $\quad r^{t}(I, a)=v_{i}^{\sigma^{t}}(I, a)-v_{i}^{\sigma^{t}}(I)$
Can be computed in one tree walk

Counterfactual Regret Minimization

1) Walk the tree to compute conterfactual values in all ISs
2) Use RM, RM+, Hedge,... to compute next strategy for each IS
3) Goto 1
4) Return mean of all used strategies

Counterfactual regret minimization

Player 1 iteration

Counterfactual regret minimization

Player 2 iteration

Counterfactual regret minimization

Each iteration requires full tree traversal
Average strategy converges
1000 iterations for a near optimal strategy

Counterfactual Regret Minimization

Theorem (Zinkevich et al. 2008): For a sequence of (mixed) strategies σ_{i}^{t}, let $R_{i, i m m}^{T}(I)=\max _{a} \sum_{t \in 1 . . T} r^{t}(I, a)$ then

$$
R_{i, f u l l}^{T} \leq \sum_{I} R_{i, i m m}^{T,+}(I)
$$

Proof: Let $D(I)$ be the information sets reachable from $I, \operatorname{Succ}_{i}(I, a)$ be the possible next information sets, $\operatorname{Succ}_{i}(I)=\cup_{a \in \mathrm{~A}(I)} \operatorname{Succ}_{i}(I, a)$.

$$
\begin{gathered}
R_{i, f u l l}^{T}(I)=\max _{\sigma^{\prime} \in \Sigma_{i}} \sum_{t \in 1 . . T}\left(v_{i}\left(\left.\sigma^{t}\right|_{D(I) \rightarrow \sigma^{\prime}}, I\right)-v_{i}\left(\sigma^{t}, I\right)\right) \\
v_{i}^{\sigma}(I, a)=\sum_{(h, z) \in Z_{I}} \pi_{-i}^{\sigma}(h) \pi^{\sigma}(h a, z) u_{i}(z) ; r^{t}(I, a)=v_{i}^{\sigma^{t}}(I, a)-v_{i}^{\sigma^{t}}(I) \\
R_{i, i m m}^{T}(I)=\max _{a \in A(I)} \sum_{t \in 1 . . T}\left(v_{i}\left(\left.\sigma^{t}\right|_{I \rightarrow a}, I\right)-v_{i}\left(\sigma^{t}, I\right)\right)
\end{gathered}
$$

Lemma: $R_{i, f u l l}^{T}(I) \leq R_{i, i m m}^{T}(I)+\sum_{I^{\prime} \in \operatorname{Succ}_{i}(I)} R_{i, f u l l}^{T,+}\left(I^{\prime}\right)$

$$
R_{i, f u l l}^{T}(I)=\max _{a \in A(I)} \max _{\sigma^{\prime} \in \Sigma_{i}} \sum_{t \in 1 . . T}
$$

$$
\begin{gathered}
\quad\left(v_{i}\left(\left.\sigma^{t}\right|_{I \rightarrow a}, I\right)-v_{i}\left(\sigma^{t}, I\right)\right. \\
\left.+\sum_{I^{\prime} \in \operatorname{Succ}(I, a)} \operatorname{succ} c_{i}^{\sigma}\left(I^{\prime} \mid I, a\right)\left(\frac{\pi_{-i}^{t}(I)}{\pi_{-i}^{t}\left(I^{\prime}\right)}\right)\left(v_{i}\left(\left.\sigma^{t}\right|_{\left.D(I) \rightarrow \sigma^{\prime}, I^{\prime}\right)}\right)-v_{i}\left(\sigma^{t}, I^{\prime}\right)\right)\right) \\
R_{i, f u l l}^{T}(I) \leq \max _{a \in A(I)} \max _{\sigma^{\prime} \in \Sigma_{i}} \sum_{t \in 1 . . T}\left(v_{i}\left(\left.\sigma^{t}\right|_{I \rightarrow a}, I\right)-v_{i}\left(\sigma^{t}, I\right)\right) \\
+\max _{a \in A(I)} \max _{\sigma^{\prime} \in \Sigma_{i}} \sum_{t \in 1 . . T} \sum_{I^{\prime} \in S u c c_{i}(I, a)}\left(v_{i}\left(\left.\sigma^{t}\right|_{\left.D\left(I^{\prime}\right) \rightarrow \sigma^{\prime}, I^{\prime}\right)}\right)-v_{i}\left(\sigma^{t}, I^{\prime}\right)\right) \\
R_{i, f u l l}^{T}(I) \leq R_{i, i m m}^{T}(I)+\max _{a \in A(I)_{I^{\prime} \in S u c c_{i}(I, a)}} R_{i, f u l l}^{T}\left(I^{\prime}\right) \\
\leq R_{i, i m m}^{T}(I)+\sum_{I^{\prime} \in S u c c_{i}(I)} R_{i, f u l l}^{T,+}\left(I^{\prime}\right) .
\end{gathered}
$$

The proof of the theorem is completed by induction, using the Lemma above.

Average Strategy in CFR

$$
\bar{\sigma}_{i}^{T}(I, a)=\frac{\sum_{t=1}^{T} \pi_{i}^{\sigma^{t}}(I) \sigma^{t}(I, a)}{\sum_{t=1}^{T} \pi_{i}^{\sigma^{t}}(I)}
$$

Weighted averaging!

CFR+ Convergence Speed

Theorem (Tammelin et al. 2015): The mean strategies form CFR+ in a game with payoff range $\Delta, A=\max _{I}|A(I)|$, after T iterations form an $\frac{2\left(\left|I_{1}\right|+\left|I_{2}\right|\right) \Delta \sqrt{A}}{\sqrt{T}}$-Nash equilibrium.

CFR Variants - CFR-BR

Opponent always plays best response (Johanson et al. 2012)

No storage for the opponent's strategy
No need for average strategy
Opponent can play in a finer abstraction
Infinite strategy space
Optimal abstract strategies

CFR Variants - CFR-BR

Theorem (Johanson et al. 2012):
After T iterations, the average strategy of CFR-BR converges to

$$
\frac{\Delta\left|\mathrm{I}_{1}\right| \sqrt{\left|A_{1}\right|}}{\sqrt{T}} \text { Nash equilibrium }
$$

Proof sketch:
CFR player: $\sigma_{i}^{0}, \sigma_{i}^{1}, \ldots, \sigma_{i}^{T} \quad$ - no regret sequence of strategies
BR player: $B R\left(\sigma_{i}^{0}\right), B R\left(\sigma_{i}^{1}\right), \ldots, B R\left(\sigma_{i}^{T}\right)$
Both players eventually have external regret $<\epsilon$

CFR Variants - CFR-BR

Theorem (Johanson et al. 2012):
After T iteration with probability (1-p) the current strategy of CFR-BR converges to

$$
\frac{\Delta\left|\mathrm{I}_{1}\right| \sqrt{\left|A_{1}\right|}}{p \sqrt{T}} \text { Nash equilibrium }
$$

Proof sketch:

$$
\begin{aligned}
& \bar{r}_{i, f u l l}^{T}=\frac{1}{T} \max _{\sigma^{\prime}} \sum_{t=1}^{T} u_{i}\left(\sigma^{\prime}, \sigma_{-i}^{t}\right)-\frac{1}{T} \sum_{t=1}^{T} u_{i}\left(\sigma_{i}^{t}, \sigma_{-i}^{t}\right)<\epsilon \\
& \frac{1}{T} \sum_{t=1}^{T} u_{i}\left(\sigma_{i}^{t}, \sigma_{-i}^{t}\right) \geq \frac{1}{T} \max _{\sigma^{\prime}} \sum_{t=1}^{T} u_{i}\left(\sigma^{\prime}, \sigma_{-i}^{t}\right)-\epsilon \geq \max _{\sigma^{\prime}} u_{i}\left(\sigma^{\prime}, \bar{\sigma}_{-i}^{T}\right)-\epsilon \\
& \geq v_{i}^{*}-\epsilon, \text { but } u_{i}\left(\sigma_{i}^{t}, \sigma_{-i}^{t}\right) \leq v_{i}^{*}, \text { therefore } u_{i}\left(\sigma_{i}^{t}, \sigma_{-i}^{t}\right)>v_{i}^{*}-\frac{\epsilon}{p} \text { often. }
\end{aligned}
$$

Solving Limit Texas Hold'em

(Bowling et al., Sience 2015)
69 days
900 CPU-years

Online learning and prediction
single agent learns to select the best action
Learning in normal form games
the same algorithms used by multiple agents
Learning in extensive form games
generalizing these ideas to sequential games
Brief introduction to neural networks

DeepStack

Algorithms for learning in simple and complex games

Brief Introduction to Neural Networks

Viliam Lisý

Artificial Intelligence Center
Department of Computer Science, Faculty of Electrical Engineering Czech Technical University in Prague
(Sep 25, 2018)

Neuron

Neural Network

Universal approximation theorem (1989, etc.)

For any non-constant, monotonically increasing, bounded ϕ, a feed-forward network with a single hidden layer containing a finite number of neurons can approximate continuous functions on compact subsets of R^{n}.

Gradient Descent

$$
a_{n+1}=a_{n}-\gamma \nabla \mathrm{f}\left(\mathrm{a}_{\mathrm{n}}\right)
$$

Backpropagation

$$
\frac{\delta E r r o r}{\delta w_{2}}=\frac{\delta E r r o r}{\delta y} * \frac{\delta \mathrm{y}}{\delta z} * \frac{\delta z}{\delta w_{2}}
$$

Stochastic gradient descent

$$
\begin{aligned}
a_{n+1} & =a_{n}-\gamma \nabla \mathrm{f}\left(\mathrm{a}_{\mathrm{n}}\right) \\
\mathrm{f}(\mathrm{x}) & =\frac{1}{\mathrm{n}} \sum_{i} f(i, x) \\
a_{k+1} & =a_{k}-\frac{\gamma}{n} \sum_{i} \nabla \mathrm{f}\left(\mathrm{i}, \mathrm{a}_{\mathrm{k}}\right)
\end{aligned}
$$

An unbiased estimate of the gradient is enough!
In practice, usually mini-batch and not a single sample.

Algorithms for learning in simple and complex games

DeepStack

Viliam Lisý

Artificial Intelligence Center
Department of Computer Science, Faculty of Electrical Engineering Czech Technical University in Prague
(Sep 25, 2018)

Counterfactual regret minimization

Each iteration requires full tree traversal
Average strategy converges
1000 iterations for a near optimal strategy

Computing strategies via abstraction

$10^{148}: 1$

Depth limited look-ahead search

Beginning

Depth limited look-ahead search

Beginning

Depth limited look-ahead search

Beginning

Depth limited look-ahead search

Game decomposition

Perfect information example
Imperfect information example

DeepStack team at University of Alberta

Photo: John Ulan for the University of Alberta

CFR-D

CFR with Decomposition (Burch et al. 2014)

Trades-of space for computation
Store only the trunk
Resolve subgames in each iteration

Resolve on demand in play

Augmented information set
Set on undistinguishable histories for any player, not just the deciding one

Subgame (denoted S)

forest of trees closed under descendance and belonging into augmented information sets
$R(S)$
set of augmented information sets in the root of a subgame

CFR-D: Solving Trunk Strategy

Initialize regrets to 0
For iteration $t=1, \ldots, T$
compute σ_{\uparrow}^{t} from stored regrets update trunk average strategy by σ_{\uparrow}^{t}
For each subgame S

$$
\sigma_{S}^{t} \leftarrow \operatorname{SOLVE}\left(S, \sigma_{\uparrow}^{t}\right)
$$

For each augmented $I_{p} \in R(S)$
Compute value $v_{I_{p}}$ Update average value $\mathrm{cf} v_{I_{p}}$
Update trunk regrets using $v_{I_{p}}$

CFR-D: Computing Trunk Strategy

CFR-D: Resolving Subgame

Assume blue player played D and the game reached S1
Unsafe resolving
Save resolving
No incentive to change trunk!

CFR-D More Complicated Resolving

CFR-D Resolving Game

When resolving for player 1

Create new chance node as the root
Create new nodes for player 2 grouped by her "information sets"
Connect the root to nodes in proportion to player 1 trunk strategy
For each player 2 node, add follow action leading to subgame
For each player 2 node, add terminate action with CFV of IS

We need

Distribution in the root IS generated by player 1 trunk strategy
Counterfactual value achievable by player 2 in his root ISs

CFR-D Convergence properties

CFR-D achieves no regret in the trunk
It the counterfactual regret at each information set I at the root of a subgame is bounded by ϵ_{S}, then than the average regret over the whole game is

$$
R_{f u l l}^{T} \leq \frac{N_{T R} \sqrt{A}}{\sqrt{T}}+N_{S} \epsilon_{S}
$$

Proof sketch: $\sigma^{0}\left[S \leftarrow \sigma_{S}^{0 . *}\right], \sigma^{1}\left[S \leftarrow \sigma_{S}^{1 . *}\right], \ldots$
CF regret in the trunk minimized by CFR
CF regret in the subgame close to 0 for both players
CFR-D resolving forms a Nash equilibrium
If we run the recovery game for each player and each subgame until we reach regret below ϵ_{R}, the combined strategy has regret

$$
R_{\text {full }}^{T} \leq \frac{N_{T R} \sqrt{A}}{\sqrt{T}}+N_{S}\left(3 \epsilon_{S}+2 \epsilon_{R}\right)
$$

Public Tree

Public Tree

Matching pennies

Phantom Tic-Tac-Toe
Visibility-based pursuit-evasion games

Augmented IS in poker public node

Resolving poker subgame

To resolve, we need

$$
\begin{aligned}
& \forall I_{1} \in R(S) \pi_{1}\left(I_{1}\right) \\
& \forall I_{2} \in R(S) c f v_{2}\left(I_{2}\right)
\end{aligned}
$$

In poker it means
$\pi_{1}\left(I_{1}\right)$ - probability that player 1 holds each hand = range
$c f v_{2}\left(I_{2}\right)$ - how much player 2 can win with each hand
In root (after chance reals hole cards)
$\pi_{i}\left(I_{i}\right)$ - uniform
$\operatorname{cfv}_{i}\left(I_{i}\right)$ - pre-computed offline

DeepStack: updating maintained values

Assuming DeepStack is player 1
Own action
replace player 2's cfvs by the once computed in the resolve game update player 1's range based on the played strategy

Chance action
replace player 2's cfvs from the last resolve above chance keep player 1's range unchanged

Opponent's action
no update required!

Depth limited look-ahead search

Beginning

Depth limited look-ahead search

DeepStack: Neural Network

Where do we get training data?

Beginning

Where do we get training data?

Beginning

Where do we get training data?

DeepStack: Training

Turn Network (right after dealing turn card)
10M pseudo-random ranges, pots, random boards
Solve by $C F R^{+}$until the end of the game
Extract CFVs for training, train Turn NN
Flop Network (right after dealing flop cards)
10M pseudo-random ranges, pots, random boards
Solve by DeepStack (CFR-D) using the pre-trained Turn NN
Extract CFVs for training, train Turn NN
Pre-flop Network
10M pseudo-random ranges, pots
Enumerating 22100 possible flops and averaging

DeepStack: Convergence

Theorem: If the error of CFVs returned by the value function is less then ϵ and T iterations of resolving are used for each decision, than the exploitability of the player strategy is less than

$$
k_{1} \epsilon+\frac{k_{2}}{\sqrt{T}}
$$

where k_{1}, k_{2} are game-specific constants.

DeepStack: Results

References

Burch, N., \& Bowling, M. (2013). CFR-D: Solving Imperfect Information Games Using Decomposition. arXiv Preprint arXiv:1303.4441, 1-15. Retrieved from http://arxiv.org/abs/1303.4441

Moravčík, M., Schmid, M., Burch, N., Lisý, V., Morrill, D., Bard, N., Davis T., Waugh K., Johanson M., Bowling, M. (2017). DeepStack: Expert-Level Artificial Intelligence in No-Limit Poker. www.deepstack.ai

References

Asu Ozdaglar. 6.254 : Game Theory with Engineering Applications. Lecture 11: Learning in Games. March 11, 2010.

Brandt, Felix, Felix Fischer, and Paul Harrenstein. "On the rate of convergence of fictitious play." International Symposium on Algorithmic Game Theory. Springer Berlin Heidelberg, 2010.
T. Roughgarden, "Lecture Notes: Algorithmic Game Theory," tech. rep., Stanford, 2013.

References

Blum, Avrim, and Yishay Mansour. "From external to internal regret." Journal of Machine Learning Research 8.Jun (2007): 1307-1324.
T. Roughgarden, "Lecture Notes: Algorithmic Game Theory," tech. rep., Stanford, 2013.

Tammelin, Oskari, Neil Burch, Michael Johanson, and Michael Bowling. "Solving Heads-Up Limit Texas Hold'em." In TwentyFourth International Joint Conference on Artificial Intelligence. 2015.

Bubeck, Sébastien, and Nicolo Cesa-Bianchi. "Regret analysis of stochastic and nonstochastic multi-armed bandit problems." Foundations and Trends in Machine Learning 5.1 (2012): 1-122.

