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Game Theory 

Mathematical framework studying strategies of players in 

situations where the outcomes of their actions critically depend 

on the actions performed by the other players.  
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Analytic approach 

Small model size 

Inputs in analytic form 

Analysis of system behavior 

Complete understanding 

Computational approach 

Huge model size 

Real world data as inputs 

Computing optimal strategies 

Partial understanding 

Computational Game Theory  



Matrix (normal form) games 

Zero-sum game, pure strategy, mixed strategy 

Best response 

Nash equilibrium, game value 
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Player 1 

Row player 

Maximizer 

Player 2 

Column player 

Minimizer 

r p s 

R 0 -1 1 

P 1 0 -1 

S -1 1 0 

𝐵𝑅𝑖 𝜎−𝑖 = arg max𝑎𝑖∈𝐴𝑖 𝑈𝑖 𝑎𝑖 , 𝜎−𝑖  



Non-zero Sum Games 

 

 

 

What is the Nash equilibrium? 

Equilibrium selection problem 

Correlated equilibria, coarse correlated 

Stackelberg equilibrium 
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b f 

B 2, 1 0, 0 

F 0, 0 1, 2 

c d 

C -1, -1 -7, 0 

D 0, -7 -5, -5 



Extensive-form game 
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Extensive Form Games 
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Plan 

Online learning and prediction 

single agent learns to select the best action 

Learning in normal form games 

the same algorithms used by multiple agents 

Learning in extensive form games 

generalizing these ideas to sequential games 

Brief introduction to neural networks 

DeepStack 
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Introduction 

Online learning and prediction 

learning from data that become available in sequence 

adapting prediction (behavior) after each data point 

optimizing overall precision (not only after all data arrive) 

Applications 

investing in best fond 

web advertisements 

selecting the best (e.g., page replacement) algorithm 
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Introduction 

Why do we care about online learning in games? 

repeated play against an unknown opponent 

(repeated) play of an unknown game 

understanding how equilibria may occur in real world 

computationally efficient equilibrum approximation algorithms 
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𝜎0 𝑢0 𝜎1 𝑢1 𝜎2 𝑢2 

… 

𝜎𝑇 𝑢𝑇 𝑎1 0.2 0 0.1 1 0.3 0 𝑎2 0.5 0.5 0.4 0.5 0.3 1 𝑎3 0.3 1 0.5 0 0.4 0 𝜎𝑡 ⋅ 𝑢𝑡 𝑥0 = 0.55 𝑥1 = 0.3 𝑥2 = 0.3 𝑥𝑇 

Prediction with expert advice 
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Problem definition 

Set of 𝑛 actions (experts)  𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑛} 
Set of time steps  𝑡 = 1,2, … , 𝑇  

In each step 

Decision-maker selects a mixed strategy 𝜎𝑡 
An adversary selects rewards  𝑢𝑡: 𝐴 → [0,1]  (adaptive vs oblivious) 

Action at ∈ 𝐴 is selected based on 𝜎𝑡 
The decision-maker receives reward 𝑢𝑡(𝑎𝑡)  (learns the whole 𝑢𝑡) 



𝜎0 𝑢0 𝜎1 𝑢1 𝜎2 𝑢2 

… 

𝜎𝑇 𝑢𝑇 𝑎1 0.2 0 0.1 1 0.3 0 𝑎2 0.5 0.5 0.4 0.5 0.3 1 𝑎3 0.3 1 0.5 0 0.4 0 𝜎𝑡 ⋅ 𝑢𝑡 𝑥0 = 0.55 𝑥1 = 0.3 𝑥2 = 0.3 𝑥𝑇 

External Regret 
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Goal: play as well as the best expert 

Immediate regret at time 𝑡 for not choosing action 𝑖 
    𝑟𝑡 𝑖 = 𝑢𝑡 𝑖 − 𝑥𝑡 
Cumulative external regret for playing 𝜎0, 𝜎1 … 𝜎𝑇 

    𝑅𝑇 = 𝑚𝑎𝑥𝑖∈𝐴  𝑟𝑡(𝑖)𝑇𝑡=0 = 𝑚𝑎𝑥𝑖∈𝐴  𝑢𝑡(𝑖)𝑇𝑡=0 −  𝑥𝑡 𝑇𝑡=0  

Average external regret for playing 𝜎0, 𝜎1 … 𝜎𝑇 

    𝑟 𝑇 = 1𝑇 𝑅𝑇 



𝜎0 𝑢0 𝜎1 𝑢1 𝜎2 𝑢2 

… 

𝜎𝑇 𝑢𝑇 𝑎1 0.2 0 0.1 1 0.3 0 𝑎2 0.5 0.5 0.4 0.5 0.3 1 𝑎3 0.3 1 0.5 0 0.4 0 𝜎𝑡 ⋅ 𝑢𝑡 𝑥0 = 0.55 𝑥1 = 0.3 𝑥2 = 0.3 𝑥𝑇 

Swap Regret 
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Goal: minimize regret for not playing a 𝛿 𝑎  instead of 𝑎 for some 𝛿: 𝐴 → 𝐴 

Cumulative swap regret for playing 𝜎0, 𝜎1 … 𝜎𝑇 

    𝑅𝑇 = 𝑚𝑎𝑥𝛿   𝜎𝑡 𝑖 (𝑢𝑡 𝛿(𝑖) − 𝑢𝑡(𝑖))𝑖∈𝐴  𝑇𝑡=0  

 

Internal regret 

    allows switching only all occurrences of 𝑎𝑖 by 𝑎𝑗 

External ⊂ Swap, Internal ⊂ Swap 



No-regret algorithms 

An algorithm has no regret if for any 𝑢0, 𝑢1 … 𝑢𝑇produces 𝜎0, 𝜎1 … 𝜎𝑇 such that 𝑟 𝑇 → 0 as 𝑇 → ∞. 
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Why not simply to maximize reward? 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒  𝑥𝑡𝑇
𝑡=0  

 

The adversary may choose ∀𝑖 ∈ 𝐴 ,  𝑢𝑡 𝑖 = 0 and we have minimal 

reward regardless of the used algorithm.  

 

Any algorithm has (optimal) 0 regret. 
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Regret towards best strategy in hindsight  

𝑅𝑏𝑒𝑠𝑡𝑇 =  𝑚𝑎𝑥𝑖∈𝐴 𝑢𝑡(𝑖)𝑇
𝑡=0 −  𝑥𝑡𝑇

𝑡=0  

Proposition: There is no algorithm with no regret towards the 

best sequence of choices. 

Proof: Let 𝐴 = {𝑈, 𝐷}. For an arbitrary sequence of strategies 𝜎𝑡, 
choose a reward vector 𝑢𝑡 = 0,1  if  𝜎𝑡 𝑈 ≥ 12 and 𝑢𝑡 = 1,0  

otherwise. 

The cumulative reward of the algorithm  𝑥𝑡𝑇𝑡=0 ≤ 𝑇2, while the best 

strategy in hindsight has reward  𝑚𝑎𝑥𝑖∈𝐴 𝑢𝑡(𝑖)𝑇𝑡=0 = 𝑇. Therefore 

 𝑅𝑏𝑒𝑠𝑡𝑇 ≥ 𝑇2 and 𝑟 𝑏𝑒𝑠𝑡𝑇 → 𝑧 ≥ 12 
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Regret of deterministic algorithms 

Proposition: There is no deterministic no-external-regret 

algorithm. 

Proof: We assume that the adversary selects rewards 𝑢𝑡 
knowing strategy 𝜎𝑡 . (For example, it can simulate the 

deterministic algorithm from the beginning.) Therefore, with 𝑛 = 2, he can always give reward 0 for the selected action and 1 

for the other action. One of the actions got reward 1 at least 𝑇/2 
times, therefore 𝑟 𝑡 ≥ 12. 
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Lower bound on external regret 

Theorem:No (randomized) algorithm over 𝑛 actions has 
expected external regret vanishing faster than Θ( ln (𝑛)/𝑇).  
Proof sketch: Assume n=2. Consider an adversary that, 

independently on each step t, chooses uniformly at random 

between the cost vectors (1, 0) and (0, 1) regardless of the 

decision-making algorithm. The cumulative expected reward is 

exactly 𝑇/2. In hindsight, however, with constant probability one 

of the two fixed actions has cumulative reward T/2 + Θ( 𝑇). The 

reason is that T fair coin flips have standard deviation Θ( 𝑇). 

20 



Lower bound on external regret 

Theorem: There exist no-regret algorithms with expected 
external regret 𝑂( ln 𝑛 /𝑇). 

Proof: We will show Randomized Weighted Majority algorithm. 

 

Corollary: There exists a decision-making algorithm that, for 

every 𝜖 > 0, has expected regret less than 𝜖 after 𝑂(ln 𝑛 /𝜖2) 
iterations. 
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Randomized Weighted Majority 

Aka Hedge or multiplicative weights (MW) algorithm. It is easier 

to analyze in costs 𝑐 𝑖 = (1 − 𝑢 𝑖 ). The algorithm maintains 

weights 𝑤(𝑖) for each action 𝑖 ∈ 𝐴. 

 

Initialize 𝑤1 𝑖 = 1 for every 𝑖 ∈ 𝐴 

For each time 𝑡 = 1,2, … , 𝑇 

Let 𝑊𝑡 =  𝑤𝑡(𝑖)𝑖∈𝐴  and play 𝜎𝑡(𝑖) = 𝑤𝑡(𝑖)/𝑊𝑡 
Given costs 𝑐𝑡, set 𝑤𝑡+1 𝑖 = 𝑤𝑡 𝑖 1 − 𝛾 𝑐𝑡(𝑖) for each 𝑖 ∈ 𝐴 

(Equivalently 𝑤𝑡+1 𝑖 = 𝑤𝑡 𝑖 𝑒−𝜂𝑐𝑡(𝑖) for 𝜂 = −ln (1 − 𝛾) ) 
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Hedge Regret Bound 

Theorem: Expected external regret of Hedge is 𝑟 𝑇 < 2 𝑙𝑛(𝑛)/𝑇 

Proof: W.L.O.G. we assume oblivious adversary. 

Let 𝑂𝑃𝑇 = min𝑖∈𝐴  𝑐𝑡(𝑖)𝑇𝑡=1  be the cost for optimal action 𝑖∗ and 

 𝜈𝑡 =  𝜎𝑡 𝑖 𝑐𝑡 𝑖 =𝑖∈𝐴  𝑤𝑡 𝑖𝑊𝑡  𝑐𝑡 𝑖𝑖∈𝐴  be the algorithms cost at 𝑡. 
 𝑊𝑇 ≥ 𝑤𝑇 𝑖∗ = 𝑤1 𝑖∗  1 − 𝛾 𝑐𝑡 𝑖∗𝑇𝑡=1 = 1 − 𝛾 𝑂𝑃𝑇  
 𝑊𝑡+1 =  𝑤𝑡+1 𝑖 =𝑖∈𝐴  𝑤𝑡 𝑖 1 − 𝛾 𝑐𝑡(𝑖)𝑖∈𝐴  

 ≤  𝑤𝑡 𝑖 1 − 𝛾𝑐𝑡 𝑖𝑖∈𝐴 = 𝑊𝑡(1 − 𝛾𝜈𝑡) 
 1 − 𝛾 𝑂𝑃𝑇 ≤ 𝑊𝑇 ≤ 𝑊1  1 − 𝛾𝜈𝑡𝑇𝑡=1  

 𝑂𝑃𝑇 ln 1 − 𝛾 ≤ ln 𝑛 +  ln (1 − 𝛾𝜈𝑡)𝑇𝑡=1  

…  𝜈𝑡𝑇𝑡 ≤ 𝑂𝑃𝑇 + 𝛾𝑇 + ln 𝑛𝛾    => 
1T  𝜈𝑡𝑇𝑡 ≤ 𝑂𝑃𝑇𝑇 + 2 ln 𝑛𝑇  
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Regret Matching 

The algorithm maintains cummulative regrets R(𝑖) for each 

action 𝑖 ∈ 𝐴. 

 

Initialize 𝑅1 𝑖 = 0 for every 𝑖 ∈ 𝐴 

For each time 𝑡 = 1,2, … , 𝑇 

Let S𝑡 =  max(0, 𝑅𝑡(𝑖))𝑖∈𝐴  and play 𝜎𝑡(𝑖) = max(0, 𝑅𝑡(𝑖))/S𝑡 
Given rewards 𝑢𝑡, for each 𝑖 ∈ 𝐴 set  

 𝑅𝑡+1 𝑖 = 𝑅𝑡 𝑖 + 𝑟𝑡(𝑖) = 𝑅𝑡 𝑖 + (𝑢𝑡 𝑖 −  𝜎𝑡 𝑗 𝑢𝑡(𝑗))𝑗∈𝐴  

24 



Regret Matching+ 

The algorithm maintains cumulative regrets-like values Q(𝑖) for 

each action 𝑖 ∈ 𝐴. 

 

Initialize 𝑄1 𝑖 = 0 for every 𝑖 ∈ 𝐴 

For each time 𝑡 = 1,2, … , 𝑇 

Play 𝜎𝑡(𝑖) = 𝑄𝑡(𝑖)/  𝑄𝑡(𝑗)𝑗∈𝐴  

Given rewards 𝑢𝑡, for each 𝑖 ∈ 𝐴 set  

 𝑄𝑡+1 𝑖 = max(0, 𝑄𝑡 𝑖 + 𝑟𝑡 𝑖 ) = max(0, 𝑢𝑡 𝑖 −  𝜎𝑡 𝑗 𝑢𝑡(𝑗))𝑗∈𝐴  
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RM+ Regret Bound 

Lemma: Regret-like values 𝑄𝑡 𝑖  are an upper bound on 𝑅𝑡 𝑖 . 
Proof: 𝑄𝑡+1 𝑖 − 𝑄𝑡 𝑖 = max 0, 𝑄𝑡 𝑖 + 𝑟𝑡 𝑖 − 𝑄𝑡 𝑖  ≥ 𝑄𝑡 𝑖 + 𝑟𝑡 𝑖 − 𝑄𝑡 𝑖 = 𝑟𝑡(𝑖) 
Lemma: For any 𝑖 and value functions 𝑄𝑇 𝑖 ≤ 𝑛𝑇. 

Proof: max𝑖∈A 𝑄𝑇 𝑖 2 = max𝑖∈A 𝑄𝑇 𝑖 2 ≤  𝑄𝑇 𝑖 2𝑖∈𝐴 = 

 =  max(0, 𝑄𝑇−1 𝑖 + 𝑢𝑇(𝑖) −  𝜎𝑇 𝑗 𝑢𝑇 𝑗𝑗∈𝐴 )2𝑖∈𝐴  

 … ≤  𝑄𝑇−1 𝑖 2 + 𝑛𝑖  

By induction 𝑄𝑇 𝑖 2 ≤ 𝑛𝑇. 
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Summary 

General setting of prediction with expert advice 

Regret as a measure of distance from the optimal strategy 

There are no-regret algorithms 

Hedge, Regret matching, Regret matching+ 
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Plan 

Online learning and prediction 

single agent learns to select the best action 

Learning in normal form games 

the same algorithms used by multiple agents 

Learning in extensive form games 

generalizing these ideas to sequential games 

Brief introduction to neural networks 

DeepStack 

28 



Algorithms for learning  

in simple and complex games 
  

Learning in Normal Form Games 

Viliam Lisý 

 

Artificial Intelligence Center 

Department of Computer Science, Faculty of Electrical Engineering 

Czech Technical University in Prague 

 

(Sep 24, 2018) 



Introduction 

How may simple learning agents achieve equilibrium outcomes? 

 

Best Response Dynamics (Fictitious play) 

best response to average empirical play 

needs to know the game 

No-Regret Dynamics 

each player uses no-regret algorithm 

may now only their own actions and received rewards 
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Best response dynamics 

Fictitious play 

Players maintain empirical distribution of past opponent’s actions 

 𝜎 −𝑖𝑇 = 1T  𝜎−𝑖𝑡𝑇
𝑡=1                             

In each round, each player plays BR to these distributions 

 𝜎𝑖𝑡 = arg max𝑎𝑖∈𝐴𝑖 𝑈𝑖(𝑎𝑖, 𝜎 −𝑖𝑡 ) 
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(often in form of frequencies 𝜂𝑖𝑇) 



Result of FP in case of convergence 

Theorem: If the empirical action frequencies of fictitious play 

converge (𝜎 𝑡  → 𝜎∗) they converge to the Nash equilibrium of the 

game. 

Theorem: The empirical frequencies of FP converge to NE in 

constant-sum games 

two player games where each player has up to two actions 

games solvable by iterated strict dominance 

identical interest games 

potential games 
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Why it may not converge? 

Shapley’s example in a modified rock-paper-scissors: 

 

 

 

Unique NE is the uniform strategy for both players. 

Let 𝜂10 = (1,0,0) and 𝜂20 = 0,1,0 . 
Play may be (P,R),(P,R)… for 𝑘 steps until column switches to S. 

Then (P,S) follows until row switches to R (for 𝛽𝑘 steps, 𝛽 > 1). 

Then (R,S) follows until column switches to P (for 𝛽2𝑘 steps). 

The play cycles among all 6 non-diagonal profiles with periods of ever-

increasing length, hence, the empirical frequencies cannot converge. 
33 

R S P 

R 0, 0 1, 0 0, 1 

S 0, 1 0, 0 1, 0 

P 1, 0 0, 1 0, 0 



Convergence of FP 

Theorem (Brandt, Fischer, Harrenstein, 2010): In symmetric 

two-player constant-sum games, FP may require exponentially 

many rounds (in the size of the representation of the game) 

before an equilibrium action is eventually played. This holds 

even for games solvable via iterated strict dominance. 

Proof: 

 

 

With 𝜖 = 2−𝑘, FP may take 2𝑘 rounds to play the equilibrium 

action 𝑐 for the first time. 

(a,a),(b,b),…,(b,b) 

34 

a b c 

a 0 -1 -𝜖 

b 1 0 -𝜖 

c 𝜖 𝜖 0 

2𝑘 − 1  times 



No-Regret Learning Summary 

Immediate regret at time 𝑡 for not choosing action 𝑖 
    𝑟𝑡 𝑖 = 𝑢𝑡 𝑖 − 𝜎𝑡 ⋅ 𝑢𝑡 
Cumulative external regret for playing 𝜎0, 𝜎1 … 𝜎𝑇 

    𝑅𝑇 = 𝑚𝑎𝑥𝑖∈𝐴  𝑟𝑡(𝑖)𝑇𝑡=0 = 𝑚𝑎𝑥𝑖∈𝐴  𝑢𝑡(𝑖)𝑇𝑡=0 −  𝜎𝑡 ⋅ 𝑢𝑡𝑇𝑡=0  

Average external regret for playing 𝜎0, 𝜎1 … 𝜎𝑇 

  𝑟 𝑇 = 1𝑇 𝑅𝑇 

 

An algorithm has no regret if for any 𝑢0, 𝑢1 … 𝑢𝑇produces 𝜎0, 𝜎1 … 𝜎𝑇 

such that 𝑟 𝑇 → 0 as 𝑇 → ∞. 
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From External to Swap Regret 

Cumulative swap regret for playing 𝜎0, 𝜎1 … 𝜎𝑇 

    𝑅𝑇 = 𝑚𝑎𝑥𝛿:𝐴→𝐴   𝜎𝑡 𝑖 (𝑢𝑡 𝛿(𝑖) − 𝑢𝑡(𝑖))𝑖∈𝐴  𝑇𝑡=0  

36 



From External to Swap Regret 

Theorem (Blum & Mansour 2007):If there is a no-external-regret 

algorithm for a setting, there is also a no-swap-regret algorithm.  

Proof: Polynomial black-box reduction. 
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𝑢𝑡 

𝑢𝑡 

𝑢𝑡 

𝑢𝑡 



From External to Swap Regret 

Proof: Average expected reward of the overall algorithm 

 1𝑇   𝑝𝑡 𝑖𝑛
𝑖=1 𝑢𝑡(𝑖)𝑇

𝑡=1  

No-regret algorithm 𝑀𝑗 choses 𝑞𝑗1, … , 𝑞𝑗𝑇, gets 𝑝1 𝑗 𝑢1, … , 𝑝𝑇 𝑗 𝑢𝑇. 

Thus 

  ∀𝑘 ∈ 𝐴: 1𝑇   𝑞𝑗𝑡 𝑖  (𝑝𝑡 𝑗𝑛
𝑖=1 𝑢𝑡 𝑖𝑇

𝑡=1 ) ≥ 1𝑇  𝑝𝑡 𝑗 𝑢𝑡 𝑘𝑇
𝑡=1 − 𝑟 j 

Fix an arbitrary 𝛿: 𝐴 → 𝐴 and sum over all 𝑗 ∈ 𝐴: 

 1𝑇    𝑞𝑗𝑡 𝑖 𝑝𝑡 𝑗  𝑢𝑡 𝑖𝑛
𝑗=1

𝑛
𝑖=1

𝑇
𝑡=1 ≥ 1𝑇   𝑝𝑡 𝑗 𝑢𝑡 𝛿 𝑗𝑛

𝑗=1
𝑇

𝑡=1 −  𝑟 𝑗𝑛
𝑗=1  

38 



From External to Swap Regret 

We are done if we ensure 

 𝑝𝑡 𝑖 =  𝑞𝑗𝑡 𝑖 𝑝𝑡(𝑗)𝑛
𝑗=1  

This is true if 𝑝𝑡 is the eigenvector of matrix given by 𝑞𝑗𝑡 for 𝜆 = 1. 
Equivalently, 𝑝𝑡 are the stationary distribution of Markov chain. 

Such vector 𝑝𝑡 always exists and can be easily found!  

39 



From External to Swap Regret 

Corollary: Let 𝑟𝑀 𝑡 → 0 be the external regret convergence 

bound for a base algorithm used in the black-box reduction with 𝐴  actions. Than the swap regret of the overall algorithm is 𝑟𝑠𝑤 𝑇 ≤ 𝐴 𝑟𝑀 𝑇 . 
Corollary: The black-box reduction with Hedge for all actions 
produces an algorithm with 𝑟𝑠𝑤 𝑇 ≤ 2 𝐴 ln |𝐴| /𝑇. 

40 



No-Regret Dynamics – full information 

Definition: 

1) Each player 𝑖 choses independently a mixed strategy 𝜎𝑖𝑡 using 

a no-regret algorithm. 

2) Each player receives for all 𝑎𝑖 ∈ 𝐴𝑖 rewards  𝑢𝑖𝑡 𝑎𝑖 = 𝐄𝑎−𝑖~𝜎−𝑖[𝑈 𝑎𝑖 , 𝑎−𝑖 ] 
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No-Regret Dynamics – full information 

Theorem: If after T iterations of no-regret dynamics each player 
has external regret lower then 𝜖 than 𝜎 = 1𝑇  𝜎𝑡𝑇𝑡 , where 𝜎𝑡 =  𝜎𝑖𝑡𝑘𝑖=1 , is an 𝜖-coarse correlated equilibrium of the game. 

I.e., for any 𝑎𝑖′ ∈ 𝐴𝑖 𝐄𝑎~𝜎 𝑈𝑖 𝑎 ≥ 𝐄𝑎~𝜎 𝑈𝑖 𝑎𝑖′, 𝑎−𝑖 − 𝜖 

Corollary: If we run Hedge in a game with less than |𝐴| actions 

for each player for 𝑇 iterations, the resulting average strategy is 
an ( 𝑙𝑛(|𝐴|)/𝑇)-coarse correlated equilibrium of the game. 

Corollary: If we run regret matching+ in a game with less than |𝐴| actions for each player for 𝑇 iterations, the resulting average 
strategy is an ( |𝐴|/𝑇)-coarse correlated equilibrium of the 

game. 
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Minimax Theorem 

Note: In zero-sum games, coarse correlated equilibria are Nash. 

Theorem (Minimax Theorem): For any matrix game 𝐺 

 max𝑥 min𝑦 𝑥𝑇𝐺𝑦 = min𝑦 max𝑥 𝑥𝑇𝐺𝑦 

Proof: For contradiction assume that for some 𝛼 > 0 

 max𝑥 min𝑦 𝑥𝑇𝐺𝑦 < min𝑦 max𝑥 𝑥𝑇𝐺𝑦 − 𝛼 . 
Set 𝜖 = 𝛼2 and let both players run Hedge for time 𝜏 = 2 ln 𝑛 /𝜖2. 

Let 𝑥 , 𝑦  be the empirical frequencies of their play and 𝑣 the 

average reward of the maximizer. max𝑥 min𝑦 𝑥𝑇𝐺𝑦 ≥ min𝑦 𝑥 𝑇𝐺𝑦 ≥ 𝑣 − 𝜖 ≥ max𝑥 𝑥𝑇𝐺𝑦 − 2𝜖 ≥ min𝑦 max𝑥 𝑥𝑇𝐺𝑦 − 𝛼 
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No-Regret Dynamics 

Theorem: If after T iterations of no-regret dynamics each player 
has swap regret lower then 𝜖 than 𝜎 = 1𝑇  𝜎𝑡𝑇𝑡 , where 𝜎𝑡 = 𝜎𝑖𝑡𝑘𝑖=1 , is an 𝜖-correlated equilibrium of the game. I.e., for any 

player 𝑖 and switching function 𝛿: 𝐴 → 𝐴 𝐄𝑎~𝜎 𝑈𝑖 𝑎 ≥ 𝐄𝑎~𝜎 𝑈𝑖 𝛿(𝑎𝑖), 𝑎−𝑖 − 𝜖 
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Regret matching+ 

45 

𝜎2 

R2 0 0 

r2 𝜎1 R1 r1 𝜎𝑡 0.5 0.5 

0 0.5 2 0 

0 0.5 0 1 

Iteration:  

0 



Regret matching+ 
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𝜎2 

R2 0 0 

r2 𝜎1 R1 r1 𝜎𝑡 0.5 0.5 

0 0.25 0.5 2 0 

0 -0.25 0.5 0 1 

Iteration:  

1 



Regret matching+ 
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𝜎2 

R2 0 0 

r2 𝜎1 R1 r1 𝜎𝑡 0.5 0.5 

0.25 0.25 0.5 2 0 

0 -0.25 0.5 0 1 

Iteration:  

1 



Regret matching+ 
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𝜎2 

R2 0 0 

r2 𝜎1 R1 r1 𝜎𝑡 0.5 0.5 

1 0.25 0.25 1 2 0 

0 0 -0.25 0 0 1 

Iteration:  

1 



Regret matching+ 
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𝜎2 

R2 0 0 

r2 -1 1 𝜎1 R1 r1 𝜎𝑡 0.5 0.5 

1 0.25 1 2 0 

0 0 0 0 1 

Iteration:  

1 



Regret matching+ 
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𝜎2 0 1 

R2 0 1 

r2 -1 1 𝜎1 R1 r1 𝜎𝑡 0 1 

1 0.25 1 2 0 

0 0 0 0 1 

Iteration:  

1 



Regret matching+ 
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𝜎2 0 1 

R2 0 1 

r2 𝜎1 R1 r1 𝜎𝑡 0 1 

1 0.25 0 1 2 0 

0 0 1 0 0 1 

Iteration:  

2 



Regret matching+ 
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𝜎2 0 1 

R2 0 1 

r2 𝜎1 R1 r1 𝜎𝑡 0 1 

1 0.25 0 0.2 2 0 

0 1 1 0.8 0 1 

Iteration:  

2 



Regret matching+ 
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𝜎2 0 1 

R2 0 1 

r2 𝜎1 R1 r1 𝜎𝑡 0 1 

0.46 0.25 0 0.2 2 0 

0.54 1 1 0.8 0 1 

Iteration:  

2 



Regret matching+ 
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𝜎2 0 1 

R2 0 1 

r2 0.4 0 𝜎1 R1 r1 𝜎𝑡 0 1 

0.46 0.25 0.2 2 0 

0.54 1 0.8 0 1 

Iteration:  

2 



Regret matching+ 
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𝜎2 0 1 

R2 0.4 1 

r2 0.4 0 𝜎1 R1 r1 𝜎𝑡 0.29 0.71 

0.46 0.25 0.2 2 0 

0.54 1 0.8 0 1 

Iteration:  

2 



Regret matching+ 
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𝜎2 0.19 0.81 

R2 0.4 1 

r2 0.4 0 𝜎1 R1 r1 𝜎𝑡 0.29 0.71 

0.46 0.25 0.2 2 0 

0.54 1 0.8 0 1 

Iteration:  

2 



Regret matching+ 
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Iteration:  

3 



Regret matching+ 
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Iteration:  

4 



Regret matching+ 
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Iteration:  

5 



Regret matching+ 
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Iteration:  

6 



Regret matching+ 
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Iteration:  

7 



Regret matching+ 
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Iteration:  

8 



Regret matching+ 
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𝜎2 0.30 0.70 

R2 0.83 1.15 

r2 𝜎1 R1 r1 𝜎𝑡 0.42 0.58 

0.33 0.17 0.11 2 0 

0.67 1.30 0.88 0 1 

Iteration:  

8 



Plan 

Online learning and prediction 

single agent learns to select the best action 

Learning in normal form games 

the same algorithms used by multiple agents 

Learning in extensive form games 

generalizing these ideas to sequential games 

Brief introduction to neural networks 

DeepStack 
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Algorithms for learning  

in simple and complex games 
  

Refresh 

Viliam Lisý 

 

Artificial Intelligence Center 

Department of Computer Science, Faculty of Electrical Engineering 

Czech Technical University in Prague 

 

(Sep 25, 2018) 



𝜎0 𝑢0 𝜎1 𝑢1 𝜎2 𝑢2 

… 

𝜎𝑇 𝑢𝑇 𝑎1 0.2 0 0.1 1 0.3 0 𝑎2 0.5 0.5 0.4 0.5 0.3 1 𝑎3 0.3 1 0.5 0 0.4 0 𝜎𝑡 ⋅ 𝑢𝑡 𝑥0 = 0.55 𝑥1 = 0.3 𝑥2 = 0.3 𝑥𝑇 

Prediction with expert advice 

66 

Problem definition 

Set of 𝑛 actions (experts)  𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑛} 
Set of time steps  𝑡 = 1,2, … , 𝑇  

In each step 

Decision-maker selects a mixed strategy 𝜎𝑡 
An adversary selects rewards  𝑢𝑡: 𝐴 → [0,1]  (adaptive vs oblivious) 

Action at ∈ 𝐴 is selected based on 𝜎𝑡 
The decision-maker receives reward 𝑢𝑡(𝑎𝑡)  (learns the whole 𝑢𝑡) 



Regret Matching+ 

The algorithm maintains cumulative regrets-like values Q(𝑖) for 

each action 𝑖 ∈ 𝐴. 

 

Initialize 𝑄1 𝑖 = 0 for every 𝑖 ∈ 𝐴 

For each time 𝑡 = 1,2, … , 𝑇 

Play 𝜎𝑡(𝑖) = 𝑄𝑡(𝑖)/  𝑄𝑡(𝑗)𝑗∈𝐴  

Given rewards 𝑢𝑡, for each 𝑖 ∈ 𝐴 set  

 𝑄𝑡+1 𝑖 = max(0, 𝑄𝑡 𝑖 + 𝑟𝑡 𝑖 ) = max(0, 𝑢𝑡 𝑖 −  𝜎𝑡 𝑗 𝑢𝑡(𝑗))𝑗∈𝐴  
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RM+ Regret Bound 

Lemma: Regret-like values 𝑄𝑡 𝑖  are an upper bound on 𝑅𝑡 𝑖 . 
Proof: 𝑄𝑡+1 𝑖 − 𝑄𝑡 𝑖 = max 0, 𝑄𝑡 𝑖 + 𝑟𝑡 𝑖 − 𝑄𝑡 𝑖  ≥ 𝑄𝑡 𝑖 + 𝑟𝑡 𝑖 − 𝑄𝑡 𝑖 = 𝑟𝑡(𝑖) 
Lemma: For any 𝑖 and value functions 𝑄𝑇 𝑖 ≤ 𝑛𝑇. 

Proof: max𝑖∈A 𝑄𝑇 𝑖 2 = max𝑖∈A 𝑄𝑇 𝑖 2 ≤  𝑄𝑇 𝑖 2𝑖∈𝐴 = 

 =  max(0, 𝑄𝑇−1 𝑖 + 𝑢𝑇(𝑖) −  𝜎𝑇 𝑗 𝑢𝑇 𝑗𝑗∈𝐴 )2𝑖∈𝐴  

 … ≤  𝑄𝑇−1 𝑖 2 + 𝑛𝑖  

By induction 𝑄𝑇 𝑖 2 ≤ 𝑛𝑇. 
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No-Regret Dynamics – full information 

Theorem: If after T iterations of no-regret dynamics each player 
has external regret lower then 𝜖 than 𝝈 = 𝟏𝑻  𝝈𝒕𝑻𝒕 , where 𝜎𝑡 =  𝜎𝑖𝑡𝑘𝑖=1 , is an 𝜖-coarse correlated equilibrium of the game 

(𝜖-Nash equilibrium in zero-sum). I.e., for any 𝑎𝑖′ ∈ 𝐴𝑖 𝐄𝑎~𝜎 𝑈𝑖 𝑎 ≥ 𝐄𝑎~𝜎 𝑈𝑖 𝑎𝑖′, 𝑎−𝑖 − 𝜖 

 

Corollary: If we run regret matching+ in a game with less than |𝐴| actions for each player for 𝑇 iterations, the resulting average 
strategy is an ( |𝐴|/𝑇)-coarse correlated equilibrium of the 

game. 
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Algorithms for learning  

in simple and complex games 
  

Learning in Extensive Form Games 

Viliam Lisý 

 

Artificial Intelligence Center 

Department of Computer Science, Faculty of Electrical Engineering 

Czech Technical University in Prague 

 

(Sep 25, 2018) 



Impact on poker performance 

Based on M. Bowling’s slide from AAAI 2015 keynote 71 

2015 
Bowling et al. 

1.4 x 1013   Heads-Up Limit Texas Hold’em 

LP                 CFR                    MCCFR             CFR-BR        CFR+ 

 



Extensive form games 

72 



1  -1 

1  -1 

0  0 

0  0 

0  0 

2 -2 

Counterfactual Regret - Motivation 

Take the current reach probabilities?   

     ->  undefined belief 

Take only opponent’s reach probability! 

                                               -> defined where necessary 

73 

1 0 

0 1 

0 2 

0.5 -0.5 

1 

0 

1 

0 

1 

0 

1/2 

1 -1 
1/2 

1/2 

1/2 

1/2 

1/2 

1 

1 



1  -1 

1  -1 

0  0 

0  0 

0  0 

2 -2 

Counterfactual Regret - Definition 

74 

Counterfactual value:       𝑣𝑖𝜎 𝐼, 𝑎 =  𝜋−𝑖𝜎 ℎℎ,𝑧 ∈𝑍𝐼 𝜋𝜎 ℎ𝑎, 𝑧 𝑢𝑖(𝑧) 
Counterfactual regret:      𝑟𝑡 𝐼, 𝑎 = 𝑣𝑖𝜎𝑡 𝐼, 𝑎 − 𝑣𝑖𝜎𝑡 𝐼  

Can be computed in one tree walk 

 

 



Counterfactual Regret Minimization 

1) Walk the tree to compute conterfactual values in all ISs 

2) Use RM, RM+, Hedge,… to compute next strategy for each IS 

3) Goto 1 

 

4) Return mean of all used strategies 
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Counterfactual regret minimization 
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2  -1 

13 13 

13 

13 13 13 

0.5 

0.5 

0.83 0.61 

r=-0.11 

r=-0.11 

r= 0.22 

Player 1 iteration 

0.3 

0.3 

0.4 



Counterfactual regret minimization 
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2  -1 
13 13 13 

Player 2 iteration 

0.3 

0.3 

0.4 

0.5 

0.17 

0.5 

r= 0.5 

r= 0 

r=-0.5 

r= -1.17 

r= 0.33 

r= 0.83 

r= 0.5 

r=-0.5 

r= 0 

R: 0.3*0 

     + 0.4*-1.17 

     + 0.3*0.5 

     = -0.318 

P: 0.3*0.5 

     + 0.4*0.33 

     + 0.3*-0.5 

     = 0.132 

S: 0.3*-0.5 

     + 0.4*0.83 

     + 0.3*0 

     = 0.182 

0.0 0.42 

0.58 



Counterfactual regret minimization 

Each iteration requires full tree traversal 

Average strategy converges 

78 

1000 iterations  

for a near optimal 

strategy 



Counterfactual Regret Minimization 

Theorem (Zinkevich et al. 2008): For a sequence of (mixed) strategies 𝜎𝑖𝑡, let 𝑅𝑖,𝑖𝑚𝑚 𝑇 𝐼 = max𝑎  𝑟𝑡(𝐼, 𝑎)𝑡∈1..𝑇  then 𝑅𝑖,𝑓𝑢𝑙𝑙𝑇 ≤  𝑅𝑖,𝑖𝑚𝑚𝑇,+  (𝐼)   𝐼  

Proof: Let 𝐷(𝐼) be the information sets reachable from 𝐼, 𝑆𝑢𝑐𝑐𝑖 𝐼, 𝑎  be the 

possible next information sets, 𝑆𝑢𝑐𝑐𝑖 𝐼 =  𝑆𝑢𝑐𝑐𝑖(𝐼, 𝑎)𝑎∈A(𝐼) . 

 𝑅𝑖,𝑓𝑢𝑙𝑙 𝑇 𝐼 = max𝜎′∈Σ𝑖  𝑣𝑖 𝜎𝑡  𝐷 𝐼 →𝜎′ , 𝐼 − 𝑣𝑖 𝜎𝑡, 𝐼𝑡∈1..𝑇  

 

 𝑣𝑖𝜎 𝐼, 𝑎 =  𝜋−𝑖𝜎 ℎℎ,𝑧 ∈𝑍𝐼 𝜋𝜎 ℎ𝑎, 𝑧 𝑢𝑖 𝑧 ;   𝑟𝑡 𝐼, 𝑎 = 𝑣𝑖𝜎𝑡 𝐼, 𝑎 − 𝑣𝑖𝜎𝑡 𝐼  

 𝑅𝑖,𝑖𝑚𝑚𝑇  𝐼 =  max𝑎∈𝐴 𝐼  𝑣𝑖 𝜎𝑡|𝐼→𝑎, 𝐼 − 𝑣𝑖 𝜎𝑡, 𝐼𝑡∈1..𝑇  
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Lemma: 𝑅𝑖,𝑓𝑢𝑙𝑙𝑇 𝐼 ≤ 𝑅𝑖,𝑖𝑚𝑚𝑇 𝐼 +  𝑅𝑖,𝑓𝑢𝑙𝑙𝑇,+ (𝐼′)𝐼′∈𝑆𝑢𝑐𝑐𝑖(𝐼)  

 𝑅𝑖,𝑓𝑢𝑙𝑙 𝑇 𝐼 = max𝑎∈𝐴 𝐼 max𝜎′∈Σ𝑖  𝑡∈1..𝑇 

 (𝑣𝑖 𝜎𝑡|𝐼→𝑎 , 𝐼 − 𝑣𝑖 𝜎𝑡, 𝐼  +  𝑠𝑢𝑐𝑐𝑖𝜎 𝐼′ 𝐼, 𝑎 ( 𝜋−𝑖𝜎𝑡 𝐼𝜋−𝑖𝜎𝑡 𝐼′ ) 𝑣𝑖 𝜎𝑡|𝐷 𝐼 →𝜎′ , 𝐼′ − 𝑣𝑖 𝜎𝑡, 𝐼′ 𝐼′∈𝑆𝑢𝑐𝑐𝑖 𝐼,𝑎 )  𝑅𝑖,𝑓𝑢𝑙𝑙 𝑇 𝐼 ≤ max𝑎∈𝐴 𝐼 max𝜎′∈Σ𝑖  𝑡∈1..𝑇 (𝑣𝑖 𝜎𝑡|𝐼→𝑎 , 𝐼 − 𝑣𝑖 𝜎𝑡 , 𝐼 ) 

 + max𝑎∈𝐴 𝐼 max𝜎′∈Σ𝑖  𝑡∈1..𝑇  𝑣𝑖 𝜎𝑡|𝐷 𝐼′ →𝜎′ , 𝐼′ − 𝑣𝑖 𝜎𝑡, 𝐼′𝐼′∈𝑆𝑢𝑐𝑐𝑖 𝐼,𝑎  

 𝑅𝑖,𝑓𝑢𝑙𝑙 𝑇 𝐼 ≤ 𝑅𝑖,𝑖𝑚𝑚𝑇 𝐼 + max𝑎∈𝐴 𝐼  𝐼′∈𝑆𝑢𝑐𝑐𝑖 𝐼,𝑎  𝑅𝑖,𝑓𝑢𝑙𝑙 𝑇 𝐼′  ≤ 𝑅𝑖,𝑖𝑚𝑚𝑇 𝐼 +  𝐼′∈𝑆𝑢𝑐𝑐𝑖 𝐼  𝑅𝑖,𝑓𝑢𝑙𝑙 𝑇,+ 𝐼′ . 

The proof of the theorem is completed by induction, using the Lemma above. 
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Average Strategy in CFR 

𝜎 𝑖𝑇 𝐼, 𝑎 =  𝜋𝑖𝜎𝑡 𝐼 𝜎𝑡 𝐼, 𝑎𝑇𝑡=1 𝜋𝑖𝜎𝑡 𝐼𝑇𝑡=1  
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1 

1 

0 

1 

1 

1 

0 

1 

½  

1 

½  

1 

56 

23 

16 

13 
23 

13 1 

56 
16 

35 
25 

Weighted averaging! 



CFR+ Convergence Speed 

Theorem (Tammelin et al. 2015): The mean strategies form 
CFR+ in a game with payoff range Δ, 𝐴 = max𝐼 |𝐴 𝐼 | , after 𝑇  

iterations form an 
2 |𝐼1|+|𝐼2| Δ 𝐴𝑇 -Nash equilibrium. 
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CFR Variants – CFR-BR 

Opponent always plays best response (Johanson et al. 2012) 

 

No storage for  the opponent’s strategy 

No need for average strategy 

Opponent can play in a finer abstraction 

Infinite strategy space 

Optimal abstract strategies 
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CFR Variants – CFR-BR 

Theorem (Johanson et al. 2012):  

    After T iterations, the average strategy of CFR-BR converges 

to Δ I1 |𝐴1|𝑇 -Nash equilibrium 

Proof sketch: 

CFR player: 𝜎𝑖0, 𝜎𝑖1, … , 𝜎𝑖𝑇      - no regret sequence of strategies 

BR player: 𝐵𝑅(𝜎𝑖0), 𝐵𝑅(𝜎𝑖1), … , 𝐵𝑅(𝜎𝑖𝑇)  
Both players eventually have external regret < 𝜖 
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CFR Variants – CFR-BR 

Theorem (Johanson et al. 2012):  

    After T iteration with probability (1-p) the current strategy of 

CFR-BR converges to Δ I1 |𝐴1|𝑝 𝑇 -Nash equilibrium 

Proof sketch: 

 𝑟 𝑖,𝑓𝑢𝑙𝑙𝑇 = 1𝑇 max𝜎′  𝑢𝑖(𝜎′, 𝜎−𝑖𝑡 )𝑇𝑡=1 − 1𝑇  𝑢𝑖 𝜎𝑖𝑡 , 𝜎−𝑖𝑡𝑇𝑡=1 < 𝜖 

 
1𝑇  𝑢𝑖 𝜎𝑖𝑡, 𝜎−𝑖𝑡𝑇𝑡=1 ≥ 1𝑇 max𝜎′  𝑢𝑖 𝜎′, 𝜎−𝑖𝑡𝑇𝑡=1 − 𝜖 ≥ max𝜎′  𝑢𝑖 𝜎′, 𝜎 −𝑖𝑇 − 𝜖 ≥ 𝑣𝑖∗ − 𝜖 , but 𝑢𝑖 𝜎𝑖𝑡, 𝜎−𝑖𝑡 ≤ 𝑣𝑖∗, therefore 𝑢𝑖 𝜎𝑖𝑡 , 𝜎−𝑖𝑡 > 𝑣𝑖∗ − 𝜖𝑝 often. 
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Solving Limit Texas Hold’em 

Slide from M. Bowling’s AAAI 2015 keynote 86 

Always fold 

Polaris 

Previous best 

(Bowling et al., Sience 2015) 



Plan 

Online learning and prediction 

single agent learns to select the best action 

Learning in normal form games 

the same algorithms used by multiple agents 

Learning in extensive form games 

generalizing these ideas to sequential games 

Brief introduction to neural networks 

DeepStack 
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Algorithms for learning  

in simple and complex games 
  

Brief Introduction to Neural Networks 
 

Viliam Lisý 

 

Artificial Intelligence Center 

Department of Computer Science, Faculty of Electrical Engineering 

Czech Technical University in Prague 
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Neuron 
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 𝑤𝑖𝑥𝑖 
𝑥1 𝑥2 𝑥𝑛 

…
 

 𝜙 
𝑧 𝑦 



Neural Network 

Universal approximation theorem (1989, etc.) 

For any non-constant, monotonically increasing, bounded 𝜙, a 

feed-forward network with a single hidden layer containing a finite 

number of neurons can approximate continuous functions on 

compact subsets of 𝑅𝑛. 
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Gradient Descent 
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𝑓(𝑥) 

𝑎 𝑏 = 𝑎 − (− 13) 𝑐 = 𝑏 − (− 120) 𝑑 𝑒 

𝑎𝑛+1 = 𝑎𝑛 − 𝛾𝛻f(an) 



Backpropagation 
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What is 
𝛿𝐸𝑟𝑟𝑜𝑟𝛿𝑤𝑖  ? 

 𝑤𝑖𝑥𝑖 
𝑥1 𝑥2 𝑥𝑛 

…
 

 𝜙 
𝑧 𝑦 

Error = 𝑦 − 𝑦𝑔 2
 

𝛿𝐸𝑟𝑟𝑜𝑟𝛿𝑤2 = 𝛿𝐸𝑟𝑟𝑜𝑟𝛿𝑦 ∗ 𝛿y𝛿𝑧 ∗ 𝛿𝑧𝛿𝑤2   



Stochastic gradient descent 

An unbiased estimate of the gradient is enough! 

In practice, usually mini-batch and not a single sample. 
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𝑎𝑛+1 = 𝑎𝑛 − 𝛾𝛻f(an) f x = 1n  𝑓(𝑖, 𝑥)𝑖  
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Counterfactual regret minimization 

Each iteration requires full tree traversal 

Average strategy converges 
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1000 iterations  

for a near optimal 

strategy 



Computing strategies via abstraction 
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Abstraction 

Computing 

solution (CFR, LP) 

Approximate 

equilibrium 

“Solution” in the 

 original game 
Translation 

 50 

0 10160 
1 TB = 1012 

10148: 1 



Depth limited look-ahead search 
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ℎ: 𝑆 → 𝐑 

Beginning 

Possible ends 



Depth limited look-ahead search 
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ℎ: 𝑆 → 𝐑 

Beginning 

Possible ends 



Depth limited look-ahead search 
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ℎ: 𝑆 → 𝐑 

Chess  1047 decision points 

year 1997   

Beginning 

Possible ends 



Depth limited look-ahead search 
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ℎ: 𝑆 → 𝐑 

Beginning 

Possible ends 

ℎ: Δ(𝑆) → 𝐑𝐧 ℎ: 𝐑𝟐𝟔𝟓𝟐 → 𝐑𝟐𝟔𝟓𝟐 

 50 
 100 

J J 

K K 



Game decomposition 

Perfect information example 

Imperfect information example 
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13 
13 

23 
23 



DeepStack team at University of Alberta 
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 Photo: John Ulan for the University of Alberta 



CFR-D 

CFR with Decomposition (Burch et al. 2014)  

 

Trades-of space for computation 

Store only the trunk 

Resolve subgames in each iteration 

 

Resolve on demand in play 
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Subgame 

Trunk 

… 



CDR-D 

Augmented information set 

Set on undistinguishable histories for any player, not just the 

deciding one 

Subgame (denoted S) 

forest of trees closed under descendance and belonging into 

augmented information sets 

R(S)  

set of augmented information sets in the root of a subgame 
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CFR-D: Solving Trunk Strategy 

Initialize regrets to 0 

For iteration 𝑡 = 1, … , 𝑇 

compute 𝜎↑𝑡 from stored regrets 

update trunk average strategy by 𝜎↑𝑡 
For each subgame S 𝜎𝑆𝑡 ←SOLVE(S, 𝜎↑𝑡) 

For each augmented 𝐼𝑝 ∈ 𝑅 𝑆  
Compute value 𝑣𝐼𝑝 

Update average value cf𝑣𝐼𝑝 

Update trunk regrets using 𝑣𝐼𝑝  
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Subgame 

Trunk 

… 



CFR-D: Computing Trunk Strategy 
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CFR-D: Resolving Subgame 

Assume blue player played D and the game reached S1 

Unsafe resolving   Save resolving 

       No incentive to change trunk! 
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CFR-D More Complicated Resolving 
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CFR-D Resolving Game 

When resolving for player 1 

Create new chance node as the root 

Create new nodes for player 2 grouped by her “information sets” 
Connect the root to nodes in proportion to player 1 trunk strategy 

For each player 2 node, add follow action leading to subgame 

For each player 2 node, add terminate action with CFV of IS 

 

We need 

Distribution in the root IS generated by player 1 trunk strategy 

Counterfactual value achievable by player 2 in his root ISs 
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CFR-D Convergence properties 

CFR-D achieves no regret in the trunk 

It the counterfactual regret at each information set I at the root of a 

subgame is bounded by 𝜖𝑆, then than the average regret over the 

whole game is  𝑅𝑓𝑢𝑙𝑙𝑇 ≤ 𝑁𝑇𝑅 𝐴𝑇 + 𝑁𝑆𝜖𝑆 

Proof sketch: 𝜎0[𝑆 ← 𝜎𝑆0.∗], 𝜎1[𝑆 ← 𝜎𝑆1.∗], … 

CF regret in the trunk minimized by CFR 

CF regret in the subgame close to 0 for both players 

CFR-D resolving forms a Nash equilibrium 

If we run the recovery game for each player and each subgame 

until we reach regret below 𝜖𝑅, the combined strategy has regret 

 𝑅𝑓𝑢𝑙𝑙𝑇 ≤ 𝑁𝑇𝑅 𝐴𝑇 + 𝑁𝑆(3𝜖𝑆 + 2𝜖𝑅) 
 

113 



Public Tree 
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Public Tree 

Matching pennies 

 

 

 

 

 

Phantom Tic-Tac-Toe 

Visibility-based pursuit-evasion games 
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Augmented IS in poker public node 
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Resolving poker subgame 

 

 

To resolve, we need  

 ∀𝐼1 ∈ 𝑅 𝑆   𝜋1 𝐼1  

 ∀𝐼2 ∈ 𝑅 𝑆   𝑐𝑓𝑣2 𝐼2  

In poker it means 𝜋1 𝐼1  - probability that player 1 holds each hand = range 𝑐𝑓𝑣2 𝐼2  - how much player 2 can win with each hand 

In root (after chance reals hole cards) 𝜋𝑖 𝐼𝑖  - uniform 𝑐𝑓𝑣𝑖 𝐼𝑖  - pre-computed offline 
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DeepStack: updating maintained values 

Assuming DeepStack is player 1 

Own action 

replace player 2’s cfvs by the once computed in the resolve game 

update player 1’s range based on the played strategy 

Chance action 

replace player 2’s cfvs from the last resolve above chance 

keep player 1’s range unchanged 

Opponent’s action 

no update required! 
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Depth limited look-ahead search 
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Beginning 

Possible ends 

ℎ: Δ(𝑆) → 𝐑𝐧 



Depth limited look-ahead search 
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Beginning 

Possible ends 

ℎ: Δ(𝑆) → 𝐑𝐧 

Range CFVs 

Where do these CFVs come from? 



DeepStack: Neural Network 
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Where do we get training data? 
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Beginning 

Possible ends 

10 M ℎ1: Δ(𝑆) → 𝐑𝐧 

Turn 



Where do we get training data? 
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Beginning 

Possible ends 

10 M ℎ1: Δ(𝑆) → 𝐑𝐧 

1 M ℎ2: Δ(𝑆) → 𝐑𝐧 

Turn 

Flop 



Where do we get training data? 
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Beginning 

Possible ends 

10 M ℎ1: Δ(𝑆) → 𝐑𝐧 

1 M ℎ2: Δ(𝑆) → 𝐑𝐧 

Turn 

Flop 

10 M 

Range CFVs 



DeepStack: Training 
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Turn Network (right after dealing turn card) 

10M pseudo-random ranges, pots, random boards 

Solve by 𝐶𝐹𝑅+ until the end of the game 

Extract CFVs for training, train Turn NN 

Flop Network (right after dealing flop cards) 

10M pseudo-random ranges, pots, random boards 

Solve by DeepStack (CFR-D) using the pre-trained Turn NN 

Extract CFVs for training, train Turn NN 

Pre-flop Network 

10M pseudo-random ranges, pots 

Enumerating 22100 possible flops and averaging 



DeepStack: Convergence 

Theorem: If the error of CFVs returned by the value function is 

less then 𝜖 and T iterations of resolving are used for each 

decision, than the exploitability of the player strategy is less than 

  𝑘1𝜖 + 𝑘2𝑇 

where 𝑘1, 𝑘2 are game-specific constants. 
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DeepStack: Results 
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