intel.

Intel® 64 and IA-32 Architectures
Software Developer's Manual

Volume 3A:
System Programming Guide, Part 1

NOTE: The Intef® 64 and IA-32 Architectures Software Developer’s Manual
consists of five volumes: Basic Architecture, Order Number 253665;
Instruction Set Reference A-M, Order Number 253666; Instruction Set
Reference N-Z, Order Number 253667; System Programming Guide,
Part 1, Order Number 253668; System Programming Guide, Part 2, Order
Number 253669. Refer to all five volumes when evaluating your design
needs.

Order Number: 253668-026US
February 2008

Information in this document is provided in connection with Intel products. No license, express or implied,
by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided
in Intel’s Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel
disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or
warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copy-
right or other intellectual property right. Intel products are not intended for use in medical, life saving, or
life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Developers must not rely on the absence or characteristics of any features or instructions marked “re-
served” or “undefined.” Improper use of reserved or undefined features or instructions may cause unpre-
dictable behavior or failure in developer's software code when running on an Intel processor. Intel reserves
these features or instructions for future definition and shall have no responsibility whatsoever for conflicts
or incompatibilities arising from their unauthorized use.

The Intel® 64 architecture processors may contain design defects or errors known as errata. Current char-
acterized errata are available on request.

Hyper-Threading Technology requires a computer system with an Intel® processor supporting Hyper-
Threading Technology and an HT Technology enabled chipset, BIOS and operating system. Performance will
vary depending on the specific hardware and software you use. For more information, see http://www.in-
tel.com/technology/hyperthread/index.htm; including details on which processors support HT Technology.

Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual
machine monitor (VMM) and for some uses, certain platform software enabled for it. Functionality, perfor-
mance or other benefits will_vary depending on hardware and software configurations. Intel® Virtualization
Technology-enabled BIOS and VMM applications are currently in development.

64-bit computing on Intel architecture requires a computer sy@stem with a processor, chipset, BIOS, oper-
ating system, device drivers and applications enabled for Intel® 64 architecture. Processors will not operate
(including 32-bit operation) without an Intel® 64 architecture-enabled BIOS. Performance will vary depend-
ing on your hardware and software configurations. Consult with your system vendor for more information.

Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability
and a supporting operating system. Check with your PC manufacturer on whether your system delivers Ex-
ecute Disable Bit functionality.

Intel, Pentium, Intel Xeon, Intel NetBurst, Intel Core Solo, Intel Core Duo, Intel Core 2 Duo, Intel Core 2
Extreme, Intel Pentium D, Itanium, Intel SpeedStep, MMX, and VTune are trademarks or registered trade-
marks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing
your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel
literature, may be obtained from:

Intel Corporation
P.O. Box 5937
Denver, CO 80217-9808

or call 1-800-548-4725
or visit Intel’s website at http://www.intel.com

Copyright © 1997-2008 Intel Corporation

i Vol.3A

CHAPTER 1

ABOUT THIS MANUAL

1.1 PROCESSORS COVERED INTHISMANUALvvvvviiiinenes
1.2 OVERVIEW OF THE SYSTEM PROGRAMMING GUIDE
13 NOTATIONAL CONVENTIONS ...
1.3.1 BitandByte Order...... ..ot
13.2 Reserved Bits and Software Compatibility....................
133 Instruction Operands.ovviiriiiiii e
134 Hexadecimal and Binary Numbers.ooooiiit,
135 Segmented Addressing.vvvii it e
1.3.6 Syntax for CPUID, CR,and MSR Valuesccovvnne
137 EXCEPLIONS .« vttt e e
14 RELATED LITERATUREt
CHAPTER 2

SYSTEM ARCHITECTURE OVERVIEW

2.1 OVERVIEW OF THE SYSTEM-LEVEL ARCHITECTURE..............
2.1.1 Global and Local Descriptor Tables.............coovvviiinnnt,
2.1.1.1 Global and Local Descriptor Tables in IA-32e Mode.........
2.1.2 System Segments, Segment Descriptors, and Gates...........
2.1.2.1 GatesinlA-32eModecovvviii i
213 Task-State Segments and Task Gates............covvvvvnnnn.
2.1.31 Task-State SegmentsinlA-32eMode.....................
214 Interrupt and ExceptionHandlingcoil
2.1.4.1 Interrupt and Exception Handling IA-32e Mode.............
215 Memory Management........cooivii i
2.1.5.1 Memory Management in IA-32e Mode
2.1.6 SYSteM REGISTEIS . v\ttt
2.1.6.1 System RegistersinlA-32eMode.....................ee
217 Other SyStem ReSOUMCES vv v vttt ieieneaas
2.2 MODES OF OPERATION. ...t
2.3 SYSTEM FLAGS AND FIELDS IN THE EFLAGS REGISTER...........
2.3.1 System Flags and Fields inIA-32eMode......................
2.4 MEMORY-MANAGEMENT REGISTERS ...
241 Global Descriptor Table Register (GDTR).............cccovvnn.
24.2 Local Descriptor Table Register (LDTR)...........ccvvvvvninnn
243 IDTR Interrupt Descriptor Table Register.....................
244 Task Register (TR) .. .vvvr i
2.5 CONTROLREGISTERS ..\ttt
2.5.1 CPUID Qualification of Control Register Flags.................

26 EXTENDED CONTROL REGISTERS
(INCLUDING THE XFEATURE_ENABLED_MASK REGISTER)

2.7 SYSTEM INSTRUCTION SUMMARY. ... e
271 Loading and Storing System Registers
27.2 Verifying of Access Privilegesooviiiiiiiann.
273 Loading and Storing Debug Registerscoovvnint,
274 Invalidating Cachesand TLBScovviviiiiiiiieenn

CONTENTS

PAGE

Vol. 3A iii

CONTENTS

PAGE

275 Controlling the ProCeSSOr. . ..o vttt e 2-31
2.7.6 Reading Performance-Monitoring and Time-Stamp Counters 2-32
2.7.6.1 Reading Countersin 64-BitMode ...t 2-33
277 Reading and Writing Model-Specific Registerscocviiiiiiiiiiiiinann, 2-33
2771 Reading and Writing Model-Specific Registers in 64-Bit Mode.................. 2-33
278 Enabling Processor Extended States ...t 2-33
CHAPTER 3
PROTECTED-MODE MEMORY MANAGEMENT
3.1 MEMORY MANAGEMENT OVERVIEW.ot 3-1
3.2 USING SEGMENT S .ottt e e e 3-3
3.2.1 BaSiC FIRt MOEL . ..ot e 3-3
3.2.2 Protected FIat Model. 3-4
3.2.3 Multi-Segment Model. 3-5
324 Segmentation N IA-32e MOdeo ittt e e 3-6
3.25 Paging and Segmentationo 3-7
33 PHYSICAL ADDRESS SPACE . ..ttt et e 3-7
3.3.1 Intel® 64 Processors and Physical Address Spacecovvviiiiiiiiiiiininanns 3-8
3.4 LOGICAL AND LINEAR ADDRESSES ettt 3-8
3.4.1 Logical Address TranslationinlA-32eModec..oviii i 3-9
34.2 Y =T =T Y =] 1= Ton (o] 5 3-9
343 SEgMENT REGIS OIS, .ttt ittt 3-10
344 Segment Loading Instructions in1A-32eModecovvii i 3-12
345 SEgMENT DESCIIPIOrS . . ottt i e e 3-13
34.5.1 Code- and Data-Segment Descriptor TYpes.o v 3-16
35 SYSTEM DESCRIPTOR TYPES ..\ttt 3-18
3.5.1 Segment Descriptor Tables.o e 3-20
35.2 Segment Descriptor Tables inlA-32e Mode..........coovviii it 3-22
3.6 PAGING (VIRTUAL MEMORY) OVERVIEWo e vt 3-22
3.6.1 Paging OptionS. ..ot e e e 3-23
36.2 Page Tables and Directories in the Absence of Intel® 64 Technology 3-24
3.7 PAGE TRANSLATION USING 32-BIT PHYSICAL ADDRESSINGovv v 3-25
3.7.1 Linear Address Translation (4-KByte Pages).........ccoovinivniiiiiiiannns 3-25
37.2 Linear Address Translation (4-MByte Pages).ccviviiviiiiiiiiiiiiiinnns 3-26
373 Mixing 4-KByte and 4-MByte Pages.ovviiiiiii i 3-27
374 MeEMOrY AlaSINg . ..ot e 3-28
375 Base Address of the Page DireCtory.oovvuiiiiiii it 3-28
3.7.6 Page-Directory and Page-Table ENtries.ovviii i 3-28
3.7.7 Not Present Page-Directory and Page-Table Entriescoiviiinnt. 3-33
3.8 36-BIT PHYSICAL ADDRESSING USING THE PAE PAGING MECHANISM 3-33
3.8.1 Enhanced Legacy PAE Paging.oviniiii i 3-34
3.8.2 Linear Address Translation With PAE Enabled (4-KByte Pages) 3-35
383 Linear Address Translation With PAE Enabled (2-MByte Pages)................... 3-36
384 Accessing the Full Extended Physical Address Space With the

Extended Page-Table Structure.t e e i 3-37
385 Page-Directory and Page-Table Entries With Extended Addressing Enabled 3-37
3.9 36-BIT PHYSICAL ADDRESSING USING THE PSE-36 PAGING MECHANISM. 3-40
3.10 PAE-ENABLED PAGING INTA-32EMODEot 3-42
3.10.1 IA-32e Mode Linear Address Translation (4-KByte Pages).............cocovvvunen. 3-43
3.10.2 IA-32e Mode Linear Address Translation (2-MByte Pages)........................ 3-44
3.103 Enhanced Paging Data Structures. ... vv i e i e 3-45

iv Vol. 3A

CONTENTS

PAGE
3.10.3.1 Intel® 64 Processors and Reserved Bit Checkingooovvviviinnns, 3-48
3.11 MAPPING SEGMENTS TOPAGESot 3-49
3.12 TRANSLATION LOOKASIDE BUFFERS (TLBS) ... vt v v v 3-50
CHAPTER 4
PROTECTION
4.1 ENABLING AND DISABLING SEGMENT AND PAGE PROTECTION........cvvvvvvvnennnn 4-1
4.2 FIELDS AND FLAGS USED FOR SEGMENT-LEVEL AND
PAGE-LEVEL PROTECTION L.ttt ettt e et ettt et 4-2
421 Code Segment Descriptorin 64-bitMode ...t 4-5
43 LIMIT CHECKING . o oottt et e e e e e e 4-6
431 Limit Checkingin 64-bit Mode. ... e 4-7
44 TYPE CHECKING . . ettt e e e 4-7
441 Null Segment Selector Checkingvuvuiii e 4-9
4411 NULL Segment Checkingin 64-bitMode ... 4-9
45 PRIVILEGE LEVELS. . ..ttt e 4-9
4.6 PRIVILEGE LEVEL CHECKING WHEN ACCESSING DATASEGMENTScvvvvvneen. 4-11
4.6.1 Accessing Datain Code Segmentst e 4-14
4.7 PRIVILEGE LEVEL CHECKING WHEN LOADING THE SSREGISTER.ccvvvvvnnnt 4-14
48 PRIVILEGE LEVEL CHECKING WHEN TRANSFERRING PROGRAM CONTROL
BETWEEN CODE SEGMENTS ..\ttt ettt e 4-14
481 Direct Calls or Jumps to Code SEgMENTS. .. ov vt 4-15
48.1.1 Accessing Nonconforming Code Segments...........covvviiiiiiiiiiiiniannes 4-16
48.1.2 Accessing Conforming Code Segments.ovii it eeaens 4-17
482 GatE DS P ONS v vttt 4-18
483 (0= N 7= 1= 4-19
4.83.1 IA-32e Mode Call Gates . ..ot e 4-20
484 Accessing a Code Segment Througha CallGatecooviviviiii i 4-22
485 Stack SWItChING . ..o 4-25
4.85.1 Stack Switchingin 64-bitMode. ...t 4-28
486 Returning from a Called Procedureooviiiiii it 4-28
487 Performing Fast Calls to System Procedures with the
SYSENTER and SYSEXIT INStructionsSvvvrvi e 4-30
48.7.1 SYSENTER and SYSEXIT Instructions inlA-32eMode...........covvvvivvninntn 4-31
488 Fast System Calls in 64-bitMode.........c.cooiiiii i 4-32
49 PRIVILEGED INSTRUCTIONS . . .ottt ettt e e e s 4-33
4.10 POINTER VALIDATION ...ttt ettt e e e 4-34
4.10.1 Checking Access Rights (LAR INStruction)covveiiiiiiii e 4-35
410.2 Checking Read/Write Rights (VERR and VERW Instructions)....................... 4-36
4103 Checking That the Pointer Offset Is Within Limits (LSL Instruction)................ 4-36
4104 Checking Caller Access Privileges (ARPL Instruction)............coooviiviiieinnn 4-37
4105 Checking AlIgNmEnt. . ..o e 4-39
411 PAGE-LEVEL PROTECTION ...ttt ettt ettt eas 4-39
4111 Page-Protection FIagsvvrie et 4-40
411.2 Restricting Addressable Domain. ..ot e 4-40
4113 PaGE TP ot ittt 4-40
411.4 Combining Protection of Both Levels of Page Tablescoiiht 4-41
4115 Overrides to Page Protection ...t it 4-41
412 COMBINING PAGE AND SEGMENT PROTECTION. . ..ot eeenes 4-41
413 PAGE-LEVEL PROTECTION AND EXECUTE-DISABLEBITvviiiieii i 4-43
4.13.1 Detecting and Enabling the Execute-Disable Bit Capability 4-43

Vol.3A v

CONTENTS

PAGE
4132 Execute-Disable Bit Page Protectioncoviiiiiiiiii i 4-44
4133 Reserved Bit ChecKing ... vv vt 4-45
4134 EXceptioN Handling.o v 4-47
CHAPTER 5
INTERRUPT AND EXCEPTION HANDLING
5.1 INTERRUPT AND EXCEPTION OVERVIEW \ov et 5-1
5.2 EXCEPTION AND INTERRUPT VECTORS ...ttt it e ineeens 5-2
53 SOURCES OF INTERRUP TS, ..ttt 5-2
5.3.1 EXTErNal I I TUPES. ottt e 5-2
53.2 Maskable Hardware INterrupts. ..o 5-4
533 Software-Generated INtermUPTS.ot 5-5
54 SOURCES OF EXCEPTIONSottt ettt e 5-5
541 Program-Error EXCEPLIONSo v vttt 5-5
54.2 Software-Generated EXCEPLIONSc.ivii i e 5-6
543 Machine-Check EXCEPTIONS. ...\ vv it e 5-6
55 EXCEPTION CLASSIFICATIONS ..ottt e 5-6
5.6 PROGRAM OR TASK REST AR T .ttt ittt e e 5-7
57 NONMASKABLE INTERRUPT (NMI) ..t 5-8
571 Handling Multiple NMISo e 5-9
5.8 ENABLING AND DISABLING INTERRUPTS . ..\ttt 5-9
5.8.1 Masking Maskable Hardware Interrupts ..o 5-9
582 Masking Instruction Breakpointsc.oovveiii i 5-10
583 Masking Exceptions and Interrupts When Switching Stacks....................... 5-11
59 PRIORITY AMONG SIMULTANEOUS EXCEPTIONS AND INTERRUPTS.................. 5-11
5.10 INTERRUPT DESCRIPTOR TABLE (IDT). . vttt v vttt et 5-12
511 DT DESCRIPT O RS . ittt ettt e e e 5-14
512 EXCEPTION AND INTERRUPT HANDLING ovvei et 5-15
5121 Exception- or Interrupt-Handler Procedurescooovviiiiiiiiiiiiiinn, 5-16
51211 Protection of Exception- and Interrupt-Handler Procedures 5-18
5.121.2 Flag Usage By Exception- or Interrupt-Handler Procedure..................... 5-19
5122 INTErTUPT TaSKS . . vt 5-20
513 ERROR CODE ...ttt ettt e e e e e e e e 5-21
514 EXCEPTION AND INTERRUPT HANDLINGIN64-BITMODEcvvvvviiiinenee 5-22
5.14.1 B4-Bit MOAE DT .ttt 5-23
5.14.2 64-Bit Mode STack Frame.oo v e 5-24
5143 IRETINTA-328 MO ..ottt s 5-25
5144 Stack SwitchinginlA-32e Mode.covi i 5-25
5.145 Interrupt Stack Table. 5-26
515 EXCEPTION AND INTERRUPT REFERENCE ..o 5-27
Interrupt O—Divide Error Exception (HDE)coviiiiii i 5-28
Interrupt 1—Debug Exception (HDB)coivii e 5-29
Interrupt 2—NMI INtermUPT. ..o e 5-30
Interrupt 3—Breakpoint Exception (HBP)........cviriii i 5-31
Interrupt 4—O0verflow Exception (HOF).ovviiii i e 5-32
Interrupt 5—BOUND Range Exceeded Exception (#BR).............coovvviinnn, 5-33
Interrupt 6—Invalid Opcode Exception (HUD)c.coovviiiiiiiiiii s 5-34
Interrupt 7—Device Not Available Exception (HNM)ccooiiviiiiiiiinn, 5-36
Interrupt 8—Double Fault Exception (HDF)o 5-38
Interrupt S—Coprocessor Segment OVErTUN vt vt ci e 5-41

vi Vol.3A

CONTENTS

PAGE
Interrupt 10—Invalid TSS Exception (BTS) ... vvvi i 5-42
Interrupt 11—Segment Not Present (HNP). ...t 5-46
Interrupt 12—Stack Fault Exception (HSS) ... v 5-48
Interrupt 13—General Protection Exception (BGP).coooiviiiiiiiinnt 5-50
Interrupt 14—Page-Fault Exception (HPF) ... e 5-54
Interrupt 16—x87 FPU Floating-Point Error (EMF)...........coviiiiiiiienns 5-58
Interrupt 17—Alignment Check Exception (HAC).ovvviiiii i 5-60
Interrupt 18—Machine-Check Exception (HMC)ovviiii i 5-62
Interrupt 19—SIMD Floating-Point Exception (EXM)coiiiiiiiiiiiiiiiinn 5-64
Interrupts 32 to 255—User Defined Interrupts.coooviiiiiiiiiiiinne 5-67
CHAPTER 6
TASK MANAGEMENT
6.1 TASK MANAGEMENT OVERVIEW ...ttt 6-1
6.1.1 TaSK SETUCTUNE .« ettt e e 6-1
6.1.2 TaSK ST oottt e 6-2
6.1.3 EXECULING @ TasK ..o e 6-3
6.2 TASK MANAGEMENT DATASTRUCTURES.o 6-4
6.2.1 Task-State Segment (TSS) ..o v v e 6-4
6.2.2 IS B 1=l {01 (o 6-7
6.2.3 TSS Descriptor in 64-bitmode.oovvv i 6-8
6.2.4 TaSK RIS Or ..ttt e 6-9
6.2.5 Task-Gate DESCrI PO .. ottt e e e 6-11
6.3 TASK SWITCHING. ottt e e 6-12
6.4 TASK LINKING . ottt e e e e e 6-16
6.4.1 Use of Busy Flag To Prevent Recursive Task Switching........................... 6-18
6.4.2 Modifying Task LINKgeSo vt ettt aas 6-18
6.5 TASK ADDRESS SPACE. ..\ttt e 6-19
6.5.1 Mapping Tasks to the Linear and Physical Address Spaces..............c..vvvvnnt 6-19
6.5.2 Task LOGICal AdAress SPatE . ..o vt vttt e 6-20
6.6 16-BIT TASK-STATE SEGMENT (TSS) « vttt ittt 6-21
6.7 TASK MANAGEMENT IN 64-BITMODEoviiei i 6-22
CHAPTER 7
MULTIPLE-PROCESSOR MANAGEMENT
7.1 LOCKED ATOMIC OPERATIONS ...ttt 7-2
7.1.1 Guaranteed AtomiC OPerationS. ... o.it ittt i i 7-3
71.2 BUS LOCKING . ..ottt e e 7-3
7.1.2.1 AUtomatic LOCKING. . ..ottt 7-4
7122 Software Controlled Bus Locking. ... 7-5
713 Handling Self- and Cross-Modifying Code..........coovviiiiii i 7-6
714 Effects of a LOCK Operation on Internal Processor Caches...................ooves 7-7
7.2 MEMORY ORDERINGt vv s e e e v e neneaanes B 7-8
7.2.1 Memory Ordering in the Intel® Pentium® and Intel486 Processors 7-8
7.2.2 Memory Ordering in P6 and More Recent Processor Families....................... 7-9
7.23 Examples lllustrating the Intel-64 Memory-Ordering Principles 7-11
7.2.3.1 Assumptions, Terminology, and Notation ..., 7-11
7.23.2 Neither Loads Nor Stores Are Reordered with Like Operations................. 7-12
7233 Stores Are Not Reordered With Earlier Loadsccocoviiiiiinnn 7-13

Vol. 3A Vi

CONTENTS

7234
7.235
7.236
7237
7.23.8
7.239
724
7.25
7.3

74
7.5
7.5.1
752

753

7812
7.8.13
7.813.1
7.813.2
7.8.133
78134
79

7.9.1
79.2
793
794
795

PAGE
Loads May Be Reordered with Earlier Stores to Different Locations 7-13
Intra-Processor Forwarding Is Allowedcooiiiiiiiiiiiiii i 7-14
Stores Are Transitively Visible. ... 7-15
Total Order on Stores to the Same Location..........oovviviiiiiiinieiinnns 7-15
Locked Instructions Have a Total Ordero.vvviiiiiiiiii e 7-16
Loads and Stores Are Not Reordered with Locked Instructions................ 7-16
Out-of-Order Stores For String Operationsovviii it 7-18
Strengthening or Weakening the Memory-OrderingModel........................ 7-18
PROPAGATION OF PAGE TABLE AND PAGE DIRECTORY ENTRY CHANGES TO MULTIPLE
PROCESS RS ..ttt e e 7-20
SERIALIZING INSTRUCTIONS . . o e 7-21
MULTIPLE-PROCESSOR (MP) INITIALIZATION ..\t 7-23
BSP @nd AP PrOCESSOrS. . vttt ettt e e st 7-23
MP Initialization Protocol Requirements and Restrictions
for Intel XEOn PrOCESSOrS. . .o\ttt ettt 7-24
MP Initialization Protocol Algorithm for Intel Xeon Processors.................... 7-24
MP Initialization EXamMPleo 7-26
Typical BSP Initialization Sequence. ...t e 7-27
Typical AP Initialization SEqQUENCE.ot 7-29
Identifying Logical Processorsinan MP System.ovviiiiiiiiiiininennn. 7-29
HYPER-THREADING AND MULTI-CORE TECHNOLOGY.ovvviviiii i iiieieanens 7-31
DETECTING HARDWARE MULTI-THREADING SUPPORT AND TOPOLOGY.............. 7-32
Initializing Processors Supporting Hyper-Threading Technology 7-32
Initializing MUli-Core ProCESSOrS. ..t ettt vttt aaees 7-33
Executing Multiple Threads on an Intel® 64 or IA-32 Processor
Supporting Hardware Multi-Threading.ocovii i i 7-33
Handling Interrupts on an IA-32 Processor Supporting Hardware Multi-Threading . 7-33
INTEL™ HYPER-THREADING TECHNOLOGY ARCHITECTUREvovvieiieenen 7-34
State of the Logical ProCessorsovvr i 7-35
APIC FUNCHIONAITY .o oe et e e 7-36
Memory Type Range Registers (MTRR).vviiiii i 7-36
Page Attribute Table (PAT) .. .ot e 7-37
Machine Check ArchiteCtUre e 7-37
Debug Registers and EXtENSIONS. v'v ittt 7-37
Performance Monitoring CoOUNTErsSvuvti i 7-38
IA32_MISC_ENABLE MSR. ..\ttt e 7-38
[1= T TV O[T e 7-38
Serializing INStIUCTIONS ...\t v vt i 7-38
MICROCODE UPDATE RESOUIMCES . .. vttt ettt ee e e eee e e neeeieieananns 7-38
Self Modifying Code. ... o.v e e e 7-39
Implementation-Specific HT Technology Facilities.cocovviviiiines. 7-39
Processor Cathes e 7-39
Processor Translation Lookaside Buffers (TLBS)ovvvvviiiininnnnnnn. 7-40
Thermal MONItOr . ..o e s 7-40
External Signal Compatibility ... 7-40
MULTI-CORE ARCHITECTURE ...\ttt 7-41
LOGICal ProCESSOr SUPPOIT . .\ttt ettt ettt 7-42
Memory Type Range Registers (MTRR).covviiiiii e 7-42
Performance Monitoring COUNTErSvvvii i e i eieaaaas 7-42
IA32_MISC_ENABLE MSR. ...ttt 7-42
MICROCODE UPDATE RESOUIMCES . v vt veee ettt et e i eieeaeanens 7-43

viii Vol. 3A

CONTENTS

PAGE
7.10 PROGRAMMING CONSIDERATIONS FOR HARDWARE
MULTI-THREADING CAPABLE PROCESSORSot 7-43
7.10.1 Hierarchical Mapping of Shared Resourcesoovviiiiiiii it iiiienenns 7-43
7.10.2 Identifying Logical Processorsinan MP Systemc.coiiiiiiiiiiinnnnnns 7-44
7.103 Algorithm for Three-Level Mappings of APIC_IDcccoviiiviiiiiiiiieens 7-46
7.104 Identifying Topological Relationshipsina MP System...................ccooivnnt, 7-50
7.11 MANAGEMENT OF IDLE AND BLOCKED CONDITIONS\ vvviiei e 7-54
7111 (I 1 o o 7-54
711.2 PAUSE INSTrUCHIONot e eas 7-54
7113 Detecting Support MONITOR/MWAIT Instructioncooviiiiiiiiiiiinennnn 7-55
7114 MONITOR/MWAIT INSTTUCTION. . .o v et et 7-55
7115 Monitor/Mwait Address Range Determination.............ccoviiiiii i et 7-57
7116 Required Operating System SUPPOMt. ... ovvi i eieaes 7-58
7.11.6.1 Use the PAUSE Instruction in Spin-Wait LoopS.covvvviiiiiiiiiiiiennn 7-58
7.116.2 Potential Usage of MONITOR/MWAIT inCOIdle Loopscovvivnvnennnn.. 7-59
71163 Halt Idle Logical ProCeSSOrS .. v vttt e e s 7-60
71164 Potential Usage of MONITOR/MWAIT in C1 Idle Loopsvvvvvivvnininnnnn. 7-61
71165 Guidelines for Scheduling Threads on Logical Processors
Sharing EXecUtion RESOUMCESvvvt ittt 7-62
7.116.6 Eliminate Execution-Based Timing LOOPS. vvvvvviii i ieii e 7-62
7.11.6.7 Place Locks and Semaphores in Aligned, 128-Byte Blocks of Memory........... 7-62
CHAPTER 8
PROCESSOR MANAGEMENT AND INITIALIZATION
8.1 INITIALIZATION OVERVIEW ..ttt et 9-1
8.1.1 Processor State After RESET ... vt 9-2
8.1.2 Processor Built-In Self-Test (BIST). .. .vvvvriii i 9-2
813 Model and Stepping Information. ..ot e 9-5
814 First InStruction EXECUTEd.o vt 9-6
8.2 X87 FPU INITIALIZATION .ottt et e e e e 9-6
8.2.1 Configuring the x87 FPU ENVIFONMENT.ovi i 9-6
8.2.2 Setting the Processor for x87 FPU Software Emulationoovvints. 9-7
83 CACHE ENABLING. . vttt e et e e e e es 9-8
84 MODEL-SPECIFIC REGISTERS (MSRS) .. . ottt 9-9
8.5 MEMORY TYPE RANGE REGISTERS (MTRRS). ..\ vttt e 9-9
8.6 INITIALIZING SSE/SSE2/SSE3/SSSE3 EXTENSIONS. ..o 9-10
8.7 SOFTWARE INITIALIZATION FOR REAL-ADDRESS MODE OPERATION 9-10
8.7.1 Real-Address Mode IDT ... 9-11
87.2 NMIInterrupt Handling. oo e e i e 9-11
8.8 SOFTWARE INITIALIZATION FOR PROTECTED-MODE OPERATIONoevnente 9-11
8.8.1 Protected-Mode System Data STruCturesv.vvr v iieeeas 9-12
8.8.2 Initializing Protected-Mode Exceptions and Interruptscooviiiiivnnnn.. 9-13
883 INItialiZiNg Paging.ot e 9-13
884 Initializing MUItitasking.ooe o 9-14
8.8.5 INitializing IA-326 MOde . .. oo ot e 9-14
8.8.5.1 IA-32e Mode System Data Structures ..o 9-15
8.85.2 IA-32e Mode Interrupts and EXCEPLiONS.oovv v 9-15
8.85.3 64-bit Mode and Compatibility Mode Operation................ccooviiiiinn.s. 9-16
8854 Switching Out of IA-32e Mode Operationovvvviiiiii i 9-16
89 MODE SWITCHING ..ottt e e i 9-17
8.9.1 Switchingto Protected Mode ...t e 9-17

Vol. 3A ix

CONTENTS

PAGE

8.9.2 Switching Back to Real-Address Mode.ovvviii it e 9-18
8.10 INITIALIZATION AND MODE SWITCHING EXAMPLEooviiiii i 9-19
8.10.1 ASSEMIDIEr USAQE ..ottt e i e e 9-22
8.10.2 STARTUP.ASM LiSTiNG .« v v ve ettt et et ettt e 9-23
8.10.3 MAIN.AASM SOUMCE COdE. . ..o v ettt 9-33
8.104 SUPPOTtING FIlES. . ottt e e e e e 9-34
8.11 MICROCODE UPDATE FACILITIES . ..o e ettt 9-36
8.11.1 MICroCode UPdate. . v v vttt e 9-37
8.11.2 Optional Extended Signature Table ...t e 9-41
8113 Processor Identificationouvu i 9-41
8114 Platform Identificationoovuiii 9-42
8115 Microcode Update Checksum ..o e e 9-44
8116 Microcode Update Loaderovvvii it 9-45
8.11.6.1 Hard ResetsinUpdate Loadingcovvviiiiiiiii i 9-46
8.11.6.2 Update in @ Multiprocessor System ...t 9-46
8.11.6.3 Update in a System Supporting Intel Hyper-Threading Technology 9-46
81164 Update in a System Supporting Dual-Core Technologycovvvvvvnnnt 9-46
8.11.65 Update Loader Enhancementst 9-47
8.11.7 Update Signature and Verification ... 9-47
8.11.7.1 Determining the Signature ..o e 9-48
811.7.2 Authenticatingthe Update ... e 9-48
8.11.8 Pentium 4, Intel Xeon, and P6 Family Processor

Microcode Update Specifications.ovvv i 9-49
8.11.8.1 Responsibilities of the BIOS ...t 9-49
8.11.8.2 Responsibilities of the Calling Program............cooviiiiii i 9-52
81183 Microcode Update FUNCLIONS.ot 9-55
81184 INT 15H-based INterfaceovvv it 9-55
81185 Function O0H—Presence TeSTvv ittt 9-56
8.11.86 Function 0TH—Write Microcode Update Data.............cocovviiiiinninnnn 9-57
8.11.8.7 Function 02H—Microcode Update Controlcoovviii i 9-62
8.11.88 Function 03H—Read Microcode UpdateData...............ccoovviinnnnnnnnn 9-63
8.11.89 RETUMN COdBS . vttt e 9-64
CHAPTER 9
ADVANCED PROGRAMMABLE
INTERRUPT CONTROLLER (APIC)
9.1 LOCAL AND I/0 APIC OVERVIEW ..ottt et 8-1
9.2 SYSTEMBUS VS, APIC BUS ...ttt 8-5
93 THE INTEL™ 82489DX EXTERNAL APIC, THE APIC, AND THE XAPIC. ...t 8-5
94 LOC AL API . et e 8-6
94.1 The Local APIC BIoCK Diagram.vve ettt aeaes 8-6
94.2 Presence of the Local APICo s 8-10
943 Enabling or Disabling the Local APIC. ... e 8-10
94.4 Local APIC Status and LOCationvvvv et 8-11
945 Relocating the Local APIC ReGISTErS. .. v vttt 8-12
9.4.6 LOCal APIC DD, . ettt 8-12
94.7 LOCal APIC STaTE vttt 8-13
94.7.1 Local APIC State After Power-UporResetcccovviiiiiiiiiiiiinnnss 8-13
94.7.2 Local APIC State After It Has Been Software Disabled 8-14
94.7.3 Local APIC State After an INIT Reset (“Wait-for-SIPI" State) 8-14
9474 Local APIC State After It Receives an INIT-Deassert IPl.coovvten. 8-15

X Vol. 3A

CONTENTS

PAGE

948 Local APIC Version REGISTEr. ..o\ vv ettt e e ieaes 8-15
95 HANDLING LOCAL INTERRUPTS ..ttt 8-15
9.5.1 Local Vector Table. ... e 8-16
952 Valid INtermUPT VECTOrS ..\ttt e 8-19
953 Error Handling.o e e 8-19
954 [O I 1= 8-21
955 LoCal INtermUPT ACCEPTANCE. « .t vttt ettt e aaeiaaas 8-23
96 ISSUING INTERPROCESSOR INTERRUPTS ..ttt 8-23
9.6.1 Interrupt Command Register (ICR)ovvi i e 8-23
96.2 Determining IPI Destinationot e e 8-29
9.6.2.1 Physical Destination Modeovvi i 8-30
9.6.2.2 Logical Destination Mode ...t e 8-30
96.2.3 Broadcast/Self Delivery Mode. ..o 8-32
96.24 Lowest Priority Delivery Modecoovviiii i 8-33
963 IPI Delivery and ACCEPtanCe. ... vttt it ittt e e 8-34
9.7 SYSTEM AND APIC BUS ARBITRATION . ..ot evee ettt 8-34
98 HANDLUING INTERRUPTS .. .ottt e 8-35
9.8.1 Interrupt Handling with the Pentium 4 and Intel Xeon Processors................. 8-35
9.8.2 Interrupt Handling with the P6 Family and Pentium Processors 8-36
9.83 Interrupt, Task, and Processor Priority.......o.ovvu v 8-38
9.8.3.1 Task and Processor Prioritiesvuveriiii e 8-39
9.84 Interrupt Acceptance for Fixed INTErTUPtSovviri it iaaes 8-40
9.85 Signaling Interrupt Servicing Completion..........coov it 8-42
9.86 Task Priority iN1A-32eMode 8-42
9.8.6.1 Interaction of Task Priorities between CR8and APIC............ccovvvvvvnen, 8-43
99 SPURIOUS INTERRUPT . . . ettt e e 8-44
9.10 APIC BUS MESSAGE PASSING MECHANISM AND

PROTOCOL (P6 FAMILY, PENTIUM PROCESSORS) . ..ot vve v eieineieeieas 8-45
9.10.1 BUS MESSAgE FOrmMats .. v ittt e e e 8-46
9.11 MESSAGE SIGNALLED INTERRUPTS . ..ottt e 8-46
9.11.1 Message Address Register FOrmatcoooviiiii i e 8-47
9.11.2 Message Data Register FOrmMat.ovvu it 8-48
CHAPTER 10
MEMORY CACHE CONTROL
10.1 INTERNAL CACHES, TLBS, AND BUFFERS ...\ttt i 10-1
10.2 CACHING TERMINOLOGY . ..ttt ettt e et e e 10-5
103 METHODS OF CACHING AVAILABLE.ottt e 10-6
10.3.1 Buffering of Write Combining Memory Locationscoviiiiiiiininann 10-9
10.3.2 ChooSiNg @ MEMOTY TY P .ot v vttt e e ee 10-10
1033 Code Fetches in Uncacheable Memoryovvviiiiiiiiiiii e 10-11
104 CACHE CONTROL PROTOCOL . vttt et et et e et e e e et e e e 10-11
105 CACHE CONTROL & v v tv e e et e e e e 10-12
10.5.1 Cache Control Registers and BitSovvvviiiii e 10-13
10.5.2 Precedence of Cache CoNtrols. ... ovvvvr vt 10-18
10.5.2.1 Selecting Memory Types for Pentium Pro and Pentium Il Processors 10-18
10.5.2.2 Selecting Memory Types for Pentium Ill and More Recent Processor Families . 10-20
10.5.23 Writing Values Across Pages with Different Memory Types.................. 10-21
1053 Preventing Caching.ot 10-22
10.5.4 Disabling and Enablingthe L3 Cache.........covviiiii 10-22
10.5.5 Cache Management INStructions.oov it e e e 10-22

Vol. 3A Xi

CONTENTS

PAGE
1056 L1 Data Cache ConteXt MO . ..o v vv vt 10-23
10.5.6.1 AdaptiVE MOE. .. o 10-24
10.56.2 SNArEA MOGE vttt 10-24
106 SELF-MODIFYING CODE. ..\ttt ittt ettt e et 10-24
10.7 IMPLICIT CACHING (PENTIUM 4, INTEL XEON,
AND P6E FAMILY PROCESSORS). . v vttt ettt et et aaanes 10-25
10.8 EXPLICIT CACHING .ottt et e e e e e 10-26
109 INVALIDATING THE TRANSLATION LOOKASIDE BUFFERS (TLBS).ovvvvvenns 10-26
1010 STOREBUFFER ...ttt ittt 10-27
1011 MEMORY TYPE RANGE REGISTERS (MTRRS) .. .ot i it 10-27
10.11.1 MTRR Feature Identification............coviii i e 10-29
10.11.2 Setting Memory Ranges With MTRRS. ... e 10-30
10.11.2.1 IA32_MTRR_DEF_TYPEMSR ...\ttt 10-30
10.11.2.2 Fixed RAaNgE MTRRS. ...\ttt e e 10-31
10.11.23 Variable RaNGe MTRRS i e 10-32
10.11.3 Example Base and Mask Calculations............cooi it 10-35
10.11.31 Base and Mask Calculations for Greater-Than 36-bit Physical Address Support 10-36
10.11.4 Range Size and Alignment Requirement. ...t 10-37
10.11.4.1 MTRR PreCeABNCES ..\ttt ettt ettt 10-37
10.11.5 MTRR INILIBIZatION . ..o 10-38
10.11.6 RemapPing MemOry Ty PES vttt ettt i e 10-38
10.11.7 MTRR Maintenance Programming Interface..............cccoiiiiiiiiiiiienanns, 10-38
10.11.7.1 MemTypeGet() FUNCHION. v i e 10-39
10.11.7.2 MemTypeSet() FUNCHIONot e 10-40
10.11.8 MTRR Considerations in MP SyStemsS.ovuiii i 10-42
10.11.9 Large Page Size Considerations.vvvritiiiiii ittt eici i 10-43
10.12 PAGE ATTRIBUTE TABLE (PAT) .ttt ettt 10-44
10.12.1 Detecting Support for the PAT Featurecooviiiii i 10-44
10.12.2 [A32_CR _PAT MSR. .t e 10-45
10.123 Selectinga Memory Type fromthe PAT ... 10-46
10.12.4 Programming the PATt e 10-47
10.12.5 PAT Compatibility with Earlier IA-32 Processorsc.c.ovvvrviviiineiienennn. 10-48
CHAPTER 11 _,
INTEL™ MMX TeECHNOLOGY SYSTEM PROGRAMMING
11.1 EMULATION OF THE MMX INSTRUCTION SET ..o v e 11-1
11.2 THE MMX STATE AND MMX REGISTER ALIASING.o ee e 11-1
11.2.1 Effect of MMX, x87 FPU, FXSAVE, and FXRSTOR
Instructionsonthe x87 FPU TagWord ... 11-3
11.3 SAVING AND RESTORING THE MMX STATE AND REGISTERS.ovviviiieee 11-4
114 SAVING MMX STATE ON TASK OR CONTEXT SWITCHESovviiiiii i 11-5
115 EXCEPTIONS THAT CAN OCCUR WHEN EXECUTING MMX INSTRUCTIONS............. 11-5
11.5.1 Effect of MMX Instructions on Pending x87 Floating-Point Exceptions............ 11-6
116 DEBUGGING MMX CODE ..ttt ittt et ettt e 11-6
CHAPTER 12
SYSTEM PROGRAMMING FOR INSTRUCTION SET EXTENSIONS AND
PROCESSOR EXTENDED STATES
121 PROVIDING OPERATING SYSTEM SUPPORT FOR
SSE/SSE2/SSE3/SSSE3/SSE4 EXTENSIONS .. .v e 12-1

xii Vol. 3A

CONTENTS

PAGE
12.1.1 Adding Support to an Operating System for
SSE/SSE2/SSE3/SSSE3/SSES EXTENSIONS .« vt ei e 12-2
12.1.2 Checking for SSE/SSE2/SSE3/SSSE3/SSE4S Extension Support.........ccovvvvnn... 12-2
12.1.3 Checking for Support for the FXSAVE and FXRSTOR Instructions 12-3
1214 Initialization of the SSE/SSE2/SSE3/SSSE3/SSE4 Extensions.........covvvvvinne. 12-3
12.1.5 Providing Non-Numeric Exception Handlers for Exceptions Generated by the
SSE/SSE2/SSE3/SSSE3/SSES INSTrUCtioNS. ..o v v 12-5
12.1.6 Providing an Handler for the SIMD Floating-Point Exception (#XM)................ 12-7
12.1.6.1 Numeric Error flagand IGNNEH#. e 12-8
12.2 EMULATION OF SSE/SSE2/SSE3/SSSE3/SSE4 EXTENSIONS ..o 12-8
123 SAVING AND RESTORING THE SSE/SSE2/SSE3/SSSE3/SSE4A STATE .. vvvvvvneent 12-8

124 SAVING THE SSE/SSE2/SSE3/SSSE3/SSE4 STATE ON TASK OR CONTEXT SWITCHES. 12-9
125 DESIGNING OS FACILITIES FOR AUTOMATICALLY SAVING X87 FPU, MMX, AND

SSE/SSE2/SSE3/SSSE3/SSE4 STATE ON TASK OR CONTEXT SWITCHES 12-9

12.5.1 Using the TS Flag to Control the Saving of the
x87 FPU, MMX, SSE, SSE2, SSE3 SSSE3 and SSE4 Stateoovvvvvvvvvvnnn, 12-10

126 XSAVE/XRSTOR AND PROCESSOR EXTENDED STATE MANAGEMENT 12-12
12.6.1 S 1o T T 12-13
12.7 INTEROPERABILITY OF XSAVE/XRSTOR AND FXSAVE/FXRSTOR.cvvvvnnn. 12-15
12.8 DETECTION, ENUMERATION, ENABLING PROCESSOR EXTENDED STATE SUPPORT .. 12-17
12.8.1 Application Programming Model and Processor Extended States 12-18
CHAPTER 13
POWER AND THERMAL MANAGEMENT
13.1 ENHANCED INTEL SPEEDSTEP® TECHNOLOGY ...+ evvveeee e 13-1
13.1.1 Software Interface For Initiating Performance State Transitions.................. 13-1
13.2 P-STATE HARDWARE COORDINATION ..o\ttt i e eieeieans 13-2
133 SYSTEM SOFTWARE CONSIDERATIONS AND OPPORTUNISTIC

PROCESSOR PERFORMANCE OPERATION ...\ v vttt e et e e 13-4
13.3.1 Intel Dynamic AcCeleration.o vt i e 13-4
13.3.2 System Software Interfaces for Opportunistic Processor Performance Operation..13-4
13.3.2.1 Discover Hardware Support and Enabling of Opportunistic Processor Operation 13-5
133.2.2 0S Control of Opportunistic Processor Performance Operation................. 13-5
13323 Required Changes to OS Power Management P-state Policy 13-6
134 MWAIT EXTENSIONS FOR ADVANCED POWER MANAGEMENTcovvvvviviininnn 13-6
135 THERMAL MONITORING AND PROTECTION. . v v vt aie e 13-8
13.5.1 Catastrophic Shutdown Detector.o.vv vt 13-9
13.5.2 Thermal MOonitOr. ..o e 13-9
13.5.2.1 Thermal Monitor 1. ... e e 13-9
135.22 Thermal MoNItor 2. ... v e 13-10
13523 Two Methods for Enabling TM2 ... 13-10
13.5.24 Performance State Transitions and Thermal Monitoring 13-11
13.5.25 Thermal Status Information.ooviii s 13-11
13.5.2.6 Adaptive Thermal Monitorvviii s 13-13
1353 Software Controlled Clock Modulationovvviiii i 13-13
1354 Detection of Thermal Monitor and Software Controlled

Clock Modulation FaCilitiesvuvr e 13-15

13.5.5 On Die Digital Thermal SEeNSors. vvvi it et enes 13-15
13.5.5.1 Digital Thermal Sensor ENUMEration.vvvvvii it iiieiienns 13-15
13.55.2 Reading the Digital Sensor.ovuiiii 13-16

Vol. 3A xiii

CONTENTS

PAGE
CHAPTER 14
MACHINE-CHECK ARCHITECTURE
141 MACHINE-CHECK EXCEPTIONS AND ARCHITECTURE.cvv v 14-1
14.2 COMPATIBILITY WITHPENTIUMPROCESSOR ... vttt 14-1
143 MACHINE-CHECK MSRS . . .ttt 14-2
14.3.1 Machine-Check Global ControlMSRS. . ..o 14-2
14.3.1.1 IA32_MCG_CAP MSR .t 14-3
143.1.2 IA32_MCG_STATUS MSR . .ot e 14-4
143.1.3 IA32_MCG_CTUMSR ittt e 14-4
14.3.2 Error-Reporting Register Banks. e 14-5
14.3.2.1 1N (O T O I Y 2 14-5
143.2.2 IA32 MU _STATUS MSRS. .ttt e 14-5
14323 IA32_MCI_ADDR MSRS . .\ttt e 14-9
14324 IA32 MG _MISC MSRS . . vttt e 14-10
14.3.2.5 IA32_MCG Extended Machine Check State MSRS. ...t 14-10
1433 Mapping of the Pentium Processor Machine-Check Errors

to the Machine-Check Architecture.o 14-13
144 ENHANCED CACHE ERROR REPORTINGt v vttt i 14-14
145 MACHINE-CHECK AVAILABILITY . .ttt ettt e 14-14
146 MACHINE-CHECK INITIAUZATION ..ottt 14-15
14.7 INTERPRETING THEMCA ERROR CODES. ...\ttt 14-16
14.7.1 SIMPIE B0 COQBS . . ittt et e 14-17
14.7.2 Compound ErmOr COOBS . .ottt vttt et 14-18
14.7.2.1 Correction Report Filtering (F) Bit........oovvii e 14-18
14.7.2.2 Transaction Type (TT)Sub-Field . ..ot e 14-19
14.7.2.3 Level (LL) SUb-Field 14-19
14.7.2.4 Request (RRRR) SUD-Fieldovveii e 14-19
14.7.2.5 Bus and INtercoNNECt ErMOrS v v vttt et 14-20
14.7.3 Machine-Check Error Codes Interpretation...........c.covviiiiiiiiiiniiii e, 14-21
148 GUIDELINES FOR WRITING MACHINE-CHECK SOFTWARE. ..o 14-21
14.8.1 Machine-Check ExceptionHandleroi i 14-22
14.8.2 Enabling BINIT# Drive and BINIT# Observationcoocvviviiiniiiinannn, 14-23
1483 Pentium Processor Machine-Check Exception Handling.......................... 14-24
1484 Logging Correctable Machine-Check Errorscooviiiiiiiiiiiiiii e 14-24
CHAPTER 15
8086 EMULATION
15.1 REAL-ADDRESS MODE. . . vttt ettt ettt et 15-1
15.1.1 Address Translation in Real-AddressModecoov i 15-3
15.1.2 Registers Supported in Real-AddressMode.coovviiiiiiii i 15-4
15.1.3 Instructions Supported in Real-Address Mode.cooiviiiiiiiiiiie 15-4
15.14 Interrupt and Exception Handling 15-6
15.2 VIRTUAL-BO0BE MODEottt ettt e ees 15-8
15.2.1 Enabling Virtual-8086 Mode . ..o 15-9
15.2.2 Structure of @ Virtual-8086 Taskovvivvii i 15-9
15.2.3 Paging of Virtual-8086 Tasks.vuiuiriiiiiiii it 15-10
15.2.4 Protection within a Virtual-8086 Task ..o 15-11
15.25 Entering Virtual-8086 Mode. ... 15-11
15.2.6 Leaving Virtual-8086 Mode. 15-14
15.2.7 SeNSItIVE INSTTUCTIONS . vt e 15-15

Xiv Vol. 3A

CONTENTS

PAGE
15.2.8 Virtual-8086 Mode /0. . .o e 15-15
15.2.8.1 1/0-Port-Mapped 1/0o e 15-15
15.2.8.2 Memory-Mapped /0 15-16
15.2.8.3 Special /O BUFferS. .ot e 15-16
15.3 INTERRUPT AND EXCEPTION HANDLING
IN VIRTUAL-8086 MODEottt ettt e ee e 15-16
15.3.1 Class 1—Hardware Interrupt and Exception Handling in Virtual-8086 Mode...... 15-18
15.3.1.1 Handling an Interrupt or Exception Through a Protected-Mode
Trapor InterrUpt Gate . ..o 15-18
153.1.2 Handling an Interrupt or Exception With an 8086 Program
Interrupt or Exception Handler. ... 15-20
153.1.3 Handling an Interrupt or Exception Througha Task Gate 15-21
15.3.2 Class 2—Maskable Hardware Interrupt Handling in Virtual-8086
Mode Using the Virtual Interrupt Mechanism..........coooviiiiii i 15-22
1533 Class 3—Software Interrupt Handling in Virtual-8086 Mode 15-24
15.3.3.1 Method 1: Software Interrupt Handling. ...t 15-27
153.3.2 Methods 2 and 3: Software Interrupt Handling...............oooveiienns, 15-28
15333 Method 4: Software Interrupt Handling. ...t 15-28
15334 Method 5: Software Interrupt Handling. ...t 15-28
153.35 Method 6: Software Interrupt Handling. ... 15-29
154 PROTECTED-MODE VIRTUAL INTERRUPTSottt 15-30
CHAPTER 16
MIXING 16-BIT AND 32-BIT CODE
16.1 DEFINING 16-BIT AND 32-BIT PROGRAMMODULES.oviii i 16-2
16.2 MIXING 16-BIT AND 32-BIT OPERATIONS WITHIN A CODE SEGMENT 16-2
16.3 SHARING DATA AMONG MIXED-SIZE CODE SEGMENTS.....covvii i 16-4
164 TRANSFERRING CONTROL AMONG MIXED-SIZE CODE SEGMENTS ...ttt 16-4
16.4.1 Code-Segment Pointer Sizecoovirii i 16-5
16.4.2 Stack Management for Control Transfer............cooviiiii i 16-5
16.4.2.1 Controlling the Operand-Size Attribute ForaCall..............cccovvviinenen. 16-7
164.2.2 Passing Parameters Witha Gate ... 16-8
16.4.3 Interrupt Control Transfersoviri i e iaas 16-8
1644 Parameter TransIation.o.vu i e 16-8
1645 Writing Interface Procedures.ot 16-9
CHAPTER 17
ARCHITECTURE COMPATIBILITY
17.1 PROCESSOR FAMILIES AND CATEGORIES. ...\ttt 17-1
17.2 RESERVED BITS ..ttt e e e 17-2
17.3 ENABLING NEW FUNCTIONS AND MODES ...\ttt ineieeieans 17-2
17.4 DETECTING THE PRESENCE OF NEW FEATURES THROUGH SOFTWARE.............. 17-3
175 INTEL MMX TECHNOLOGY . . vttt ittt et 17-3
17.6 STREAMING SIMD EXTENSIONS (SSE) ..ot v v vt 17-3
17.7 STREAMING SIMD EXTENSIONS 2 (SSE2). .o v vt 17-4
17.8 STREAMING SIMD EXTENSIONS 3 (SSE3). .o 17-4
179 HYPER-THREADING TECHNOLOGY . . .o\ttt ettt aas 17-4
17.10 DUAL-CORE TECHNOLOGY ..\ttt ettt et ne s 17-4
17.11 SPECIFIC FEATURES OF DUAL-CORE PROCESSORoiiiiiiiiii i 17-5
17.12 NEW INSTRUCTIONS IN THE PENTIUM AND LATER IA-32 PROCESSORS. 17-5

Vol. 3A Xv

CONTENTS

PAGE
17.12.1 Instructions Added Prior to the Pentium Processorcovvvviviiinennn. 17-5
17.13 OBSOLETE INSTRUCTIONS. . .ttt ettt 17-7
17.14 UNDEFINED OPCODES . ..ottt ettt e 17-7
1715 NEW FLAGS IN THE EFLAGS REGISTER ..ttt 17-7
17.15.1 Using EFLAGS Flags to Distinguish Between 32-Bit IA-32 Processors............. 17-7
1716 STACK OPERATIONS ..ottt e e aas 17-8
17.16.1 PUSH SP. . 17-8
17.16.2 EFLAGS Pushedonthe Stackoovviii s 17-8
1707 XB7 FPU ot e 17-9
17171 Control Register CRO FIags vv vttt et et ieaaas 17-9
17.17.2 X87 FPU Status Wordttt 17-10
17.17.2.1 Condition Code Flags (COthrough C3)vviii e 17-10
17.17.2.2 Stack FAUIt Flag. . ..o e 17-10
17173 X87 FPU Control WOrd ...ttt 17-10
17174 X87 FPU Tag Word. ..o v ettt e 17-11
17175 (1= = Y 0= 17-11
17.17.51 NaN S . e 17-11
17.17.5.2 Pseudo-zero, Pseudo-NaN, Pseudo-infinity, and Unnormal Formats 17-12
17.17.6 Floating-Point EXCEPTIONSvviti i 17-12
17.17.6.1 Denormal Operand Exception (HD)c.vvviiiii i 17-12
17.17.6.2 Numeric Overflow Exception (HO).covvriiiii e 17-13
171763 Numeric Underflow Exception (HU)coovviiiiii i 17-13
171764 EXCEPTION PreCedBNCE. .. vttt e 17-14
17.17.6.5 CSand EIP For FPU EXCEPLIONSvvv it 17-14
17.17.6.6 [I 0T 3 = 17-14
17.176.7 Assertion of the FERREPIN. ... e 17-14
17.17.6.8 Invalid Operation Exception OnDenormalscooviiiiiii i ieenenss 17-15
17.17.6.9 Alignment Check Exceptions (BAC).vvriiiii e 17-15
17.17.6.10 Segment Not Present Exception During FLDENV.cocoiviiinnntn. 17-15
17.17.6.11 Device Not Available Exception (BNM) ... 17-15
1717612 Coprocessor Segment Overrun EXceptioncoovvveiiiiiiiiinnnnn.n. 17-16
17.17.6.13 General Protection Exception (HGP). ... 17-16
1717614 Floating-Point Error Exception (BMF).ooiiiii e 17-16
17.17.7 Changes to Floating-Point INStructionsooo i 17-16
171771 FDIV, FPREM, and FSQRT INStructions........ovvvviiii i 17-16
1717.7.2 FSCALE INStrUCHION. .o vttt 17-16
1717.7.3 FPREMT INStrUCHION . ..\ v vttt e 17-17
1717.7.4 FPREM INSTTUCTION .o\ttt 17-17
171775 FUCOM, FUCOMP, and FUCOMPP INStruCtionsvvvvvvieniniinennens 17-17
1717.7.6 FPTAN INSTIUCTION « .ottt e 17-17
1717.7.7 Stack OVErfIOW . v v e 17-17
17.17.7.8 FSIN, FCOS, and FSINCOS INSTructionS oo v v 17-18
17.17.7.9 FPATAN INSTTUCTION . .. vttt e 17-18
17.17.7.10 F2XMT INSTIUCTION . .o 17-18
17.17.7.11 FLD INSTrUCTION ..o e e s 17-18
1717712 FXTRACT INSTTUCTION. . vttt e es 17-18
1717713 Load Constant INSTrUCtiONSo v e 17-19
1717714 FSETPM INSITUCTION . oot 17-19
17.17.7.15 FXAM INSTrUCTION oottt 17-19
1717716 FSAVE and FSTENV INStructionsovvvie i 17-19
17.17.8 Transcendental INSTrUCtiONS v v vt e 17-19
17.17.9 Obsolete INSTTUCTIONS ...ttt 17-20

Xvi Vol. 3A

CONTENTS

PAGE
171710 WAIT/FWAIT Prefix Differences . ..o vvv v 17-20
17.17.11 Operands Split Across Segments and/or Pages.ovvviiiiirinvnninenenns 17-20
17.17.12 FPU Instruction Synchronization. ..o 17-20
17.18 SERIAUZING INSTRUCTIONS ...ttt 17-21
17.19 FPUANEMATHCOPRO SSOR INITIAUZATION. ..ot 17-21
17.191 Intel™ 387 and Intel ™~ 287 Math Coprocessor Initialization..................... 17-21
17.19.2 Intel486 SX Processor and Intel 487 SX Math Coprocessor Initialization.......... 17-22
17.20 CONTROL REGISTERS . ..ttt e 17-23
1721 MEMORY MANAGEMENT FACILITIES ..ot 17-25
17.21.1 New Memory Management Control FIags ... 17-25
17.21.1.1 Physical Memory Addressing EXTeNSioN.o, 17-25
17.21.1.2 Global Pages . ..o 17-25
17.21.1.3 Larger Page Sizes ... v ittt e 17-25
17.21.2 CD and NW Cache Control FIagscouvriririii it 17-26
17.21.3 Descriptor Types and Contents.oovi i e i aa s 17-26
17.21.4 Changes in Segment Descriptor Loadscovviiiiiiii i 17-26
17.22 DEBUG FACILITIES .ottt e 17-26
17.22.1 Differences in Debug Register DRE.cooviiii i eaeaas 17-26
17.22.2 Differences in Debug Register DR7ottt 17-26
17.22.3 Debug Registers DR4 and DR5o it 17-27
17.23 RECOGNITION OF BREAKPOINTS ..\ttt 17-27
17.24 EXCEPTIONS AND/OR EXCEPTION CONDITIONS .. .vvvviiii e eieis 17-27
17.24.1 Machine-Check Architecture.o.vir i e 17-29
17.24.2 Priority OF EXCEPtIONS . ..ottt ittt i e e e e e 17-29
17.25 INTERRUP TS L.ttt e 17-29
17.25.1 Interrupt Propagation Delay.ovvvviviii e 17-30
17.25.2 NV 1 =T a1 P 17-30
17.253 03 17-30
17.26 ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)ccvvvvvennt 17-30
17.26.1 Software Visible Differences Between the Local APIC and the 82489DX........ 17-30

17.26.2 New Features Incorporated in the Local APIC for the P6 Family
aNd Pentium ProCeSSOrS v vttt e 17-31

17.26.3 New Features Incorporated in the Local APIC of the Pentium 4
aNd INtel XEON ProCESSOMS ..\ttt ettt e 17-31
17.27 TASK SWITCHING AND TS, . ottt 17-32
17.27.1 P6 Family and Pentium Processor TSS. ... 17-32
17.27.2 TSS Selettor WIS vttt e 17-32
17.27.3 Order of Reads/Writesto the TSSot 17-32
17.27.4 Using A 16-Bit TSS with 32-Bit CoNStructs..........cccoviiiiiiii i 17-32
17.27.5 Differences in /O Map Base AddreSSesSvvvvr it iii i enenenns 17-33
17.28 CACHE MANAGEMENT ...ttt 17-34
17.28.1 Self-Modifying Code with Cache Enabled. ...t 17-34
17.28.2 Disablingthe L3 Cache. . ..o v i e e 17-35
17.29 PAGING ..o e 17-35
17.29.1 LargE PGS, . ittt 17-35
17.29.2 PCD and PWT Flags . ..o e ettt ettt e 17-36
17.29.3 Enabling and Disabling Pagingvvviiiiiiii e 17-36
17.30 STACK OPERATIONSttt et e e e 17-36
17.30.1 Selector Pushes and PopS.ot e 17-36
17.30.2 Error Code PUSNES. . ..ot 17-37
17.30.3 Fault Handling Effectsonthe Stack ... 17-37
17304 Interlevel RET/IRET From a 16-Bit Interruptor CallGate........................ 17-38

Vol. 3A xvii

CONTENTS

PAGE

17.31 MIXING T6- AND 32-BIT SEGMENTS ...\ttt 17-38
1732 SEGMENT AND ADDRESS WRAPAROUNDiitiiiiiiiii i iiieeieanns 17-39
17.32.1 Segment WraparoUNdo e e e 17-39
1733 STORE BUFFERS AND MEMORY ORDERING.\ vvvivee e ieineieeiennns 17-40
17.34 BUSLOCKING ..ottt et in e 17-41
17.35 BUSHOLD .ottt e e e e 17-41
1736 MODEL-SPECIFIC EXTENSIONS TO THE IA-32. .o v et 17-42
17.36.1 Model-Specific REGISTEIS ...\ttt 17-42
17.36.2 RDMSR and WRMSR INStrUCTIONS . ..o v o v 17-42
17.36.3 Memory Type Range REGISTEIS vt 17-42
17364 Machine-Check Exception and Architecture...........covii i 17-43
17.36.5 Performance-Monitoring COUNTerSvvvv it e e ieieaaaas 17-43
1737 TWO WAYS TO RUN INTEL 286 PROCESSOR TASKS. ...t v e i 17-44
CHAPTER 18
DEBUGGING AND PERFORMANCE MONITORING
18.1 OVERVIEW OF DEBUG SUPPORT FACILITIES ..ot v et 18-1
18.2 DEBUG REGISTERS ..ottt ettt e e 18-2
18.2.1 Debug Address Registers (DRO-DR3)........ovviiiiii i 18-4
18.2.2 Debug Registers DRA and DR5. ..o it 18-4
18.2.3 Debug Status Register (DRB)ovvvv e 18-4
18.2.4 Debug Control RegiSter (DR7). ... vttt e 18-5
1825 Breakpoint Field Recogniti&n ... 18-6
18.2.6 Debug Registers and Intel™ 64 ProCesSOorsovvirvriii it iiiiiaenans 18-8
183 DEBUG EXCEPTIONS ..ttt 18-8
18.3.1 Debug Exception (#DB)—Interrupt Vector 1.........cooviiiiiiiiiiiiiii i 18-9
18.3.1.1 Instruction-Breakpoint Exception Condition.ccoviiiiiii e, 18-9
183.1.2 Data Memory and I/0 Breakpoint Exception Conditions....................... 18-11
183.1.3 General-Detect Exception Condition.oovvviiiiii e 18-12
183.14 Single-Step Exception Condition ...t 18-12
183.1.5 Task-Switch Exception Conditionoovviii i e 18-12
183.2 Breakpoint Exception (#BP)—Interrupt Vector 3..........coooviiiiiiiinn, 18-13
184 LAST BRANCH RECORDING OVERVIEW ... ovv v e e e 18-13
185 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING (INTEL® CORE 2DUO

PROCESSOR FAMILY). vttt ittt e e e 18-14
18.5.1 IA32_DEBUGCTL MSR Lttt e e 18-14
185.2 BTS and Related FaCilitieso vvve e e 18-16
18.5.2.1 Freezing LBR and Performance CountersonPMIl..............cocovivvvvnnnnn. 18-17
185.2.2 Debug Store (DS) Mechanism ..ot 18-17
186 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING (PROCESSORS BASED ON INTEL

NETBURST™ MICROARCHITECTURE). ..t vv et e e e et 18-18
18.6.1 CPL-Qualified Last Branch Recording Mechanism.cooovvviiviinnnnn, 18-19
186.2 MSR_DEBUGCTLA MSR . ..ttt 18-21
18.6.3 LBR STaCK vttt 18-22
18.6.3.1 LBR Stack and INtel® 64 Processorsouverreireeieerieieieenenn 18-24
18.6.4 Monitoring Branches, Exceptions, and Interrupts.ccovvviviiiiiiii s, 18-24
18.6.5 Single-Stepping on Branches, Exceptions, and Interrupts.............coovvvvne.. 18-24
18.6.6 Branch Trace MeSSages . .. vv vttt et e e 18-25
18.6.7 Last EXCEPLION RECOMAS ... v vttt i 18-25
18.6.7.1 Last Exception Records and Intel 64 Architectureccoovviiivinnn.n. 18-25
18.6.8 Branch Trace Store (BTS). .o vvvr i e 18-25

Xviii Vol. 3A

CONTENTS

PAGE
18.6.8.1 Detection of the BTS FaCilitiesvvvvvvvii i 18-26
18.6.8.2 Setting Up the DS Save Area.vvir ittt 18-26
18.6.8.3 Setting Up the BTS BUffercoviii e 18-27
18.6.84 Setting Up CPL-Qualified BTS ..o 18-28
18.6.8.5 Writing the DS Interrupt Service Routinecooveienn. S 18-29
18.7 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING (INTEL® CORE SOLO AND
INTEL® CORE " DUO PROCESSORS). . .t vttt ettt 18-30
18.8 LAST BRANCH, INTERRUPT, AND EXCEPTION
RECORDING (PENTIUM M PROCESSORS). . .o vttt 18-32
189 LAST BRANCH, INTERRUPT, AND EXCEPTION
RECORDING (P6 FAMILY PROCESSORS) ...ttt et ieeeens 18-34
18.9.1 DEBUGCTLMSR REGISTEI .+ vttt ettt ettt ettt e et eaees 18-34
18.9.2 Last Branch and Last EXCeption MSRSoiiiii i 18-36
18.9.3 Monitoring Branches, Exceptions, and Interruptscooovviiiiii it 18-36
1810 TIME-STAMP COUNTER ..\ttt ittt e e 18-37
1811 PERFORMANCE MONITORING OVERVIEWvvti et 18-39
1812 ARCHITECTURAL PERFORMANCE MONITORINGvviiiiei i 18-40
18.12.1 Architectural Performance Monitoring Version 1covoiviiiiiiiinnn.. 18-40
18.12.1.1 Architectural Performance Monitoring Version 1 Facilities................... 18-41
18.12.2 Architectural Performance Monitoring Version 2ovvvvviviiiiiiininnnnes 18-43
18.12.2.1 Architectural Performance Monitoring Version 2 Facilities 18-44
18.12.3 Pre-defined Architectural Perforn&gnce EBuents............... @ o e 18-48
18.13 PERFORMANCE MONITORING (INTEL™~ CORE SOLO AND INTEL™ CORE DUO
PROCESSORS) .ottt et ittt et et e e e e e e e a ey . 18-50
18.14 PERFORMANCE MONITORING (PROCESSORS BASED ON INTEL® CORE
MICROARCHITECTURE). . .o vt e ettt et et e e 18-52
18.14.1 Fixed-function Performance Countersovvvvviiiiiiiiiiiiiiiiieninnn, 18-53
18.14.2 Global Counter Control FaCilitieS . .. v .o v vt et 18-54
18.14.3 At-Retirement EVENTS ..ottt 18-56
18.14.4 Precise Event Based Sampling (PEBS). ... 18-57
18.14.4.1 Settingup the PEBS BUFfer ..o i 18-58
18.14.4.2 PEBS ReCOrd FOrMat. ..ottt ettt 18-58
18.144.3 Writing a PEBS Interrupt ServiceRoutine ... 18-58
18.15 PERFORMANCE MONITORING (PROCESSORS
BASED ON INTEL NETBURST MICROARCHITECTURE)vvvv v 18-60
18.15.1 ES R MO RS . vttt ettt e 18-64
18.15.2 Performance COUNTEIS. . . vttt ettt et e 18-66
18.15.3 COOR MRS . . ettt sttt e e e e 18-67
18.154 Debug Store (DS) Mechanism.ovve e 18-69
18.15.5 DS SV A ittt 18-70
18.15.5.1 DS Save Area and IA-32e Mode Operationovviiiiiivniniiiennn, 18-74
18.15.6 Programming the Performance Counters
for Non-Retirement EVeNtSo 18-76
18.15.6.1 Selecting Events t0 CoUNt.vu it 18-77
18.15.6.2 FIEriNg BVENTS . o e e 18-79
18.15.6.3 Starting Event Countingovvinii e 18-81
18.15.64 Reading a Performance Counter's Count.........ooiviiiiiiiiniiiiinennn, 18-81
18.15.6.5 Halting Event Countingoiii i e e e 18-82
18.15.6.6 0= T or=Ta Yo O 10 =] 18-82
18.15.6.7 EXTENDED CASCADING . . .o vee ettt 18-83
18.15.6.8 Generating an Interrupt on Overflowooovii i 18-85
18.15.6.9 Counter Usage GUIdeline.ovvuiiii i e 18-85

Vol. 3A Xix

CONTENTS

PAGE

18.15.7 At-Retirement CoUNtiNgovi i e e 18-86
18.15.7.1 Using At-Retirement Counting.oovvviiiii i 18-87
18.15.7.2 Tagging Mechanism for Front_end_eventcociiiiiiiiiiiinnnnns 18-88
18.15.7.3 Tagging Mechanism For Execution_eventc.oviiiiiiiiiiiniinnns 18-88
18.15.7.4 Tagging Mechanism for Replay_event. ..o 18-89
18.15.8 Precise Event-Based Sampling (PEBS) ..o 18-89
18.15.8.1 Detection of the Availability of the PEBS Facilities........................... 18-90
18.15.8.2 Setting Up the DS Save Area ... vv vt e 18-90
18.15.8.3 Setting Up the PEBS Buffero e 18-90
18.15.84 Writing a PEBS Interrupt Service Routine.coiiii it 18-90
18.15.8.5 Other DS Mechanism Implications . ..ot 18-91
18.159 Operating System Implications. ..o e 18-91
1816 PERFORMANCE MONITORING AND HYPER-THREADING TECHNOLOGY.............. 18-91
18.16.1 ESCR MRS ..ttt 18-92
18.16.2 COOR MRS v ittt ettt e e 18-93
18.16.3 [A32_PEBS_ENABLE MSR ...\ttt 18-95
18.16.4 Performance Monitoring EVENTScovvi i 18-95
1817 COUNTING CLOCKS . Lttt ettt ettt e e 18-97
18.17.1 Non-Halted ClOCKTICKS . ..o v e e 18-98
18.17.2 NON-SIEEP CIOCKTICKS .+ v v v e ettt 18-99
18.17.3 Incrementing the Time-Stamp Counter. ..ottt 18-100
18174 Non-Halted Reference Clocktickscoooviiiiiii e 18-100
18.17.5 Cycle Counting and Opportunistic Processor Operation.............covvvvvnns. 18-100
1818 PERFORMANCE MONITORING, BRANCH PROFILING AND SYSTEM EVENTS......... 18-101
1819 PERFORMANCE MONITORING AND DUAL-CORE TECHNOLOGYovvvvvvnnnnn 18-102
1820 PERFORMANCE MONITORING ON 64-BIT INTEL XEON PROCESSOR MP

WITHUP TO8-MBYTE L3 CACHE. ... ittt e 18-102
1821 PERFORMANCE MONITORING ON DUAL-CORE INTEL XEON

PROCESSOR 7TO0 SERIESttt 18-106
18.21.1 GBSQ EVeNt INterface . ..o 18-108
18.21.2 GSNPQ Event INterface. . v v vt 18-110
18.21.3 FSB Event INterface.o 18-111
18.21.3.1 FSB Sub-Event Mask Interface.vvvviviviiiii i 18-112
18214 Common Event Control INterface.oovvvii i 18-113
18.22 PERFORMANCE MONITORING (P6 FAMILY PROCESSOR) ... vvvvviieieiie e 18-113
18.22.1 PerfEvtSel0 and PerfEVtSElT MSRS vi e 18-114
18.22.2 PerfCtrO and PerfCtrT MSRS. ... i e 18-116
18.22.3 Starting and Stopping the Performance-Monitoring Counters.................. 18-116
18.224 Event and Time-Stamp Monitoring Software................cociiiiiiininn.s. 18-117
18.22.5 Monitoring Counter OVerflow.o e 18-117
18.23 PERFORMANCE MONITORING (PENTIUM PROCESSORS).ovvviiiieiii e 18-118
18.23.1 Control and Event Select Register (CESR).coviiiiiiiii e 18-118
18.23.2 Use of the Performance-Monitoring Pins ... 18-120
18.23.3 EVeNtS CoUNted. ...t s 18-120
CHAPTER 19
INTRODUCTION TO VIRTUAL-MACHINE EXTENSIONS
19.1 OV RV EW. .« vttt e e e e e e 19-1
19.2 VIRTUAL MACHINE ARCHITECTURE ...ttt 19-1
193 INTRODUCTION TO VMX OPERATION. . . oottt 19-1
194 LIFE CYCLE OF VMM SOFTWARE ...\ttt et 19-2

XX Vol. 3A

195 VIRTUAL-MACHINE CONTROL STRUCTURE
19.6 DISCOVERING SUPPORT FOR VMX
19.7 ENABLING AND ENTERING VMX OPERATION
198 RESTRICTIONS ON VMX OPERATION

CHAPTER 20

VIRTUAL-MACHINE CONTROL STRUCTURES
20.1 OVERVIEW
20.2 FORMAT OF THE VMCS REGION
20.3 ORGANIZATION OF VMCS DATA
204 GUEST-STATE AREA
20.4.1 Guest Register State
204.2 Guest Non-Register State
205 HOST-STATE AREA
20.6 VVM-EXECUTION CONTROL FIELDS
20.6.1 Pin-Based VM-Execution Controls
20.6.2 Processor-Based VM-Execution Controls
20.6.3 Exception Bitmap
2064 1/0-Bitmap Addresses
20.6.5 Time-Stamp Counter Offset
20.6.6 Guest/Host Masks and Read Shadows for CRO and CR4
20.6.7 CR3-Target Controls
20.6.8 Controls for APIC Accesses
20.6.9 MSR-Bitmap Address
20.6.10 Executive-VMCS Pointer
20.7 VM-EXIT CONTROL FIELDS
20.7.1 VM-Exit Controls
20.7.2 VM-Exit Controls for MSRs
20.8 VM-ENTRY CONTROL FIELDS
20.8.1 VM-Entry Controls
20.8.2 VM-Entry Controls for MSRs
2083 VM-Entry Controls for Event Injection
20.9 VM-EXIT INFORMATION FIELDS
20.9.1 Basic VM-Exit Information
20.9.2 Information for VM Exits Due to Vectored Events
20.9.3 Information for VM Exits That Occur During Event Delivery
2094 Information for VM Exits Due to Instruction Execution
20.9.5 VM-Instruction Error Field
20.10 SOFTWARE ACCESS TO THE VMCS AND RELATED STRUCTURES
20.10.1 Software Access to the Virtual-Machine Control Structure
20.10.2 VMREAD, VMWRITE, and Encodings of VMCS Fields
20.10.3 Software Access to Related Structures
20.104 VMXON Region
20.11 USING VMCLEAR TO INITIALIZE A VMCS REGION

CHAPTER 21

VMX NON-ROOT OPERATION

21.1 INSTRUCTIONS THAT CAUSE VM EXITS
21.1.1 Relative Priority of Faults and VM Exits
21.1.2 Instructions That Cause VM Exits Unconditionally

CONTENTS

NN NN NN NN

LWL =

Vol. 3A xxi

CONTENTS

PAGE
21.1.3 Instructions That Cause VM Exits Conditionallycocoiiiiiiiiinanes. 21-3
21.2 APIC-ACCESS VM EXIT S, ottt e e 21-5
21.2.1 Linear Accesses to the APIC-Access Page ...t 21-6
21.21.1 Linear Accesses That Cause APIC-Access VM EXItS.oovvviiiiiinninnnnnn. 21-6
21.2.1.2 Priority of APIC-Access VM Exits Caused by Linear ACCESSES ...vvvvvvvvinnnnn 21-6
21.21.3 Instructions That May Cause Page Faults Without Accessing Memory.......... 21-7
21.2.2 Physical Accesses to the APIC-Access Page. ci i 21-7
21.23 VTPR ACCESSES . vttt ettt et ettt et e 21-8
21.3 OTHER CAUSES OF VM EXITS . ittt 21-9
21.4 CHANGES TO INSTRUCTION BEHAVIOR IN VMX NON-ROOT OPERATION 21-11
21.5 APIC ACCESSES THAT DONOT CAUSE VM EXITS . ..o 21-14
21.51 Linear Accesses to the APIC-Access Page Using Large-Page Translations 21-14
21.5.2 Physical Accesses to the APIC-AccessPage...........covviiiiiiiiiiiiiii s, 21-14
2153 VTPR ACCESSES . vttt ettt ettt et e et ettt 21-14
21.5.31 Treatment of Individual VTPR ACCESSES ... vvv vttt 21-15
2153.2 Operations with Multiple ACCESSES vvvii i e 21-16
21533 TPR-Shadow Updatesovvriit it 21-17
21.6 OTHER CHANGES IN VMX NON-ROOT OPERATION ... ov v 21-18
21.6.1 EVENt BIOCKING. ..o\ 21-18
21.6.2 Treatment of Task SWitches. s 21-18
CHAPTER 22
VM ENTRIES
22.1 BASIC VM-ENTRY CHECKS . .ottt 22-2
22.2 CHECKS ON VMX CONTROLS AND HOST-STATEAREA. . ..o 22-3
22.2.1 Checks 0N VMX Controls. ..o v v e 22-3
22.2.1.1 VM-Execution Control Fields. ... e 22-3
22.2.1.2 VM-Exit Control Fields.o.vie s 22-5
22213 VM-Entry Control Fieldsov e 22-6
22.2.2 Checks on Host Control Registersand MSRs ...t 22-7
22.2.3 Checks on Host Segment and Descriptor-Table Registers................cooovuuen. 22-7
2224 Checks Related to Address-Space Sizeovviiiiiiiiii s 22-8
22.3 CHECKING AND LOADING GUEST STATE ..ttt 22-8
22.3.1 Checks onthe GUeST State Area vv vt 22-9
22.3.1.1 Checks on Guest Control Registers, Debug Registers,andMSRs 22-9
223.1.2 Checks on Guest Segment RegiSTersot ii it i 22-9
223.1.3 Checks on Guest Descriptor-Table Registers.ovvvviiiiiiiiiinnnnnn. 22-12
22314 Checks on Guest RIPaNd RFLAGS o 22-12
22315 Checks on Guest Non-Register State..........oiii i 22-13
223.1.6 Checks on Guest Page-Directory Pointerscoovvviviiiiiiiiinnnn, 22-15
2232 Loading GUEST STatettt e 22-16
22.3.2.1 Loading Guest Control Registers, Debug Registers,and MSRs................. 22-16
22322 Loading Guest Segment Registers and Descriptor-Table Registers............ 22-17
22323 Loading Guest RIP, RSP, and RFLAGS.o 22-18
22324 Loading Page-Directory POINters.ovvviiiiii it 22-19
2233 Clearing Address-Range Monitoringv.vv vt 22-19
224 LOADING MRS ..ottt e e 22-19
22.5 EVENT INJECTION L .ttt et e e e e e eaas 22-20
22.5.1 Details of Event INjection.ovvu i 22-20
22.5.2 VM Exits During Event INJeCtion.vvii i 22-22
22.6 SPECIAL FEATURES OF VM ENTRY ..ottt 22-23

xXii Vol. 3A

CONTENTS

PAGE

22.6.1 Interruptibility State.o e 22-23
22.6.2 ACTIVITY STatE . .ot e 22-24
2263 Delivery of Pending Debug Exceptions after VMENtry......................c..e 22-25
2264 Interrupt-Window EXIitiNgcovriri e 22-26
22.6.5 NMI-WINAOW EXItING ..o v v e 22-27
22.6.6 VM Exits Induced by the TPRShadow ... e 22-27
22.6.7 VM Entries and Advanced Debugging Features...........coveviiiiiiiienennnnss 22-28
22.7 VM-ENTRY FAILURES DURING OR AFTER LOADING GUEST STATE..........ovvnee 22-28
228 MACHINE CHECKS DURING VM ENTRY ..ottt e 22-29
CHAPTER 23
VM EXITS
23.1 ARCHITECTURAL STATEBEFORE AVMEXIT ..\ 23-1
23.2 RECORDING VM-EXIT INFORMATION AND UPDATING CONTROLSvvvvvvieenes 23-5
23.2.1 Basic VM-EXit INformation.vvit i 23-5
23.2.2 Information for VM Exits Due to Vectored Events............ccovvvivniinninnns 23-11
23.2.3 Information for VM Exits During Event Deliveryccooviiviininnes. 23-12
2324 Information for VM Exits Due to Instruction Execution..............ocovvvvinnns 23-14
233 SAVING GUEST STATE .ttt i 23-18
23.3.1 Saving Control Registers, Debug Registers,and MSRscoovvnet. 23-18
233.2 Saving Segment Registers and Descriptor-Table Registers...................... 23-19
2333 Saving RIP, RSP, @nd RFLAGS. . ..o 23-19
2334 Saving Non-Register State.o 23-22
234 SAVING MO RS ottt 23-23
235 LOADING HOST STATE. . ettt ettt 23-24
23.5.1 Loading Host Control Registers, Debug Registers, MSRs0tt. 23-24
235.2 Loading Host Segment and Descriptor-Table Registersooe 23-25
2353 Loading Host RIP, RSP, and RFLAGSooiiiii i 23-27
2354 Checking and Loading Host Page-Directory Pointers.................cooovvnnn. 23-27
2355 Updating Non-Register State. i 23-28
2356 Clearing Address-Range Monitoring.vvvvvrveni e 23-28
236 LOADING MRS . ittt e 23-28
23.7 M ABOR TS Lttt 23-29
238 MACHINE CHECK DURING VM EXIT. . .ottt eeens 23-30
CHAPTER 24
SYSTEM MANAGEMENT
24.1 SYSTEM MANAGEMENT MODE OVERVIEW. . ..ot 24-1
24.1.1 System Management Mode and VMX Operation...........cooovviiiiiiiinnnnnnns 24-2
24.2 SYSTEM MANAGEMENT INTERRUPT (SMI). ..o 24-3
24.3 SWITCHING BETWEEN SMM AND THE OTHER

PROCESSOR OPERATING MODESottt et e 24-3
24.3.1 ENteriNg SMM Lo e 24-3
24.3.2 EXItING From SMM ..o 24-4
24.4 SR AM L 24-5
244.1 SMRAM STate SAVE MaD. . oottt 24-6
24.4.1.1 SMRAM State Save Map and Intel 64 Architecture. ...t 24-8
24.4.2 SMRAM CaCNING v v v vttt ettt 24-11
24.5 SMI HANDLER EXECUTION ENVIRONMENTt 24-12
24.6 EXCEPTIONS AND INTERRUPTS WITHINSMM ... 24-13

Vol. 3A xxiii

CONTENTS

PAGE

24.7 MANAGING SYNCHRONOUS AND ASYNCHRONOUS

SYSTEM MANAGEMENT INTERRUPTS ... 24-15
24.7.1 1/0 State Implementation. e e 24-15
24.8 NMIHANDLING WHILE IN SMM .. oo 24-16
24.9 SAVING THE X87 FPUSTATEWHILEINSMMo 24-17
2410 SMMREVISION IDENTIFIER ..\ttt e 24-18
2417 AUTO HALT REST AR .ttt e 24-18
24.11.1 Executing the HLT Instruction in SMM. ...t 24-19
2412 SMBASE RELOCATION . ..\ttt e e e 24-20
24.12.1 Relocating SMRAM to an Address Above T MByte..........cooviviiiiiiiinnns. 24-20
2413 1/OINSTRUCTION RESTART . .ttt ettt 24-21
24.13.1 Back-to-Back SMI Interrupts When I/0 Instruction Restart Is BeingUsed 24-22
2414 SMM MULTIPLE-PROCESSOR CONSIDERATIONSot 24-22
2415 DEFAULT TREATMENT OF SMIS AND SMM WITH VMX

OPERATION AND SMX OPERATION. . ..ttt ettt eeaas 24-23
24.15.1 Default Treatment of SMIDEliVEryY. ...t e 24-23
24.15.2 Default Treatment of RSM. ... e 24-24
24.15.3 Protection of CRAVMXEINSMM ... it 24-25
2416 DUAL-MONITOR TREATMENT OF SMISAND SMM.ovvv i 24-25
24.16.1 Dual-Monitor Treatment OVErVIEW.vvvve e eeens 24-26
24.16.2 SMM VUM EXITS 4ttt ettt e e e 24-26
24.16.2.1 Architectural State Before a VM EXit. ..o 24-27
24.16.2.2 Updating the Current-VMCS and Executive-VMCS Pointers................... 24-27
24.16.2.3 Recording VM-Exit Informationo i 24-27
24.16.2.4 SaVING GUEST STate. .. oot e 24-28
24.16.2.5 Updating Non-Register Stateovvvviiii i e 24-28
24.16.3 Operation of an SMM MONITOr. i it 24-29
24.164 VM Entries that Return from SMM ... e 24-29
24.16.4.1 Checks on the Executive-VMCS Pointer Fieldcoviiiiiiiiinnns, 24-29
24.16.4.2 Checks on VM-Execution Control Fields.cooovviiiiiii i 24-30
24.16.4.3 Checks on Guest Non-Register State..........cccoviiviiiiiiii i, 24-30
24.16.4.4 L0ading GUEST STate .. ov ittt 24-31
24.16.4.5 Updating the Current-VMCS and SMM-Transfer VMCS Pointers............... 24-31
24.16.4.6 VM Exits Induced by VM ENTrY . .. ov i 24-31
24.16.4.7 SMIBIOCKING . et e et e 24-32
241648 Failures of VM Entries That Return fromSMMcoviiiii i 24-32
24.16.5 Enabling the Dual-Monitor Treatmentcovii i 24-32
24.16.6 Activating the Dual-Monitor Treatment ..., 24-34
24.16.6.1 INItial CNECKS. .\ vt 24-34
24.16.6.2 MSEG ChECKING .ot e et 24-36
24.16.6.3 Updating the Current-VMCS and Executive-VMCS Pointers 24-36
24.16.6.4 Loading HoST STate ..o it e 24-36
24.16.6.5 L0aAING MRS, ottt 24-38
24.16.7 Deactivating the Dual-Monitor Treatment...........covviiii i 24-38
2417 SMI AND PROCESSOR EXTENDED STATE MANAGEMENTcovvvvviiiiininnns 24-39
CHAPTER 25
VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
25.1 VMX SYSTEM PROGRAMMING OVERVIEWoviii i 25-1
25.2 SUPPORTING PROCESSOR OPERATING MODES IN GUEST ENVIRONMENTS 25-1
25.2.1 Emulating GUeST EXECULIONottt e 25-2

XXiv Vol. 3A

CONTENTS

PAGE
253 MANAGING VMCS REGIONS AND POINTERS ..o 25-2
25.4 USING VMX INSTRUCTIONS ..ot 25-5
25.5 VMM SETUP & TEAR DOWN .. ettt ettt e 25-5
25.6 PREPARATION AND LAUNCHING A VIRTUALMACHINE. ..o 25-6
257 HANDLING OF VM EXITS Lottt et 25-8
25.7.1 Handling VM Exits Due t0 EXCEPLiONS . ..o v v ittt 25-8
25.7.1.1 Reflecting Exceptions to Guest Software............cccoiiiiiiiiiiiiiienanns, 25-8
25.7.1.2 Resuming Guest Software after Handling an Exception...................... 25-10
258 MULTI-PROCESSOR CONSIDERATIONS . ..o v et i eeens 25-12
25.8.1 INItIAliZatioNo e 25-12
25.8.2 Moving @ VMCS BetWeeN PrOCESSOIS ... vv vttt ittt ieiiii e ennnes 25-13
25.83 Paired Index-Data Registerscoviiiiiiii it e 25-13
2584 EXternal Data StrUCTUMES. . ..o vttt e 25-14
25.8.5 CPUID EMUIGLION. . . vttt 25-14
259 32-BIT AND 64-BIT GUEST ENVIRONMENTS ...\ v 25-14
25.9.1 Operating Modes of Guest ENVIFONMENTSvvvir i ineaas 25-14
25.9.2 Handling Widths of VMCS Fieldsoovvviii s 25-15
25.9.2.1 Natural-Width VMCS Fields.o 25-15
259.2.2 B4-Bit VMCS Fields . ..ot 25-15
2593 IA-328 MO HOSTS . . ettt e 25-16
2594 A-328 MO GUESTS . . ottt e 25-17
25.9.5 32-Bit GUESES vttt ettt 25-18
25.10 HANDLING MODEL SPECIFICREGISTERS. . ..ottt 25-18
25.10.1 Using VM-Execution Controls.cooviiiii e e i 25-18
25.10.2 Using VM-Exit Controls for MSRSooiiiii i e 25-19
25.10.3 Using VM-Entry Controls for MSRS. vt 25-19
25.104 Handling Special-Case MSRs and Instructions.cooiiiiiii i 25-19
25.104.1 Handling IA32_EFER MSR vttt 25-20
25.104.2 Handling the SYSENTER and SYSEXIT Instructionsocvvvvvvnnnn, 25-20
25.104.3 Handling the SYSCALL and SYSRET Instructions...........c.ovviivveiiinn, 25-20
25.104.4 Handling the SWAPGS InStruction ..ot 25-21
25.104.5 Implementation Specific Behavior on Writing to CertainMSRs................ 25-21
25.105 Handling Accesses to Reserved MSR Addresses. ..o viiii i iennnnns 25-21
25117 HANDLUING ACCESSES TO CONTROL REGISTERS ... ov v 25-21
25.12 PERFORMANCE CONSIDERATIONS. . ottt 25-22
CHAPTER 26
VIRTUALIZATION OF SYSTEM RESOURCES
26.1 OVERVIEW . e e 26-1
26.2 VIRTUALIZATION SUPPORT FOR DEBUGGING FACILITIES ..o 26-1
26.2.1 DEBUG EXCEPLIONS . ..ttt e 26-2
26.3 MEMORY VIRTUALIZATION. ottt et 26-3
26.3.1 Processor Operating Modes & Memory Virtualization................cocoviiiinn 26-3
26.3.2 Guest & Host Physical Address Spaces.vvvvvviiiiiii i 26-3
2633 Virtualizing Virtual Memory by Brute Force ...t 26-4
2634 Alternate Approach to Memory Virtualization..............cocoviiiiiiiiii s 26-4
26.3.5 Details of Virtual TLB Operation.ouiiiiiriiiiiiiiii i iiiieienennes 26-6
26.3.5.1 Initialization of Virtual TLB.vit e 26-7
26.3.5.2 Response to0 Page Faults.ov v 26-8
26353 Response to Uses of INVLPG. ... 26-11
26354 Response to CR3 WIiteS . ..o it e e e e e 26-11

Vol. 3A XXV

CONTENTS

PAGE

26.4 MICROCODE UPDATE FACILITY .ttt ettt et 26-11
26.4.1 Early Load of Microcode Updatescvviuviiiiiiiiiiii it 26-12
264.2 Late Load of Microcode Updates.covviiii i 26-12
CHAPTER 27
HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR
27.1 OVERVIEW. . .ottt e e e e 27-1
27.2 INTERRUPT HANDLING IN VMX OPERATIONttt i 27-1
27.3 EXTERNAL INTERRUPT VIRTUALIZATION ...t e 27-3
27.3.1 Virtualization of Interrupt Vector Space. ...t 27-4
2732 Control of Platform INterruptsvv i e 27-5
27.3.2.1 PICVirtualizationooiei e e 27-6
27322 XAPIC Virtualization.ot 27-6
27323 Local APIC Virtualization.vo v e 27-6
27324 I/0 APIC Virtualization.o vt 27-7
27.3.25 Virtualization of Message Signaled Interruptscocvviviviiiiiiennn, 27-8
2733 Examples of Handling of External Interrupts.c.oooviiiiiiii et 27-8
27.33.1 GUEST SO U .ttt e 27-8
2733.2 Processor Treatment of External Interrupt. ... 27-9
27333 Processing of External Interrupts by VMM. ... 27-9
27334 Generation of Virtual Interrupt Eventsby VMM,o, 27-10
27.4 ERROR HANDLING BY VMMt 27-11
27.4.1 VM-EXIt FailUTES vttt e 27-11
274.2 Machine Check Considerationsvrvr i e 27-12
27.5 HANDLUING ACTIVITY STATESBY VMM ..o 27-13
APPENDIX A
PERFORMANCE-MONITORING EVENTS
A ARCHITECTURAL PERFORMANCE-MONITORING EVENTS @i A-1
A2 PERFORMANCE MONITORING EVENTS FOR INTEL XEON® PROCESSOR 5200, 5400

SERIES AND INTEL™ CORE 2 EXTREME PROCES&{)ORS Q)%gOOO SERIES. A-2
A3 PERFORMANCE MONITORING EVENTS FQR INTEL™ XEON™ PROCESSOR 3000, 3200,

5100, 5300 SERIES AND INTEL™ CORE 2 DUOPROCESSQRScovvvii e -2
A4 PERFORMANCE MONITORING EVENTS FOR INTEL CORE SOLO AND INTEL® CORE

DUO PROCESSORS ..ottt e e e A-46

A5 PENTIUM 4 AND INTEL XEON PROCESSOR PERFORMANCE-MONITORING EVENTS ... A-55
Ab PERFORMANCE MONITORING EVENTS FOR

INTEL™ PENTIUM™ M PROCESSORS.ttt A-104
A7 P6 FAMILY PROCESSOR PERFORMANCE-MONITORING EVENTSvvnnntt A-107
A8 PENTIUM PROCESSOR PERFORMANCE-

MONITORING EVENTS ..ottt e A-125
APPENDIX B
MODEL-SPECIFIC REGISTERS (MSRS)
B.1 ARCHITECTURAL MSRS. .+ 1 i e e vv ettt B-2
B.2 MSRS IN THE INTEL RE" 2 PROCESSOR FAMILY. ...+ oo, B-31
B3 MSRS IN THE PENTIUM™ 4 AND INTEL™ XEON™ PROCESSORSccnts B-50
B.3.1 MSRs Unlqu%)to Inte] Xeon Processor M%@Wlth L3fachecooovivviiiiints B-90
B4 MSRS ININTEL™ CORE SOLO AND INTEL™ CORE DUO PROCESSORS............ B-93

XXvi Vol. 3A

CONTENTS

PAGE
B.5 MSRS IN THE PENTIUM M PROCESSOR. .. .ot vv ettt eineieeeens B-106
B.6 MSRS IN THE P6 FAMILY PROCESSORS ...\ttt B-116
B.7 MSRS IN PENTIUM PROCESSORS ..\ttt B-128
APPENDIX C
MP INITIALIZATION FOR P6 FAMILY PROCESSORS
C1 OVERVIEW OF THE MP INITIALIZATION PROCESS FOR P6 FAMILY PROCESSORS C-1
C2 MP INITIALIZATION PROTOCOL ALGORITHM ..o C-2
C.2.1 Error Detection and Handling During the MP Initialization Protocol C-4
APPENDIX D
PROGRAMMING THE LINTO AND LINT1 INPUTS
D.1 CON ST ANT S ottt e e e e D-1
D.2 LINT[O:1] PINS PROGRAMMING PROCEDURE\t D-1
APPENDIX E
INTERPRETING MACHINE-CHECK
ERROR CODES
€1 INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY 06H MACHINE ERROR
CODES FORMACHINE CHECK . . . ettt E-1
€2 INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY
OFH MACHINE ERROR CODES FORMACHINE CHECKovvv i E-4
€2.1 Model-Specific Machine Check Error Codes for Intel Xeon Processor MP 7100 Series E-6
€2.1.1 Processor Machine Check Status Register
MCA Error Code Defimitionovvvre e E-7
5.2.2 Other_Info Field (all MCA Error TYPES) .. vttt et E-8
€23 Processor Model Specific Error Code Field.ocoiii i E-9
€2.3.1 MCA Error TYPe Ar L3 ErTOr. ottt e E-9
€2.3.2 Processor Model Specific Error Code Field
Type B: Bus and INterconnect Ermorvvvvt it ci it v i ieieaaes E-9
5233 Processor Model Specific Error Code Field
Type C: Cache Bus Controller Error.vvvvvi i E-10
APPENDIX F
APIC BUS MESSAGE FORMATS
F.1 BUS MESSAGE FORMAT S, ittt ettt ettt e F-1
F.2 BOIMES S AGE. ..ttt e F-1
F.2.1 SO MESSAGE . v vttt ettt e e F-2
F.2.2 Non-focused Lowest Priority Message.oovvveiiiii it ieieeanss F-3
F.2.3 APIC BUS STatus CYCIES .o v ot vttt e F-5
APPENDIX G
VMX CAPABILITY REPORTING FACILITY
G.1 BASIC VMX INFORMATION .ottt ettt ettt G-1
G2 VM-EXECUTION CONTROLS ..ottt G-2
G3 VM-EXIT CONTROLS . . oottt e G-3

Vol. 3A xxvii

CONTENTS

PAGE
G4 VM-ENTRY CONTROLS ..\ttt e e e e i e aes G-3
G5 MISCELLANEOUS DA T A, ittt it e e e e G-4
G.6 VUMX-FIXED BITS IN CRO . . ottt et e et e e s G-4
G7 VMX-FIXED BITS IN CRA . . ittt e e et e e e G-4
G.8 VMCS ENUMERATION Lottt ittt e et e et aeas G-5
APPENDIX H
FIELD ENCODING IN VMCS
H.1 TE-BIT FIBLDS .ottt e e e H-1
H.1.1 T16-Bit Guest-State Fields.oovi i i e e H-1
H.1.2 T16-Bit HOST-State Fields. . v v e e i i e e e s H-1
H.2 BA-BIT FIELDS ..ttt ittt e H-2
H.2.1 B64-Bit Control Fields ..ot e e e H-2
H.2.2 64-Bit Guest-State Fields.oov i e H-3
H.2.3 64-Bit Host-State Field. H-4
H.3 32-BIT FIELDS ..ottt i e e e e H-4
H.3.1 32-Bit CoNtrol FIldS ..ot i e e e e e H-4
H.3.2 32-Bit Read-Only Data Fieldscoovirii i e e H-5
H.3.3 32-Bit Guest-State Fields.o. i e e H-5
H3.4 32-Bit Host-State Field.ot i e e e e s H-7
H.4 NATURAL-WIDTH FIBLDS . .. oottt e e e H-7
H.4.1 Natural-Width Control Fields. ... e e H-7
H.4.2 Natural-Width Read-Only Data Fields. ... H-8
H4.3 Natural-Width Guest-State Fieldso e i H-8
H4.4 Natural-Width Host-State Fields ..o e H-9
APPENDIX |
VMX BASIC EXIT REASONS
1.1 BASIC EXIT REASONS ittt e e e e I-1
APPENDIX]
VM INSTRUCTION ERROR NUMBERS
J1 ERROR NUMBERS . ..o\ttt it i e et e e et e J-1

xXxviii Vol. 3A

FIGURES

Figure 1-1.
Figure 1-2.
Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 2-6.
Figure 2-7.
Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.
Figure 3-5.
Figure 3-6.
Figure 3-7.
Figure 3-8.
Figure 3-9.

Figure 3-10.
Figure 3-11.
Figure 3-12.
Figure 3-13.
Figure 3-14.

Figure 3-15.
Figure 3-16.
Figure 3-17.
Figure 3-18.
Figure 3-19.
Figure 3-20.

Figure 3-21.

Figure 3-22.
Figure 3-23.

Figure 3-24.
Figure 3-25.
Figure 3-26.
Figure 3-27.
Figure 3-28.

Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 4-4.
Figure 4-5.
Figure 4-6.
Figure 4-7.

CONTENTS

PAGE
Bit and Byte Orderot 1-7
Syntax for CPUID, CR, and MSR Data Presentation.................coovivniinns. 1-9
IA-32 System-Level Registers and Data Structures. ...t 2-3
System-Level Registers and Data Structures inIA-32eMode 2-4
Transitions Among the Processor’'s OperatingModes..............c..covviinnt 2-11
System Flags in the EFLAGS Register.oovvviiii it ieeea 2-13
Memory Management RegiSters.vu v 2-16
CONtrol REGISTENS. .ttt e 2-19
XFEATURE_ENABLED_MASK Register (XCRO). . ..o vvviivii i 2-26
Segmentation and Paging.vuvritiirn 3-2
FIaEMOGEL . .o e 3-4
Protected Flat Modelo e 3-4
Multi-Segment Model . ..o 3-6
Logical Address to Linear Address Translationcoviiiiiiiinnn. 39
SegMENt SEIEC O ..ttt e 3-10
SEgMENT REGIS OIS . o\ttt 3-11
SegMENT DESCIIPTOr ...ttt e 3-13
Segment Descriptor When Segment-Present FlagisClear...................... 3-15
Global and Local Descriptor Tables.ovvii i e 3-20
Pseudo-Descriptor FOrmMatsovvii e 3-22
Linear Address Translation (4-KByte Pages)covvviviiiiiiiinnnnns, 3-26
Linear Address Translation (4-MByte Pages)..........cocvviiiviiiniiiinnnns, 3-27
Format of Page-Directory and Page-Table Entries for 4-KByte Pages
and 32-Bit Physical Addressesovveiii i i e 3-29
Format of Page-Directory Entries for 4-MByte Pages and 32-Bit Addresses3-30
Format of a Page-Table or Page-Directory Entry for a Not-Present Page....... 3-33
Register CR3 Format When the Physical Address Extension is Enabled........... 3-34
Linear Address Translation With PAE Enabled (4-KByte Pages)................. 3-35
Linear Address Translation With PAE Enabled (2-MByte Pages) 3-36
Format of Page-Directory-Pointer-Table, Page-Directory, and
Page-Table Entries for 4-KByte Pages with PAE Enabled 3-38
Format of Page-Directory-Pointer-Table and Page-Directory Entries
for 2-MByte Pages with PAEEnabled.coiii i 3-39
Linear Address Translation (4-MByte Pages)..........coviiiiviiiiiiinnnnn, 3-41
Format of Page-Directory Entries for 4-MByte Pages and
36-Bit Physical AddresSSes ..ottt e 3-42
IA-32e Mode Paging Structures (4-KByte Pages).........ccovvviviiiiiiinnnns, 3-44
IA-32e Mode Paging Structures (2-MByte pages)........c..covviviiiiiinnnn. 3-45
Format of Paging Structure Entries for 4-KByte Pages in IA-32e Mode.......... 3-46
Format of Paging Structure Entries for 2-MByte Pages in IA-32e Mode......... 3-47
Memory Management Convention That Assigns a Page Table
10 EaCh SEgMEBNT ..o 3-50
Descriptor Fields Used for Protection. ..o 4-4
Descriptor Fields with FlagsusedinlA-32eModecovivviviininne 4-6
Protection RINGS ... ovi i 4-10
Privilege Check for Data ACCESS .. v v vttt 4-12
Examples of Accessing Data Segments From Various Privilege Levels.......... 4-13
Privilege Check for Control Transfer Without UsingaGate..................... 4-15
Examples of Accessing Conforming and Nonconforming Code
Segments From Various Privilege Levels. ... 4-17

Vol. 3A XXiX

CONTENTS

Figure 4-8.
Figure 4-9.
Figure 4-10.
Figure 4-11.
Figure 4-12.
Figure 4-13.
Figure 4-14.
Figure 4-15.
Figure 5-1.
Figure 5-2.
Figure 5-3.
Figure 5-4.
Figure 5-5.
Figure 5-6.
Figure 5-7.
Figure 5-8.
Figure 5-9.
Figure 6-1.
Figure 6-2.
Figure 6-3.
Figure 6-4.
Figure 6-5.
Figure 6-6.
Figure 6-7.
Figure 6-8.
Figure 6-9.
Figure 6-10.
Figure 6-11.
Figure 7-1.
Figure 7-2.
Figure 7-3.
Figure 7-4.
Figure 7-5.
Figure 7-6.

Figure 8-1.
Figure 8-2.
Figure 8-3.
Figure 8-4.

Figure 8-5.
Figure 8-6.
Figure 8-7.
Figure 8-8.
Figure 8-9.
Figure 9-1.
Figure 9-2.

Figure 9-3.

Figure 9-4.
Figure 9-5.

XXX Vol. 3A

PAGE
Call-Gate DESCII P O . o\ ettt ettt e e s 4-19
Call-Gate Descriptor in IA-32e Mode.o 4-21
Call-Gate MeChanism e 4-22
Privilege Check for Control Transfer with Call Gate............................ 4-23
Example of Accessing Call Gates At Various Privilege Levels................... 4-25
Stack Switching During an Interprivilege-Level Call...................cooiit 4-27
MSRs Used by SYSCALL and SYSRETo 4-33
Use of RPL to Weaken Privilege Level of Called Procedure 4-38
Relationship of the IDTRand IDT....... ..ot 5-14
IDT Gate DESCIIPTOIS . v\ vttt ettt ettt et aaens 5-15
Interrupt Procedure Call.o e 5-16
Stack Usage on Transfers to Interrupt and Exception-Handling Routines....... 5-18
Interrupt Task Switch. ... 5-21
oo L= 5-22
64-Bit IDT Gate Descriptors ...t 5-23
IA-32e Mode Stack Usage After Privilege Level Change....................... 5-26
Page-Fault Error COde. ... vv vttt e 5-55
SHrUCTUrE OF @ TaSK vttt 6-2
32-Bit Task-State Segment (TSS) vr v e 6-5
B ST D =Yl 0] o 6-7
Format of TSS and LDT Descriptors in 64-bitModeccovvvvinnn.. 6-9
Task REGISTOr. .o\ttt 6-10
Task-Gate DESCII PO . .o vttt et e e e 6-11
Task Gates Referencingthe Same Taskcovii i 6-12
NESTEA TaSKS . . v vttt ettt e e e 6-17
Overlapping Linear-to-Physical Mappings........cocovviiiiviiiiiiiiiiinnnes 6-20
T6-Bit TSS FOMMAT . .ttt e e 6-22
B4-Bit TSS FOrmatttt 6-24
Example of Write Ordering in Multiple-Processor Systems..................... 7-10
Interpretation of APICID in Early MP Systemsccooiiiiiiiiiiiinnann, 7-31
Local APICs and I/0 APIC in MP System Supporting HT Technology............. 7-34
IA-32 Processor with Two Logical Processors Supporting HT Technology 7-35
Generalized Four level Interpretation of the initial APICID. 7-44
Topological Relationships between Hierarchical IDs in a
Hypothetical MP Platformo.vui e 7-45
Contents of CRO Register after Reset. ..o 9-5
Version Information in the EDX Register after Reset.................coovviit, 9-5
Processor State After ReSet.o.vv v 9-21
Constructing Temporary GDT and Switching to Protected Mode
(Lines 162-172 0f LISt File). ...\ v v e 9-31
Moving the GDT, IDT, and TSS from ROM to RAM (Lines 196-261 of List File)... 9-32
Task Switching (Lines 282-296 of ListFile).ovvvvvii it 9-33
Applying Microcode Updates.oviiiiiiiii i 9-37
Microcode Update Write Operation Flow [1]......coviiiii i 9-60
Microcode Update Write Operation Flow [2]covvviiii i 9-61
Relationship of Local APIC and I/0 APIC In Single-Processor Systems............ 8-3
Local APICs and I/0 APIC When Intel Xeon Processors Are Used in Multiple-
PrOCESSOr S S BMS. L ottt t it e e e 8-4
Local APICs and I/0 APIC When P6 Family Processors Are Used in
Multiple-Processor SYSteMS ... v i 8-4
LOCal APIC STTUCTUNE vttt et e e e 8-7
IA32_APIC_BASE MSR (APIC_BASE_MSR NP6 Family)covvvinnvnnn. 8-12

Figure 9-6.
Figure 9-7.
Figure 9-8.
Figure 9-9.
Figure 9-10.
Figure 9-11.
Figure 9-12.
Figure 9-13.
Figure 9-14.
Figure 9-15.
Figure 9-16.

Figure 9-17.

Figure 9-18.
Figure 9-19.
Figure 9-20.
Figure 9-21.
Figure 9-22.
Figure 9-23.
Figure 9-24.
Figure 9-25.
Figure 10-1.
Figure 10-2.
Figure 10-3.
Figure 10-4.
Figure 10-5.
Figure 10-6.

Figure 10-7.
Figure 11-1.
Figure 11-2.
Figure 12-1.

Figure 12-2.

Figure 12-3.
Figure 12-4.

Figure 13-1.
Figure 13-2.
Figure 13-3.
Figure 13-4.

Figure 13-5.
Figure 13-6.
Figure 13-7.
Figure 13-8.
Figure 13-9.
Figure 13-10.
Figure 14-1.
Figure 14-2.

CONTENTS

PAGE
LOCal APIC D REGISTEr o\ttt ettt et e 8-13
Local APIC Version REGISTEr vv e 8-15
Local Vector Table (LVT) ... e e 8-17
Error Status Register (ESR) ... vvvi e 8-21
Divide Configuration RegiStervvii e 8-22
Initial Count and Current Count Registers........oovvviiii i 8-22
Interrupt Command Register (ICR)ovvvuiii e 8-24
Logical Destination Register (LDR).vviuiiriiii ittt eeans 8-31
Destination Format Register (DFR)coviriiiiii e 8-31
Arbitration Priority Register (APR) ... ovviiiii i 8-33
Interrupt Acceptance Flow Chart for the Local APIC (Pentium 4 and
INtel XEON ProCESSOTS). ..ot v ettt 8-35
Interrupt Acceptance Flow Chart for the Local APIC (P6 Family and
PENtIUM PrOCESSOIS). .« vttt ettt e e 8-37
Task Priority Register (TPR).ovit e 8-39
Processor Priority Register (PPR)........c.vvuiiiii i 8-40
IRR, ISR aNd TMR REGISTEIS .\ttt ettt 8-41
B0 RIS . ittt i i e e 8-42
CRB RIS B . . vttt ettt e e 8-43
Spurious-Interrupt Vector Register (SVR). ... 8-45
Layout of the MSI Message Address Registercooviviiiivieenanns. 8-47
Layout of the MSI Message Data Registercocvvviviiiiiiiiinenannn, 8-48
Cache Structure of the Pentium 4 and Intel Xeon Processors 10-1
Cache-Control Registers and Bits Available in IA-32 Processors 10-14
Mapping Physical Memory WithMTRRsociiiiii e 10-29
IA32_MTRRCAP REGISTOr ..\ttt 10-30
IA32_MTRR_DEF_TYPEMSR. ... ittt i 10-31
IA32_MTRR_PHYSBASEN and IA32_MTRR_PHYSMASKn
Variable-Range Register Pair.cooviiiiii i i 10-34
IA32_CR _ PAT MSR ..ttt e 10-45
Mapping of MMX Registers to Floating-Point Registers 11-2
Mapping of MMX Registers to x87 FPU Data Register Stack 11-7
Example of Saving the x87 FPU, MMX, SSE, SSE2, SSE3, and SSSE3
State During an Operating-System Controlled Task Switch................... 12-11
Future Layout of XSAVE/XRSTOR Area and XSTATE_BV with Five
Sets of Processor State EXTeNSIONSvv vt 12-14
0S Enabling of Processor Extended State Supportcovvvvvvvinn.s. 12-17
Application Detection of New Instruction Extensions and Processor
EXtended STate ... 12-19
IA32_MPERF MSR and IA32_APERF MSR for P-state Coordination 13-2
IA32_PERF_CTL REGISTOr o\ vttt ettt e 13-6
Processor Modulation Through Stop-Clock Mechanism......................ee 13-8
MSR_THERMZ2_CTL Register On Processors with CPUID
Family/Model/Stepping Signature Encoded as 0x69n or Ox6Dn 13-10
MSR_THERM2_CTL Register for Supporting TM2.cooviiivinnnnt. 13-11
IA32_THERM_STATUS MSR. . .\ttt 13-12
IA32_THERM_INTERRUPT MSR ...ttt 13-12
IA32_CLOCK_MODULATION MSR ..ottt 13-14
IA32_THERM_STATUS REGISTEM . .\ vt v vttt 13-16
IA32_THERM_INTERRUPT REGISTOr ..\t tveei i 13-18
Machine-Check MSRS e 14-2
IA32_MCG_CAP REGISTE . . vttt ettt ettt 14-3

Vol. 3A XXXi

CONTENTS

Figure 14-3.
Figure 14-4.
Figure 14-5.
Figure 14-6.
Figure 15-1.
Figure 15-2.
Figure 15-3.
Figure 15-4.

Figure 15-5.
Figure 16-1.
Figure 17-1.
Figure 18-1.
Figure 18-2.
Figure 18-3.

Figure 18-4.
Figure 18-5.
Figure 18-6.
Figure 18-7.
Figure 18-8.

Figure 18-9.

Figure 18-10.
Figure 18-11.
Figure 18-12.
Figure 18-13.
Figure 18-14.
Figure 18-15.
Figure 18-16.
Figure 18-17.
Figure 18-18.
Figure 18-19.
Figure 18-20.
Figure 18-21.

Figure 18-22.
Figure 18-23.
Figure 18-24.
Figure 18-25.
Figure 18-26.
Figure 18-27.
Figure 18-28.
Figure 18-29.
Figure 18-30.
Figure 18-31.

Figure 18-32.
Figure 18-33.

XXxii Vol. 3A

PAGE
IA32_MCG_STATUS REGISTEI .\ttt ettt et 14-4
IA32 MO _CTL RIS o\ttt et e e 14-5
IA32_MCi_STATUS REGISTON . vttt ettt e 14-6
IA32_MCI_ADDR MSR ..ttt ettt 14-10
Real-Address Mode Address Translation ..o, 15-4
Interrupt Vector Table in Real-AddressMode.............ccoviiiiieiinn, 15-7
Entering and Leaving Virtual-8086 Mode.coviviiiiiiiii e, 15-13
Privilege Level O Stack After Interrupt or
Exception in Virtual-8086 Mode 15-19
Software Interrupt Redirection BitMapin TSS............ccoiiiiiiiiinn., 15-27
Stack after Far 16-and 32-BitCalls..........cooviiiii i 16-6
I/0 Map Base Address Differencesc.ovvviiiiiiii it 17-33
DEbUG REGISTEIS . oottt e 18-3
DR6/DR7 Layout on Processors Supporting Intel 64 Technology 18-8
IA32_DEBUGCTL MSR for Processors based
on Intel Core microarchiteCtureo.vv vt 18-15
LBR MSR Layout for Processors Based on Intel Core Microarchitecture 18-16
MSR_DEBUGCTLA MSR for Pentium 4 and Intel Xeon Processors 18-22
LBR MSR Branch Record Layout for the Pentium 4
and Intel Xeon Processor Familyo.vuvririii it 18-23
IA32_DEBUGCTL MSR for Intel Core Solo
and Intel Core DUO PrOCESSOTSt v vttt ettt ineeens 18-31
LBR Branch Record Layout for the Intel Core Solo
and Intel Core DUO ProCeSSOr .. .v vttt e eeae s 18-32
MSR_DEBUGCTLB MSR for Pentium M Processors.c.coovvvvivineninnns 18-33
LBR Branch Record Layout for the Pentium M Processor..................... 18-34
DEBUGCTLMSR Register (P6 Family Processors)........covvvvnvivinenennnns. 18-35
Layout of IA32_PERFEVTSELX MSRS. ...\t 18-42
Layout of IA32_FIXED_CTR_CTRLMSR ...t 18-45
Layout of IA32_PERF_GLOBAL_CTRLMSRot 18-46
Layout of IA32_PERF_GLOBAL_STATUSMSR . ..ot 18-47
Layout of IA32_PERF_GLOBAL_OVF_CTRLMSR........coviiiiiiiiiieans 18-47
Layout of MSR_PERF_FIXED_CTR_CTRLMSR.oivviiiiiiiiii s 18-54
Layout of MSR_PERF_GLOBAL_CTRLMSR.oviiiii i 18-55
Layout of MSR_PERF_GLOBAL_STATUSMSR. ..ot 18-55
Layout of MSR_PERF_GLOBAL_OVF_CTRLMSRcoviiiiiiiiiii s 18-56
Event Selection Control Register (ESCR) for Pentium 4
and Intel Xeon Processors without HT Technology Support.................. 18-65
Performance Counter (Pentium 4 and Intel Xeon Processors)................. 18-67
Counter Configuration Control Register (CCCR)ovvvvviiviiiiiininnn. 18-68
DS SaVE AT . ittt 18-72
32-bit Branch Trace Record FOrmat.ovviviiiii i 18-73
PEBS ReCOrd FOMmMat . ..o vttt 18-74
[A-328 M0de DS SAVE AMBa . . .o\ i ittt 18-75
64-bit Branch Trace Record Format.coovviii e 18-76
64-bit PEBS Record FOrmat. ... ov vt 18-76
Effects of Edge Filtering.ovvvv i 18-81
Event Selection Control Register (ESCR) for the Pentium 4
Processor, Intel Xeon Processor and Intel Xeon Processor MP
Supporting Hyper-Threading Technology..........cccoviviviiiiiiiiiinnen, 18-92
Counter Configuration Control Register (CCCR)covviviiniininnnn. 18-94
Block Diagram of 64-bit Intel Xeon Processor MP with 8-MByte L3 18-102

Figure 18-34.
Figure 18-35.
Figure 18-36.
Figure 18-37.

Figure 18-38.
Figure 18-39.
Figure 18-40.
Figure 18-41.
Figure 18-42.
Figure 18-43.

Figure 19-1.
Figure 24-1.
Figure 24-2.
Figure 24-3.
Figure 24-4.
Figure 24-5.
Figure 25-1.
Figure 26-1.
Figure 27-1.
Figure C-1.

CONTENTS

PAGE
MSR_IFSB_IBUSQx, Addresses: 107CCHand T07CDH.coovvvnnn. 18-103
MSR_IFSB_ISNPQx, Addresses: 107CEHand 107CFH...............covvetn 18-104
MSR_EFSB_DRDYx, Addresses: 107D0OHand 1T07DTH.............covvven. 18-105
MSR_IFSB_CTL6, Address: 107D2H;
MSR_IFSB_CNTR7, Address: TO7D3H.oiviii i 18-106
Block Diagram of Intel Xeon Processor 7100 Seriesccvvvvvnnnnn 18-107
MSR_EMON_L3_CTR_CTLO/1, Addresses: 107CCH/107CDH 18-109
MSR_EMON_L3_CTR_CTL2/3, Addresses: 107CEH/T07CFH. 18-111
MSR_EMON_L3_CTR_CTL4/5/6/7, Addresses: 107DOH-107D3H............ 18-112
PerfEvtSel0 and PerfEviSelT MSRS. ..o 18-115
CESR MSR (Pentium Processor ONly).ovviiiiiiii e 18-119
Interaction of a Virtual-Machine Monitor and Guests...................cccvets. 19-3
SMRAM USB. + ot vttt ettt it e e 24-6
SMM Revision Identifier. ... 24-18
Auto HALT Restart Field.o i 24-19
SMBASE Relocation Field. 24-20
I/0 Instruction Restart Field. e 24-21
VVMX Transitions and States of VMCS in a Logical Processor.................... 25-4
Virtual TLB Scheme. e 26-7
Host External Interrupts and Guest Virtual Interruptsccovvvnnnn, 27-5
MP System With Multiple Pentium lll Processors.oovviiiiiiiiiiiennn 3

Vol. 3A xxXxiii

CONTENTS

TABLES
Table 2-1.

Table 2-2.
Table 3-1.
Table 3-2.
Table 3-3.
Table 3-4.
Table 3-5.
Table 4-1.
Table 4-2.
Table 4-3.
Table 4-4.

Table 4-5.
Table 4-6.

Table 4-7.
Table 4-8.
Table 4-9.

Table 4-10.
Table 5-1.
Table 5-2.
Table 5-3.
Table 5-4.
Table 5-5.
Table 5-6.
Table 5-7.
Table 5-8.
Table 6-1.
Table 6-2.

Table 7-1.
Table 7-2.

Table 8-1.
Table 8-2.
Table 8-3.
Table 8-4.
Table 8-5.
Table 8-6.
Table 8-7.
Table 8-8.
Table 8-9.
Table 8-10.
Table 8-11.
Table 8-12.

XXXiv Vol. 3A

PAGE
Action Taken By x87 FPU Instructions for Different
Combinations of EM, MP, and TS2-21
Summary of System INStructions ... e 2-28
Code- and Data-Segment TYPESvvit ittt 3-17
System-Segment and Gate-Descriptor TYPeSvvvvvviiiii i aenns 3-19
Page Sizes and Physical Address Sizes ...t 3-25
Reserved Bit Checking When Execute Disable Bit is Disabled 3-48
Reserved Bit Checking When Execute Disable Bit is Enabled................... 3-49
Privilege Check Rules for Call Gatesoviiiiiii i 4-23
64-Bit-Mode Stack Layout After CALLF with CPL Change...................... 4-28
Combined Page-Directory and Page-Table Protection...............ccovvuvne 4-42
Page Sizes and Physical Address Sizes Supported by
Execute-Disable Bit Capability4-43
Extended Feature Enable MSR (IA32_EFER) ..., 4-44
IA-32e Mode Page Level Protection Matrix
with Execute-Disable Bit Capabilitycoiiiiii i 4-44
Legacy PAE-Enabled 4-KByte Page Level Protection Matrix
with Execute-Disable Bit Capability ...t 4-45
Legacy PAE-Enabled 2-MByte Page Level Protection
with Execute-Disable Bit Capabilitycovviiiiiii 4-45
IA-32e Mode Page Level Protection Matrix with
Execute-Disable Bit Capability Enabledcoiiiiiiiiii 4-46
Reserved Bit Checking WIth Execute-Disable Bit Capability Not Enabled. 4-47
Protected-Mode Exceptions and Interruptsooviiiiiiiiiiiiiiiiens. 5-3
Priority Among Simultaneous Exceptions and Interruptscoocovvvvnent 5-11
Debug Exception Conditions and Corresponding Exception Classes............. 5-29
Interrupt and EXception Classesvvv it e e 5-38
Conditions for GeneratingaDouble Fault..............c.oviiiiiiiiiii i, 5-39
INValid TSS CoNditionS. . ..o v vttt e 5-42
Alignment Requirements by Data Type. ...t 5-60
SIMD Floating-Point Exceptions Priorityoovvvviiiiii i 5-65
Exception Conditions Checked Duringa Task Switch ..., 6-15
Effect of a Task Switch on Busy Flag, NT Flag,
Previous Task Link Field,and TS FIag.oovvii e 6-17

Initial APIC IDs for the Logical Processors in a System that has

Four Intel Xeon MP Processors Supporting Hyper-Threading Technology1 7-45
Initial APIC IDs for the Logical Processors in a System that has Two

Physical Processors Supporting Dual-Core and Hyper-Threading Technology ... 7-46

IA-32 Processor States Following Power-up, Reset, or INIT. 9-2
Recommended Settings of EM and MP Flags on IA-32 Processors. 9-7
Software Emulation Settings of EM, MP,and NEFlags.......................... 9-8
Main Initialization Steps in STARTUP.ASM Source Listing...................e 9-21
Relationship Between BLD Item and ASM SourceFilecocvvivvinnnne, 9-35
Microcode Update Field Definitions.covvviii i 9-38
Microcode Update Formatot e e 9-40
Extended Processor Signature Table Header Structurecooovvent 9-41
Processor Signature STrUCtUME. .. vt vt 9-41
ProCESSOr FIagS. ..o 9-43
Microcode Update Signature.coviiii it et 9-48
Microcode Update FUNCLIONS.o 9-55

Table 8-13.
Table 8-14.
Table 8-15.
Table 8-17.
Table 8-16.
Table 8-18.
Table 9-1.
Table 9-2.
Table 9-3.

Table 9-4.
Table 10-1.

Table 10-2.
Table 10-3.

Table 10-4.
Table 10-5.
Table 10-6.

Table 10-7.

Table 10-8.
Table 10-9.
Table 10-11.
Table 10-10.
Table 10-12.
Table 11-1.

Table 11-2.
Table 11-3.

Table 12-1.

Table 12-2.
Table 12-3.
Table 12-4.
Table 12-5.
Table 13-1.
Table 14-1.

Table 14-2.
Table 14-3.

Table 14-4.

Table 14-5.
Table 14-6.
Table 14-7.
Table 14-8.
Table 14-9.

CONTENTS

PAGE
Parameters for the Presence Testvviveiiivii i 9-56
Parameters for the Write Update Data Functioncoovvivinnns, 9-57
Parameters for the Control Update Sub-function.............................. 9-62
Parameters for the Read Microcode Update Data Function 9-63
MNEMONIC VaIUBS. . ..ottt e 9-63
Return Code Definitionsovvvii e 9-65
Local APIC Register Address Map. .. .vvvvvr vttt it i i enaans 8-8
B R FIagS vttt 8-20
Valid Combinations for the Pentium 4 and Intel Xeon Processors’
Local XAPIC Interrupt Command Registercoovviiiiiiiiiiiiiiienannns 8-27
Valid Combinations for the P6 Family Processors'
Local APIC Interrupt Command Registervviiiiiiiiiiii it 8-28
Characteristics of the Caches, TLBs, Store Buffer, and
Write Combining Buffer in Intel 64 and IA-32 Processorscccovvvvvvnen. 10-2
Memory Types and Their Properties. ...t 10-7
Methods of Caching Available in Intel Core 2 Duo, Intel Core Duo,
Pentium M, Pentium 4, Intel Xeon, P6 Family, and Pentium Processors 10-8
MESICache Line STates . ..ot e 10-12
Cache Operating Modes.ovvv i e 10-15

Effective Page-Level Memory Type for Pentium Pro and

Pentium Il Processors10-19

Effective Page-Level Memory Types for Pentium Il and More Recent Processor
Families10-20

Memory Types That Can Be Encoded inMTRRScoiiiiiiiiiint, 10-28
Address Mapping for Fixed-Range MTRRS. ... 10-32
Selection of PAT Entries with PAT, PCD,and PWT Flags 10-46
Memory Types That Can Be Encoded With PAT ...t 10-46
Memory Type Setting of PAT Entries Following a Power-up or Reset......... 10-47
Action Taken By MMX Instructions

for Different Combinations of EM,MPand TSccoiiiiiiiiiiiiiininnns 11-1
Effects of MMX Instructions on x87 FPUState..........coovvvvi i, 11-3
Effect of the MMX, x87 FPU, and FXSAVE/FXRSTOR Instructions

onthe xB7 FPU TagWord ..ottt et i 11-4
Action Taken for Combinations of OSFXSR, OSXMMEXCPT, SSE, SSE2, SSE3,

EM, MP, and TS T . 12-4
Action Taken for Combinations of OSFXSR, SSSE3, SSE4, EM,and TS........... 12-5
XSAVE Header FOrmat. .. .vvvie it i 12-14
XRSTOR Action on MXCSR, x87 FPU, XMM Registercoovvvvvnnnen. 12-16
XSAVE Action on MXCSR, x87 FPU, XMM Register.............ocovvvvinnn.. 12-16
On-Demand Clock Modulation Duty Cycle Field Encoding 13-14
Bits 54:53 in IA32_MCi_STATUS MSRs

when IA32_MCG_CAP[11]1=1andUC=0.....c.viriiiiiiiiiiii i 14-7
Overwrite Rules for Enabled Errors.vvvvvvi i 14-9
Extended Machine Check State MSRs

in Processors Without Support for Intel 64 Architecture..................... 14-11
Extended Machine Check State MSRs

In Processors With Support For Intel 64 Architecture........................ 14-11
IA32_MCi_Status [15:0] Simple Error Code Encodingcovvvvvnnnn, 14-17
IA32_MCi_Status [15:0] Compound Error Code Encoding.covvvn.. 14-18
Encoding for TT (Transaction Type) Sub-Field................cocovvivininnn. 14-19
Level Encoding for LL (Memory Hierarchy Level) Sub-Field................... 14-19
Encoding of Request (RRRR) Sub-Field............c.oooviiiiiiiiiii s 14-20

Vol. 3A XXXV

CONTENTS

Table 14-10.
Table 15-1.
Table 15-2.
Table 16-1.
Table 17-1.

Table 17-2.

Table 17-3.
Table 18-1.
Table 18-2.
Table 18-3.

Table 18-4.

Table 18-5.
Table 18-6.

Table 18-7.
Table 18-8.
Table 18-9.
Table 18-10.
Table 18-11.
Table 18-12.
Table 18-13.

Table 18-15.
Table 18-14.
Table 18-16.
Table 18-17.

Table 18-18.
Table 18-19.
Table 18-20.

Table 18-21.

Table 20-1.
Table 20-2.
Table 20-3.
Table 20-4.
Table 20-5.
Table 20-6.
Table 20-7.
Table 20-8.
Table 20-9.
Table 20-10.
Table 20-11.
Table 20-12.
Table 20-13.
Table 20-14.
Table 20-15.

XXxvi Vol. 3A

PAGE
Encodings of PP, T,and lISub-Fields ..., 14-21
Real-Address Mode Exceptions and Interruptscccoviiiiiiiiinininn 15-8
Software Interrupt Handling Methods While in Virtual-8086 Mode............ 15-26
Characteristics of 16-Bit and 32-Bit Program Modules 16-1
New Instruction in the Pentium Processor and
Later |A-32 PrOCESSOrS. . .o v ittt et 17-5
Recommended Values of the EM, MP, and NE Flags for
Intel486 SX Microprocessor/Intel 487 SX Math Coprocessor System.......... 17-22
EM and MP Flag Interpretation. ...t 17-22
Breakpoint EXamPIES. 18-7
Debug Exception CoNditionSv v vt 18-9
LBR MSR Stack Structure for the Pentium® 4 and
the Intel® Xeon® Processor Family.o 18-19
MSR_DEBUGCTLA, IA32_DEBUGCTL, MSR_DEBUGCLTB
FIag ENCOdINGS. . ..o ettt e e 18-28
CPL-Qualified Branch Trace Store ENcodings.ovvvvvviiiinieiniininnn. 18-29
UMask and Event Select Encodings for Pre-Defined
Architectural Performance EVENtSvvvviiii e 18-48
Core Specificity Encoding within a Non-Architectural Umask.................. 18-50
Agent Specificity Encoding within a Non-ArchitecturalUmask 18-50
HW Prefetch Qualification Encoding within a Non-Architectural Umask........ 18-51
MESI Qualification Definitions within @ Non-Architectural Umask.............. 18-51
Bus Snoop Qualification Definitions within a Non-Architectural Umask 18-52
Snoop Type Qualification Definitions within a Non-Architectural Umask....... 18-52
Association of Fixed-Function Performance Counters with
Architectural Performance EVentSvviiii i 18-53
PEBS Performance Events for Intel Core Microarchitecture................... 18-57
At-Retirement Performance Events for Intel Core Microarchitecture.......... 18-57
Requirements to Program PEBSot 18-59
Performance Counter MSRs and Associated CCCR and
ESCR MSRs (Pentium 4 and Intel Xeon Processors).vvvvvvivvienninnns 18-61
BVENT EXAMIPIE. . oo 18-77
CCRNames and Bit POSItioNSoviiii e 18-83
Effect of Logical Processor and CPL Qualification
for Logical-Processor-Specific (TS) EVeNnts.......ovvvvviviiii i 18-96
Effect of Logical Processor and CPL Qualification
for Non-logical-Processor-specific (TI) Events.........covvvviiiiiiiiiinnenn. 18-97
Format of the VMCS REGION . ..o v e 20-2
Format of AcCess Rights ..ot et 20-4
Format of Interruptibility State ... 20-7
Format of Pending-Debug-Exceptions. oo 20-8
Definitions of Pin-Based VM-Execution Controlscovvviivvinninnnn. 20-10
Definitions of Primary Processor-Based VM-Execution Controls 20-11
Definitions of Secondary Processor-Based VM-Execution Controls............ 20-12
Definitions of VM-EXit CONtrolsovvvenii i 20-16
Format of anMSR ENtrY.ov i e 20-17
Definitions of VM-Entry CONtrols.covviiiii i 20-18
Format of the VM-Entry Interruption-Information Field....................... 20-19
Format of EXIT REASON ... vvit i 20-22
Format of the VM-Exit Interruption-Information Field 20-23
Format of the IDT-Vectoring Information Field.......................cocoitt 20-24
Structure of VMCS Component Encodingovvvviiiiiiiiii e 20-27

Table 23-1.
Table 23-2.
Table 23-3.
Table 23-4.
Table 23-5.
Table 23-6.
Table 23-7.

Table 23-8.

Table 24-1.
Table 24-2.
Table 24-3.
Table 24-4.
Table 24-5.
Table 24-6.
Table 24-7.
Table 24-8.

Table 24-9.
Table 25-1.

Table A-1.
Table A-2.

Table A-3.
Table A-4.
Table A-5.
Table A-6.
Table A-7.
Table A-8.

Table A-10.

Table A-S.

Table A-11.

Table A-12.
Table A-13.

Table A-14.
Table A-15.

Table A-16.

Table B-1.
Table B-2.

CONTENTS

PAGE
Exit Qualification for Debug EXCeptions.ovvvivii i 23-5
Exit Qualification for Task SWitch ... e 23-6
Exit Qualification for Control-Register ACCESSES. . vvvv v iivii i iiiiinnenn, 23-7
Exit Qualification For MOV DR ..ot e 23-8
Exit Qualification for I/0 INSTrUCtionso 23-9
Exit Qualification for APIC-Access VM Exits from Linear Accesses............ 23-10
Format of the VM-Exit Instruction-Information Field as Used for
VMCLEAR, VMPTRLD, VMPTRST, VMREAD, VMWRITE, and VMXON............ 23-15
Format of the VM-Exit Instruction-Information Field as
Used For INS and OUTS .. .ottt 23-17
SMRAM State SV Map ..ttt e e 24-6
ISMRAM State Save Map for Intel 64 Architecture.....................ocoenes 24-9
Processor Register InitializationinSMM. ..ot 24-12
I/0 Instruction Information in the SMM State SaveMap...................... 24-15
1/0 Instruction Type ENCOdiNgS oo v vt 24-16
Auto HALT Restart FIag Valuescoviiii it 24-19
I/0 Instruction Restart Field Values. 24-21
Exit Qualification for SMis That Arrive Immediately
After the Retirement of an I/0 Instruction24-28
Format of MSEGHEadEert e 24-33
Operating Modes for Host and Guest Environments 25-15
Architectural Performance EVeNtS.ovvviiiii it A-1
Non-Architectural Performance Events for Processors based on
Enhanced Intel Core Microarchitecture. ... i A-2
Fixed-Function Performance Counter
and Pre-defined Performance Events. ... i A-3
Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture..............cocoviviinnn, A-5
Non-Architectural Performance Events
in Intel Core Solo and Intel Core DUO Processors.o.ovveviiieiiiinnnnennns. A-47
Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting..........cocoviviviiiiiinenns, A-56
Performance Monitoring Events For Intel NetBurst
Microarchitecture for At-Retirement Countingcooovvviviienanns. A-87
Intel NetBurst Microarchitecture Model-Specific Performance Monitoring
Events (For Model ENcoding 3,40 6) ...vvvvvri i A-94
List of Metrics Available for Execution Tagging
(For Execution EVENT ONIY). ..o v v A-95
List of Metrics Available for Front_end Tagging
(For Front_end EVent Only)ovvvi e A-95
List of Metrics Available for Replay Tagging
(For Replay EVENt ONlY). . ..o voe e A-96
Event Mask Qualification for Logical Processors...........covvvvivinninennenn. A-98
Performance Monitoring Events on Intel® Pentium® M
PrOCESSOMS . . ottt e e A-104

Performance Monitoring Events Modified on Intel® Pentium® M Processors .. A-106
Events That Can Be Counted with the P6 Family Performance-

MoNiItoriNg COUNTEIS . ..ottt e e e i A-108
Events That Can Be Counted with Pentium Processor

Performance-Monitoring COUNTerS.vvv vt A-125
CPUID Signature Values of DisplayFamily_DisplayModel........................ B-1
IA-32 Architectural MSRS ...\t e B-3

Vol. 3A XXXVii

CONTENTS

Table B-3.
Table B-4.
Table B-5.

Table B-6.
Table B-7.

Table B-8.
Table B-9.
Table B-10.
Table C-1.
Table E-1.

Table E-2.

Table E-3.
Table E-4.
Table E-5.
Table E-6.
Table E-7.
Table E-8.
Table E-9.
Table F-1.
Table F-2.
Table F-3.
Table F-4.
Table G-1.
Table H-1.
Table H-2.
Table H-3.
Table H-4.
Table H-5.
Table H-6.
Table H-7.
Table H-8.

Table H-9.
Table H-10.
Table H-11.
Table H-12.
Table H-13.
Table I-1.
Table J-1.

xxxviii Vol. 3A

PAGE
MSRs in Processors Based on Intel Core Microarchitecture B-31
MSRs in the Pentium 4 and Intel Xeon Processorsocovvvvvvinnennnn. B-50
MSRs Unique to 64-bit Intel Xeon Processor MP with
Uptoan B8 MB L3 Cathe . .. v i it B-90
MSRs Unique to Intel Xeon Processor 7100 Series.covvvvvivininiiininanns B-92
MSRs in Intel Core Solo, Intel Core Duo Processors, and
Dual-Core Intel Xeon Processor LV.vvivviii i B-93
MSRs in PENtiuM M ProCeSSOmS vvtvt et B-107
MSRs in the P6 Family Processorsvviriiii it ii i cii e B-116
MSRs in the Pentium ProCessor. .. vvv v B-128
Boot Phase IPIMessage FOrmatovvrvi i C-2
Incremental Decoding Information: Processor Family O6H
Machine Error Codes For Machine Check.ovvvvviviiii s E-1
Incremental Decoding Information: Processor Family OFH
Machine Error Codes For Machine Check. ... E-5
MCi_STATUS Register Bit Definition.cooiiiiiiiiii e €-6
Model-Specific MCA Error Code . ..ovvvii e €-7
Other Information Field Bit Definitioncoviiiiii i €-8
TYPE Ai L3 ErTOr COOeS. .o v vttt ettt ettt €9
Type BBus and Interconnect Error Codesvvvvviviiiiiiiiiiininenenn, €-10
Type C Cache Bus Controller Error Codesovvvviiiiiiiiii i E-10
Decoding Family OFH Machine Check Codes for Memory Hierarchy Errors E-12
EOIMESSAE (T4 QYIS) vttt ettt e e F-1
Short Message (21 CYCIES) . v e e aeae s F-2
Non-Focused Lowest Priority Message (34 Cycles).oovvvviiiiiniiniinnnnnnns F-3
APIC Bus Status Cycles Interpretation.coovvvii it F-5
Memory Types Used FOr VMCS ACCESS ..o vviiii ittt ieie s G-2
Encodings for 16-Bit Guest-State Fields (0000_10xX_XXXX_xxX0B)............ H-1
Encodings for 16-Bit Host-State Fields (0000_11XX_XXXX_XXX0B)............. H-2
Encodings for 64-Bit Control Fields (0010_00XX_XXXX_XXXAD). H-2
Encodings for 64-Bit Guest-State Fields (0010_1T0XX_XXXX_XXXAD)............ H-3
Encodings for 64-Bit Host-State Field (0010_11XX_XXXX_XXXAD).............. H-4
Encodings for 32-Bit Control Fields (0100_00XX_XXXX_XXX0B) H-4
Encodings for 32-Bit Read-Only Data Fields (0100_01xx_xxxX_xxx0B) H-5

Encodings for 32-Bit Guest-State Fields

(0700_10xx_xxxx_xxx0B)H-6

Encoding for 32-Bit Host-State Field (0100_11xXX_XXXX_XXX0B)............... H-7
Encodings for Natural-Width Control Fields (01710_00xx_xxxx_xxx0B)......... H-7
Encodings for Natural-Width Read-Only Data Fields (0110_01xx_xxxx_xxx0B). H-8
Encodings for Natural-Width Guest-State Fields (0110_10xx_xxxx_xxx0B) H-8
Encodings for Natural-Width Host-State Fields (0110_11xx_xxxx_xxx0B) H-9
BasSiC EXIt REASONS . ..ottt I-1
VM-Instruction Error NUMbDerst e J-1

CHAPTER 1
ABOUT THIS MANUAL

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A:
System Programming Guide, Part 1 (order number 253668) and the Inte/® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3B: System Programming
Guide, Part 2 (order number 253669) are part of a set that describes the architecture
and programming environment of Intel 64 and IA-32 Architecture processors. The
other volumes in this set are:

* Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: Basic
Architecture (order number 253665).

* Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes
2A & 2B: Instruction Set Reference (order numbers 253666 and 253667).

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1,
describes the basic architecture and programming environment of Intel 64 and IA-32
processors. The Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volumes 2A & 2B, describe the instruction set of the processor and the opcode struc-
ture. These volumes apply to application programmers and to programmers who
write operating systems or executives. The Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volumes 3A & 3B, describe the operating-system support
environment of Intel 64 and IA-32 processors. These volumes target operating-
system and BIOS designers. In addition, Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3B, addresses the programming environment for
classes of software that host operating systems.

1.1 PROCESSORS COVERED IN THIS MANUAL

This manual set includes information pertaining primarily to the most recent Intel®
64 and IA-32 processors, which include:

* Pentium® processors

® P6 family processors

* Pentium® 4 processors

* Pentium® M processors

* Intel® Xeon® processors

* Pentium® D processors

* Pentium® processor Extreme Editions
* 64-bit Intel® Xeon® processors

* Intel® Core™ Duo processor

* Intel® Core™ Solo processor

Vol.3 1-1

ABOUT THIS MANUAL

* Dual-Core Intel® Xeon® processor LV

* Intel® Core™2 Duo processor

* Intel® Core™2 Quad processor Q6000 series

* Intel® Xeon® processor 3000, 3200 series

* Intel® Xeon® processor 5000 series

* Intel® Xeon® processor 5100, 5300 series

* Intel® Core™2 Extreme processor X7000 and X6800 series
* Intel® Core™2 Extreme QX6000 series

* Intel® Xeon® processor 7100 series

* Intel® Pentium® Dual-Core processor

* Intel® Xeon® processor 7200, 7300 series

* Intel® Core™2 Extreme QX9000 series

* Intel® Xeon® processor 5200, 5400 series

* Intel® Core™2 Extreme processor QX9000 and X9000 series
* Intel® Core™2 Quad processor Q9000 series

* Intel® Core™2 Duo processor EB000 series

P6 family processors are IA-32 processors based on the P6 family microarchitecture.
This includes the Pentium® Pro, Pentium® II, Pentium® I, and Pentium® 11l Xeon®
processors.

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based
on the Intel NetBurst® microarchitecture. Most early Intel® Xeon® processors are
based on the Intel NetBurst® microarchitecture. Intel Xeon processor 5000, 7100
series are based on the Intel NetBurst® microarchitecture.

The Intel® Core™ Duo, Intel® Core™ Solo and dual-core Intel® Xeon® processor LV
are based on an improved Pentium® M processor microarchitecture.

The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200, and 7300 series, Intel®
Pentium® dual-core, Intel® Core™2 Duo, Intel® Core™2 Quad and Intel® Core™2
Extreme processors are based on Intel® Core™ microarchitecture.

The Intel® Xeon® processor 5200, 5400 series, Intel® Core™2 Quad processor
Q9000 series, and Intel® Core™2 Extreme processors QX9000, X9000 series, Intel®
Core™?2 processor E8000 series are based on Enhanced Intel® Core™ microarchitec-
ture.

P6 family, Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo processors, dual-core
Intel® Xeon® processor LV, and early generations of Pentium 4 and Intel Xeon
processors support IA-32 architecture.

The Intel® Xeon® processor 3000, 3200, 5000, 5100, 5200, 5300, 5400, 7100,
7200, 7300series, Intel® Core™2 Duo, Intel® Core™2 Extreme processors, Intel
Core 2 Quad processors, Pentium® D processors, Pentium® Dual-Core processor,

1-2 Vol.3

ABOUT THIS MANUAL

newer generations of Pentium 4 and Intel Xeon processor family support Intel® 64
architecture.

IA-32 architecture is the instruction set architecture and programming environment
for Intel's 32-bit microprocessors. Intel® 64 architecture is the instruction set archi-
tecture and programming environment which is a superset of and compatible with
IA-32 architecture.

1.2 OVERVIEW OF THE SYSTEM PROGRAMMING GUIDE

A description of this manual’s content follows:

Chapter 1 — About This Manual. Gives an overview of all five volumes of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual. It also describes
the notational conventions in these manuals and lists related Intel manuals and
documentation of interest to programmers and hardware designers.

Chapter 2 — System Architecture Overview. Describes the modes of operation
used by Intel 64 and IA-32 processors and the mechanisms provided by the architec-
tures to support operating systems and executives, including the system-oriented
registers and data structures and the system-oriented instructions. The steps neces-
sary for switching between real-address and protected modes are also identified.

Chapter 3 — Protected-Mode Memory Management. Describes the data struc-
tures, registers, and instructions that support segmentation and paging. The chapter
explains how they can be used to implement a “flat” (unsegmented) memory model
or a segmented memory model.

Chapter 4 — Protection. Describes the support for page and segment protection
provided in the Intel 64 and IA-32 architectures. This chapter also explains the
implementation of privilege rules, stack switching, pointer validation, user and
supervisor modes.

Chapter 5 — Interrupt and Exception Handling. Describes the basic interrupt
mechanisms defined in the Intel 64 and IA-32 architectures, shows how interrupts
and exceptions relate to protection, and describes how the architecture handles each
exception type. Reference information for each exception is given at the end of this
chapter.

Chapter 6 — Task Management. Describes mechanisms the IA-32 architecture
provides to support multitasking and inter-task protection.

Chapter 7 — Multiple-Processor Management. Describes the instructions and
flags that support multiple processors with shared memory, memory ordering, and
Hyper-Threading Technology.

Chapter 8 — Advanced Programmable Interrupt Controller (APIC). Describes
the programming interface to the local APIC and gives an overview of the interface
between the local APIC and the I/0O APIC.

Vol.3 1-3

ABOUT THIS MANUAL

Chapter 9 — Processor Management and Initialization. Defines the state of an
Intel 64 or IA-32 processor after reset initialization. This chapter also explains how to
set up an Intel 64 or IA-32 processor for real-address mode operation and protected-
mode operation, and how to switch between modes.

Chapter 10 — Memory Cache Control. Describes the general concept of caching
and the caching mechanisms supported by the Intel 64 or IA-32 architectures. This
chapter also describes the memory type range registers (MTRRs) and how they can
be used to map memory types of physical memory. Information on using the new
cache control and memory streaming instructions introduced with the Pentium I,
Pentium 4, and Intel Xeon processors is also given.

Chapter 11 — Intel® MMX™ Technology System Programming. Describes
those aspects of the Intel® MMX™ technology that must be handled and considered
at the system programming level, including: task switching, exception handling, and
compatibility with existing system environments.

Chapter 12 — System Programming For Instruction Set Extensions And
Processor Extended States. Describes the operating system requirements to
support SSE/SSE2/SSE3/SSSE3/SSE4 extensions, including task switching, excep-
tion handling, and compatibility with existing system environments. The latter part of
this chapter describes the extensible framework of operating system requirements to
support processor extended states. Processor extended state may be required by
instruction set extensions beyond those of SSE/SSE2/SSE3/SSSE3/SSE4 extensions.

Chapter 13 — Power and Thermal Management. Describes the architecture’s
power and the thermal monitoring facilities.

Chapter 14 — Machine-Check Architecture. Describes the machine-check archi-
tecture.

Chapter 15 — 8086 Emulation. Describes the real-address and virtual-8086
modes of the IA-32 architecture.

Chapter 16 — Mixing 16-Bit and 32-Bit Code. Describes how to mix 16-bit and
32-bit code modules within the same program or task.

Chapter 17 — IA-32 Architecture Compatibility. Describes architectural
compatibility among IA-32 processors.

Chapter 18 — Debugging and Performance Monitoring. Describes the debug-

ging registers and other debug mechanism provided in Intel 64 or IA-32 processors.
This chapter also describes the time-stamp counter and the performance-monitoring
counters.

Chapter 19 — Introduction to Virtual-Machine Extensions. Describes the basic
elements of virtual machine architecture and the virtual-machine extensions for
Intel 64 and IA-32 Architectures.

Chapter 20 — Virtual-Machine Control Structures. Describes components that
manage VMX operation. These include the working-VMCS pointer and the control-
ling-VMCS pointer.

1-4 Vol.3

ABOUT THIS MANUAL

Chapter 21— VMX Non-Root Operation. Describes the operation of a VMX non-
root operation. Processor operation in VMX non-root mode can be restricted
programmatically such that certain operations, events or conditions can cause the
processor to transfer control from the guest (running in VMX non-root mode) to the
monitor software (running in VMX root mode).

Chapter 22 — VM Entries. Describes VM entries. VM entry transitions the processor
from the VMM running in VMX root-mode to a VM running in VMX non-root mode.
VM-Entry is performed by the execution of VMLAUNCH or VMRESUME instructions.

Chapter 23 — VM Exits. Describes VM exits. Certain events, operations or situa-
tions while the processor is in VMX non-root operation may cause VM-exit transitions.
In addition, VM exits can also occur on failed VM entries.

Chapter 24 — System Management. Describes Intel 64 and IA-32 architectures’
system management mode (SMM) facilities.

Chapter 25 — Virtual-Machine Monitoring Programming Considerations.
Describes programming considerations for VMMs. VMMs manage virtual machines
(VMs).

Chapter 26 — Virtualization of System Resources. Describes the virtualization
of the system resources. These include: debugging facilities, address translation,
physical memory, and microcode update facilities.

Chapter 27 — Handling Boundary Conditions in a Virtual Machine Monitor.
Describes what a VMM must consider when handling exceptions, interrupts, error
conditions, and transitions between activity states.

Appendix A — Performance-Monitoring Events. Lists the events that can be
counted with the performance-monitoring counters and the codes used to select
these events. Both Pentium processor and P6 family processor events are described.

Appendix B — Model-Specific Registers (MSRs). Lists the MSRs available in the
Pentium processors, the P6 family processors, the Pentium 4, Intel Xeon, Intel Core
Solo, Intel Core Duo processors, and Intel Core 2 processor family and describes
their functions.

Appendix C — MP Initialization For P6 Family Processors. Gives an example of
how to use of the MP protocol to boot P6 family processors in n MP system.

Appendix D — Programming the LINTO and LINT1 Inputs. Gives an example of
how to program the LINTO and LINT1 pins for specific interrupt vectors.

Appendix E — Interpreting Machine-Check Error Codes. Gives an example of
how to interpret the error codes for a machine-check error that occurred on a P6
family processor.

Appendix F — APIC Bus Message Formats. Describes the message formats for
messages transmitted on the APIC bus for P6 family and Pentium processors.

Appendix G — VMX Capability Reporting Facility. Describes the VMX capability
MSRs. Support for specific VMX features is determined by reading capability MSRs.

Vol.3 1-5

ABOUT THIS MANUAL

Appendix H — Field Encoding in VMCS. Enumerates all fields in the VMCS and
their encodings. Fields are grouped by width (16-bit, 32-bit, etc.) and type (guest-
state, host-state, etc.).

Appendix I — VM Basic Exit Reasons. Describes the 32-bit fields that encode
reasons for a VM exit. Examples of exit reasons include, but are not limited to: soft-
ware interrupts, processor exceptions, software traps, NMIs, external interrupts, and
triple faults.

Appendix J — VM Instruction Error Numbers. Describes the VM-instruction error
codes generated by failed VM instruction executions (that have a valid working-VMCS
pointer).

1.3 NOTATIONAL CONVENTIONS

This manual uses specific notation for data-structure formats, for symbolic represen-
tation of instructions, and for hexadecimal and binary numbers. A review of this
notation makes the manual easier to read.

1.3.1 Bit and Byte Order

In illustrations of data structures in memory, smaller addresses appear toward the
bottom of the figure; addresses increase toward the top. Bit positions are numbered
from right to left. The numerical value of a set bit is equal to two raised to the power
of the bit position. Intel 64 and IA-32 processors are “little endian” machines; this
means the bytes of a word are numbered starting from the least significant byte.
Figure 1-1 illustrates these conventions.

1.3.2 Reserved Bits and Software Compatibility

In many register and memory layout descriptions, certain bits are marked as
reserved. When bits are marked as reserved, it is essential for compatibility with
future processors that software treat these bits as having a future, though unknown,
effect. The behavior of reserved bits should be regarded as not only undefined, but
unpredictable. Software should follow these guidelines in dealing with reserved bits:

* Do not depend on the states of any reserved bits when testing the values of
registers which contain such bits. Mask out the reserved bits before testing.

* Do not depend on the states of any reserved bits when storing to memory or to a
register.

®* Do not depend on the ability to retain information written into any reserved bits.

®* When loading a register, always load the reserved bits with the values indicated
in the documentation, if any, or reload them with values previously read from the
same register.

1-6 Vol.3

ABOUT THIS MANUAL

NOTE

Avoid any software dependence upon the state of reserved bits in
Intel 64 and IA-32 registers. Depending upon the values of reserved
register bits will make software dependent upon the unspecified
manner in which the processor handles these bits. Programs that
depend upon reserved values risk incompatibility with future
processors.

. Data Structure

fgnest 34 24 23 16 15 87 0 <« Bit offset
28

24

20

16

12

8

4

Byte3 | Byte2 | Bytel | ByteO |0 oo

Byte Offset

Figure 1-1. Bit and Byte Order

1.3.3 Instruction Operands

When instructions are represented symbolically, a subset of assembly language is
used. In this subset, an instruction has the following format:

label: mnemonic argument1, argument2, argument3
where:
®* Alabel is an identifier which is followed by a colon.

* A mnemonic is a reserved name for a class of instruction opcodes which have

the same function.

The operands argumentl, argument2, and argument3 are optional. There
may be from zero to three operands, depending on the opcode. When present,
they take the form of either literals or identifiers for data items. Operand
identifiers are either reserved names of registers or are assumed to be assigned

to data items declared in another part of the program (which may not be shown
in the example).

When two operands are present in an arithmetic or logical instruction, the right
operand is the source and the left operand is the destination.

For example:

Vol.3 1-7

ABOUT THIS MANUAL

LOADREG: MOV EAX, SUBTOTAL

In this example LOADREG is a label, MOV is the mnemonic identifier of an opcode,
EAX is the destination operand, and SUBTOTAL is the source operand. Some
assembly languages put the source and destination in reverse order.

1.3.4 Hexadecimal and Binary Numbers

Base 16 (hexadecimal) numbers are represented by a string of hexadecimal digits
followed by the character H (for example, F82EH). A hexadecimal digit is a character
from the following set: 0,1, 2,3,4,5,6,7,8,9,A,B,C,D, E,and F.

Base 2 (binary) numbers are represented by a string of 1s and 0s, sometimes
followed by the character B (for example, 1010B). The “"B” designation is only used in
situations where confusion as to the type of number might arise.

1.3.5 Segmented Addressing

The processor uses byte addressing. This means memory is organized and accessed
as a sequence of bytes. Whether one or more bytes are being accessed, a byte
address is used to locate the byte or bytes memory. The range of memory that can
be addressed is called an address space.

The processor also supports segmented addressing. This is a form of addressing
where a program may have many independent address spaces, called segments.
For example, a program can keep its code (instructions) and stack in separate
segments. Code addresses would always refer to the code space, and stack
addresses would always refer to the stack space. The following notation is used to
specify a byte address within a segment:

Segment-register:Byte-address

For example, the following segment address identifies the byte at address FF79H in
the segment pointed by the DS register:

DS:FF79H

The following segment address identifies an instruction address in the code segment.
The CS register points to the code segment and the EIP register contains the address
of the instruction.

CSEIP

1.3.6 Syntax for CPUID, CR, and MSR Values

Obtain feature flags, status, and system information by using the CPUID instruction,
by checking control register bits, and by reading model-specific registers. We are
moving toward a single syntax to represent this type of information. See Figure 1-2.

1-8 Vol.3

ABOUT THIS MANUAL

Syntax Representation for CPUID Input and Output
CPUID.01H : ECX.SSE [bit 25] = 1

v

Input value for EAX defines output

(NOTE: Some leaves require input values for
EAX and ECX. If only one value is present,
EAX is implied.)

Output register and feature flag or
field name with bit position(s)

Value (or range) of output

For Control Register Values
CR4.0SFXSR|bit 9] = 1

Example CR name i

Feature flag or field name
with bit position(s)

Value (or range) of output

For Model-Specific Register Values
IA32_MISC_ENABLES.ENABLEFOPCODE[bit 2] = 1

Example MSR name i
Feature flag or field name with bit position(s)

Value (or range) of output

OM17732

1.3.7

Figure 1-2. Syntax for CPUID, CR, and MSR Data Presentation

Exceptions

An exception is an event that typically occurs when an instruction causes an error.
For example, an attempt to divide by zero generates an exception. However, some

exceptions, such as breakpoints, occur under other conditions. Some types of excep-
tions may provide error codes. An error code reports additional information about the
error. An example of the notation used to show an exception and error code is shown

below:

#PF(fault code)

Vol.3 1-9

ABOUT THIS MANUAL

This example refers to a page-fault exception under conditions where an error code
naming a type of fault is reported. Under some conditions, exceptions which produce
error codes may not be able to report an accurate code. In this case, the error code
is zero, as shown below for a general-protection exception:

#GP(0)

1.4 RELATED LITERATURE

Literature related to Intel 64 and IA-32 processors is listed on-line at:
http://developer.intel.com/products/processor/index.htm

Some of the documents listed at this web site can be viewed on-line; others can be
ordered. The literature available is listed by Intel processor and then by the following
literature types: applications notes, data sheets, manuals, papers, and specification
updates.

See also:
®* The data sheet for a particular Intel 64 or IA-32 processor
® The specification update for a particular Intel 64 or IA-32 processor

* Intel® C++ Compiler documentation and online help
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm

* Intel® Fortran Compiler documentation and online help
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm

* Intel® VTune™ Performance Analyzer documentation and online help
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm

* Intel® 64 and IA-32 Architectures Software Developer’s Manual (in five volumes)
http://developer.intel.com/products/processor/manuals/index.htm

* Intel® 64 and IA-32 Architectures Optimization Reference Manual
http://developer.intel.com/products/processor/manuals/index.htm

* Intel® Processor Identification with the CPUID Instruction, AP-485
http://www.intel.com/design/processor/applnots/241618.htm

® TLBs, Paging-Structure Caches, and Their Invalidation,
http://developer.intel.com/products/processor/manuals/index.htm

* Intel® 64 Architecture Memory Ordering White Paper,
http://developer.intel.com/products/processor/manuals/index.htm

* Intel® Trusted Execution Technology Measured Launched Environment
Programming Guide, http://www.intel.com/technology/security/index.htm

®* Intel® SSE4 Programming Reference,
http://developer.intel.com/products/processor/manuals/index.htm

1-10 Vol.3

http://developer.intel.com/products/processor/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://developer.intel.com/products/processor/manuals/index.htm

http://developer.intel.com/products/processor/manuals/index.htm
http://www.intel.com/support/processors/sb/cs-009861.htm

ABOUT THIS MANUAL

®* Developing Multi-threaded Applications: A Platform Consistent Approach
http://cache-
www.intel.com/cd/00/00/05/15/51534_developing_multithreaded_applications.pdf

®* Using Spin-Loops on Intel Pentium 4 Processor and Intel Xeon Processor MP
http://www3.intel.com/cd/ids/developer/asmo-
na/eng/dc/threading/knowledgebase/19083.htm

More relevant links are:

® Software network link:
http://softwarecommunity.intel.com/isn/home/

®* Developer centers:
http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/index.htm

® Processor support general link:
http://www.intel.com/support/processors/

® Software products and packages:
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm

®* Intel 64 and IA-32 processor manuals (printed or PDF downloads):
http://developer.intel.com/products/processor/manuals/index.htm

* Intel® Multi-Core Technology:
http://developer.intel.com/multi-core/index.htm

®* Hyper-Threading Technology (HT Technology):
http://developer.intel.com/technology/hyperthread/

Vol.3 1-11

http://www3.intel.com/cd/ids/developer/asmo-na/eng/dc/threading/knowledgebase/19083.htm
http://softwarecommunity.intel.com/isn/home/
http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/index.htm
http://www.intel.com/support/processors/
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://developer.intel.com/multi-core/index.htm
http://developer.intel.com/technology/hyperthread/

ABOUT THIS MANUAL

1-12 Vol.3

CHAPTER 2
SYSTEM ARCHITECTURE OVERVIEW

IA-32 architecture (beginning with the Intel386 processor family) provides extensive
support for operating-system and system-development software. This support offers
multiple modes of operation, which include:

®* Real mode, protected mode, virtual 8086 mode, and system management mode.
These are sometimes referred to as legacy modes.

Intel 64 architecture supports almost all the system programming facilities available
in IA-32 architecture and extends them to a new operating mode (IA-32e mode) that
supports a 64-bit programming environment. IA-32e mode allows software to
operate in one of two sub-modes:

® 64-bit mode supports 64-bit OS and 64-bit applications

®* Compatibility mode allows most legacy software to run; it co-exists with 64-bit
applications under a 64-bit OS.

The IA-32 system-level architecture and includes features to assist in the following
operations:

® Memory management

®* Protection of software modules

® Multitasking

® Exception and interrupt handling

® Multiprocessing

® Cache management

®* Hardware resource and power management
®* Debugging and performance monitoring

This chapter provides a description of each part of this architecture. It also describes
the system registers that are used to set up and control the processor at the system
level and gives a brief overview of the processor’s system-level (operating system)
instructions.

Many features of the system-level architectural are used only by system program-
mers. However, application programmers may need to read this chapter and the
following chapters in order to create a reliable and secure environment for applica-
tion programs.

This overview and most subsequent chapters of this book focus on protected-mode
operation of the IA-32 architecture. IA-32e mode operation of the Intel 64 architec-
ture, as it differs from protected mode operation, is also described.

All Intel 64 and IA-32 processors enter real-address mode following a power-up or
reset (see Chapter 8, “Processor Management and Initialization”). Software then

Vol.3 2-1

SYSTEM ARCHITECTURE OVERVIEW

initiates the switch from real-address mode to protected mode. If IA-32e mode oper-
ation is desired, software also initiates a switch from protected mode to IA-32e
mode.

2.1 OVERVIEW OF THE SYSTEM-LEVEL ARCHITECTURE

System-level architecture consists of a set of registers, data structures, and instruc-
tions designed to support basic system-level operations such as memory manage-
ment, interrupt and exception handling, task management, and control of multiple
processors.

Figure 2-1 provides a summary of system registers and data structures that applies
to 32-bit modes. System registers and data structures that apply to IA-32e mode are
shown in Figure 2-2.

2-2 Vol.3

SYSTEM ARCHITECTURE OVERVIEW

Physical Address

Y

EFLAGS Register ~ FNysICz > Code, Data or
- Linear Address Stack Segment
Control Registers —_— Task-State
CR4 Segment Selector Segment (TSS)
CR2 o
R Register) =Data
- CRO Global Descriptor Stack
Task Register Table (GDT)
[Segment Sel. | - » Seg. Desc. [— Irleirrupt Handler
Current- — 'Code |
Interrupt TSS Seg. Sel.} - »| TSS Desc. TSS | | Stack
Vector Seq D
- - - - > Seg. Desc.
Interrupt Descriptor | 9 Task-State
Table (IDT) | . _ > 7SS Desc. Segment _(T_S§)) Task
[F——n Code
Interrupt Gate| ~ ~ | LDT Desc. |— T " " P Data
| - - |: >
Task Gate | - - - - - Stack
5 GDTR
| TrapGate [- -~
‘ Local Descriptor Exception Handler
! Table (LDT) Current.. . xcode |
| TSS Stack
IDTR Call-Gate B = Seg Desc. L
Segment Selector
| | - > Call Gate S Protected Procedure
______ Code
XCRO (XFEM) LDTR |«——— _Ic_ggent‘ - > Stack

Linear Address Space

P

L

Linear Address

Table |

Offset |

Linear Addr.

Page Directory

Page Table

Page

Physical Addr.

Pg. Dir. Entry

Pg. Tbl. Entry

- >

In

=

0

*Physical Address

This page mapping example is for 4-KByte pages
and the normal 32-bit physical address size.

Figure 2-1. IA-32 System-Level Registers and Data Structures

Vol.3 2-3

SYSTEM ARCHITECTURE OVERVIEW

RFLAGS

Interrupt Gate | - - -

i —>
F’WS_'C? Ii\ddress Code, Data or Stack

Control Register Linear Address Segment (Base =0)

CR8 Task-State

CR4 Segment Selector Segment (TSS)

CR3 il >

CR2]

CR1

CRO .

Global D t
Task Register (')Faile ?ég.'lp) or
[Segment Sel. | - »| Seg. Desc. |— Irielrrupt Handler
NULL - - »S0de]
Interrupt TR f - »| TSS Desc. Stack
Vector
. - - - - » Seg. Desc.
Interrupt Descriptor |
Table (IDT) - — — »| Seg.Desc. | Interr. Handler
r . . m
h Code
Interrupt Gate | — — | LDT Desc. — Current TSS
‘ Stack

Linear Address Space

| Trap Gate |- -~)
: Local Descriptor Exception Handler
. Table (LDT) >
T NULL - — >C°§tzc|k
IDTR Call-Gate - »| Seg. Desc.
Segment Selector
| - > CallGate | |- N Protected Procedure
XCRO (XFEM) |;l:‘ NULL - — _Code
LDTR = Stack

Linear Address

*Physical Address

J—H PML4 [Dir. Pointer | Directory | Table [Offset |
Linear Addr.
! PML4 Pg. Dir. Ptr.| Page Dir. | Page Table Page
Physical
PMLA4. Pg. Dir. Page Tbl Addr.
Entry Entry Entry
>
0 This page mapping example is for 4-KByte pages
and 40-bit physical address size.

Figure 2-2. System-Level Registers and Data Structures in IA-32e Mode

2-4 Vol.3

SYSTEM ARCHITECTURE OVERVIEW

2.1.1 Global and Local Descriptor Tables

When operating in protected mode, all memory accesses pass through either the
global descriptor table (GDT) or an optional local descriptor table (LDT) as shown in
Figure 2-1. These tables contain entries called segment descriptors. Segment
descriptors provide the base address of segments well as access rights, type, and
usage information.

Each segment descriptor has an associated segment selector. A segment selector
provides the software that uses it with an index into the GDT or LDT (the offset of its
associated segment descriptor), a global/local flag (determines whether the selector
points to the GDT or the LDT), and access rights information.

To access a byte in a segment, a segment selector and an offset must be supplied.
The segment selector provides access to the segment descriptor for the segment (in
the GDT or LDT). From the segment descriptor, the processor obtains the base
address of the segment in the linear address space. The offset then provides the
location of the byte relative to the base address. This mechanism can be used to
access any valid code, data, or stack segment, provided the segment is accessible
from the current privilege level (CPL) at which the processor is operating. The CPL is
defined as the protection level of the currently executing code segment.

See Figure 2-1. The solid arrows in the figure indicate a linear address, dashed lines
indicate a segment selector, and the dotted arrows indicate a physical address. For
simplicity, many of the segment selectors are shown as direct pointers to a segment.
However, the actual path from a segment selector to its associated segment is always
through a GDT or LDT.

The linear address of the base of the GDT is contained in the GDT register (GDTR);
the linear address of the LDT is contained in the LDT register (LDTR).

2.1.1.1 Global and Local Descriptor Tables in IA-32e Mode

GDTR and LDTR registers are expanded to 64-bits wide in both IA-32e sub-modes
(64-bit mode and compatibility mode). For more information: see Section 3.5.2,
“Segment Descriptor Tables in IA-32e Mode.”

Global and local descriptor tables are expanded in 64-bit mode to support 64-bit base
addresses, (16-byte LDT descriptors hold a 64-bit base address and various
attributes). In compatibility mode, descriptors are not expanded.

2.1.2 System Segments, Segment Descriptors, and Gates

Besides code, data, and stack segments that make up the execution environment of
a program or procedure, the architecture defines two system segments: the task-
state segment (TSS) and the LDT. The GDT is not considered a segment because it is
not accessed by means of a segment selector and segment descriptor. TSSs and LDTs
have segment descriptors defined for them.

Vol.3 2-5

SYSTEM ARCHITECTURE OVERVIEW

The architecture also defines a set of special descriptors called gates (call gates,
interrupt gates, trap gates, and task gates). These provide protected gateways to
system procedures and handlers that may operate at a different privilege level than
application programs and most procedures. For example, a CALL to a call gate can
provide access to a procedure in a code segment that is at the same or a numerically
lower privilege level (more privileged) than the current code segment. To access a
procedure through a call gate, the calling procedure! supplies the selector for the call
gate. The processor then performs an access rights check on the call gate, comparing
the CPL with the privilege level of the call gate and the destination code segment
pointed to by the call gate.

If access to the destination code segment is allowed, the processor gets the segment
selector for the destination code segment and an offset into that code segment from
the call gate. If the call requires a change in privilege level, the processor also
switches to the stack for the targeted privilege level. The segment selector for the
new stack is obtained from the TSS for the currently running task. Gates also facili-
tate transitions between 16-bit and 32-bit code segments, and vice versa.

2.1.2.1 Gates in IA-32e Mode

In IA-32e mode, the following descriptors are 16-byte descriptors (expanded to allow
a 64-bit base): LDT descriptors, 64-bit TSSs, call gates, interrupt gates, and trap
gates.

Call gates facilitate transitions between 64-bit mode and compatibility mode. Task
gates are not supported in IA-32e mode. On privilege level changes, stack segment
selectors are not read from the TSS. Instead, they are set to NULL.

2.1.3 Task-State Segments and Task Gates

The TSS (see Figure 2-1) defines the state of the execution environment for a task.
It includes the state of general-purpose registers, segment registers, the EFLAGS
register, the EIP register, and segment selectors with stack pointers for three stack
segments (one stack for each privilege level). The TSS also includes the segment
selector for the LDT associated with the task and the page-table base address.

All program execution in protected mode happens within the context of a task (called
the current task). The segment selector for the TSS for the current task is stored in
the task register. The simplest method for switching to a task is to make a call or
jump to the new task. Here, the segment selector for the TSS of the new task is given
in the CALL or JMP instruction. In switching tasks, the processor performs the
following actions:

1. Stores the state of the current task in the current TSS.

1. The word “procedure” is commonly used in this document as a general term for a logical unit or
block of code (such as a program, procedure, function, or routine).

2-6 Vol.3

SYSTEM ARCHITECTURE OVERVIEW

Loads the task register with the segment selector for the new task.
Accesses the new TSS through a segment descriptor in the GDT.

Loads the state of the new task from the new TSS into the general-purpose
registers, the segment registers, the LDTR, control register CR3 (page-table base
address), the EFLAGS register, and the EIP register.

5. Begins execution of the new task.

A task can also be accessed through a task gate. A task gate is similar to a call gate,
except that it provides access (through a segment selector) to a TSS rather than a
code segment.

2.1.3.1 Task-State Segments in IA-32e Mode

Hardware task switches are not supported in IA-32e mode. However, TSSs continue
to exist. The base address of a TSS is specified by its descriptor.

A 64-bit TSS holds the following information that is important to 64-bit operation:
® Stack pointer addresses for each privilege level

® Pointer addresses for the interrupt stack table

®* Offset address of the I0-permission bitmap (from the TSS base)

The task register is expanded to hold 64-bit base addresses in IA-32e mode. See
also: Section 6.7, “Task Management in 64-bit Mode.”

2.1.4 Interrupt and Exception Handling

External interrupts, software interrupts and exceptions are handled through the
interrupt descriptor table (IDT). The IDT stores a collection of gate descriptors that
provide access to interrupt and exception handlers. Like the GDT, the IDT is not a
segment. The linear address for the base of the IDT is contained in the IDT register
(IDTR).

Gate descriptors in the IDT can be interrupt, trap, or task gate descriptors. To access
an interrupt or exception handler, the processor first receives an interrupt vector
(interrupt number) from internal hardware, an external interrupt controller, or from
software by means of an INT, INTO, INT 3, or BOUND instruction. The interrupt
vector provides an index into the IDT. If the selected gate descriptor is an interrupt
gate or a trap gate, the associated handler procedure is accessed in a manner similar
to calling a procedure through a call gate. If the descriptor is a task gate, the handler
is accessed through a task switch.

2.1.4.1 Interrupt and Exception Handling IA-32e Mode

In IA-32e mode, interrupt descriptors are expanded to 16 bytes to support 64-bit
base addresses. This is true for 64-bit mode and compatibility mode.

Vol.3 2-7

SYSTEM ARCHITECTURE OVERVIEW

The IDTR register is expanded to hold a 64-bit base address. Task gates are not
supported.

2.1.5 Memory Management

System architecture supports either direct physical addressing of memory or virtual
memory (through paging). When physical addressing is used, a linear address is
treated as a physical address. When paging is used: all code, data, stack, and system
segments (including the GDT and IDT) can be paged with only the most recently
accessed pages being held in physical memory.

The location of pages (sometimes called page frames) in physical memory is
contained in two types of system data structures: page directories and page tables.
Both structures reside in physical memory (see Figure 2-1).

The base physical address of the page directory is contained in control register CR3.
An entry in a page directory contains the physical address of the base of a page table,
access rights and memory management information. An entry in a page table
contains the physical address of a page frame, access rights and memory manage-
ment information.

To use this paging mechanism, a linear address is broken into three parts. The parts
provide separate offsets into the page directory, the page table, and the page frame.
A system can have a single page directory or several. For example, each task can
have its own page directory.

2.1.5.1 Memory Management in IA-32e Mode

In IA-32e mode, physical memory pages are managed by a set of system data struc-
tures. In compatibility mode and 64-bit mode, four levels of system data structures
are used. These include:

®* The page map level 4 (PML4) — An entry in a PML4 table contains the physical
address of the base of a page directory pointer table, access rights, and memory
management information. The base physical address of the PML4 is stored in
CR3.

* A set of page directory pointers — An entry in a page directory pointer table
contains the physical address of the base of a page directory table, access rights,
and memory management information.

®* Sets of page directories — An entry in a page directory table contains the
physical address of the base of a page table, access rights, and memory
management information.

®* Sets of page tables — An entry in a page table contains the physical address of
a page frame, access rights, and memory management information.

2-8 Vol.3

SYSTEM ARCHITECTURE OVERVIEW

2.1.6 System Registers

To assist in initializing the processor and controlling system operations, the system
architecture provides system flags in the EFLAGS register and several system
registers:

®* The system flags and IOPL field in the EFLAGS register control task and mode
switching, interrupt handling, instruction tracing, and access rights. See also:
Section 2.3, “System Flags and Fields in the EFLAGS Register.”

®* The control registers (CR0O, CR2, CR3, and CR4) contain a variety of flags and
data fields for controlling system-level operations. Other flags in these registers
are used to indicate support for specific processor capabilities within the
operating system or executive. See also: Section 2.5, “"Control Registers.”

® The debug registers (not shown in Figure 2-1) allow the setting of breakpoints for
use in debugging programs and systems software. See also: Chapter 18,
“Debugging and Performance Monitoring.”

® The GDTR, LDTR, and IDTR registers contain the linear addresses and sizes
(limits) of their respective tables. See also: Section 2.4, "Memory-Management
Registers.”

® The task register contains the linear address and size of the TSS for the current
task. See also: Section 2.4, "Memory-Management Registers.”

®* Model-specific registers (not shown in Figure 2-1).

The model-specific registers (MSRs) are a group of registers available primarily to
operating-system or executive procedures (that is, code running at privilege level 0).
These registers control items such as the debug extensions, the performance-moni-
toring counters, the machine- check architecture, and the memory type ranges
(MTRRSs).

The number and function of these registers varies among different members of the
Intel 64 and IA-32 processor families. See also: Section 8.4, "Model-Specific Regis-
ters (MSRs),” and Appendix B, “Model-Specific Registers (MSRs).”

Most systems restrict access to system registers (other than the EFLAGS register) by
application programs. Systems can be designed, however, where all programs and
procedures run at the most privileged level (privilege level 0). In such a case, appli-
cation programs would be allowed to modify the system registers.

2.1.6.1 System Registers in IA-32e Mode

In IA-32e mode, the four system-descriptor-table registers (GDTR, IDTR, LDTR, and
TR) are expanded in hardware to hold 64-bit base addresses. EFLAGS becomes the
64-bit RFLAGS register. CR0-CR4 are expanded to 64 bits. CR8 becomes available.
CR8 provides read-write access to the task priority register (TPR) so that the oper-
ating system can control the priority classes of external interrupts.

In 64-bit mode, debug registers DRO-DR7 are 64 bits. In compatibility mode,
address-matching in DRO-DR3 is also done at 64-bit granularity.

Vol.3 2-9

SYSTEM ARCHITECTURE OVERVIEW

On systems that support IA-32e mode, the extended feature enable register
(IA32_EFER) is available. This model-specific register controls activation of IA-32e
mode and other IA-32e mode operations. In addition, there are several model-
specific registers that govern IA-32e mode instructions:

* IA32_ KernelGSbase — Used by SWAPGS instruction.

® IA32_LSTAR — Used by SYSCALL instruction.

® IA32_SYSCALL_FLAG_MASK — Used by SYSCALL instruction.
® IA32_STAR_CS — Used by SYSCALL and SYSRET instruction.

2.1.7 Other System Resources

Besides the system registers and data structures described in the previous sections,
system architecture provides the following additional resources:

® Operating system instructions (see also: Section 2.7, “"System Instruction
Summary”).

® Performance-monitoring counters (not shown in Figure 2-1).
* Internal caches and buffers (not shown in Figure 2-1).

Performance-monitoring counters are event counters that can be programmed to
count processor events such as the number of instructions decoded, the number of
interrupts received, or the number of cache loads. See also: Section 18, "Debugging
and Performance Monitoring.”

The processor provides several internal caches and buffers. The caches are used to
store both data and instructions. The buffers are used to store things like decoded
addresses to system and application segments and write operations waiting to be
performed. See also: Chapter 10, “Memory Cache Control.”

2.2 MODES OF OPERATION

The IA-32 supports three operating modes and one quasi-operating mode:

* Protected mode — This is the native operating mode of the processor. It
provides a rich set of architectural features, flexibility, high performance and
backward compatibility to existing software base.

* Real-address mode — This operating mode provides the programming
environment of the Intel 8086 processor, with a few extensions (such as the
ability to switch to protected or system management mode).

* System management mode (SMM) — SMM is a standard architectural feature
in all IA-32 processors, beginning with the Intel386 SL processor. This mode
provides an operating system or executive with a transparent mechanism for
implementing power management and OEM differentiation features. SMM is
entered through activation of an external system interrupt pin (SMI#), which
generates a system management interrupt (SMI). In SMM, the processor
switches to a separate address space while saving the context of the currently

2-10 Vol.3

SYSTEM ARCHITECTURE OVERVIEW

running program or task. SMM-specific code may then be executed transparently.
Upon returning from SMM, the processor is placed back into its state prior to the
SMI.

Virtual-8086 mode — In protected mode, the processor supports a quasi-
operating mode known as virtual-8086 mode. This mode allows the processor
execute 8086 software in a protected, multitasking environment.

Intel 64 architecture supports all operating modes of IA-32 architecture and IA-32e
modes:

IA-32e mode — In IA-32e mode, the processor supports two sub-modes:
compatibility mode and 64-bit mode. 64-bit mode provides 64-bit linear
addressing and support for physical address space larger than 64 GBytes.
Compatibility mode allows most legacy protected-mode applications to run
unchanged.

Figure 2-3 shows how the processor moves between operating modes.

SMI#
Real-Address
-

Mode Reset

ese

_/ or

Reset or _ RSM

PE=0 l PE=1
SMI#
Reset Protected Mode Syst

RSM ysiem

Management
Mode

LME=1, CRO.PG=1" g4

See:\

* See Section 9.8.5
** See Section 9.8.5.4

Virtual-8086
Mode

Figure 2-3. Transitions Among the Processor's Operating Modes

The processor is placed in real-address mode following power-up or a reset. The PE
flag in control register CRO then controls whether the processor is operating in real-
address or protected mode. See also: Section 8.9, “Mode Switching.”

The VM flag in the EFLAGS register determines whether the processor is operating in
protected mode or virtual-8086 mode. Transitions between protected mode and

Vol.3 2-11

SYSTEM ARCHITECTURE OVERVIEW

virtual-8086 mode are generally carried out as part of a task switch or a return from
an interrupt or exception handler. See also: Section 15.2.5, “Entering Virtual-8086
Mode.”

The LMA bit (IA32_EFER.LMA.LMA[bit 10]) determines whether the processor is
operating in IA-32e mode. When running in IA-32e mode, 64-bit or compatibility
sub-mode operation is determined by CS.L bit of the code segment. The processor
enters into IA-32e mode from protected mode by enabling paging and setting the
LME bit (IA32_EFER.LME[bit 8]). See also: Chapter 8, “Processor Management and
Initialization.”

The processor switches to SMM whenever it receives an SMI while the processoris in
real-address, protected, virtual-8086, or IA-32e modes. Upon execution of the RSM
instruction, the processor always returns to the mode it was in when the SMI
occurred.

2.3 SYSTEM FLAGS AND FIELDS IN THE EFLAGS
REGISTER

The system flags and IOPL field of the EFLAGS register control I/O, maskable hard-
ware interrupts, debugging, task switching, and the virtual-8086 mode (see

Figure 2-4). Only privileged code (typically operating system or executive code)
should be allowed to modify these bits.

The system flags and IOPL are:

TF Trap (bit 8) — Set to enable single-step mode for debugging; clear to
disable single-step mode. In single-step mode, the processor generates a
debug exception after each instruction. This allows the execution state of a
program to be inspected after each instruction. If an application program
sets the TF flag using a POPF, POPFD, or IRET instruction, a debug exception
is generated after the instruction that follows the POPF, POPFD, or IRET.

2-12 Vol.3

SYSTEM ARCHITECTURE OVERVIEW

TF — Trap Flag

31 222120191817161514 131211109 8 7 6 54 3 2 1 0

Y YIalv]R] In| 0 lololi]T]s|z| [l |6l |c

Reserved (set to 0) D;;(:MFOTP ElrlelelElRIOIRIO|E |1 F
L

ID — Identification Flag Q

VIP — Virtual Interrupt Pending
VIF — Virtual Interrupt Flag
AC — Alignment Check
VM — Virtual-8086 Mode
RF — Resume Flag
NT — Nested Task Flag
IOPL— 1/O Privilege Level
IF — Interrupt Enable Flag

I:I Reserved

IF

IOPL

NT

Figure 2-4. System Flags in the EFLAGS Register

Interrupt enable (bit 9) — Controls the response of the processor to
maskable hardware interrupt requests (see also: Section 5.3.2, “"Maskable
Hardware Interrupts”). The flag is set to respond to maskable hardware
interrupts; cleared to inhibit maskable hardware interrupts. The IF flag does
not affect the generation of exceptions or nonmaskable interrupts (NMI
interrupts). The CPL, IOPL, and the state of the VME flag in control register
CR4 determine whether the IF flag can be modified by the CLI, STI, POPF,
POPFD, and IRET.

I/0 privilege level field (bits 12 and 13) — Indicates the I/0 privilege
level (IOPL) of the currently running program or task. The CPL of the
currently running program or task must be less than or equal to the IOPL to
access the I/0O address space. This field can only be modified by the POPF
and IRET instructions when operating at a CPL of 0.

The IOPL is also one of the mechanisms that controls the modification of the
IF flag and the handling of interrupts in virtual-8086 mode when virtual
mode extensions are in effect (when CR4.VME = 1). See also: Chapter 13,
“Input/Output,” in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 1.

Nested task (bit 14) — Controls the chaining of interrupted and called
tasks. The processor sets this flag on calls to a task initiated with a CALL
instruction, an interrupt, or an exception. It examines and modifies this flag
on returns from a task initiated with the IRET instruction. The flag can be
explicitly set or cleared with the POPF/POPFD instructions; however,

Vol.3 2-13

SYSTEM ARCHITECTURE OVERVIEW

RF

VM

AC

VIF

changing to the state of this flag can generate unexpected exceptions in
application programs.

See also: Section 6.4, “Task Linking.”

Resume (bit 16) — Controls the processor’s response to instruction-break-
point conditions. When set, this flag temporarily disables debug exceptions
(#DB) from being generated for instruction breakpoints (although other
exception conditions can cause an exception to be generated). When clear,
instruction breakpoints will generate debug exceptions.

The primary function of the RF flag is to allow the restarting of an instruction
following a debug exception that was caused by an instruction breakpoint
condition. Here, debug software must set this flag in the EFLAGS image on
the stack just prior to returning to the interrupted program with IRETD (to
prevent the instruction breakpoint from causing another debug exception).
The processor then automatically clears this flag after the instruction
returned to has been successfully executed, enabling instruction breakpoint
faults again.

See also: Section 18.3.1.1, “Instruction-Breakpoint Exception Condition.”

Virtual-8086 mode (bit 17) — Set to enable virtual-8086 mode; clear to
return to protected mode.

See also: Section 15.2.1, “Enabling Virtual-8086 Mode.”

Alignment check (bit 18) — Set this flag and the AM flag in control register
CRO to enable alignment checking of memory references; clear the AC flag
and/or the AM flag to disable alignment checking. An alignment-check
exception is generated when reference is made to an unaligned operand,
such as a word at an odd byte address or a doubleword at an address which
is not an integral multiple of four. Alignment-check exceptions are generated
only in user mode (privilege level 3). Memory references that default to priv-
ilege level 0, such as segment descriptor loads, do not generate this excep-
tion even when caused by instructions executed in user-mode.

The alignment-check exception can be used to check alignment of data. This
is useful when exchanging data with processors which require all data to be
aligned. The alignment-check exception can also be used by interpreters to
flag some pointers as special by misaligning the pointer. This eliminates
overhead of checking each pointer and only handles the special pointer when
used.

Virtual Interrupt (bit 19) — Contains a virtual image of the IF flag. This
flag is used in conjunction with the VIP flag. The processor only recognizes
the VIF flag when either the VME flag or the PVI flag in control register CR4 is
set and the IOPL is less than 3. (The VME flag enables the virtual-8086 mode
extensions; the PVI flag enables the protected-mode virtual interrupts.)

See also: Section 15.3.3.5, "Method 6: Software Interrupt Handling,” and
Section 15.4, “Protected-Mode Virtual Interrupts.”

2-14 Vol.3

SYSTEM ARCHITECTURE OVERVIEW

VIP Virtual interrupt pending (bit 20) — Set by software to indicate that an
interrupt is pending; cleared to indicate that no interrupt is pending. This flag
is used in conjunction with the VIF flag. The processor reads this flag but
never modifies it. The processor only recognizes the VIP flag when either the
VME flag or the PVI flag in control register CR4 is set and the IOPL is less than
3. The VME flag enables the virtual-8086 mode extensions; the PVI flag
enables the protected-mode virtual interrupts.

See Section 15.3.3.5, "Method 6: Software Interrupt Handling,” and Section
15.4, “Protected-Mode Virtual Interrupts.”

ID Identification (bit 21). — The ability of a program or procedure to set or
clear this flag indicates support for the CPUID instruction.

2.3.1 System Flags and Fields in IA-32e Mode

In 64-bit mode, the RFLAGS register expands to 64 bits with the upper 32 bits
reserved. System flags in RFLAGS (64-bit mode) or EFLAGS (compatibility mode)
are shown in Figure 2-4.

In IA-32e mode, the processor does not allow the VM bit to be set because virtual-
8086 mode is not supported (attempts to set the bit are ignored). Also, the processor
will not set the NT bit. The processor does, however, allow software to set the NT bit
(note that an IRET causes a general protection fault in IA-32e mode if the NT bit is
set).

In IA-32e mode, the SYSCALL/SYSRET instructions have a programmable method of
specifying which bits are cleared in RFLAGS/EFLAGS. These instructions save/restore
EFLAGS/RFLAGS.

2.4 MEMORY-MANAGEMENT REGISTERS

The processor provides four memory-management registers (GDTR, LDTR, IDTR,
and TR) that specify the locations of the data structures which control segmented
memory management (see Figure 2-5). Special instructions are provided for loading
and storing these registers.

Vol.3 2-15

SYSTEM ARCHITECTURE OVERVIEW

System Table Registers

47(79) 16 15 0
GDTR 32(64)-bit Linear Base Address 16-Bit Table Limit
IDTR 32(64)-bit Linear Base Address 16-Bit Table Limit
System Segment Segment Descriptor Registers (Automatically Loaded)
Registers
0 Attributes
Task [seg. sel 32(64)-bit Linear Base Add s t Limit
Register eg. Sel. (64)-bit Linear Base ress egment Limi
LDTR Seg. Sel. 32(64)-bit Linear Base Address Segment Limit

Figure 2-5. Memory Management Registers

2.4.1 Global Descriptor Table Register (GDTR)

The GDTR register holds the base address (32 bits in protected mode; 64 bits in
IA-32e mode) and the 16-bit table limit for the GDT. The base address specifies the
linear address of byte 0 of the GDT; the table limit specifies the number of bytes in
the table.

The LGDT and SGDT instructions load and store the GDTR register, respectively. On
power up or reset of the processor, the base address is set to the default value of 0
and the limit is set to OFFFFH. A new base address must be loaded into the GDTR as
part of the processor initialization process for protected-mode operation.

See also: Section 3.5.1, "Segment Descriptor Tables.”

2.4.2 Local Descriptor Table Register (LDTR)

The LDTR register holds the 16-bit segment selector, base address (32 bits in
protected mode; 64 bits in IA-32e mode), segment limit, and descriptor attributes
for the LDT. The base address specifies the linear address of byte 0 of the LDT
segment; the segment limit specifies the humber of bytes in the segment. See also:
Section 3.5.1, "Segment Descriptor Tables.”

The LLDT and SLDT instructions load and store the segment selector part of the LDTR
register, respectively. The segment that contains the LDT must have a segment
descriptor in the GDT. When the LLDT instruction loads a segment selector in the
LDTR: the base address, limit, and descriptor attributes from the LDT descriptor are
automatically loaded in the LDTR.

When a task switch occurs, the LDTR is automatically loaded with the segment
selector and descriptor for the LDT for the new task. The contents of the LDTR are not
automatically saved prior to writing the new LDT information into the register.

On power up or reset of the processor, the segment selector and base address are set
to the default value of 0 and the limit is set to OFFFFH.

2-16 Vol.3

SYSTEM ARCHITECTURE OVERVIEW

243 IDTR Interrupt Descriptor Table Register

The IDTR register holds the base address (32 bits in protected mode; 64 bits in
IA-32e mode) and 16-bit table limit for the IDT. The base address specifies the linear
address of byte 0 of the IDT; the table limit specifies the number of bytes in the table.
The LIDT and SIDT instructions load and store the IDTR register, respectively. On
power up or reset of the processor, the base address is set to the default value of 0
and the limit is set to OFFFFH. The base address and limit in the register can then be
changed as part of the processor initialization process.

See also: Section 5.10, “Interrupt Descriptor Table (IDT).”

24.4 Task Register (TR)

The task register holds the 16-bit segment selector, base address (32 bits in
protected mode; 64 bits in IA-32e mode), segment limit, and descriptor attributes
for the TSS of the current task. The selector references the TSS descriptor in the GDT.
The base address specifies the linear address of byte 0 of the TSS; the segment limit
specifies the number of bytes in the TSS. See also: Section 6.2.4, “Task Register.”

The LTR and STR instructions load and store the segment selector part of the task
register, respectively. When the LTR instruction loads a segment selector in the task
register, the base address, limit, and descriptor attributes from the TSS descriptor
are automatically loaded into the task register. On power up or reset of the processor,
the base address is set to the default value of 0 and the limit is set to OFFFFH.

When a task switch occurs, the task register is automatically loaded with the
segment selector and descriptor for the TSS for the new task. The contents of the
task register are not automatically saved prior to writing the new TSS information
into the register.

2.5 CONTROL REGISTERS

Control registers (CR0O, CR1, CR2, CR3, and CR4; see Figure 2-6) determine oper-
ating mode of the processor and the characteristics of the currently executing task.
These registers are 32 bits in all 32-bit modes and compatibility mode.

In 64-bit mode, control registers are expanded to 64 bits. The MOV CRn instructions
are used to manipulate the register bits. Operand-size prefixes for these instructions
are ignored. The following is also true:

®* Bits 63:32 of CRO and CR4 are reserved and must be written with zeros. Writing
a nonzero value to any of the upper 32 bits results in a general-protection
exception, #GP(0).

® All 64 bits of CR2 are writable by software.
® Bits 51:40 of CR3 are reserved and must be 0.

Vol.3 2-17

SYSTEM ARCHITECTURE OVERVIEW

The MOV CRn instructions do not check that addresses written to CR2 and CR3
are within the linear-address or physical-address limitations of the implemen-
tation.

Register CR8 is available in 64-bit mode only.

The control registers are summarized below, and each architecturally defined control
field in these control registers are described individually. In Figure 2-6, the width of
the register in 64-bit mode is indicated in parenthesis (except for CRO).

CRO — Contains system control flags that control operating mode and states of
the processor.

CR1 — Reserved.

CR2 — Contains the page-fault linear address (the linear address that caused a
page fault).

CR3 — Contains the physical address of the base of the page directory and two
flags (PCD and PWT). This register is also known as the page-directory base
register (PDBR). Only the most-significant bits (less the lower 12 bits) of the base
address are specified; the lower 12 bits of the address are assumed to be 0. The
page directory must thus be aligned to a page (4-KByte) boundary. The PCD and
PWT flags control caching of the page directory in the processor’s internal data
caches (they do not control TLB caching of page-directory information).

When using the physical address extension, the CR3 register contains the base
address of the page-directory-pointer table In IA-32e mode, the CR3 register
contains the base address of the PML4 table.

See also: Section 3.8, “36-Bit Physical Addressing Using the PAE Paging
Mechanism.”

CR4 — Contains a group of flags that enable several architectural extensions,
and indicate operating system or executive support for specific processor capabil-
ities. The control registers can be read and loaded (or modified) using the move-
to-or-from-control-registers forms of the MOV instruction. In protected mode,
the MOV instructions allow the control registers to be read or loaded (at privilege
level 0 only). This restriction means that application programs or operating-
system procedures (running at privilege levels 1, 2, or 3) are prevented from
reading or loading the control registers.

CR8 — Provides read and write access to the Task Priority Register (TPR). It
specifies the priority threshold value that operating systems use to control the
priority class of external interrupts allowed to interrupt the processor. This
register is available only in 64-bit mode. However, interrupt filtering continues to
apply in compatibility mode.

2-18 Vol.3

SYSTEM ARCHITECTURE OVERVIEW

31(63) 18 1413121110 98 7 6 54 3 2 10
I\S/I\l\il VRN
Reserved (set to 0) | x 00 clc|c|A|s|2|s|V M| CR4
ElE E|E|E|E|E|"|D|I|E
OSXSAVEJ OSXMMEXCPTJ
OSFXSR
31(63) 121 54 32
P|P
. CR3
- clw
Page-Directory Base olT (PDBR)
31(63) 0
Page-Fault Linear Address CR2
31(63) 0
CR1
31302928 1918 17 16 15 6543210
P|C|N Al |w N[E|T|E|M[P
G|D|W M| [P E|T|s|m|p|e| CRO

D Reserved

Figure 2-6. Control Registers

When loading a control register, reserved bits should always be set to the values
previously read. The flags in control registers are:

PG

CD

Paging (bit 31 of CR0O) — Enables paging when set; disables paging when
clear. When paging is disabled, all linear addresses are treated as physical
addresses. The PG flag has no effect if the PE flag (bit O of register CRO) is
not also set; setting the PG flag when the PE flag is clear causes a general-
protection exception (#GP). See also: Section 3.6, “Paging (Virtual Memory)
Overview.”

On Intel 64 processors, enabling and disabling IA-32e mode operation also
requires modifying CRO.PG.

Cache Disable (bit 30 of CRO) — When the CD and NW flags are clear,
caching of memory locations for the whole of physical memory in the
processor’s internal (and external) caches is enabled. When the CD flag is
set, caching is restricted as described in Table 10-5. To prevent the processor
from accessing and updating its caches, the CD flag must be set and the
caches must be invalidated so that no cache hits can occur.

Vol.3 2-19

SYSTEM ARCHITECTURE OVERVIEW

NW

AM

WP

NE

ET

TS

See also: Section 10.5.3, “Preventing Caching,” and Section 10.5, “Cache
Control.”

Not Write-through (bit 29 of CR0) — When the NW and CD flags are
clear, write-back (for Pentium 4, Intel Xeon, P6 family, and Pentium proces-
sors) or write-through (for Intel486 processors) is enabled for writes that hit
the cache and invalidation cycles are enabled. See Table 10-5 for detailed
information about the affect of the NW flag on caching for other settings of
the CD and NW flags.

Alignment Mask (bit 18 of CR0) — Enables automatic alignment checking
when set; disables alignment checking when clear. Alignment checking is
performed only when the AM flag is set, the AC flag in the EFLAGS register is
set, CPL is 3, and the processor is operating in either protected or virtual-
8086 mode.

Write Protect (bit 16 of CR0) — Inhibits supervisor-level procedures from
writing into user-level read-only pages when set; allows supervisor-level
procedures to write into user-level read-only pages when clear (regardless of
the U/S bit setting; see Section 3.7.6). This flag facilitates implementation of
the copy-on-write method of creating a new process (forking) used by oper-
ating systems such as UNIX.

Numeric Error (bit 5 of CR0) — Enables the native (internal) mechanism
for reporting x87 FPU errors when set; enables the PC-style x87 FPU error
reporting mechanism when clear. When the NE flag is clear and the IGNNE#
input is asserted, x87 FPU errors are ignored. When the NE flag is clear and
the IGNNE# input is deasserted, an unmasked x87 FPU error causes the
processor to assert the FERR# pin to generate an external interrupt and to
stop instruction execution immediately before executing the next waiting
floating-point instruction or WAIT/FWAIT instruction.

The FERR# pin is intended to drive an input to an external interrupt
controller (the FERR# pin emulates the ERROR# pin of the Intel 287 and
Intel 387 DX math coprocessors). The NE flag, IGNNE# pin, and FERR# pin
are used with external logic to implement PC-style error reporting.

See also: “Software Exception Handling” in Chapter 8, “Programming with
the x87 FPU,” and Appendix A, “Eflags Cross-Reference,” in the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 1.

Extension Type (bit 4 of CRO) — Reserved in the Pentium 4, Intel Xeon, P6
family, and Pentium processors. In the Pentium 4, Intel Xeon, and P6 family
processors, this flag is hardcoded to 1. In the Intel386 and Intel486 proces-
sors, this flag indicates support of Intel 387 DX math coprocessor instruc-
tions when set.

Task Switched (bit 3 of CR0O) — Allows the saving of the x87
FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 context on a task switch to be
delayed until an x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction is
actually executed by the new task. The processor sets this flag on every task

2-20 Vol.3

SYSTEM ARCHITECTURE OVERVIEW

switch and tests it when executing x87
FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instructions.

If the TS flag is set and the EM flag (bit 2 of CRO) is clear, a device-not-
available exception (#NM) is raised prior to the execution of any x87
FPU/MMX/SSE/ SSE2/SSE3/SSSE3/SSE4 instruction; with the exception
of PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE, MOVNTI, CLFLUSH,
CRC32, and POPCNT. See the paragraph below for the special case of the
WAIT/FWAIT instructions.

If the TS flag is set and the MP flag (bit 1 of CRO) and EM flag are clear, an
#NM exception is not raised prior to the execution of an x87 FPU
WAIT/FWAIT instruction.

If the EM flag is set, the setting of the TS flag has no affect on the
execution of x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instructions.

Table 2-1 shows the actions taken when the processor encounters an x87
FPU instruction based on the settings of the TS, EM, and MP flags. Table 11-1
and 12-1 show the actions taken when the processor encounters an
MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction.

The processor does not automatically save the context of the x87 FPU, XMM,
and MXCSR registers on a task switch. Instead, it sets the TS flag, which
causes the processor to raise an #NM exception whenever it encounters an
x87 FPU/MMX/SSE /SSE2/SSE3/SSSE3/SSE4 instruction in the instruction
stream for the new task (with the exception of the instructions listed above).

The fault handler for the #NM exception can then be used to clear the TS flag (with
the CLTS instruction) and save the context of the x87 FPU, XMM, and MXCSR regis-
ters. If the task never encounters an x87 FPU/MMX/SSE/SSE2/SSE3//SSSE3/SSE4
instruction; the x87 FPU/MMX/SSE/SSE2/ SSE3/SSSE3/SSE4 context is never saved.

Table 2-1. Action Taken By x87 FPU Instructions for Different
Combinations of EM, MP, and TS

CRO Flags x87 FPU Instruction Type

EM MP TS Floating-Point WAIT/FWAIT
0 0 0 Execute Execute.

0 0 1 #NM Exception Execute.

0 1 0 Execute Execute.

0 1 1 #NM Exception #NM exception.

1 0 0 #NM Exception Execute.

1 0 1 #NM Exception Execute.

1 1 0 #NM Exception Execute.

1 1 1 #NM Exception #NM exception.

Vol.3 2-21

SYSTEM ARCHITECTURE OVERVIEW

EM

MP

PE

PCD

Emulation (bit 2 of CR0) — Indicates that the processor does not have an
internal or external x87 FPU when set; indicates an x87 FPU is present when
clear. This flag also affects the execution of
MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instructions.

When the EM flag is set, execution of an x87 FPU instruction generates a
device-not-available exception (#NM). This flag must be set when the
processor does not have an internal x87 FPU or is not connected to an
external math coprocessor. Setting this flag forces all floating-point instruc-
tions to be handled by software emulation. Table 8-2 shows the recom-
mended setting of this flag, depending on the IA-32 processor and x87 FPU
or math coprocessor present in the system. Table 2-1 shows the interaction
of the EM, MP, and TS flags.

Also, when the EM flag is set, execution of an MMX instruction causes an
invalid-opcode exception (#UD) to be generated (see Table 11-1). Thus, if an
IA-32 or Intel 64 processor incorporates MMX technology, the EM flag must
be set to 0 to enable execution of MMX instructions.

Similarly for SSE/SSE2/SSE3/SSSE3/SSE4 extensions, when the EM flag is
set, execution of most SSE/SSE2/SSE3/SSSE3/SSE4 instructions causes an
invalid opcode exception (#UD) to be generated (see Table 12-1). If an IA-32
or Intel 64 processor incorporates the SSE/SSE2/SSE3/SSSE3/SSE4 exten-
sions, the EM flag must be set to 0 to enable execution of these extensions.
SSE/SSE2/SSE3/SSSE3/SSE4 instructions not affected by the EM flag
include: PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE, MOVNTI, CLFLUSH,
CRC32, and POPCNT.

Monitor Coprocessor (bit 1 of CR0). — Controls the interaction of the
WAIT (or FWAIT) instruction with the TS flag (bit 3 of CRO). If the MP flag is
set, a WAIT instruction generates a device-not-available exception (#NM) if
the TS flag is also set. If the MP flag is clear, the WAIT instruction ignores the
setting of the TS flag. Table 8-2 shows the recommended setting of this flag,
depending on the IA-32 processor and x87 FPU or math coprocessor present
in the system. Table 2-1 shows the interaction of the MP, EM, and TS flags.

Protection Enable (bit 0 of CRO) — Enables protected mode when set;
enables real-address mode when clear. This flag does not enable paging
directly. It only enables segment-level protection. To enable paging, both the
PE and PG flags must be set.

See also: Section 8.9, “Mode Switching.”

Page-level Cache Disable (bit 4 of CR3) — Controls caching of the
current page directory. When the PCD flag is set, caching of the page-direc-
tory is prevented; when the flag is clear, the page-directory can be cached.
This flag affects only the processor’s internal caches (both L1 and L2, when
present). The processor ignores this flag if paging is not used (the PG flag in
register CRO is clear) or the CD (cache disable) flag in CRO is set.

2-22 Vol.3

PWT

VME

PVI

TSD

DE

PSE

SYSTEM ARCHITECTURE OVERVIEW

See also: Chapter 10, "Memory Cache Control” (for more about the use of
the PCD flag) and Section 3.7.6, “Page-Directory and Page-Table Entries” (for
a description of a companion PCD flag in page-directory and page-table
entries).

Page-level Writes Transparent (bit 3 of CR3) — Controls the write-
through or write-back caching policy of the current page directory. When the
PWT flag is set, write-through caching is enabled; when the flag is clear,
write-back caching is enabled. This flag affects only internal caches (both L1
and L2, when present). The processor ignores this flag if paging is not used
(the PG flag in register CRO is clear) or the CD (cache disable) flag in CRO is
set.

See also: Section 10.5, “"Cache Control” (for more information about the use
of this flag), and Section 3.7.6, “Page-Directory and Page-Table Entries” (for
a description of a companion PCD flag in the page-directory and page-table
entries).

Virtual-8086 Mode Extensions (bit 0 of CR4) — Enables interrupt- and
exception-handling extensions in virtual-8086 mode when set; disables the
extensions when clear. Use of the virtual mode extensions can improve the
performance of virtual-8086 applications by eliminating the overhead of
calling the virtual-8086 monitor to handle interrupts and exceptions that
occur while executing an 8086 program and, instead, redirecting the inter-
rupts and exceptions back to the 8086 program’s handlers. It also provides
hardware support for a virtual interrupt flag (VIF) to improve reliability of
running 8086 programs in multitasking and multiple-processor environ-
ments.

See also: Section 15.3, “Interrupt and Exception Handling in Virtual-8086
Mode.”

Protected-Mode Virtual Interrupts (bit 1 of CR4) — Enables hardware
support for a virtual interrupt flag (VIF) in protected mode when set; disables
the VIF flag in protected mode when clear.

See also: Section 15.4, “Protected-Mode Virtual Interrupts.”

Time Stamp Disable (bit 2 of CR4) — Restricts the execution of the
RDTSC instruction to procedures running at privilege level 0 when set; allows
RDTSC instruction to be executed at any privilege level when clear.

Debugging Extensions (bit 3 of CR4) — References to debug registers
DR4 and DR5 cause an undefined opcode (#UD) exception to be generated
when set; when clear, processor aliases references to registers DR4 and DR5
for compatibility with software written to run on earlier IA-32 processors.

See also: Section 18.2.2, “"Debug Registers DR4 and DR5.”

Page Size Extensions (bit 4 of CR4) — Enables large page sizes (2 or 4-
MByte pages) when set; restricts pages to 4 KBytes when clear.

See also: Section 3.6.1, “Paging Options.”

Vol.3 2-23

SYSTEM ARCHITECTURE OVERVIEW

PAE Physical Address Extension (bit 5 of CR4) — When set, enables paging
mechanism to reference greater-or-equal-than-36-bit physical addresses.
When clear, restricts physical addresses to 32 bits. PAE must be enabled to
enable IA-32e mode operation. Enabling and disabling IA-32e mode opera-
tion also requires modifying CR4.PAE.

See also: Section 3.8, "36-Bit Physical Addressing Using the PAE Paging
Mechanism.”

MCE Machine-Check Enable (bit 6 of CR4) — Enables the machine-check
exception when set; disables the machine-check exception when clear.

See also: Chapter 14, “Machine-Check Architecture.”

PGE Page Global Enable (bit 7 of CR4) — (Introduced in the P6 family proces-
sors.) Enables the global page feature when set; disables the global page
feature when clear. The global page feature allows frequently used or shared
pages to be marked as global to all users (done with the global flag, bit 8, in
a page-directory or page-table entry). Global pages are not flushed from the
translation-lookaside buffer (TLB) on a task switch or a write to register CR3.

When enabling the global page feature, paging must be enabled (by setting
the PG flag in control register CRQ) before the PGE flag is set. Reversing this
sequence may affect program correctness, and processor performance will
be impacted.

See also: Section 3.12, “Translation Lookaside Buffers (TLBs).”

PCE Performance-Monitoring Counter Enable (bit 8 of CR4) — Enables
execution of the RDPMC instruction for programs or procedures running at
any protection level when set; RDPMC instruction can be executed only at
protection level 0 when clear.

OSFXSR
Operating System Support for FXSAVE and FXRSTOR instructions
(bit 9 of CR4) — When set, this flag: (1) indicates to software that the oper-
ating system supports the use of the FXSAVE and FXRSTOR instructions, (2)
enables the FXSAVE and FXRSTOR instructions to save and restore the
contents of the XMM and MXCSR registers along with the contents of the x87
FPU and MMX registers, and (3) enables the processor to execute
SSE/SSE2/SSE3/SSSE3/SSE4 instructions, with the exception of the PAUSE,
PREFETCHh, SFENCE, LFENCE, MFENCE, MOVNTI, CLFLUSH, CRC32, and
POPCNT.

If this flag is clear, the FXSAVE and FXRSTOR instructions will save and
restore the contents of the x87 FPU and MMX instructions, but they may not
save and restore the contents of the XMM and MXCSR registers. Also, the
processor will generate an invalid opcode exception (#UD) if it attempts to
execute any SSE/SSE2/SSE3and instruction, with the exception of PAUSE,
PREFETCHh, SFENCE, LFENCE, MFENCE, MOVNTI, CLFLUSH, CRC32, and
POPCNT. The operating system or executive must explicitly set this flag.

2-24 Vol.3

SYSTEM ARCHITECTURE OVERVIEW

NOTE

CPUID feature flags FXSR indicates availability of the
FXSAVE/FXRESTOR instructions. The OSFXSR bit provides operating
system software with a means of enabling FXSAVE/FXRESTOR to
save/restore the contents of the X87 FPU, XMM and MXCSR registers.
Consequently OSFXSR bit indicates that the operating system
provides context switch support for SSE/SSE2/SSE3/SSSE3/SSE4.

OSXMMEXCPT

VMXE

SMXE

Operating System Support for Unmasked SIMD Floating-Point Excep-
tions (bit 10 of CR4) — When set, indicates that the operating system
supports the handling of unmasked SIMD floating-point exceptions through
an exception handler that is invoked when a SIMD floating-point exception
(#XF) is generated. SIMD floating-point exceptions are only generated by
SSE/SSE2/SSE3/SSE4.1 SIMD floating-point instructions.

The operating system or executive must explicitly set this flag. If this flag is
not set, the processor will generate an invalid opcode exception (#UD)
whenever it detects an unmasked SIMD floating-point exception.

VMX-Enable Bit (bit 13 of CR4) — Enables VMX operation when set. See
Chapter 19, “Introduction to Virtual-Machine Extensions.”

SMX-Enable Bit (bit 14 of CR4) — Enables SMX operation when set. See
Chapter 6, “Safer Mode Extensions Reference” of Inte/l® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2B.

OSXSAVE

TPL

XSAVE and Processor Extended States-Enable Bit (bit 18 of CR4) —
When set, this flag: (1) indicates (via CPUID.01H:ECX.OSXSAVE[bit 271)
that the operating system supports the use of the XGETBV, XSAVE and
XRSTOR instructions by general software; (2) enables the XSAVE and
XRSTOR instructions to save and restore the x87 FPU state (including MMX
registers), the SSE state (XMM registers and MXCSR), along with other
processor extended states enabled in the XFEATURE_ENABLED_MASK
register (XCRO); (3) enables the processor to execute XGETBV and XSETBV
instructions in order to read and write XCRO. See Section 2.6 and Chapter
12, "System Programming for Instruction Set Extensions and Processor
Extended States”.

Task Priority Level (bit 3:0 of CR8) — This sets the threshold value corre-
sponding to the highest-priority interrupt to be blocked. A value of 0 means
all interrupts are enabled. This field is available in 64-bit mode. A value of 15
means all interrupts will be disabled.

Vol.3 2-25

SYSTEM ARCHITECTURE OVERVIEW

2.5.1 CPUID Qualification of Control Register Flags

The VME, PVI, TSD, DE, PSE, PAE, MCE, PGE, PCE, OSFXSR, and OSXMMEXCPT flags
in control register CR4 are model specific. All of these flags (except the PCE flag) can
be qualified with the CPUID instruction to determine if they are implemented on the
processor before they are used.

The CRS register is available on processors that support Intel 64 architecture.

2.6 EXTENDED CONTROL REGISTERS (INCLUDING THE
XFEATURE_ENABLED_MASK REGISTER)

If CPUID.01H:ECX.XSAVE[bit 26] is 1, the processor supports one or more
extended control registers (XCRs). Currently, the only such register defined is
XCRO, the XFEATURE_ENABLED_MASK register. This register specifies the set of
processor states that the operating system enables on that processor, e.g. x87 FPU
States, SSE states, and other processor extended states that Intel 64 architecture
may introduce in the future. The OS programs XCRO to reflect the features it
supports.

63 210

Reserved for XCRO bit vector expansion

Reserved / Future processor extended states
SSE state
x87 FPU/MMX state (must be 1)

|:| Reserved (must be 0)

Figure 2-7. XFEATURE_ENABLED_MASK Register (XCRO)

Software can access XCRO only if CR4.0SXSAVE[bit 18] = 1. (This bit is also readable
as CPUID.01H:ECX.0OSXSAVE[bit 27].) The layout of XCRO is architected to allow
software to use CPUID leaf function ODH to enumerate the set of bits that the
processor supports in XCRO (see CPUID instruction in Inte/l® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 2A). Each processor state (X87 FPU
state, SSE state, or a future processor extended state) is represented by a bit in
XCRO. The OS can enable future processor extended states in a forward manner by
specifying the appropriate bit mask value using the XSETBYV instruction according to
the results of the CPUID leaf ODH.

2-26 Vol.3

SYSTEM ARCHITECTURE OVERVIEW

With the exception of bit 63, each bit in the XFEATURE_ENABLED_MASK register
(XCRO) corresponds to a subset of the processor states. XCRO thus provides space
for up to 63 sets of processor state extensions. Bit 63 of XCRO is reserved for future
expansion and will not represent a processor extended state.

Currently, the XFEATURE_ENABLED_MASK register (XCRO) has two processor states
defined, with up to 61 bits reserved for future processor extended states:

® XCRO0.X87 (bit 0): If 1, indicates x87 FPU state (including MMX register states) is
supported in the processor. Bit 0 must be 1. An attempt to write 0 causes a #GP
exception.

® XCRO.SSE (bit 1): If 1, indicates MXCSR and XMM registers (XMM0-XMM15 in 64-
bit mode, otherwise XMM0-XMM?7) are supported by XSAVE/XRESTOR in the
processor.

Any attempt to set a reserved bit (as determined by the contents of EAX and EDX
after executing CPUID with EAX=0DH, ECX= OH) in the XFEATURE_ENABLED_MASK
register for a given processor will result in a #GP exception. An attempt to write 0 to
XFEATURE_ENABLED_MASK.x87 (bit 0) will result in a #GP exception.

A operating system may specify 0 in the bit mask of XSETBYV if it chooses not to
support a processor extended states that the hardware supports. The effects are:

* IfabitYin XFEATURE_ENABLED_MASK (bit offset > 1 and not reserved) is 0, an
attempt to execute an instruction that operates on the processor extended states
associated with XFEATURE_ENABLED_MASK.Y will result in a #UD exception.

® If an instruction operates only on processor states associated with
XFEATURE_ENABLED_MASK.x87, XFEATURE_ENABLED_MASK.SSE (including
general purpose registers) but none of the processor extended states of
XFEATURE_ENABLED_MASK (bit 2 or higher), the #UD behavior follows the
requirements of SSE state support. The value of
XFEATURE_ENABLED_MASK.SSE does not affect the #UD behavior of these
instructions. The OS must set CR4.0SFXSR to support such instructions.

If a bit in the XFEATURE_ENABLED_MASK register is 1, XSAVE instruction can selec-
tively (in conjunction with a save mask) save a partial or full set of processor states
to memory (See XSAVE instruction in Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2B).

After reset all bits (except bit 0) in the XFEATURE_ENABLED_MASK register (XCRO)
are cleared to zero. XCRO[0] is set to 1.

2.7 SYSTEM INSTRUCTION SUMMARY

System instructions handle system-level functions such as loading system registers,
managing the cache, managing interrupts, or setting up the debug registers. Many of
these instructions can be executed only by operating-system or executive proce-
dures (that is, procedures running at privilege level 0). Others can be executed at
any privilege level and are thus available to application programs.

Vol.3 2-27

SYSTEM ARCHITECTURE OVERVIEW

Table 2-2 lists the system instructions and indicates whether they are available and
useful for application programs. These instructions are described in the Inte/l® 64
and IA-32 Architectures Software Developer’s Manual, Volumes 2A & 2B.

Table 2-2. Summary of System Instructions

Useful to Protected from
Instruction Description Application? Application?
LLDT Load LDT Register No Yes
SLDT Store LDT Register No No
LGDT Load GDT Register No Yes
SGDT Store GDT Register No No
LTR Load Task Register No Yes
STR Store Task Register No No
LIDT Load IDT Register No Yes
SIDT Store IDT Register No No
MOV CRn Load and store control registers No Yes
SMSW Store MSW Yes No
LMSW Load MSW No Yes
CLTS Clear TS flag in CRO No Yes
ARPL Adjust RPL Yes'-> No
LAR Load Access Rights Yes No
LSL Load Segment Limit Yes No
VERR Verify for Reading Yes No
VERW Verify for Writing Yes No
MOV DRn Load and store debug registers No Yes
INVD Invalidate cache, no writeback No Yes
WBINVD Invalidate cache, with writeback No Yes
INVLPG Invalidate TLB entry No Yes
HLT Halt Processor No Yes
LOCK (Prefix) Bus Lock Yes No
RSM Return from system management No Yes
mode
RDMSR3 Read Model-Specific Registers No Yes
WRMSR3 Write Model-Specific Registers No Yes

2-28 Vol.3

SYSTEM ARCHITECTURE OVERVIEW

Table 2-2. Summary of System Instructions (Contd.)

Useful to Protected from
Instruction Description Application? Application?
RDPMC* Read Performance-Monitoring Yes Yes?
Counter
RDTSC3 Read Time-Stamp Counter Yes Yes?
XGETBV Return the state of the the Yes No
XFEATURE_ENABLED_MASK register
XSETBV Enable one or more processor No® Yes
extended states

NOTES:
1. Useful to application programs running at a CPL of 1 or 2.

2. The TSD and PCE flags in control register CR4 control access to these instructions by application
programs running at a CPL of 3.

3. These instructions were introduced into the |A-32 Architecture with the Pentium processor.

4. This instruction was introduced into the IA-32 Architecture with the Pentium Pro processor and
the Pentium processor with MMX technology.

5. This instruction is not supported in 64-bit mode.
6. Application uses XGETBV to query which set of processor extended states are enabled.

2.7.1 Loading and Storing System Registers

The GDTR, LDTR, IDTR, and TR registers each have a load and store instruction for
loading data into and storing data from the register:

®* LGDT (Load GDTR Register) — Loads the GDT base address and limit from
memory into the GDTR register.

® SGDT (Store GDTR Register) — Stores the GDT base address and limit from
the GDTR register into memory.

®* LIDT (Load IDTR Register) — Loads the IDT base address and limit from
memory into the IDTR register.

®* SIDT (Load IDTR Register — Stores the IDT base address and limit from the
IDTR register into memory.

®* LLDT (Load LDT Register) — Loads the LDT segment selector and segment
descriptor from memory into the LDTR. (The segment selector operand can also
be located in a general-purpose register.)

® SLDT (Store LDT Register) — Stores the LDT segment selector from the LDTR
register into memory or a general-purpose register.

®* LTR (Load Task Register) — Loads segment selector and segment descriptor
for a TSS from memory into the task register. (The segment selector operand can
also be located in a general-purpose register.)

Vol.3 2-29

SYSTEM ARCHITECTURE OVERVIEW

®* STR (Store Task Register) — Stores the segment selector for the current task
TSS from the task register into memory or a general-purpose register.

The LMSW (load machine status word) and SMSW (store machine status word)
instructions operate on bits 0 through 15 of control register CR0O. These instructions
are provided for compatibility with the 16-bit Intel 286 processor. Programs written
to run on 32-bit IA-32 processors should not use these instructions. Instead, they
should access the control register CRO using the MOV instruction.

The CLTS (clear TS flag in CRO) instruction is provided for use in handling a
device-not-available exception (#NM) that occurs when the processor attempts to
execute a floating-point instruction when the TS flag is set. This instruction allows
the TS flag to be cleared after the x87 FPU context has been saved, preventing
further #NM exceptions. See Section 2.5, “Control Registers,” for more information
on the TS flag.

The control registers (CRO, CR1, CR2, CR3, CR4, and CR8) are loaded using the MOV
instruction. The instruction loads a control register from a general-purpose register
or stores the content of a control register in a general-purpose register.

2.7.2 Verifying of Access Privileges

The processor provides several instructions for examining segment selectors
and segment descriptors to determine if access to their associated segments
is allowed. These instructions duplicate some of the automatic access rights
and type checking done by the processor, thus allowing operating-system or
executive software to prevent exceptions from being generated.

The ARPL (adjust RPL) instruction adjusts the RPL (requestor privilege level)
of a segment selector to match that of the program or procedure that
supplied the segment selector. See Section 4.10.4, “"Checking Caller Access
Privileges (ARPL Instruction),” for a detailed explanation of the function and
use of this instruction. Note that ARPL is not supported in 64-bit mode.

The LAR (load access rights) instruction verifies the accessibility of a speci-
fied segment and loads access rights information from the segment’s
segment descriptor into a general-purpose register. Software can then
examine the access rights to determine if the segment type is compatible
with its intended use. See Section 4.10.1, “Checking Access Rights (LAR
Instruction),” for a detailed explanation of the function and use of this
instruction.

The LSL (load segment limit) instruction verifies the accessibility of a speci-
fied segment and loads the segment limit from the segment’s segment
descriptor into a general-purpose register. Software can then compare the
segment limit with an offset into the segment to determine whether the
offset lies within the segment. See Section 4.10.3, “"Checking That the
Pointer Offset Is Within Limits (LSL Instruction),” for a detailed explanation
of the function and use of this instruction.

2-30 Vol. 3

SYSTEM ARCHITECTURE OVERVIEW

The VERR (verify for reading) and VERW (verify for writing) instructions
verify if a selected segment is readable or writable, respectively, at a given
CPL. See Section 4.10.2, “"Checking Read/Write Rights (VERR and VERW
Instructions),” for a detailed explanation of the function and use of this
instruction.

2.7.3 Loading and Storing Debug Registers

Internal debugging facilities in the processor are controlled by a set of 8 debug regis-
ters (DR0O-DR7). The MOV instruction allows setup data to be loaded to and stored
from these registers.

On processors that support Intel 64 architecture, debug registers DR0O-DR7 are 64
bits. In 32-bit modes and compatibility mode, writes to a debug register fill the upper
32 bits with zeros. Reads return the lower 32 bits. In 64-bit mode, the upper 32 bits
of DR6-DR7 are reserved and must be written with zeros. Writing one to any of the
upper 32 bits causes an exception, #GP(0).

In 64-bit mode, MOV DRn instructions read or write all 64 bits of a debug register
(operand-size prefixes are ignored). All 64 bits of DRO-DR3 are writable by software.
However, MOV DRn instructions do not check that addresses written to DRO-DR3 are
in the limits of the implementation. Address matching is supported only on valid
addresses generated by the processor implementation.

2.74 Invalidating Caches and TLBs

The processor provides several instructions for use in explicitly invalidating its caches
and TLB entries. The INVD (invalidate cache with no writeback) instruction invali-
dates all data and instruction entries in the internal caches and sends a signal to the
external caches indicating that they should be also be invalidated.

The WBINVD (invalidate cache with writeback) instruction performs the same func-
tion as the INVD instruction, except that it writes back modified lines in its internal
caches to memory before it invalidates the caches. After invalidating the internal
caches, WBINVD signals external caches to write back modified data and invalidate
their contents.

The INVLPG (invalidate TLB entry) instruction invalidates (flushes) the TLB entry for
a specified page.

2.7.5 Controlling the Processor

The HLT (halt processor) instruction stops the processor until an enabled interrupt
(such as NMI or SMI, which are normally enabled), a debug exception, the BINIT#
signal, the INIT# signal, or the RESET# signal is received. The processor generates a
special bus cycle to indicate that the halt mode has been entered.

Vol.3 2-31

SYSTEM ARCHITECTURE OVERVIEW

Hardware may respond to this signal in a number of ways. An indicator light on the
front panel may be turned on. An NMI interrupt for recording diagnostic information
may be generated. Reset initialization may be invoked (note that the BINIT# pin was
introduced with the Pentium Pro processor). If any non-wake events are pending
during shutdown, they will be handled after the wake event from shutdown is
processed (for example, A20M# interrupts).

The LOCK prefix invokes a locked (atomic) read-modify-write operation when modi-
fying a memory operand. This mechanism is used to allow reliable communications
between processors in multiprocessor systems, as described below:

® In the Pentium processor and earlier IA-32 processors, the LOCK prefix causes
the processor to assert the LOCK# signal during the instruction. This always
causes an explicit bus lock to occur.

®* Inthe Pentium 4, Intel Xeon, and P6 family processors, the locking operation is
handled with either a cache lock or bus lock. If a memory access is cacheable and
affects only a single cache line, a cache lock is invoked and the system bus and
the actual memory location in system memory are not locked during the
operation. Here, other Pentium 4, Intel Xeon, or P6 family processors on the bus
write-back any modified data and invalidate their caches as necessary to
maintain system memory coherency. If the memory access is not cacheable
and/or it crosses a cache line boundary, the processor’s LOCK# signal is asserted
and the processor does not respond to requests for bus control during the locked
operation.

The RSM (return from SMM) instruction restores the processor (from a context
dump) to the state it was in prior to an system management mode (SMM) interrupt.

2.7.6 Reading Performance-Monitoring and Time-Stamp Counters

The RDPMC (read performance-monitoring counter) and RDTSC (read time-stamp
counter) instructions allow application programs to read the processor’s perfor-
mance-monitoring and time-stamp counters, respectively. Pentium 4 and Intel Xeon
processors have eighteen 40-bit performance-monitoring counters; P6 family
processors have two 40-bit counters.

Use these counters to record either the occurrence or duration of events. Events that
can be monitored are model specific; they may include the number of instructions
decoded, interrupts received, or the number of cache loads. Individual counters can
be set up to monitor different events. Use the system instruction WRMSR to set up
values in the one of the 45 ESCRs and one of the 18 CCCR MSRs (for Pentium 4 and
Intel Xeon processors); or in the PerfEvtSel0 or the PerfEvtSell MSR (for the P6
family processors). The RDPMC instruction loads the current count from the selected
counter into the EDX:EAX registers.

The time-stamp counter is a model-specific 64-bit counter that is reset to zero each
time the processor is reset. If not reset, the counter will increment ~9.5 x 1016
times per year when the processor is operating at a clock rate of 3GHz. At this
clock frequency, it would take over 190 years for the counter to wrap around. The

2-32 Vol.3

SYSTEM ARCHITECTURE OVERVIEW

RDTSC instruction loads the current count of the time-stamp counter into the
EDX:EAX registers.

See Section 18.11, “Performance Monitoring Overview,” and Section 18.10, “Time-
Stamp Counter,” for more information about the performance monitoring and time-
stamp counters.

The RDTSC instruction was introduced into the IA-32 architecture with the Pentium
processor. The RDPMC instruction was introduced into the IA-32 architecture with the
Pentium Pro processor and the Pentium processor with MMX technology. Earlier
Pentium processors have two performance-monitoring counters, but they can be
read only with the RDMSR instruction, and only at privilege level 0.

2.7.6.1 Reading Counters in 64-Bit Mode

In 64-bit mode, RDTSC operates the same as in protected mode. The count in the
time-stamp counter is stored in EDX:EAX (or RDX[31:0]:RAX[31:0] with
RDX[63:32]:RAX[63:32] cleared).

RDPMC requires an index to specify the offset of the performance-monitoring
counter. In 64-bit mode for Pentium 4 or Intel Xeon processor families, the index is
specified in ECX[30:0]. The current count of the performance-monitoring counter is
stored in EDX:EAX (or RDX[31:0]:RAX[31:0] with RDX[63:32]:RAX[63:32]
cleared).

2.7.7 Reading and Writing Model-Specific Registers

The RDMSR (read model-specific register) and WRMSR (write model-specific
register) instructions allow a processor’s 64-bit model-specific registers (MSRs) to be
read and written, respectively. The MSR to be read or written is specified by the value
in the ECX register.

RDMSR reads the value from the specified MSR to the EDX:EAX registers; WRMSR
writes the value in the EDX:EAX registers to the specified MSR. RDMSR and WRMSR
were introduced into the IA-32 architecture with the Pentium processor.

See Section 8.4, “"Model-Specific Registers (MSRs),” for more information.

2.7.7.1 Reading and Writing Model-Specific Registers in 64-Bit Mode

RDMSR and WRMSR require an index to specify the address of an MSR. In 64-bit
mode, the index is 32 bits; it is specified using ECX.

2.7.8 Enabling Processor Extended States

The XSETBV instruction is required to enable OS support of individual processor
extended states in the XFEATURE_ENABLED_MASK register (see Section 2.6).

Vol.3 2-33

SYSTEM ARCHITECTURE OVERVIEW

2-34 Vol.3

CHAPTER 3
PROTECTED-MODE MEMORY MANAGEMENT

This chapter describes the Intel 64 and IA-32 architecture’s protected-mode memory
management facilities, including the physical memory requirements, segmentation
mechanism, and paging mechanism.

See also: Chapter 4, “Protection” (for a description of the processor’s protection
mechanism) and Chapter 15, *8086 Emulation” (for a description of memory
addressing protection in real-address and virtual-8086 modes).

3.1 MEMORY MANAGEMENT OVERVIEW

The memory management facilities of the IA-32 architecture are divided into two
parts: segmentation and paging. Segmentation provides a mechanism of isolating
individual code, data, and stack modules so that multiple programs (or tasks) can
run on the same processor without interfering with one another. Paging provides a
mechanism for implementing a conventional demand-paged, virtual-memory system
where sections of a program’s execution environment are mapped into physical
memory as needed. Paging can also be used to provide isolation between multiple
tasks. When operating in protected mode, some form of segmentation must be used.
There is no mode bit to disable segmentation. The use of paging, however, is
optional.

These two mechanisms (segmentation and paging) can be configured to support
simple single-program (or single-task) systems, multitasking systems, or multiple-
processor systems that used shared memory.

As shown in Figure 3-1, segmentation provides a mechanism for dividing the
processor’s addressable memory space (called the linear address space) into
smaller protected address spaces called segments. Segments can be used to hold
the code, data, and stack for a program or to hold system data structures (such as a
TSS or LDT). If more than one program (or task) is running on a processor, each
program can be assigned its own set of segments. The processor then enforces the
boundaries between these segments and insures that one program does not interfere
with the execution of another program by writing into the other program’s segments.
The segmentation mechanism also allows typing of segments so that the operations
that may be performed on a particular type of segment can be restricted.

All the segments in a system are contained in the processor’s linear address space.

To locate a byte in a particular segment, a logical address (also called a far pointer)
must be provided. A logical address consists of a segment selector and an offset. The
segment selector is a unique identifier for a segment. Among other things it provides
an offset into a descriptor table (such as the global descriptor table, GDT) to a data

structure called a segment descriptor. Each segment has a segment descriptor, which
specifies the size of the segment, the access rights and privilege level for the

Vol.3 3-1

PROTECTED-MODE MEMORY MANAGEMENT

segment, the segment type, and the location of the first byte of the segment in the
linear address space (called the base address of the segment). The offset part of the
logical address is added to the base address for the segment to locate a byte within
the segment. The base address plus the offset thus forms a linear address in the
processor’s linear address space.

Logical Address
(or Far Pointer)

Segment l

Selector Offset Linear Address
| | | | Space
. Linear Address
Global Descriptor - .
Table (GDT) Dir | Table [Offset | igyé?g;:sl
Space
Segment
Segment Page Table Page
Descrptor(—/ | | | (| || || """
Bl I I I R il Page Directory Phy. Addr.
ﬂ|—> Lin. Addr. Entry S
* Entry >

SegmentJ g

Base Address

|~ Page

}7 Segmentation I Paging I

Figure 3-1. Segmentation and Paging

If paging is not used, the linear address space of the processor is mapped directly
into the physical address space of processor. The physical address space is defined as
the range of addresses that the processor can generate on its address bus.

Because multitasking computing systems commonly define a linear address space
much larger than it is economically feasible to contain all at once in physical memory,
some method of “virtualizing” the linear address space is needed. This virtualization
of the linear address space is handled through the processor’s paging mechanism.

Paging supports a “virtual memory” environment where a large linear address space
is simulated with a small amount of physical memory (RAM and ROM) and some disk

3-2 Vol.3

PROTECTED-MODE MEMORY MANAGEMENT

storage. When using paging, each segment is divided into pages (typically 4 KBytes
each in size), which are stored either in physical memory or on the disk. The oper-
ating system or executive maintains a page directory and a set of page tables to keep
track of the pages. When a program (or task) attempts to access an address location
in the linear address space, the processor uses the page directory and page tables to
translate the linear address into a physical address and then performs the requested
operation (read or write) on the memory location.

If the page being accessed is not currently in physical memory, the processor inter-
rupts execution of the program (by generating a page-fault exception). The oper-
ating system or executive then reads the page into physical memory from the disk
and continues executing the program.

When paging is implemented properly in the operating-system or executive, the
swapping of pages between physical memory and the disk is transparent to the
correct execution of a program. Even programs written for 16-bit IA-32 processors
can be paged (transparently) when they are run in virtual-8086 mode.

3.2 USING SEGMENTS

The segmentation mechanism supported by the IA-32 architecture can be used to
implement a wide variety of system designs. These designs range from flat models
that make only minimal use of segmentation to protect programs to multi-
segmented models that employ segmentation to create a robust operating environ-
ment in which multiple programs and tasks can be executed reliably.

The following sections give several examples of how segmentation can be employed
in a system to improve memory management performance and reliability.

3.2.1 Basic Flat Model

The simplest memory model for a system is the basic “flat model,” in which the oper-
ating system and application programs have access to a continuous, unsegmented
address space. To the greatest extent possible, this basic flat model hides the
segmentation mechanism of the architecture from both the system designer and the
application programmer.

To implement a basic flat memory model with the IA-32 architecture, at least two
segment descriptors must be created, one for referencing a code segment and one
for referencing a data segment (see Figure 3-2). Both of these segments, however,
are mapped to the entire linear address space: that is, both segment descriptors
have the same base address value of 0 and the same segment limit of 4 GBytes. By
setting the segment limit to 4 GBytes, the segmentation mechanism is kept from
generating exceptions for out of limit memory references, even if no physical
memory resides at a particular address. ROM (EPROM) is generally located at the top
of the physical address space, because the processor begins execution at

Vol.3 3-3

PROTECTED-MODE MEMORY MANAGEMENT

FFFF_FFFOH. RAM (DRAM) is placed at the bottom of the address space because the
initial base address for the DS data segment after reset initialization is 0.

3.2.2 Protected Flat Model

The protected flat model is similar to the basic flat model, except the segment limits
are set to include only the range of addresses for which physical memory actually
exists (see Figure 3-3). A general-protection exception (#GP) is then generated on
any attempt to access nonexistent memory. This model provides a minimum level of
hardware protection against some kinds of program bugs.

Linear Address Space
(or Physical Memory)
Segment FFFFFFFFH

Registers

Code

Code- and Data-Segment

Descriptors
SS Not Present

I I
Access Limit o Data and
ES Base Address u - Stack 0

DS

FS

»
\

GS

Figure 3-2. Flat Model

Segment Linear Address Space
Descriptors (or Physical Memory)
Segment imit ——>
Registers Access Limit Code FFFFFFFFH
Base Address E—
Not Present
>
Memory 1/O
Access | Limit -
Base Address
Data and
Stack
> 0

3-4 Vol.3

Figure 3-3. Protected Flat Model

PROTECTED-MODE MEMORY MANAGEMENT

More complexity can be added to this protected flat model to provide more protec-
tion. For example, for the paging mechanism to provide isolation between user and
supervisor code and data, four segments need to be defined: code and data
segments at privilege level 3 for the user, and code and data segments at privilege
level O for the supervisor. Usually these segments all overlay each other and start at
address 0 in the linear address space. This flat segmentation model along with a
simple paging structure can protect the operating system from applications, and by
adding a separate paging structure for each task or process, it can also protect appli-
cations from each other. Similar designs are used by several popular multitasking
operating systems.

3.23 Multi-Segment Model

A multi-segment model (such as the one shown in Figure 3-4) uses the full capabili-
ties of the segmentation mechanism to provided hardware enforced protection of
code, data structures, and programs and tasks. Here, each program (or task) is given
its own table of segment descriptors and its own segments. The segments can be
completely private to their assigned programs or shared among programs. Access to
all segments and to the execution environments of individual programs running on
the system is controlled by hardware.

Vol.3 3-5

PROTECTED-MODE MEMORY MANAGEMENT

Segment Segment Linear Address Space
Registers Descriptors (or Physical Memory)
IE > Ac;essA\ Limit
ase Address Stack
[ss | » Access | Limit
Base Address
[os | » Access | Limit
Base Address Code
E > Access \ Limit
Base Address
Data
IE > Access \ Limit
Base Address
Data
- | Access \ Limit -
II = Base Address N -
— . Data
Access \ Limit
Base Address A
Access \ Limit
Base Address
— Data
Access \ Limit
Base Address
Access | Limit 4
Base Address ST

Figure 3-4. Multi-Segment Model

Access checks can be used to protect not only against referencing an address outside
the limit of a segment, but also against performing disallowed operations in certain
segments. For example, since code segments are designated as read-only segments,
hardware can be used to prevent writes into code segments. The access rights infor-
mation created for segments can also be used to set up protection rings or levels.
Protection levels can be used to protect operating-system procedures from unautho-
rized access by application programs.

3.24 Segmentation in IA-32e Mode

In IA-32e mode of Intel 64 architecture, the effects of segmentation depend on
whether the processor is running in compatibility mode or 64-bit mode. In compati-
bility mode, segmentation functions just as it does using legacy 16-bit or 32-bit
protected mode semantics.

3-6 Vol.3

PROTECTED-MODE MEMORY MANAGEMENT

In 64-bit mode, segmentation is generally (but not completely) disabled, creating a
flat 64-bit linear-address space. The processor treats the segment base of CS, DS,
ES, SS as zero, creating a linear address that is equal to the effective address. The FS
and GS segments are exceptions. These segment registers (which hold the segment
base) can be used as an additional base registers in linear address calculations. They
facilitate addressing local data and certain operating system data structures.

Note that the processor does not perform segment limit checks at runtime in 64-bit
mode.

3.25 Paging and Segmentation

Paging can be used with any of the segmentation models described in Figures 3-2,
3-3, and 3-4. The processor’s paging mechanism divides the linear address space
(into which segments are mapped) into pages (as shown in Figure 3-1). These linear-
address-space pages are then mapped to pages in the physical address space. The
paging mechanism offers several page-level protection facilities that can be used
with or instead of the segment-protection facilities. For example, it lets read-write
protection be enforced on a page-by-page basis. The paging mechanism also
provides two-level user-supervisor protection that can also be specified on a page-
by-page basis.

3.3 PHYSICAL ADDRESS SPACE

In protected mode, the IA-32 architecture provides a normal physical address space
of 4 GBytes (232bytes). This is the address space that the processor can address on
its address bus. This address space is flat (unsegmented), with addresses ranging
continuously from 0 to FFFFFFFFH. This physical address space can be mapped to
read-write memory, read-only memory, and memory mapped I/0. The memory
mapping facilities described in this chapter can be used to divide this physical
memory up into segments and/or pages.

Starting with the Pentium Pro processor, the IA-32 architecture also supports an
extension of the physical address space to 236 bytes (64 GBytes); with a maximum
physical address of FFFFFFFFFH. This extension is invoked in either of two ways:

® Using the physical address extension (PAE) flag, located in bit 5 of control
register CR4.

® Using the 36-bit page size extension (PSE-36) feature (introduced in the Pentium
Ill processors).

See Section 3.8, “36-Bit Physical Addressing Using the PAE Paging Mechanism” and
Section 3.9, “36-Bit Physical Addressing Using the PSE-36 Paging Mechanism” for
more information about 36-bit physical addressing.

Vol.3 3-7

PROTECTED-MODE MEMORY MANAGEMENT

3.3.1 Intel® 64 Processors and Physical Address Space

On processors that support Intel 64 architecture (CPUID.80000001:EDX[29] = 1),
the size of the physical address range is implementation-specific and indicated by
CPUID.80000008H:EAX[bits 7-01].

For the format of information returned in EAX, see "CPUID—CPU Identification” in
Chapter 3 of the Inte/® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A. See also: Section 3.8.1, “"Enhanced Legacy PAE Paging.”

3.4 LOGICAL AND LINEAR ADDRESSES

At the system-architecture level in protected mode, the processor uses two stages of
address translation to arrive at a physical address: logical-address translation and
linear address space paging.

Even with the minimum use of segments, every byte in the processor’s address
space is accessed with a logical address. A logical address consists of a 16-bit
segment selector and a 32-bit offset (see Figure 3-5). The segment selector identi-
fies the segment the byte is located in and the offset specifies the location of the byte
in the segment relative to the base address of the segment.

The processor translates every logical address into a linear address. A linear address
is a 32-bit address in the processor’s linear address space. Like the physical address
space, the linear address space is a flat (unsegmented), 232-byte address space,
with addresses ranging from 0 to FFFFFFFFH. The linear address space contains all
the segments and system tables defined for a system.

To translate a logical address into a linear address, the processor does the following:

1. Uses the offset in the segment selector to locate the segment descriptor for the
segment in the GDT or LDT and reads it into the processor. (This step is needed
only when a new segment selector is loaded into a segment register.)

2. Examines the segment descriptor to check the access rights and range of the
segment to insure that the segment is accessible and that the offset is within the
limits of the segment.

3. Adds the base address of the segment from the segment descriptor to the offset
to form a linear address.

3-8 Vol.3

PROTECTED-MODE MEMORY MANAGEMENT

15 0 31(63) 0
Seg. Selector | Offset (Effective Address) |

Logical
Address

Descriptor Table

Segment

Base Address
M > +
Descriptor .

31(63) 0
| Linear Address |

Figure 3-5. Logical Address to Linear Address Translation

If paging is not used, the processor maps the linear address directly to a physical
address (that is, the linear address goes out on the processor’s address bus). If the
linear address space is paged, a second level of address translation is used to trans-
late the linear address into a physical address.

See also: Section 3.6, “Paging (Virtual Memory) Overview”.

3.4.1 Logical Address Translation in IA-32e Mode

In IA-32e mode, an Intel 64 processor uses the steps described above to translate a
logical address to a linear address. In 64-bit mode, the offset and base address of the
segment are 64-bits instead of 32 bits. The linear address format is also 64 bits wide
and is subject to the canonical form requirement.

Each code segment descriptor provides an L bit. This bit allows a code segment to
execute 64-bit code or legacy 32-bit code by code segment.

3.4.2 Segment Selectors

A segment selector is a 16-bit identifier for a segment (see Figure 3-6). It does not
point directly to the segment, but instead points to the segment descriptor that
defines the segment. A segment selector contains the following items:

Index (Bits 3 through 15) — Selects one of 8192 descriptors in the GDT or
LDT. The processor multiplies the index value by 8 (the number of
bytes in a segment descriptor) and adds the result to the base address
of the GDT or LDT (from the GDTR or LDTR register, respectively).

Vol.3 3-9

PROTECTED-MODE MEMORY MANAGEMENT

TI (table indicator) flag
(Bit 2) — Specifies the descriptor table to use: clearing this flag
selects the GDT; setting this flag selects the current LDT.

15 3210
Index mRPL‘

Table Indicator
0=GDT
1=LDT

Requested Privilege Level (RPL)

Figure 3-6. Segment Selector

Requested Privilege Level (RPL)
(Bits 0 and 1) — Specifies the privilege level of the selector. The priv-
ilege level can range from 0 to 3, with 0 being the most privileged
level. See Section 4.5, “Privilege Levels”, for a description of the rela-
tionship of the RPL to the CPL of the executing program (or task) and
the descriptor privilege level (DPL) of the descriptor the segment
selector points to.

The first entry of the GDT is not used by the processor. A segment selector that points
to this entry of the GDT (that is, a segment selector with an index of 0 and the TI flag
set to 0) is used as a “null segment selector.” The processor does not generate an
exception when a segment register (other than the CS or SS registers) is loaded with
a null selector. It does, however, generate an exception when a segment register
holding a null selector is used to access memory. A null selector can be used to
initialize unused segment registers. Loading the CS or SS register with a null
segment selector causes a general-protection exception (#GP) to be generated.

Segment selectors are visible to application programs as part of a pointer variable,
but the values of selectors are usually assigned or modified by link editors or linking
loaders, not application programs.

343 Segment Registers

To reduce address translation time and coding complexity, the processor provides
registers for holding up to 6 segment selectors (see Figure 3-7). Each of these
segment registers support a specific kind of memory reference (code, stack, or
data). For virtually any kind of program execution to take place, at least the code-
segment (CS), data-segment (DS), and stack-segment (SS) registers must be
loaded with valid segment selectors. The processor also provides three additional
data-segment registers (ES, FS, and GS), which can be used to make additional data
segments available to the currently executing program (or task).

3-10 Vol.3

PROTECTED-MODE MEMORY MANAGEMENT

For a program to access a segment, the segment selector for the segment must have
been loaded in one of the segment registers. So, although a system can define thou-
sands of segments, only 6 can be available for immediate use. Other segments can
be made available by loading their segment selectors into these registers during
program execution.

Visible Part Hidden Part
Segment Selector Base Address, Limit, Access Information | CS
SS
DS
ES
FS
GS

Figure 3-7. Segment Registers

Every segment register has a “visible” part and a “hidden” part. (The hidden part is
sometimes referred to as a “descriptor cache” or a “shadow register.”) When a
segment selector is loaded into the visible part of a segment register, the processor
also loads the hidden part of the segment register with the base address, segment
limit, and access control information from the segment descriptor pointed to by the
segment selector. The information cached in the segment register (visible and
hidden) allows the processor to translate addresses without taking extra bus cycles
to read the base address and limit from the segment descriptor. In systems in which
multiple processors have access to the same descriptor tables, it is the responsibility
of software to reload the segment registers when the descriptor tables are modified.
If this is not done, an old segment descriptor cached in a segment register might be
used after its memory-resident version has been modified.

Two kinds of load instructions are provided for loading the segment registers:

1. Direct load instructions such as the MOV, POP, LDS, LES, LSS, LGS, and LFS
instructions. These instructions explicitly reference the segment registers.

2. Implied load instructions such as the far pointer versions of the CALL, JMP, and
RET instructions, the SYSENTER and SYSEXIT instructions, and the IRET, INTh,
INTO and INT3 instructions. These instructions change the contents of the CS
register (and sometimes other segment registers) as an incidental part of their
operation.

The MOV instruction can also be used to store visible part of a segment register in a
general-purpose register.

Vol.3 3-11

PROTECTED-MODE MEMORY MANAGEMENT

344 Segment Loading Instructions in IA-32e Mode

Because ES, DS, and SS segment registers are not used in 64-bit mode, their fields
(base, limit, and attribute) in segment descriptor registers are ignored. Some forms
of segment load instructions are also invalid (for example, LDS, POP ES). Address
calculations that reference the ES, DS, or SS segments are treated as if the segment
base is zero.

The processor checks that all linear-address references are in canonical form instead
of performing limit checks. Mode switching does not change the contents of the

segment registers or the associated descriptor registers. These registers are also not
changed during 64-bit mode execution, unless explicit segment loads are performed.

In order to set up compatibility mode for an application, segment-load instructions
(MOV to Sreg, POP Sreg) work normally in 64-bit mode. An entry is read from the
system descriptor table (GDT or LDT) and is loaded in the hidden portion of the
segment descriptor register. The descriptor-register base, limit, and attribute fields
are all loaded. However, the contents of the data and stack segment selector and the
descriptor registers are ignored.

When FS and GS segment overrides are used in 64-bit mode, their respective base
addresses are used in the linear address calculation: (FS or GS).base + index +
displacement. FS.base and GS.base are then expanded to the full linear-address size
supported by the implementation. The resulting effective address calculation can
wrap across positive and negative addresses; the resulting linear address must be
canonical.

In 64-bit mode, memory accesses using FS-segment and GS-segment overrides are
not checked for a runtime limit nor subjected to attribute-checking. Normal segment
loads (MOV to Sreg and POP Sreg) into FS and GS load a standard 32-bit base value
in the hidden portion of the segment descriptor register. The base address bits above
the standard 32 bits are cleared to O to allow consistency for implementations that
use less than 64 bits.

The hidden descriptor register fields for FS.base and GS.base are physically mapped
to MSRs in order to load all address bits supported by a 64-bit implementation. Soft-
ware with CPL = 0 (privileged software) can load all supported linear-address bits
into FS.base or GS.base using WRMSR. Addresses written into the 64-bit FS.base and
GS.base registers must be in canonical form. A WRMSR instruction that attempts to
write a non-canonical address to those registers causes a #GP fault.

When in compatibility mode, FS and GS overrides operate as defined by 32-bit mode
behavior regardless of the value loaded into the upper 32 linear-address bits of the
hidden descriptor register base field. Compatibility mode ignores the upper 32 bits

when calculating an effective address.

A new 64-bit mode instruction, SWAPGS, can be used to load GS base. SWAPGS
exchanges the kernel data structure pointer from the IA32_KernelGSbase MSR with
the GS base register. The kernel can then use the GS prefix on normal memory refer-
ences to access the kernel data structures. An attempt to write a non-canonical value
(using WRMSR) to the IA32_KernelGSBase MSR causes a #GP fault.

3-12 Vol.3

PROTECTED-MODE MEMORY MANAGEMENT

3.4.5 Segment Descriptors

A segment descriptor is a data structure in a GDT or LDT that provides the processor
with the size and location of a segment, as well as access control and status informa-
tion. Segment descriptors are typically created by compilers, linkers, loaders, or the
operating system or executive, but not application programs. Figure 3-8 illustrates
the general descriptor format for all types of segment descriptors.

31 242322212019 1615 14 13 12 11 8 7 0
D| |A| Seg. D
Base 31:24 G|/|L|v| Limit |P| p [S| Type Base 23:16 4
B L| 19:16 L
31 1615 0
Base Address 15:00 Segment Limit 15:00 0
L — 64-bit code segment (IA-32e mode only)
AVL — Available for use by system software

BASE — Segment base address
D/B — Default operation size (0 = 16-bit segment; 1 = 32-bit segment)

DPL — Descriptor privilege level

G — Granularity

LIMIT — Segment Limit

P — Segment present

S — Descriptor type (0 = system; 1 = code or data)

TYPE — Segment type

Figure 3-8. Segment Descriptor

The flags and fields in a segment descriptor are as follows:

Segment limit field
Specifies the size of the segment. The processor puts together the
two segment limit fields to form a 20-bit value. The processor inter-
prets the segment limit in one of two ways, depending on the setting
of the G (granularity) flag:

e If the granularity flag is clear, the segment size can range from
1 byte to 1 MByte, in byte increments.

e If the granularity flag is set, the segment size can range from
4 KBytes to 4 GBytes, in 4-KByte increments.

The processor uses the segment limit in two different ways,
depending on whether the segment is an expand-up or an expand-
down segment. See Section 3.4.5.1, “"Code- and Data-Segment
Descriptor Types”, for more information about segment types. For
expand-up segments, the offset in a logical address can range from 0

Vol.3 3-13

PROTECTED-MODE MEMORY MANAGEMENT

to the segment limit. Offsets greater than the segment limit generate
general-protection exceptions (#GP). For expand-down segments,
the segment limit has the reverse function; the offset can range from
the segment limit to FFFFFFFFH or FFFFH, depending on the setting of
the B flag. Offsets less than the segment limit generate general-
protection exceptions. Decreasing the value in the segment limit field
for an expand-down segment allocates new memory at the bottom of
the segment's address space, rather than at the top. IA-32 architec-
ture stacks always grow downwards, making this mechanism conve-
nient for expandable stacks.

Base address fields

Type field

Defines the location of byte 0 of the segment within the 4-GByte
linear address space. The processor puts together the three base
address fields to form a single 32-bit value. Segment base addresses
should be aligned to 16-byte boundaries. Although 16-byte alignment
is not required, this alignment allows programs to maximize perfor-
mance by aligning code and data on 16-byte boundaries.

Indicates the segment or gate type and specifies the kinds of access
that can be made to the segment and the direction of growth. The
interpretation of this field depends on whether the descriptor type flag
specifies an application (code or data) descriptor or a system
descriptor. The encoding of the type field is different for code, data,
and system descriptors (see Figure 4-1). See Section 3.4.5.1, “Code-
and Data-Segment Descriptor Types”, for a description of how this
field is used to specify code and data-segment types.

S (descriptor type) flag

Specifies whether the segment descriptor is for a system segment
(S flag is clear) or a code or data segment (S flag is set).

DPL (descriptor privilege level) field

Specifies the privilege level of the segment. The privilege level can
range from 0 to 3, with 0 being the most privileged level. The DPL is
used to control access to the segment. See Section 4.5, “Privilege
Levels”, for a description of the relationship of the DPL to the CPL of
the executing code segment and the RPL of a segment selector.

P (segment-present) flag

3-14 Vol.3

Indicates whether the segment is present in memory (set) or not
present (clear). If this flag is clear, the processor generates a
segment-not-present exception (#NP) when a segment selector that
points to the segment descriptor is loaded into a segment register.
Memory management software can use this flag to control which
segments are actually loaded into physical memory at a given time. It
offers a control in addition to paging for managing virtual memory.

Figure 3-9 shows the format of a segment descriptor when the
segment-present flag is clear. When this flag is clear, the operating
system or executive is free to use the locations marked “Available” to

PROTECTED-MODE MEMORY MANAGEMENT

store its own data, such as information regarding the whereabouts of
the missing segment.

D/B (default operation size/default stack pointer size and/or upper bound)
flag
Performs different functions depending on whether the segment
descriptor is an executable code segment, an expand-down data
segment, or a stack segment. (This flag should always be set to 1 for
32-bit code and data segments and to 0 for 16-bit code and data
segments.)

Executable code segment. The flag is called the D flag and it
indicates the default length for effective addresses and operands
referenced by instructions in the segment. If the flag is set, 32-bit
addresses and 32-bit or 8-bit operands are assumed; if it is clear,
16-bit addresses and 16-bit or 8-bit operands are assumed.

The instruction prefix 66H can be used to select an operand size
other than the default, and the prefix 67H can be used select an
address size other than the default.

Stack segment (data segment pointed to by the SS
register). The flag is called the B (big) flag and it specifies the
size of the stack pointer used for implicit stack operations (such as
pushes, pops, and calls). If the flag is set, a 32-bit stack pointer is
used, which is stored in the 32-bit ESP register; if the flag is clear,
a 16-bit stack pointer is used, which is stored in the 16-bit SP
register. If the stack segment is set up to be an expand-down data
segment (described in the next paragraph), the B flag also
specifies the upper bound of the stack segment.

Expand-down data segment. The flag is called the B flag and it
specifies the upper bound of the segment. If the flag is set, the
upper bound is FFFFFFFFH (4 GBytes); if the flag is clear, the
upper bound is FFFFH (64 KBytes).

31 161514 1312 11 87 0
D
Available 0| P [S| Type Available 4
L
31 0
Available 0

Figure 3-9. Segment Descriptor When Segment-Present Flag Is Clear

Vol.3 3-15

PROTECTED-MODE MEMORY MANAGEMENT

G (granularity) flag
Determines the scaling of the segment limit field. When the
granularity flag is clear, the segment limit is interpreted in byte
units; when flag is set, the segment limit is interpreted in
4-KByte units. (This flag does not affect the granularity of the
base address; it is always byte granular.) When the granularity
flag is set, the twelve least significant bits of an offset are not
tested when checking the offset against the segment limit. For
example, when the granularity flag is set, a limit of 0 results in
valid offsets from 0 to 4095.

L (64-bit code segment) flag
In IA-32e mode, bit 21 of the second doubleword of the segment
descriptor indicates whether a code segment contains native 64-bit
code. A value of 1 indicates instructions in this code segment are
executed in 64-bit mode. A value of 0 indicates the instructions in this
code segment are executed in compatibility mode. If L-bit is set, then
D-bit must be cleared. When not in IA-32e mode or for non-code
segments, bit 21 is reserved and should always be set to 0.

Available and reserved bits
Bit 20 of the second doubleword of the segment descriptor is available
for use by system software.

3.4.5.1 Code- and Data-Segment Descriptor Types

When the S (descriptor type) flag in a segment descriptor is set, the descriptor is for
either a code or a data segment. The highest order bit of the type field (bit 11 of the
second double word of the segment descriptor) then determines whether the
descriptor is for a data segment (clear) or a code segment (set).

For data segments, the three low-order bits of the type field (bits 8, 9, and 10) are
interpreted as accessed (A), write-enable (W), and expansion-direction (E). See
Table 3-1 for a description of the encoding of the bits in the type field for code and
data segments. Data segments can be read-only or read/write segments, depending
on the setting of the write-enable bit.

3-16 Vol.3

PROTECTED-MODE MEMORY MANAGEMENT

Table 3-1. Code- and Data-Segment Types

Type Field Descriptor Description
- Type
Decimal 11 10 9 8
€ "} A
0 0 0 0 0 Data Read-Only
; 8 8 (1) (1) Ba:a Read-Only, accessed
ata .
3 0 0 1 1 Data Read/Write
4 0 1 0 0 Data Read/Write, accessed
5 0 1 0 1 Data Read-Only, expand-down
6 0 ! ! 0 Data Read-Only, expand-down, accessed
7 0 1 1 1 Data)
Read/Write, expand-down
Read/Write, expand-down, accessed
C R A
8 1 0 0 0 Code Execute-Only
9 1 0 0 1 Code Execute-Only, accessed
10 1 0 1 0 Code € te/Read
11 1o | 1|1 Code xecute/kea
12 1 1 0 0 Code Execute/Read, accessed
13 1 1 0 1 Code Execute-Only, conforming
14 ! ! ! 0 Code Execute-Only, conforming, accessed
15 1 1 1 1 Code]
Execute/Read-Only, conforming
Execute/Read-0Only, conforming,
accessed

Stack segments are data segments which must be read/write segments. Loading the
SS register with a segment selector for a nonwritable data segment generates a
general-protection exception (#GP). If the size of a stack segment needs to be
changed dynamically, the stack segment can be an expand-down data segment
(expansion-direction flag set). Here, dynamically changing the segment limit causes
stack space to be added to the bottom of the stack. If the size of a stack segment is
intended to remain static, the stack segment may be either an expand-up or expand-
down type.

The accessed bit indicates whether the segment has been accessed since the last
time the operating-system or executive cleared the bit. The processor sets this bit
whenever it loads a segment selector for the segment into a segment register,
assuming that the type of memory that contains the segment descriptor supports
processor writes. The bit remains set until explicitly cleared. This bit can be used both
for virtual memory management and for debugging.

For code segments, the three low-order bits of the type field are interpreted as
accessed (A), read enable (R), and conforming (C). Code segments can be execute-

Vol.3 3-17

PROTECTED-MODE MEMORY MANAGEMENT

only or execute/read, depending on the setting of the read-enable bit. An
execute/read segment might be used when constants or other static data have been
placed with instruction code in a ROM. Here, data can be read from the code segment
either by using an instruction with a CS override prefix or by loading a segment
selector for the code segment in a data-segment register (the DS, ES, FS, or GS
registers). In protected mode, code segments are not writable.

Code segments can be either conforming or nonconforming. A transfer of execution
into a more-privileged conforming segment allows execution to continue at the
current privilege level. A transfer into a nonconforming segment at a different privi-
lege level results in a general-protection exception (#GP), unless a call gate or task
gate is used (see Section 4.8.1, “Direct Calls or Jumps to Code Segments”, for more
information on conforming and nonconforming code segments). System utilities that
do not access protected facilities and handlers for some types of exceptions (such as,
divide error or overflow) may be loaded in conforming code segments. Utilities that
need to be protected from less privileged programs and procedures should be placed
in nonconforming code segments.

NOTE

Execution cannot be transferred by a call or a jump to a less-
privileged (numerically higher privilege level) code segment,
regardless of whether the target segment is a conforming or noncon-
forming code segment. Attempting such an execution transfer will
result in a general-protection exception.

All data segments are nonconforming, meaning that they cannot be accessed by less
privileged programs or procedures (code executing at numerically high privilege
levels). Unlike code segments, however, data segments can be accessed by more
privileged programs or procedures (code executing at numerically lower privilege
levels) without using a special access gate.

If the segment descriptors in the GDT or an LDT are placed in ROM, the processor can
enter an indefinite loop if software or the processor attempts to update (write to) the
ROM-based segment descriptors. To prevent this problem, set the accessed bits for
all segment descriptors placed in a ROM. Also, remove operating-system or executive
code that attempts to modify segment descriptors located in ROM.

3.5 SYSTEM DESCRIPTOR TYPES

When the S (descriptor type) flag in a segment descriptor is clear, the descriptor type
is a system descriptor. The processor recognizes the following types of system
descriptors:

® Local descriptor-table (LDT) segment descriptor.
® Task-state segment (TSS) descriptor.
® Call-gate descriptor.

3-18 Vol.3

PROTECTED-MODE MEMORY MANAGEMENT

® Interrupt-gate descriptor.
®* Trap-gate descriptor.
®* Task-gate descriptor.

These descriptor types fall into two categories: system-segment descriptors and gate
descriptors. System-segment descriptors point to system segments (LDT and TSS
segments). Gate descriptors are in themselves “gates,” which hold pointers to proce-
dure entry points in code segments (call, interrupt, and trap gates) or which hold
segment selectors for TSS’s (task gates).

Table 3-2 shows the encoding of the type field for system-segment descriptors and
gate descriptors. Note that system descriptors in IA-32e mode are 16 bytes instead
of 8 bytes.

Table 3-2. System-Segment and Gate-Descriptor Types

Type Field Description
Decimal 11 |10 | 9 8 32-Bit Mode IA-32e Mode
0 0 0 0 Reserved Upper 8 byte of an 16-
byte descriptor

1 0 0 0 1 | 16-bit TSS (Available) Reserved

2 0 0 1 0 |LDT LDT

3 0 0 1 1 | 16-bit TSS (Busy) Reserved

4 0 1 0 0 | 16-bit Call Gate Reserved

5 0 1 0 1 | Task Gate Reserved

6 0 1 1 0 | 16-bit Interrupt Gate Reserved

7 0 1 1 1 16-bit Trap Gate Reserved

8 1 0 0 0 | Reserved Reserved

9 1 0 0 1 | 32-bit TSS (Available) 64-bit TSS (Available)
10 1 0 1 0 | Reserved Reserved
11 1 0 1 1 | 32-bit TSS (Busy) 64-bit TSS (Busy)
12 1 1 0 0 | 32-bit Call Gate 64-bit Call Gate
13 1 1 0 1 | Reserved Reserved
14 1 1 1 0 | 32-bit Interrupt Gate 64-bit Interrupt Gate
15 1 1 1 1 | 32-bit Trap Gate 64-bit Trap Gate

See also: Section 3.5.1, "Segment Descriptor Tables”, and Section 6.2.2, “"TSS
Descriptor” (for more information on the system-segment descriptors); see Section

Vol.3 3-19

PROTECTED-MODE MEMORY MANAGEMENT

4.8.3, “Call Gates”, Section 5.11, “IDT Descriptors”, and Section 6.2.5, “Task-Gate
Descriptor” (for more information on the gate descriptors).

3.5.1 Segment Descriptor Tables

A segment descriptor table is an array of segment descriptors (see Figure 3-10). A
descriptor table is variable in length and can contain up to 8192 (213) 8-byte descrip-
tors. There are two kinds of descriptor tables:

® The global descriptor table (GDT)
® The local descriptor tables (LDT)

Global Local
Descriptor Descriptor
Table (GDT) Table (LDT)
T ' '
L0 m=o =
Segment
Selector
56 56
48 48
40 40
32 32
24 24
16 16
8 8
First Descriptor in
GDT is Not Used 0 0
GDTR Register LDTR Register
Limit | Limit
| Base Address Base Address
Seg. Sel.

Figure 3-10. Global and Local Descriptor Tables

Each system must have one GDT defined, which may be used for all programs and
tasks in the system. Optionally, one or more LDTs can be defined. For example, an

3-20 Vol. 3

PROTECTED-MODE MEMORY MANAGEMENT

LDT can be defined for each separate task being run, or some or all tasks can share
the same LDT.

The GDT is not a segment itself; instead, it is a data structure in linear address space.
The base linear address and limit of the GDT must be loaded into the GDTR register
(see Section 2.4, "Memory-Management Registers”). The base addresses of the GDT
should be aligned on an eight-byte boundary to yield the best processor perfor-
mance. The limit value for the GDT is expressed in bytes. As with segments, the limit
value is added to the base address to get the address of the last valid byte. A limit
value of 0 results in exactly one valid byte. Because segment descriptors are always
8 bytes long, the GDT limit should always be one less than an integral multiple of
eight (thatis, 8N - 1).

The first descriptor in the GDT is not used by the processor. A segment selector to
this “null descriptor” does not generate an exception when loaded into a data-
segment register (DS, ES, FS, or GS), but it always generates a general-protection
exception (#GP) when an attempt is made to access memory using the descriptor. By
initializing the segment registers with this segment selector, accidental reference to
unused segment registers can be guaranteed to generate an exception.

The LDT is located in a system segment of the LDT type. The GDT must contain a
segment descriptor for the LDT segment. If the system supports multiple LDTs, each
must have a separate segment selector and segment descriptor in the GDT. The
segment descriptor for an LDT can be located anywhere in the GDT. See Section 3.5,
“System Descriptor Types”, information on the LDT segment-descriptor type.

An LDT is accessed with its segment selector. To eliminate address translations when
accessing the LDT, the segment selector, base linear address, limit, and access rights
of the LDT are stored in the LDTR register (see Section 2.4, “Memory-Management
Registers”).

When the GDTR register is stored (using the SGDT instruction), a 48-bit “pseudo-
descriptor” is stored in memory (see top diagram in Figure 3-11). To avoid alignment
check faults in user mode (privilege level 3), the pseudo-descriptor should be located
at an odd word address (that is, address MOD 4 is equal to 2). This causes the
processor to store an aligned word, followed by an aligned doubleword. User-mode
programs normally do not store pseudo-descriptors, but the possibility of generating
an alignment check fault can be avoided by aligning pseudo-descriptors in this way.
The same alignment should be used when storing the IDTR register using the SIDT
instruction. When storing the LDTR or task register (using the SLTR or STR instruc-
tion, respectively), the pseudo-descriptor should be located at a doubleword address
(that is, address MOD 4 is equal to 0).

Vol.3 3-21

PROTECTED-MODE MEMORY MANAGEMENT

47 16 15 0
| 32-bitBase Address | Limit |

79 16 15 0
| 64-bitBase Address | Limit |

Figure 3-11. Pseudo-Descriptor Formats

3.5.2 Segment Descriptor Tables in IA-32e Mode

In IA-32e mode, a segment descriptor table can contain up to 8192 (213) 8-byte
descriptors. An entry in the segment descriptor table can be 8 bytes. System descrip-
tors are expanded to 16 bytes (occupying the space of two entries).

GDTR and LDTR registers are expanded to hold 64-bit base address. The corre-
sponding pseudo-descriptor is 80 bits. (see the bottom diagram in Figure 3-11).

The following system descriptors expand to 16 bytes:
— Call gate descriptors (see Section 4.8.3.1, “IA-32e Mode Call Gates”)
— IDT gate descriptors (see Section 5.14.1, “64-Bit Mode IDT")

— LDT and TSS descriptors (see Section 6.2.3, “TSS Descriptor in 64-bit
mode”).

3.6 PAGING (VIRTUAL MEMORY) OVERVIEW

When operating in protected mode, IA-32 architecture permits linear address space
to be mapped directly into a large physical memory (for example, 4 GBytes of RAM)
or indirectly (using paging) into a smaller physical memory and disk storage. This
latter method of mapping the linear address space is referred to as virtual memory or
demand-paged virtual memory.

When paging is used, the processor divides the linear address space into fixed-size
pages (of 4 KBytes, 2 MBytes, or 4 MBytes in length) that can be mapped into phys-
ical memory and/or disk storage. When a program (or task) references a logical
address in memory, the processor translates the address into a linear address and
then uses its paging mechanism to translate the linear address into a corresponding
physical address.

If the page containing the linear address is not currently in physical memory, the
processor generates a page-fault exception (#PF). The exception handler for the
page-fault exception typically directs the operating system or executive to load the
page from disk storage into physical memory (perhaps writing a different page from
physical memory out to disk in the process). When the page has been loaded in phys-
ical memory, a return from the exception handler causes the instruction that gener-

3-22 Vol. 3

PROTECTED-MODE MEMORY MANAGEMENT

ated the exception to be restarted. The information that the processor uses to map
linear addresses into the physical address space and to generate page-fault excep-
tions (when necessary) is contained in page directories and page tables stored in
memory.

Paging is different from segmentation through its use of fixed-size pages. Unlike
segments, which usually are the same size as the code or data structures they hold,
pages have a fixed size. If segmentation is the only form of address translation used,
a data structure present in physical memory will have all of its parts in memory. If
paging is used, a data structure can be partly in memory and partly in disk storage.

To minimize the number of bus cycles required for address translation, the most
recently accessed page-directory and page-table entries are cached in the processor
in devices called translation lookaside buffers (TLBs). The TLBs satisfy most requests
for reading the current page directory and page tables without requiring a bus cycle.
Extra bus cycles occur only when the TLBs do not contain a page-table entry, which
typically happens when a page has not been accessed for a long time. See Section
3.12, “Translation Lookaside Buffers (TLBs)”, for more information on the TLBs.

3.6.1 Paging Options
Paging is controlled by three flags in the processor’s control registers:

* PG (paging) flag. Bit 31 of CRO (available in all IA-32 processors beginning with
the Intel386 processor).

®* PSE (page size extensions) flag. Bit 4 of CR4 (introduced in the Pentium
processor).

®* PAE (physical address extension) flag. Bit 5 of CR4 (introduced in the
Pentium Pro processors).

The PG flag enables the page-translation mechanism. The operating system or exec-
utive usually sets this flag during processor initialization. The PG flag must be set if
the processor’s page-translation mechanism is to be used to implement a demand-
paged virtual memory system or if the operating system is designed to run more
than one program (or task) in virtual-8086 mode.

The PSE flag enables large page sizes: 4-MByte pages or 2-MByte pages (when the
PAE flag is set). When the PSE flag is clear, the more common page length of

4 KBytes is used. See Section 3.7.2, “Linear Address Translation (4-MByte Pages)”,
Section 3.8.3, "Linear Address Translation With PAE Enabled (2-MByte Pages)”, and
Section 3.9, “36-Bit Physical Addressing Using the PSE-36 Paging Mechanism” for
more information about the use of the PSE flag.

The PAE flag provides a method of extending physical addresses to 36 bits. This
physical address extension can only be used when paging is enabled. It relies on an
additional page directory pointer table that is used along with page directories and
page tables to reference physical addresses above FFFFFFFFH. See Section 3.8, “36-
Bit Physical Addressing Using the PAE Paging Mechanism”, for more information
about extending physical addresses using the PAE flag.

Vol.3 3-23

PROTECTED-MODE MEMORY MANAGEMENT

When PAE flag is enabled for Intel 64 processors, the PAE mechanism is enhanced to
support more than 36 bits of physical addressing (if the processor’s implementation
supports more than 36 bits of physical addressing). This applies to IA-32e mode
address translation (see Section 3.10, “"PAE-Enabled Paging in IA-32e Mode"”) and
enhanced legacy PAE-enabled address translation (see Section 3.8.1, "Enhanced
Legacy PAE Paging”).

The 36-bit page size extension (PSE-36) feature provides an alternate method of
extending physical addressing to 36 bits. This paging mechanism uses the page size
extension mode (enabled with the PSE flag) and modified page directory entries to
reference physical addresses above FFFFFFFFH. The PSE-36 feature flag (bit 17 in the
EDX register when the CPUID instruction is executed with a source operand of 1)
indicates the availability of this addressing mechanism. See Section 3.9, “36-Bit
Physical Addressing Using the PSE-36 Paging Mechanism”, for more information
about the PSE-36 physical address extension and page size extension mechanism.

3.6.2 Page Tables and Directories in the Absence of Intel® 64
Technology

The information that the processor uses to translate linear addresses into physical
addresses (when paging is enabled) is contained in four data structures:

®* Page directory — An array of 32-bit page-directory entries (PDEs) contained in
a 4-KByte page. Up to 1024 page-directory entries can be held in a page
directory.

* Page table — An array of 32-bit page-table entries (PTEs) contained in a
4-KByte page. Up to 1024 page-table entries can be held in a page table. (Page
tables are not used for 2-MByte or 4-MByte pages. These page sizes are mapped
directly from one or more page-directory entries.)

* Page — A 4-KByte, 2-MByte, or 4-MByte flat address space.

* Page-Directory-Pointer Table — An array of four 64-bit entries, each of which
points to a page directory. This data structure is only used when the physical
address extension is enabled (see Section 3.8, “36-Bit Physical Addressing Using
the PAE Paging Mechanism”).

These tables provide access to either 4-KByte or 4-MByte pages when normal 32-bit
physical addressing is being used and to either 4-KByte or 2-MByte pages or 4-MByte
pages only when extended (36-bit) physical addressing is being used.

Table 3-3 shows the page size and physical address size obtained from various
settings of the paging control flags and the PSE-36 CPUID feature flag. Each page-
directory entry contains a PS (page size) flag that specifies whether the entry points
to a page table whose entries in turn point to 4-KByte pages (PS set to 0) or whether
the page-directory entry points directly to a 4-MByte (PSE and PS set to 1) or
2-MByte page (PAE and PS set to 1).

3-24 Vol.3

PROTECTED-MODE MEMORY MANAGEMENT

3.7 PAGE TRANSLATION USING 32-BIT PHYSICAL
ADDRESSING

The following sections describe the IA-32 architecture’s page translation mechanism
when using 32-bit physical addresses and a maximum physical address space of

4 GBytes. The 32-bit physical addressing described applies to IA-32 processors or
when the following situations are all true:

®* The processor supports Intel 64 architecture but IA-32e mode is not active.
® PAE or PSE mechanism is not active.

Section 3.8, “"36-Bit Physical Addressing Using the PAE Paging Mechanism” and
Section 3.9, “36-Bit Physical Addressing Using the PSE-36 Paging Mechanism”
describe extensions to this page translation mechanism to support 36-bit physical
addresses and a maxim