
Algorithms for learning

in simple and complex games

Viliam Lisý

Artificial Intelligence Center

Department of Computer Science, Faculty of Electrical Engineering

Czech Technical University in Prague

(Sep 24, 2018)

Algorithms for learning

in simple and complex games

Brief Introduction to Game Theory

Viliam Lisý

Artificial Intelligence Center

Department of Computer Science, Faculty of Electrical Engineering

Czech Technical University in Prague

(Sep 24, 2018)

Game Theory

Mathematical framework studying strategies of players in

situations where the outcomes of their actions critically depend

on the actions performed by the other players.

3

Analytic approach

Small model size

Inputs in analytic form

Analysis of system behavior

Complete understanding

Computational approach

Huge model size

Real world data as inputs

Computing optimal strategies

Partial understanding

Computational Game Theory

Matrix (normal form) games

Zero-sum game, pure strategy, mixed strategy

Best response

Nash equilibrium, game value

5

Player 1

Row player

Maximizer

Player 2

Column player

Minimizer

r p s

R 0 -1 1

P 1 0 -1

S -1 1 0

𝐵𝑅𝑖 𝜎−𝑖 = arg max𝑎𝑖∈𝐴𝑖 𝑈𝑖 𝑎𝑖 , 𝜎−𝑖

Non-zero Sum Games

What is the Nash equilibrium?

Equilibrium selection problem

Correlated equilibria, coarse correlated

Stackelberg equilibrium

6

b f

B 2, 1 0, 0

F 0, 0 1, 2

c d

C -1, -1 -7, 0

D 0, -7 -5, -5

Extensive-form game

7

Extensive Form Games

8

Plan

Online learning and prediction

single agent learns to select the best action

Learning in normal form games

the same algorithms used by multiple agents

Learning in extensive form games

generalizing these ideas to sequential games

Brief introduction to neural networks

DeepStack

9

Algorithms for learning

in simple and complex games

Introduction to Online Learning and Prediction

Viliam Lisý

Artificial Intelligence Center

Department of Computer Science, Faculty of Electrical Engineering

Czech Technical University in Prague

(Sep 24, 2018)

Introduction

Online learning and prediction

learning from data that become available in sequence

adapting prediction (behavior) after each data point

optimizing overall precision (not only after all data arrive)

Applications

investing in best fond

web advertisements

selecting the best (e.g., page replacement) algorithm

11

Introduction

Why do we care about online learning in games?

repeated play against an unknown opponent

(repeated) play of an unknown game

understanding how equilibria may occur in real world

computationally efficient equilibrum approximation algorithms

12

𝜎0 𝑢0 𝜎1 𝑢1 𝜎2 𝑢2

…

𝜎𝑇 𝑢𝑇 𝑎1 0.2 0 0.1 1 0.3 0 𝑎2 0.5 0.5 0.4 0.5 0.3 1 𝑎3 0.3 1 0.5 0 0.4 0 𝜎𝑡 ⋅ 𝑢𝑡 𝑥0 = 0.55 𝑥1 = 0.3 𝑥2 = 0.3 𝑥𝑇

Prediction with expert advice

13

Problem definition

Set of 𝑛 actions (experts) 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑛}
Set of time steps 𝑡 = 1,2, … , 𝑇

In each step

Decision-maker selects a mixed strategy 𝜎𝑡
An adversary selects rewards 𝑢𝑡: 𝐴 → [0,1] (adaptive vs oblivious)

Action at ∈ 𝐴 is selected based on 𝜎𝑡
The decision-maker receives reward 𝑢𝑡(𝑎𝑡) (learns the whole 𝑢𝑡)

𝜎0 𝑢0 𝜎1 𝑢1 𝜎2 𝑢2

…

𝜎𝑇 𝑢𝑇 𝑎1 0.2 0 0.1 1 0.3 0 𝑎2 0.5 0.5 0.4 0.5 0.3 1 𝑎3 0.3 1 0.5 0 0.4 0 𝜎𝑡 ⋅ 𝑢𝑡 𝑥0 = 0.55 𝑥1 = 0.3 𝑥2 = 0.3 𝑥𝑇

External Regret

14

Goal: play as well as the best expert

Immediate regret at time 𝑡 for not choosing action 𝑖
 𝑟𝑡 𝑖 = 𝑢𝑡 𝑖 − 𝑥𝑡
Cumulative external regret for playing 𝜎0, 𝜎1 … 𝜎𝑇

 𝑅𝑇 = 𝑚𝑎𝑥𝑖∈𝐴 𝑟𝑡(𝑖)𝑇𝑡=0 = 𝑚𝑎𝑥𝑖∈𝐴 𝑢𝑡(𝑖)𝑇𝑡=0 − 𝑥𝑡 𝑇𝑡=0

Average external regret for playing 𝜎0, 𝜎1 … 𝜎𝑇

 𝑟 𝑇 = 1𝑇 𝑅𝑇

𝜎0 𝑢0 𝜎1 𝑢1 𝜎2 𝑢2

…

𝜎𝑇 𝑢𝑇 𝑎1 0.2 0 0.1 1 0.3 0 𝑎2 0.5 0.5 0.4 0.5 0.3 1 𝑎3 0.3 1 0.5 0 0.4 0 𝜎𝑡 ⋅ 𝑢𝑡 𝑥0 = 0.55 𝑥1 = 0.3 𝑥2 = 0.3 𝑥𝑇

Swap Regret

15

Goal: minimize regret for not playing a 𝛿 𝑎 instead of 𝑎 for some 𝛿: 𝐴 → 𝐴

Cumulative swap regret for playing 𝜎0, 𝜎1 … 𝜎𝑇

 𝑅𝑇 = 𝑚𝑎𝑥𝛿 𝜎𝑡 𝑖 (𝑢𝑡 𝛿(𝑖) − 𝑢𝑡(𝑖))𝑖∈𝐴 𝑇𝑡=0

Internal regret

 allows switching only all occurrences of 𝑎𝑖 by 𝑎𝑗

External ⊂ Swap, Internal ⊂ Swap

No-regret algorithms

An algorithm has no regret if for any 𝑢0, 𝑢1 … 𝑢𝑇produces 𝜎0, 𝜎1 … 𝜎𝑇 such that 𝑟 𝑇 → 0 as 𝑇 → ∞.

16

Why not simply to maximize reward?

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑥𝑡𝑇
𝑡=0

The adversary may choose ∀𝑖 ∈ 𝐴 , 𝑢𝑡 𝑖 = 0 and we have minimal

reward regardless of the used algorithm.

Any algorithm has (optimal) 0 regret.

17

Regret towards best strategy in hindsight

𝑅𝑏𝑒𝑠𝑡𝑇 = 𝑚𝑎𝑥𝑖∈𝐴 𝑢𝑡(𝑖)𝑇
𝑡=0 − 𝑥𝑡𝑇

𝑡=0

Proposition: There is no algorithm with no regret towards the

best sequence of choices.

Proof: Let 𝐴 = {𝑈, 𝐷}. For an arbitrary sequence of strategies 𝜎𝑡,
choose a reward vector 𝑢𝑡 = 0,1 if 𝜎𝑡 𝑈 ≥ 12 and 𝑢𝑡 = 1,0

otherwise.

The cumulative reward of the algorithm 𝑥𝑡𝑇𝑡=0 ≤ 𝑇2, while the best

strategy in hindsight has reward 𝑚𝑎𝑥𝑖∈𝐴 𝑢𝑡(𝑖)𝑇𝑡=0 = 𝑇. Therefore

 𝑅𝑏𝑒𝑠𝑡𝑇 ≥ 𝑇2 and 𝑟 𝑏𝑒𝑠𝑡𝑇 → 𝑧 ≥ 12

18

Regret of deterministic algorithms

Proposition: There is no deterministic no-external-regret

algorithm.

Proof: We assume that the adversary selects rewards 𝑢𝑡
knowing strategy 𝜎𝑡 . (For example, it can simulate the

deterministic algorithm from the beginning.) Therefore, with 𝑛 = 2, he can always give reward 0 for the selected action and 1

for the other action. One of the actions got reward 1 at least 𝑇/2
times, therefore 𝑟 𝑡 ≥ 12.

19

Lower bound on external regret

Theorem:No (randomized) algorithm over 𝑛 actions has
expected external regret vanishing faster than Θ(ln (𝑛)/𝑇).
Proof sketch: Assume n=2. Consider an adversary that,

independently on each step t, chooses uniformly at random

between the cost vectors (1, 0) and (0, 1) regardless of the

decision-making algorithm. The cumulative expected reward is

exactly 𝑇/2. In hindsight, however, with constant probability one

of the two fixed actions has cumulative reward T/2 + Θ(𝑇). The

reason is that T fair coin flips have standard deviation Θ(𝑇).

20

Lower bound on external regret

Theorem: There exist no-regret algorithms with expected
external regret 𝑂(ln 𝑛 /𝑇).

Proof: We will show Randomized Weighted Majority algorithm.

Corollary: There exists a decision-making algorithm that, for

every 𝜖 > 0, has expected regret less than 𝜖 after 𝑂(ln 𝑛 /𝜖2)
iterations.

21

Randomized Weighted Majority

Aka Hedge or multiplicative weights (MW) algorithm. It is easier

to analyze in costs 𝑐 𝑖 = (1 − 𝑢 𝑖). The algorithm maintains

weights 𝑤(𝑖) for each action 𝑖 ∈ 𝐴.

Initialize 𝑤1 𝑖 = 1 for every 𝑖 ∈ 𝐴

For each time 𝑡 = 1,2, … , 𝑇

Let 𝑊𝑡 = 𝑤𝑡(𝑖)𝑖∈𝐴 and play 𝜎𝑡(𝑖) = 𝑤𝑡(𝑖)/𝑊𝑡
Given costs 𝑐𝑡, set 𝑤𝑡+1 𝑖 = 𝑤𝑡 𝑖 1 − 𝛾 𝑐𝑡(𝑖) for each 𝑖 ∈ 𝐴

(Equivalently 𝑤𝑡+1 𝑖 = 𝑤𝑡 𝑖 𝑒−𝜂𝑐𝑡(𝑖) for 𝜂 = −ln (1 − 𝛾))

22

Hedge Regret Bound

Theorem: Expected external regret of Hedge is 𝑟 𝑇 < 2 𝑙𝑛(𝑛)/𝑇

Proof: W.L.O.G. we assume oblivious adversary.

Let 𝑂𝑃𝑇 = min𝑖∈𝐴 𝑐𝑡(𝑖)𝑇𝑡=1 be the cost for optimal action 𝑖∗ and

 𝜈𝑡 = 𝜎𝑡 𝑖 𝑐𝑡 𝑖 =𝑖∈𝐴 𝑤𝑡 𝑖𝑊𝑡 𝑐𝑡 𝑖𝑖∈𝐴 be the algorithms cost at 𝑡.
 𝑊𝑇 ≥ 𝑤𝑇 𝑖∗ = 𝑤1 𝑖∗ 1 − 𝛾 𝑐𝑡 𝑖∗𝑇𝑡=1 = 1 − 𝛾 𝑂𝑃𝑇
 𝑊𝑡+1 = 𝑤𝑡+1 𝑖 =𝑖∈𝐴 𝑤𝑡 𝑖 1 − 𝛾 𝑐𝑡(𝑖)𝑖∈𝐴

 ≤ 𝑤𝑡 𝑖 1 − 𝛾𝑐𝑡 𝑖𝑖∈𝐴 = 𝑊𝑡(1 − 𝛾𝜈𝑡)
 1 − 𝛾 𝑂𝑃𝑇 ≤ 𝑊𝑇 ≤ 𝑊1 1 − 𝛾𝜈𝑡𝑇𝑡=1

 𝑂𝑃𝑇 ln 1 − 𝛾 ≤ ln 𝑛 + ln (1 − 𝛾𝜈𝑡)𝑇𝑡=1

… 𝜈𝑡𝑇𝑡 ≤ 𝑂𝑃𝑇 + 𝛾𝑇 + ln 𝑛𝛾 =>
1T 𝜈𝑡𝑇𝑡 ≤ 𝑂𝑃𝑇𝑇 + 2 ln 𝑛𝑇

23

Regret Matching

The algorithm maintains cummulative regrets R(𝑖) for each

action 𝑖 ∈ 𝐴.

Initialize 𝑅1 𝑖 = 0 for every 𝑖 ∈ 𝐴

For each time 𝑡 = 1,2, … , 𝑇

Let S𝑡 = max(0, 𝑅𝑡(𝑖))𝑖∈𝐴 and play 𝜎𝑡(𝑖) = max(0, 𝑅𝑡(𝑖))/S𝑡
Given rewards 𝑢𝑡, for each 𝑖 ∈ 𝐴 set

 𝑅𝑡+1 𝑖 = 𝑅𝑡 𝑖 + 𝑟𝑡(𝑖) = 𝑅𝑡 𝑖 + (𝑢𝑡 𝑖 − 𝜎𝑡 𝑗 𝑢𝑡(𝑗))𝑗∈𝐴

24

Regret Matching+

The algorithm maintains cumulative regrets-like values Q(𝑖) for

each action 𝑖 ∈ 𝐴.

Initialize 𝑄1 𝑖 = 0 for every 𝑖 ∈ 𝐴

For each time 𝑡 = 1,2, … , 𝑇

Play 𝜎𝑡(𝑖) = 𝑄𝑡(𝑖)/ 𝑄𝑡(𝑗)𝑗∈𝐴

Given rewards 𝑢𝑡, for each 𝑖 ∈ 𝐴 set

 𝑄𝑡+1 𝑖 = max(0, 𝑄𝑡 𝑖 + 𝑟𝑡 𝑖) = max(0, 𝑢𝑡 𝑖 − 𝜎𝑡 𝑗 𝑢𝑡(𝑗))𝑗∈𝐴

25

RM+ Regret Bound

Lemma: Regret-like values 𝑄𝑡 𝑖 are an upper bound on 𝑅𝑡 𝑖 .
Proof: 𝑄𝑡+1 𝑖 − 𝑄𝑡 𝑖 = max 0, 𝑄𝑡 𝑖 + 𝑟𝑡 𝑖 − 𝑄𝑡 𝑖 ≥ 𝑄𝑡 𝑖 + 𝑟𝑡 𝑖 − 𝑄𝑡 𝑖 = 𝑟𝑡(𝑖)
Lemma: For any 𝑖 and value functions 𝑄𝑇 𝑖 ≤ 𝑛𝑇.

Proof: max𝑖∈A 𝑄𝑇 𝑖 2 = max𝑖∈A 𝑄𝑇 𝑖 2 ≤ 𝑄𝑇 𝑖 2𝑖∈𝐴 =

 = max(0, 𝑄𝑇−1 𝑖 + 𝑢𝑇(𝑖) − 𝜎𝑇 𝑗 𝑢𝑇 𝑗𝑗∈𝐴)2𝑖∈𝐴

 … ≤ 𝑄𝑇−1 𝑖 2 + 𝑛𝑖

By induction 𝑄𝑇 𝑖 2 ≤ 𝑛𝑇.

26

Summary

General setting of prediction with expert advice

Regret as a measure of distance from the optimal strategy

There are no-regret algorithms

Hedge, Regret matching, Regret matching+

27

Plan

Online learning and prediction

single agent learns to select the best action

Learning in normal form games

the same algorithms used by multiple agents

Learning in extensive form games

generalizing these ideas to sequential games

Brief introduction to neural networks

DeepStack

28

Algorithms for learning

in simple and complex games

Learning in Normal Form Games

Viliam Lisý

Artificial Intelligence Center

Department of Computer Science, Faculty of Electrical Engineering

Czech Technical University in Prague

(Sep 24, 2018)

Introduction

How may simple learning agents achieve equilibrium outcomes?

Best Response Dynamics (Fictitious play)

best response to average empirical play

needs to know the game

No-Regret Dynamics

each player uses no-regret algorithm

may now only their own actions and received rewards

30

Best response dynamics

Fictitious play

Players maintain empirical distribution of past opponent’s actions

 𝜎 −𝑖𝑇 = 1T 𝜎−𝑖𝑡𝑇
𝑡=1

In each round, each player plays BR to these distributions

 𝜎𝑖𝑡 = arg max𝑎𝑖∈𝐴𝑖 𝑈𝑖(𝑎𝑖, 𝜎 −𝑖𝑡)

31

(often in form of frequencies 𝜂𝑖𝑇)

Result of FP in case of convergence

Theorem: If the empirical action frequencies of fictitious play

converge (𝜎 𝑡 → 𝜎∗) they converge to the Nash equilibrium of the

game.

Theorem: The empirical frequencies of FP converge to NE in

constant-sum games

two player games where each player has up to two actions

games solvable by iterated strict dominance

identical interest games

potential games

32

Why it may not converge?

Shapley’s example in a modified rock-paper-scissors:

Unique NE is the uniform strategy for both players.

Let 𝜂10 = (1,0,0) and 𝜂20 = 0,1,0 .
Play may be (P,R),(P,R)… for 𝑘 steps until column switches to S.

Then (P,S) follows until row switches to R (for 𝛽𝑘 steps, 𝛽 > 1).

Then (R,S) follows until column switches to P (for 𝛽2𝑘 steps).

The play cycles among all 6 non-diagonal profiles with periods of ever-

increasing length, hence, the empirical frequencies cannot converge.
33

R S P

R 0, 0 1, 0 0, 1

S 0, 1 0, 0 1, 0

P 1, 0 0, 1 0, 0

Convergence of FP

Theorem (Brandt, Fischer, Harrenstein, 2010): In symmetric

two-player constant-sum games, FP may require exponentially

many rounds (in the size of the representation of the game)

before an equilibrium action is eventually played. This holds

even for games solvable via iterated strict dominance.

Proof:

With 𝜖 = 2−𝑘, FP may take 2𝑘 rounds to play the equilibrium

action 𝑐 for the first time.

(a,a),(b,b),…,(b,b)

34

a b c

a 0 -1 -𝜖

b 1 0 -𝜖

c 𝜖 𝜖 0

2𝑘 − 1 times

No-Regret Learning Summary

Immediate regret at time 𝑡 for not choosing action 𝑖
 𝑟𝑡 𝑖 = 𝑢𝑡 𝑖 − 𝜎𝑡 ⋅ 𝑢𝑡
Cumulative external regret for playing 𝜎0, 𝜎1 … 𝜎𝑇

 𝑅𝑇 = 𝑚𝑎𝑥𝑖∈𝐴 𝑟𝑡(𝑖)𝑇𝑡=0 = 𝑚𝑎𝑥𝑖∈𝐴 𝑢𝑡(𝑖)𝑇𝑡=0 − 𝜎𝑡 ⋅ 𝑢𝑡𝑇𝑡=0

Average external regret for playing 𝜎0, 𝜎1 … 𝜎𝑇

 𝑟 𝑇 = 1𝑇 𝑅𝑇

An algorithm has no regret if for any 𝑢0, 𝑢1 … 𝑢𝑇produces 𝜎0, 𝜎1 … 𝜎𝑇

such that 𝑟 𝑇 → 0 as 𝑇 → ∞.

35

From External to Swap Regret

Cumulative swap regret for playing 𝜎0, 𝜎1 … 𝜎𝑇

 𝑅𝑇 = 𝑚𝑎𝑥𝛿:𝐴→𝐴 𝜎𝑡 𝑖 (𝑢𝑡 𝛿(𝑖) − 𝑢𝑡(𝑖))𝑖∈𝐴 𝑇𝑡=0

36

From External to Swap Regret

Theorem (Blum & Mansour 2007):If there is a no-external-regret

algorithm for a setting, there is also a no-swap-regret algorithm.

Proof: Polynomial black-box reduction.

37

𝑢𝑡

𝑢𝑡

𝑢𝑡

𝑢𝑡

From External to Swap Regret

Proof: Average expected reward of the overall algorithm

 1𝑇 𝑝𝑡 𝑖𝑛
𝑖=1 𝑢𝑡(𝑖)𝑇

𝑡=1

No-regret algorithm 𝑀𝑗 choses 𝑞𝑗1, … , 𝑞𝑗𝑇, gets 𝑝1 𝑗 𝑢1, … , 𝑝𝑇 𝑗 𝑢𝑇.

Thus

 ∀𝑘 ∈ 𝐴: 1𝑇 𝑞𝑗𝑡 𝑖 (𝑝𝑡 𝑗𝑛
𝑖=1 𝑢𝑡 𝑖𝑇

𝑡=1) ≥ 1𝑇 𝑝𝑡 𝑗 𝑢𝑡 𝑘𝑇
𝑡=1 − 𝑟 j

Fix an arbitrary 𝛿: 𝐴 → 𝐴 and sum over all 𝑗 ∈ 𝐴:

 1𝑇 𝑞𝑗𝑡 𝑖 𝑝𝑡 𝑗 𝑢𝑡 𝑖𝑛
𝑗=1

𝑛
𝑖=1

𝑇
𝑡=1 ≥ 1𝑇 𝑝𝑡 𝑗 𝑢𝑡 𝛿 𝑗𝑛

𝑗=1
𝑇

𝑡=1 − 𝑟 𝑗𝑛
𝑗=1

38

From External to Swap Regret

We are done if we ensure

 𝑝𝑡 𝑖 = 𝑞𝑗𝑡 𝑖 𝑝𝑡(𝑗)𝑛
𝑗=1

This is true if 𝑝𝑡 is the eigenvector of matrix given by 𝑞𝑗𝑡 for 𝜆 = 1.
Equivalently, 𝑝𝑡 are the stationary distribution of Markov chain.

Such vector 𝑝𝑡 always exists and can be easily found!

39

From External to Swap Regret

Corollary: Let 𝑟𝑀 𝑡 → 0 be the external regret convergence

bound for a base algorithm used in the black-box reduction with 𝐴 actions. Than the swap regret of the overall algorithm is 𝑟𝑠𝑤 𝑇 ≤ 𝐴 𝑟𝑀 𝑇 .
Corollary: The black-box reduction with Hedge for all actions
produces an algorithm with 𝑟𝑠𝑤 𝑇 ≤ 2 𝐴 ln |𝐴| /𝑇.

40

No-Regret Dynamics – full information

Definition:

1) Each player 𝑖 choses independently a mixed strategy 𝜎𝑖𝑡 using

a no-regret algorithm.

2) Each player receives for all 𝑎𝑖 ∈ 𝐴𝑖 rewards 𝑢𝑖𝑡 𝑎𝑖 = 𝐄𝑎−𝑖~𝜎−𝑖[𝑈 𝑎𝑖 , 𝑎−𝑖]

41

No-Regret Dynamics – full information

Theorem: If after T iterations of no-regret dynamics each player
has external regret lower then 𝜖 than 𝜎 = 1𝑇 𝜎𝑡𝑇𝑡 , where 𝜎𝑡 = 𝜎𝑖𝑡𝑘𝑖=1 , is an 𝜖-coarse correlated equilibrium of the game.

I.e., for any 𝑎𝑖′ ∈ 𝐴𝑖 𝐄𝑎~𝜎 𝑈𝑖 𝑎 ≥ 𝐄𝑎~𝜎 𝑈𝑖 𝑎𝑖′, 𝑎−𝑖 − 𝜖

Corollary: If we run Hedge in a game with less than |𝐴| actions

for each player for 𝑇 iterations, the resulting average strategy is
an (𝑙𝑛(|𝐴|)/𝑇)-coarse correlated equilibrium of the game.

Corollary: If we run regret matching+ in a game with less than |𝐴| actions for each player for 𝑇 iterations, the resulting average
strategy is an (|𝐴|/𝑇)-coarse correlated equilibrium of the

game.

42

Minimax Theorem

Note: In zero-sum games, coarse correlated equilibria are Nash.

Theorem (Minimax Theorem): For any matrix game 𝐺

 max𝑥 min𝑦 𝑥𝑇𝐺𝑦 = min𝑦 max𝑥 𝑥𝑇𝐺𝑦

Proof: For contradiction assume that for some 𝛼 > 0

 max𝑥 min𝑦 𝑥𝑇𝐺𝑦 < min𝑦 max𝑥 𝑥𝑇𝐺𝑦 − 𝛼 .
Set 𝜖 = 𝛼2 and let both players run Hedge for time 𝜏 = 2 ln 𝑛 /𝜖2.

Let 𝑥 , 𝑦 be the empirical frequencies of their play and 𝑣 the

average reward of the maximizer. max𝑥 min𝑦 𝑥𝑇𝐺𝑦 ≥ min𝑦 𝑥 𝑇𝐺𝑦 ≥ 𝑣 − 𝜖 ≥ max𝑥 𝑥𝑇𝐺𝑦 − 2𝜖 ≥ min𝑦 max𝑥 𝑥𝑇𝐺𝑦 − 𝛼

43

No-Regret Dynamics

Theorem: If after T iterations of no-regret dynamics each player
has swap regret lower then 𝜖 than 𝜎 = 1𝑇 𝜎𝑡𝑇𝑡 , where 𝜎𝑡 = 𝜎𝑖𝑡𝑘𝑖=1 , is an 𝜖-correlated equilibrium of the game. I.e., for any

player 𝑖 and switching function 𝛿: 𝐴 → 𝐴 𝐄𝑎~𝜎 𝑈𝑖 𝑎 ≥ 𝐄𝑎~𝜎 𝑈𝑖 𝛿(𝑎𝑖), 𝑎−𝑖 − 𝜖

44

Regret matching+

45

𝜎2

R2 0 0

r2 𝜎1 R1 r1 𝜎𝑡 0.5 0.5

0 0.5 2 0

0 0.5 0 1

Iteration:

0

Regret matching+

46

𝜎2

R2 0 0

r2 𝜎1 R1 r1 𝜎𝑡 0.5 0.5

0 0.25 0.5 2 0

0 -0.25 0.5 0 1

Iteration:

1

Regret matching+

47

𝜎2

R2 0 0

r2 𝜎1 R1 r1 𝜎𝑡 0.5 0.5

0.25 0.25 0.5 2 0

0 -0.25 0.5 0 1

Iteration:

1

Regret matching+

48

𝜎2

R2 0 0

r2 𝜎1 R1 r1 𝜎𝑡 0.5 0.5

1 0.25 0.25 1 2 0

0 0 -0.25 0 0 1

Iteration:

1

Regret matching+

49

𝜎2

R2 0 0

r2 -1 1 𝜎1 R1 r1 𝜎𝑡 0.5 0.5

1 0.25 1 2 0

0 0 0 0 1

Iteration:

1

Regret matching+

50

𝜎2 0 1

R2 0 1

r2 -1 1 𝜎1 R1 r1 𝜎𝑡 0 1

1 0.25 1 2 0

0 0 0 0 1

Iteration:

1

Regret matching+

51

𝜎2 0 1

R2 0 1

r2 𝜎1 R1 r1 𝜎𝑡 0 1

1 0.25 0 1 2 0

0 0 1 0 0 1

Iteration:

2

Regret matching+

52

𝜎2 0 1

R2 0 1

r2 𝜎1 R1 r1 𝜎𝑡 0 1

1 0.25 0 0.2 2 0

0 1 1 0.8 0 1

Iteration:

2

Regret matching+

53

𝜎2 0 1

R2 0 1

r2 𝜎1 R1 r1 𝜎𝑡 0 1

0.46 0.25 0 0.2 2 0

0.54 1 1 0.8 0 1

Iteration:

2

Regret matching+

54

𝜎2 0 1

R2 0 1

r2 0.4 0 𝜎1 R1 r1 𝜎𝑡 0 1

0.46 0.25 0.2 2 0

0.54 1 0.8 0 1

Iteration:

2

Regret matching+

55

𝜎2 0 1

R2 0.4 1

r2 0.4 0 𝜎1 R1 r1 𝜎𝑡 0.29 0.71

0.46 0.25 0.2 2 0

0.54 1 0.8 0 1

Iteration:

2

Regret matching+

56

𝜎2 0.19 0.81

R2 0.4 1

r2 0.4 0 𝜎1 R1 r1 𝜎𝑡 0.29 0.71

0.46 0.25 0.2 2 0

0.54 1 0.8 0 1

Iteration:

2

Regret matching+

57

Iteration:

3

Regret matching+

58

Iteration:

4

Regret matching+

59

Iteration:

5

Regret matching+

60

Iteration:

6

Regret matching+

61

Iteration:

7

Regret matching+

62

Iteration:

8

Regret matching+

63

𝜎2 0.30 0.70

R2 0.83 1.15

r2 𝜎1 R1 r1 𝜎𝑡 0.42 0.58

0.33 0.17 0.11 2 0

0.67 1.30 0.88 0 1

Iteration:

8

Plan

Online learning and prediction

single agent learns to select the best action

Learning in normal form games

the same algorithms used by multiple agents

Learning in extensive form games

generalizing these ideas to sequential games

Brief introduction to neural networks

DeepStack

64

Algorithms for learning

in simple and complex games

Refresh

Viliam Lisý

Artificial Intelligence Center

Department of Computer Science, Faculty of Electrical Engineering

Czech Technical University in Prague

(Sep 25, 2018)

𝜎0 𝑢0 𝜎1 𝑢1 𝜎2 𝑢2

…

𝜎𝑇 𝑢𝑇 𝑎1 0.2 0 0.1 1 0.3 0 𝑎2 0.5 0.5 0.4 0.5 0.3 1 𝑎3 0.3 1 0.5 0 0.4 0 𝜎𝑡 ⋅ 𝑢𝑡 𝑥0 = 0.55 𝑥1 = 0.3 𝑥2 = 0.3 𝑥𝑇

Prediction with expert advice

66

Problem definition

Set of 𝑛 actions (experts) 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑛}
Set of time steps 𝑡 = 1,2, … , 𝑇

In each step

Decision-maker selects a mixed strategy 𝜎𝑡
An adversary selects rewards 𝑢𝑡: 𝐴 → [0,1] (adaptive vs oblivious)

Action at ∈ 𝐴 is selected based on 𝜎𝑡
The decision-maker receives reward 𝑢𝑡(𝑎𝑡) (learns the whole 𝑢𝑡)

Regret Matching+

The algorithm maintains cumulative regrets-like values Q(𝑖) for

each action 𝑖 ∈ 𝐴.

Initialize 𝑄1 𝑖 = 0 for every 𝑖 ∈ 𝐴

For each time 𝑡 = 1,2, … , 𝑇

Play 𝜎𝑡(𝑖) = 𝑄𝑡(𝑖)/ 𝑄𝑡(𝑗)𝑗∈𝐴

Given rewards 𝑢𝑡, for each 𝑖 ∈ 𝐴 set

 𝑄𝑡+1 𝑖 = max(0, 𝑄𝑡 𝑖 + 𝑟𝑡 𝑖) = max(0, 𝑢𝑡 𝑖 − 𝜎𝑡 𝑗 𝑢𝑡(𝑗))𝑗∈𝐴

67

RM+ Regret Bound

Lemma: Regret-like values 𝑄𝑡 𝑖 are an upper bound on 𝑅𝑡 𝑖 .
Proof: 𝑄𝑡+1 𝑖 − 𝑄𝑡 𝑖 = max 0, 𝑄𝑡 𝑖 + 𝑟𝑡 𝑖 − 𝑄𝑡 𝑖 ≥ 𝑄𝑡 𝑖 + 𝑟𝑡 𝑖 − 𝑄𝑡 𝑖 = 𝑟𝑡(𝑖)
Lemma: For any 𝑖 and value functions 𝑄𝑇 𝑖 ≤ 𝑛𝑇.

Proof: max𝑖∈A 𝑄𝑇 𝑖 2 = max𝑖∈A 𝑄𝑇 𝑖 2 ≤ 𝑄𝑇 𝑖 2𝑖∈𝐴 =

 = max(0, 𝑄𝑇−1 𝑖 + 𝑢𝑇(𝑖) − 𝜎𝑇 𝑗 𝑢𝑇 𝑗𝑗∈𝐴)2𝑖∈𝐴

 … ≤ 𝑄𝑇−1 𝑖 2 + 𝑛𝑖

By induction 𝑄𝑇 𝑖 2 ≤ 𝑛𝑇.

68

No-Regret Dynamics – full information

Theorem: If after T iterations of no-regret dynamics each player
has external regret lower then 𝜖 than 𝝈 = 𝟏𝑻 𝝈𝒕𝑻𝒕 , where 𝜎𝑡 = 𝜎𝑖𝑡𝑘𝑖=1 , is an 𝜖-coarse correlated equilibrium of the game

(𝜖-Nash equilibrium in zero-sum). I.e., for any 𝑎𝑖′ ∈ 𝐴𝑖 𝐄𝑎~𝜎 𝑈𝑖 𝑎 ≥ 𝐄𝑎~𝜎 𝑈𝑖 𝑎𝑖′, 𝑎−𝑖 − 𝜖

Corollary: If we run regret matching+ in a game with less than |𝐴| actions for each player for 𝑇 iterations, the resulting average
strategy is an (|𝐴|/𝑇)-coarse correlated equilibrium of the

game.

69

Algorithms for learning

in simple and complex games

Learning in Extensive Form Games

Viliam Lisý

Artificial Intelligence Center

Department of Computer Science, Faculty of Electrical Engineering

Czech Technical University in Prague

(Sep 25, 2018)

Impact on poker performance

Based on M. Bowling’s slide from AAAI 2015 keynote 71

2015
Bowling et al.

1.4 x 1013 Heads-Up Limit Texas Hold’em

LP CFR MCCFR CFR-BR CFR+

Extensive form games

72

1 -1

1 -1

0 0

0 0

0 0

2 -2

Counterfactual Regret - Motivation

Take the current reach probabilities?

 -> undefined belief

Take only opponent’s reach probability!

 -> defined where necessary

73

1 0

0 1

0 2

0.5 -0.5

1

0

1

0

1

0

1/2

1 -1
1/2

1/2

1/2

1/2

1/2

1

1

1 -1

1 -1

0 0

0 0

0 0

2 -2

Counterfactual Regret - Definition

74

Counterfactual value: 𝑣𝑖𝜎 𝐼, 𝑎 = 𝜋−𝑖𝜎 ℎℎ,𝑧 ∈𝑍𝐼 𝜋𝜎 ℎ𝑎, 𝑧 𝑢𝑖(𝑧)
Counterfactual regret: 𝑟𝑡 𝐼, 𝑎 = 𝑣𝑖𝜎𝑡 𝐼, 𝑎 − 𝑣𝑖𝜎𝑡 𝐼

Can be computed in one tree walk

Counterfactual Regret Minimization

1) Walk the tree to compute conterfactual values in all ISs

2) Use RM, RM+, Hedge,… to compute next strategy for each IS

3) Goto 1

4) Return mean of all used strategies

75

Counterfactual regret minimization

76

2 -1

13 13

13

13 13 13

0.5

0.5

0.83 0.61

r=-0.11

r=-0.11

r= 0.22

Player 1 iteration

0.3

0.3

0.4

Counterfactual regret minimization

77

2 -1
13 13 13

Player 2 iteration

0.3

0.3

0.4

0.5

0.17

0.5

r= 0.5

r= 0

r=-0.5

r= -1.17

r= 0.33

r= 0.83

r= 0.5

r=-0.5

r= 0

R: 0.3*0

 + 0.4*-1.17

 + 0.3*0.5

 = -0.318

P: 0.3*0.5

 + 0.4*0.33

 + 0.3*-0.5

 = 0.132

S: 0.3*-0.5

 + 0.4*0.83

 + 0.3*0

 = 0.182

0.0 0.42

0.58

Counterfactual regret minimization

Each iteration requires full tree traversal

Average strategy converges

78

1000 iterations

for a near optimal

strategy

Counterfactual Regret Minimization

Theorem (Zinkevich et al. 2008): For a sequence of (mixed) strategies 𝜎𝑖𝑡, let 𝑅𝑖,𝑖𝑚𝑚 𝑇 𝐼 = max𝑎 𝑟𝑡(𝐼, 𝑎)𝑡∈1..𝑇 then 𝑅𝑖,𝑓𝑢𝑙𝑙𝑇 ≤ 𝑅𝑖,𝑖𝑚𝑚𝑇,+ (𝐼) 𝐼

Proof: Let 𝐷(𝐼) be the information sets reachable from 𝐼, 𝑆𝑢𝑐𝑐𝑖 𝐼, 𝑎 be the

possible next information sets, 𝑆𝑢𝑐𝑐𝑖 𝐼 = 𝑆𝑢𝑐𝑐𝑖(𝐼, 𝑎)𝑎∈A(𝐼) .

 𝑅𝑖,𝑓𝑢𝑙𝑙 𝑇 𝐼 = max𝜎′∈Σ𝑖 𝑣𝑖 𝜎𝑡 𝐷 𝐼 →𝜎′ , 𝐼 − 𝑣𝑖 𝜎𝑡, 𝐼𝑡∈1..𝑇

 𝑣𝑖𝜎 𝐼, 𝑎 = 𝜋−𝑖𝜎 ℎℎ,𝑧 ∈𝑍𝐼 𝜋𝜎 ℎ𝑎, 𝑧 𝑢𝑖 𝑧 ; 𝑟𝑡 𝐼, 𝑎 = 𝑣𝑖𝜎𝑡 𝐼, 𝑎 − 𝑣𝑖𝜎𝑡 𝐼

 𝑅𝑖,𝑖𝑚𝑚𝑇 𝐼 = max𝑎∈𝐴 𝐼 𝑣𝑖 𝜎𝑡|𝐼→𝑎, 𝐼 − 𝑣𝑖 𝜎𝑡, 𝐼𝑡∈1..𝑇

79

Lemma: 𝑅𝑖,𝑓𝑢𝑙𝑙𝑇 𝐼 ≤ 𝑅𝑖,𝑖𝑚𝑚𝑇 𝐼 + 𝑅𝑖,𝑓𝑢𝑙𝑙𝑇,+ (𝐼′)𝐼′∈𝑆𝑢𝑐𝑐𝑖(𝐼)

 𝑅𝑖,𝑓𝑢𝑙𝑙 𝑇 𝐼 = max𝑎∈𝐴 𝐼 max𝜎′∈Σ𝑖 𝑡∈1..𝑇

 (𝑣𝑖 𝜎𝑡|𝐼→𝑎 , 𝐼 − 𝑣𝑖 𝜎𝑡, 𝐼 + 𝑠𝑢𝑐𝑐𝑖𝜎 𝐼′ 𝐼, 𝑎 (𝜋−𝑖𝜎𝑡 𝐼𝜋−𝑖𝜎𝑡 𝐼′) 𝑣𝑖 𝜎𝑡|𝐷 𝐼 →𝜎′ , 𝐼′ − 𝑣𝑖 𝜎𝑡, 𝐼′ 𝐼′∈𝑆𝑢𝑐𝑐𝑖 𝐼,𝑎) 𝑅𝑖,𝑓𝑢𝑙𝑙 𝑇 𝐼 ≤ max𝑎∈𝐴 𝐼 max𝜎′∈Σ𝑖 𝑡∈1..𝑇 (𝑣𝑖 𝜎𝑡|𝐼→𝑎 , 𝐼 − 𝑣𝑖 𝜎𝑡 , 𝐼)

 + max𝑎∈𝐴 𝐼 max𝜎′∈Σ𝑖 𝑡∈1..𝑇 𝑣𝑖 𝜎𝑡|𝐷 𝐼′ →𝜎′ , 𝐼′ − 𝑣𝑖 𝜎𝑡, 𝐼′𝐼′∈𝑆𝑢𝑐𝑐𝑖 𝐼,𝑎

 𝑅𝑖,𝑓𝑢𝑙𝑙 𝑇 𝐼 ≤ 𝑅𝑖,𝑖𝑚𝑚𝑇 𝐼 + max𝑎∈𝐴 𝐼 𝐼′∈𝑆𝑢𝑐𝑐𝑖 𝐼,𝑎 𝑅𝑖,𝑓𝑢𝑙𝑙 𝑇 𝐼′ ≤ 𝑅𝑖,𝑖𝑚𝑚𝑇 𝐼 + 𝐼′∈𝑆𝑢𝑐𝑐𝑖 𝐼 𝑅𝑖,𝑓𝑢𝑙𝑙 𝑇,+ 𝐼′ .

The proof of the theorem is completed by induction, using the Lemma above.

80

Average Strategy in CFR

𝜎 𝑖𝑇 𝐼, 𝑎 = 𝜋𝑖𝜎𝑡 𝐼 𝜎𝑡 𝐼, 𝑎𝑇𝑡=1 𝜋𝑖𝜎𝑡 𝐼𝑇𝑡=1

81

1

1

0

1

1

1

0

1

½

1

½

1

56

23

16

13
23

13 1

56
16

35
25

Weighted averaging!

CFR+ Convergence Speed

Theorem (Tammelin et al. 2015): The mean strategies form
CFR+ in a game with payoff range Δ, 𝐴 = max𝐼 |𝐴 𝐼 | , after 𝑇

iterations form an
2 |𝐼1|+|𝐼2| Δ 𝐴𝑇 -Nash equilibrium.

82

CFR Variants – CFR-BR

Opponent always plays best response (Johanson et al. 2012)

No storage for the opponent’s strategy

No need for average strategy

Opponent can play in a finer abstraction

Infinite strategy space

Optimal abstract strategies

83

CFR Variants – CFR-BR

Theorem (Johanson et al. 2012):

 After T iterations, the average strategy of CFR-BR converges

to Δ I1 |𝐴1|𝑇 -Nash equilibrium

Proof sketch:

CFR player: 𝜎𝑖0, 𝜎𝑖1, … , 𝜎𝑖𝑇 - no regret sequence of strategies

BR player: 𝐵𝑅(𝜎𝑖0), 𝐵𝑅(𝜎𝑖1), … , 𝐵𝑅(𝜎𝑖𝑇)
Both players eventually have external regret < 𝜖

84

CFR Variants – CFR-BR

Theorem (Johanson et al. 2012):

 After T iteration with probability (1-p) the current strategy of

CFR-BR converges to Δ I1 |𝐴1|𝑝 𝑇 -Nash equilibrium

Proof sketch:

 𝑟 𝑖,𝑓𝑢𝑙𝑙𝑇 = 1𝑇 max𝜎′ 𝑢𝑖(𝜎′, 𝜎−𝑖𝑡)𝑇𝑡=1 − 1𝑇 𝑢𝑖 𝜎𝑖𝑡 , 𝜎−𝑖𝑡𝑇𝑡=1 < 𝜖

1𝑇 𝑢𝑖 𝜎𝑖𝑡, 𝜎−𝑖𝑡𝑇𝑡=1 ≥ 1𝑇 max𝜎′ 𝑢𝑖 𝜎′, 𝜎−𝑖𝑡𝑇𝑡=1 − 𝜖 ≥ max𝜎′ 𝑢𝑖 𝜎′, 𝜎 −𝑖𝑇 − 𝜖 ≥ 𝑣𝑖∗ − 𝜖 , but 𝑢𝑖 𝜎𝑖𝑡, 𝜎−𝑖𝑡 ≤ 𝑣𝑖∗, therefore 𝑢𝑖 𝜎𝑖𝑡 , 𝜎−𝑖𝑡 > 𝑣𝑖∗ − 𝜖𝑝 often.

85

Solving Limit Texas Hold’em

Slide from M. Bowling’s AAAI 2015 keynote 86

Always fold

Polaris

Previous best

(Bowling et al., Sience 2015)

Plan

Online learning and prediction

single agent learns to select the best action

Learning in normal form games

the same algorithms used by multiple agents

Learning in extensive form games

generalizing these ideas to sequential games

Brief introduction to neural networks

DeepStack

87

Algorithms for learning

in simple and complex games

Brief Introduction to Neural Networks

Viliam Lisý

Artificial Intelligence Center

Department of Computer Science, Faculty of Electrical Engineering

Czech Technical University in Prague

(Sep 25, 2018)

Neuron

89

 𝑤𝑖𝑥𝑖
𝑥1 𝑥2 𝑥𝑛

…

 𝜙
𝑧 𝑦

Neural Network

Universal approximation theorem (1989, etc.)

For any non-constant, monotonically increasing, bounded 𝜙, a

feed-forward network with a single hidden layer containing a finite

number of neurons can approximate continuous functions on

compact subsets of 𝑅𝑛.
90

Gradient Descent

91

𝑓(𝑥)

𝑎 𝑏 = 𝑎 − (− 13) 𝑐 = 𝑏 − (− 120) 𝑑 𝑒

𝑎𝑛+1 = 𝑎𝑛 − 𝛾𝛻f(an)

Backpropagation

92

What is
𝛿𝐸𝑟𝑟𝑜𝑟𝛿𝑤𝑖 ?

 𝑤𝑖𝑥𝑖
𝑥1 𝑥2 𝑥𝑛

…

 𝜙
𝑧 𝑦

Error = 𝑦 − 𝑦𝑔 2

𝛿𝐸𝑟𝑟𝑜𝑟𝛿𝑤2 = 𝛿𝐸𝑟𝑟𝑜𝑟𝛿𝑦 ∗ 𝛿y𝛿𝑧 ∗ 𝛿𝑧𝛿𝑤2

Stochastic gradient descent

An unbiased estimate of the gradient is enough!

In practice, usually mini-batch and not a single sample.

93

𝑎𝑛+1 = 𝑎𝑛 − 𝛾𝛻f(an) f x = 1n 𝑓(𝑖, 𝑥)𝑖

Algorithms for learning

in simple and complex games

DeepStack

Viliam Lisý

Artificial Intelligence Center

Department of Computer Science, Faculty of Electrical Engineering

Czech Technical University in Prague

(Sep 25, 2018)

Counterfactual regret minimization

Each iteration requires full tree traversal

Average strategy converges

95

1000 iterations

for a near optimal

strategy

Computing strategies via abstraction

96

Abstraction

Computing

solution (CFR, LP)

Approximate

equilibrium

“Solution” in the

 original game
Translation

 50

0 10160
1 TB = 1012

10148: 1

Depth limited look-ahead search

97

ℎ: 𝑆 → 𝐑

Beginning

Possible ends

Depth limited look-ahead search

98

ℎ: 𝑆 → 𝐑

Beginning

Possible ends

Depth limited look-ahead search

99

ℎ: 𝑆 → 𝐑

Chess 1047 decision points

year 1997

Beginning

Possible ends

Depth limited look-ahead search

100

ℎ: 𝑆 → 𝐑

Beginning

Possible ends

ℎ: Δ(𝑆) → 𝐑𝐧 ℎ: 𝐑𝟐𝟔𝟓𝟐 → 𝐑𝟐𝟔𝟓𝟐

 50
 100

J J

K K

Game decomposition

Perfect information example

Imperfect information example

101

13
13

23
23

DeepStack team at University of Alberta

102

 Photo: John Ulan for the University of Alberta

CFR-D

CFR with Decomposition (Burch et al. 2014)

Trades-of space for computation

Store only the trunk

Resolve subgames in each iteration

Resolve on demand in play

103

Subgame

Trunk

…

CDR-D

Augmented information set

Set on undistinguishable histories for any player, not just the

deciding one

Subgame (denoted S)

forest of trees closed under descendance and belonging into

augmented information sets

R(S)

set of augmented information sets in the root of a subgame

104

CFR-D: Solving Trunk Strategy

Initialize regrets to 0

For iteration 𝑡 = 1, … , 𝑇

compute 𝜎↑𝑡 from stored regrets

update trunk average strategy by 𝜎↑𝑡
For each subgame S 𝜎𝑆𝑡 ←SOLVE(S, 𝜎↑𝑡)

For each augmented 𝐼𝑝 ∈ 𝑅 𝑆
Compute value 𝑣𝐼𝑝

Update average value cf𝑣𝐼𝑝

Update trunk regrets using 𝑣𝐼𝑝

105

Subgame

Trunk

…

CFR-D: Computing Trunk Strategy

106

107

108

109

CFR-D: Resolving Subgame

Assume blue player played D and the game reached S1

Unsafe resolving Save resolving

 No incentive to change trunk!

110

CFR-D More Complicated Resolving

111

CFR-D Resolving Game

When resolving for player 1

Create new chance node as the root

Create new nodes for player 2 grouped by her “information sets”
Connect the root to nodes in proportion to player 1 trunk strategy

For each player 2 node, add follow action leading to subgame

For each player 2 node, add terminate action with CFV of IS

We need

Distribution in the root IS generated by player 1 trunk strategy

Counterfactual value achievable by player 2 in his root ISs

112

CFR-D Convergence properties

CFR-D achieves no regret in the trunk

It the counterfactual regret at each information set I at the root of a

subgame is bounded by 𝜖𝑆, then than the average regret over the

whole game is 𝑅𝑓𝑢𝑙𝑙𝑇 ≤ 𝑁𝑇𝑅 𝐴𝑇 + 𝑁𝑆𝜖𝑆

Proof sketch: 𝜎0[𝑆 ← 𝜎𝑆0.∗], 𝜎1[𝑆 ← 𝜎𝑆1.∗], …

CF regret in the trunk minimized by CFR

CF regret in the subgame close to 0 for both players

CFR-D resolving forms a Nash equilibrium

If we run the recovery game for each player and each subgame

until we reach regret below 𝜖𝑅, the combined strategy has regret

 𝑅𝑓𝑢𝑙𝑙𝑇 ≤ 𝑁𝑇𝑅 𝐴𝑇 + 𝑁𝑆(3𝜖𝑆 + 2𝜖𝑅)

113

Public Tree

114

Public Tree

Matching pennies

Phantom Tic-Tac-Toe

Visibility-based pursuit-evasion games

115

Augmented IS in poker public node

116

Resolving poker subgame

To resolve, we need

 ∀𝐼1 ∈ 𝑅 𝑆 𝜋1 𝐼1

 ∀𝐼2 ∈ 𝑅 𝑆 𝑐𝑓𝑣2 𝐼2

In poker it means 𝜋1 𝐼1 - probability that player 1 holds each hand = range 𝑐𝑓𝑣2 𝐼2 - how much player 2 can win with each hand

In root (after chance reals hole cards) 𝜋𝑖 𝐼𝑖 - uniform 𝑐𝑓𝑣𝑖 𝐼𝑖 - pre-computed offline

117

DeepStack: updating maintained values

Assuming DeepStack is player 1

Own action

replace player 2’s cfvs by the once computed in the resolve game

update player 1’s range based on the played strategy

Chance action

replace player 2’s cfvs from the last resolve above chance

keep player 1’s range unchanged

Opponent’s action

no update required!

118

Depth limited look-ahead search

119

Beginning

Possible ends

ℎ: Δ(𝑆) → 𝐑𝐧

Depth limited look-ahead search

120

Beginning

Possible ends

ℎ: Δ(𝑆) → 𝐑𝐧

Range CFVs

Where do these CFVs come from?

DeepStack: Neural Network

121

Where do we get training data?

122

Beginning

Possible ends

10 M ℎ1: Δ(𝑆) → 𝐑𝐧

Turn

Where do we get training data?

123

Beginning

Possible ends

10 M ℎ1: Δ(𝑆) → 𝐑𝐧

1 M ℎ2: Δ(𝑆) → 𝐑𝐧

Turn

Flop

Where do we get training data?

124

Beginning

Possible ends

10 M ℎ1: Δ(𝑆) → 𝐑𝐧

1 M ℎ2: Δ(𝑆) → 𝐑𝐧

Turn

Flop

10 M

Range CFVs

DeepStack: Training

125

Turn Network (right after dealing turn card)

10M pseudo-random ranges, pots, random boards

Solve by 𝐶𝐹𝑅+ until the end of the game

Extract CFVs for training, train Turn NN

Flop Network (right after dealing flop cards)

10M pseudo-random ranges, pots, random boards

Solve by DeepStack (CFR-D) using the pre-trained Turn NN

Extract CFVs for training, train Turn NN

Pre-flop Network

10M pseudo-random ranges, pots

Enumerating 22100 possible flops and averaging

DeepStack: Convergence

Theorem: If the error of CFVs returned by the value function is

less then 𝜖 and T iterations of resolving are used for each

decision, than the exploitability of the player strategy is less than

 𝑘1𝜖 + 𝑘2𝑇

where 𝑘1, 𝑘2 are game-specific constants.

126

DeepStack: Results

127

References

Burch, N., & Bowling, M. (2013). CFR-D: Solving Imperfect

Information Games Using Decomposition. arXiv Preprint

arXiv:1303.4441, 1–15. Retrieved from

http://arxiv.org/abs/1303.4441

Moravčík, M., Schmid, M., Burch, N., Lisý, V., Morrill, D., Bard,

N., Davis T., Waugh K., Johanson M., Bowling, M. (2017).

DeepStack: Expert-Level Artificial Intelligence in No-Limit Poker.

www.deepstack.ai

128

References

Asu Ozdaglar. 6.254 : Game Theory with Engineering

Applications. Lecture 11: Learning in Games. March 11, 2010.

Brandt, Felix, Felix Fischer, and Paul Harrenstein. "On the rate of

convergence of fictitious play." International Symposium on

Algorithmic Game Theory. Springer Berlin Heidelberg, 2010.

T. Roughgarden, “Lecture Notes: Algorithmic Game Theory,”
tech. rep., Stanford, 2013.

129

References

Blum, Avrim, and Yishay Mansour. "From external to internal

regret." Journal of Machine Learning Research 8.Jun (2007):

1307-1324.

T. Roughgarden, “Lecture Notes: Algorithmic Game Theory,”
tech. rep., Stanford, 2013.

Tammelin, Oskari, Neil Burch, Michael Johanson, and Michael

Bowling. "Solving Heads-Up Limit Texas Hold'em." In Twenty-

Fourth International Joint Conference on Artificial Intelligence.

2015.

Bubeck, Sébastien, and Nicolo Cesa-Bianchi. "Regret analysis of

stochastic and nonstochastic multi-armed bandit problems."

Foundations and Trends in Machine Learning 5.1 (2012): 1-122.

130

