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CHAPTER 1
ABOUT THIS MANUAL

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A: 
System Programming Guide, Part 1 (order number 253668) and the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3B: System Programming 
Guide, Part 2 (order number 253669) are part of a set that describes the architecture 
and programming environment of Intel 64 and IA-32 Architecture processors. The 
other volumes in this set are:

• Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: Basic 
Architecture (order number 253665).

• Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 
2A & 2B: Instruction Set Reference (order numbers 253666 and 253667).

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, 
describes the basic architecture and programming environment of Intel 64 and IA-32 
processors. The Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volumes 2A & 2B, describe the instruction set of the processor and the opcode struc-
ture. These volumes apply to application programmers and to programmers who 
write operating systems or executives. The Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volumes 3A & 3B, describe the operating-system support 
environment of Intel 64 and IA-32 processors. These volumes target operating-
system and BIOS designers. In addition, Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3B, addresses the programming environment for 
classes of software that host operating systems. 

1.1 PROCESSORS COVERED IN THIS MANUAL
This manual set includes information pertaining primarily to the most recent Intel® 
64 and IA-32 processors, which include: 

• Pentium® processors

• P6 family processors

• Pentium® 4 processors

• Pentium® M processors

• Intel® Xeon® processors

• Pentium® D processors

• Pentium® processor Extreme Editions

• 64-bit Intel® Xeon® processors

• Intel® Core™ Duo processor

• Intel® Core™ Solo processor
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• Dual-Core Intel® Xeon® processor LV

• Intel® Core™2 Duo processor

• Intel® Core™2 Quad processor Q6000 series

• Intel® Xeon® processor 3000, 3200 series

• Intel® Xeon® processor 5000 series

• Intel® Xeon® processor 5100, 5300 series

• Intel® Core™2 Extreme processor X7000 and X6800 series

• Intel® Core™2 Extreme QX6000 series

• Intel® Xeon® processor 7100 series

• Intel® Pentium® Dual-Core processor

• Intel® Xeon® processor 7200, 7300 series

• Intel® Core™2 Extreme QX9000 series

• Intel® Xeon® processor 5200, 5400 series

• Intel® CoreTM2 Extreme processor QX9000 and X9000 series

• Intel® CoreTM2 Quad processor Q9000 series

• Intel® CoreTM2 Duo processor E8000 series

P6 family processors are IA-32 processors based on the P6 family microarchitecture. 
This includes the Pentium® Pro, Pentium® II, Pentium® III, and Pentium® III Xeon® 
processors. 

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based 
on the Intel NetBurst® microarchitecture. Most early Intel® Xeon® processors are 
based on the Intel NetBurst® microarchitecture. Intel Xeon processor 5000, 7100 
series are based on the Intel NetBurst® microarchitecture.

The Intel® Core™ Duo, Intel® Core™ Solo and dual-core Intel® Xeon® processor LV 
are based on an improved Pentium® M processor microarchitecture. 

The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200, and 7300 series, Intel® 
Pentium® dual-core, Intel® Core™2 Duo, Intel® Core™2 Quad and Intel® Core™2 
Extreme processors are based on Intel® Core™ microarchitecture.

The Intel® Xeon® processor 5200, 5400 series, Intel® CoreTM2 Quad processor 
Q9000 series, and Intel® CoreTM2 Extreme processors QX9000, X9000 series, Intel® 
CoreTM2 processor E8000 series are based on Enhanced Intel® CoreTM microarchitec-
ture.

P6 family, Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo processors, dual-core 
Intel® Xeon® processor LV, and early generations of Pentium 4 and Intel Xeon 
processors support IA-32 architecture.

The Intel® Xeon® processor 3000, 3200, 5000, 5100, 5200, 5300, 5400, 7100, 
7200, 7300series, Intel® Core™2 Duo, Intel® Core™2 Extreme processors, Intel 
Core 2 Quad processors, Pentium® D processors, Pentium® Dual-Core processor, 
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newer generations of Pentium 4 and Intel Xeon processor family support Intel® 64 
architecture.

IA-32 architecture is the instruction set architecture and programming environment 
for Intel's 32-bit microprocessors. Intel® 64 architecture is the instruction set archi-
tecture and programming environment which is a superset of and compatible with 
IA-32 architecture.

1.2 OVERVIEW OF THE SYSTEM PROGRAMMING GUIDE
A description of this manual’s content follows:

Chapter 1 — About This Manual. Gives an overview of all five volumes of the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual. It also describes 
the notational conventions in these manuals and lists related Intel manuals and 
documentation of interest to programmers and hardware designers.

Chapter 2 — System Architecture Overview. Describes the modes of operation 
used by Intel 64 and IA-32 processors and the mechanisms provided by the architec-
tures to support operating systems and executives, including the system-oriented 
registers and data structures and the system-oriented instructions. The steps neces-
sary for switching between real-address and protected modes are also identified.

Chapter 3 — Protected-Mode Memory Management. Describes the data struc-
tures, registers, and instructions that support segmentation and paging. The chapter 
explains how they can be used to implement a “flat” (unsegmented) memory model 
or a segmented memory model.

Chapter 4 — Protection. Describes the support for page and segment protection 
provided in the Intel 64 and IA-32 architectures. This chapter also explains the 
implementation of privilege rules, stack switching, pointer validation, user and 
supervisor modes.

Chapter 5 — Interrupt and Exception Handling. Describes the basic interrupt 
mechanisms defined in the Intel 64 and IA-32 architectures, shows how interrupts 
and exceptions relate to protection, and describes how the architecture handles each 
exception type. Reference information for each exception is given at the end of this 
chapter.

Chapter 6 — Task Management. Describes mechanisms the IA-32 architecture 
provides to support multitasking and inter-task protection.

Chapter 7 — Multiple-Processor Management. Describes the instructions and 
flags that support multiple processors with shared memory, memory ordering, and 
Hyper-Threading Technology.

Chapter 8 — Advanced Programmable Interrupt Controller (APIC). Describes 
the programming interface to the local APIC and gives an overview of the interface 
between the local APIC and the I/O APIC.
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Chapter 9 — Processor Management and Initialization. Defines the state of an 
Intel 64 or IA-32 processor after reset initialization. This chapter also explains how to 
set up an Intel 64 or IA-32 processor for real-address mode operation and protected- 
mode operation, and how to switch between modes.

Chapter 10 — Memory Cache Control. Describes the general concept of caching 
and the caching mechanisms supported by the Intel 64 or IA-32 architectures. This 
chapter also describes the memory type range registers (MTRRs) and how they can 
be used to map memory types of physical memory. Information on using the new 
cache control and memory streaming instructions introduced with the Pentium III, 
Pentium 4, and Intel Xeon processors is also given.

Chapter 11 — Intel® MMX™ Technology System Programming. Describes 
those aspects of the Intel® MMX™ technology that must be handled and considered 
at the system programming level, including: task switching, exception handling, and 
compatibility with existing system environments.

Chapter 12 — System Programming For Instruction Set Extensions And 
Processor Extended States. Describes the operating system requirements to 
support SSE/SSE2/SSE3/SSSE3/SSE4 extensions, including task switching, excep-
tion handling, and compatibility with existing system environments. The latter part of 
this chapter describes the extensible framework of operating system requirements to 
support processor extended states. Processor extended state may be required by 
instruction set extensions beyond those of SSE/SSE2/SSE3/SSSE3/SSE4 extensions.

Chapter 13 — Power and Thermal Management. Describes the architecture’s 
power and the thermal monitoring facilities.

Chapter 14 — Machine-Check Architecture. Describes the machine-check archi-
tecture.

Chapter 15 — 8086 Emulation. Describes the real-address and virtual-8086 
modes of the IA-32 architecture. 

Chapter 16 — Mixing 16-Bit and 32-Bit Code. Describes how to mix 16-bit and 
32-bit code modules within the same program or task.

Chapter 17 — IA-32 Architecture Compatibility. Describes architectural 
compatibility among IA-32 processors.

Chapter 18 — Debugging and Performance Monitoring. Describes the debug-
ging registers and other debug mechanism provided in Intel 64 or IA-32 processors. 
This chapter also describes the time-stamp counter and the performance-monitoring 
counters.

Chapter 19 — Introduction to Virtual-Machine Extensions. Describes the basic 
elements of virtual machine architecture and the virtual-machine extensions for 
Intel 64 and IA-32 Architectures.

Chapter 20 — Virtual-Machine Control Structures. Describes components that 
manage VMX operation. These include the working-VMCS pointer and the control-
ling-VMCS pointer.
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Chapter 21— VMX Non-Root Operation. Describes the operation of a VMX non-
root operation. Processor operation in VMX non-root mode can be restricted 
programmatically such that certain operations, events or conditions can cause the 
processor to transfer control from the guest (running in VMX non-root mode) to the 
monitor software (running in VMX root mode).

Chapter 22 — VM Entries. Describes VM entries. VM entry transitions the processor 
from the VMM running in VMX root-mode to a VM running in VMX non-root mode. 
VM-Entry is performed by the execution of VMLAUNCH or VMRESUME instructions.

Chapter 23 — VM Exits. Describes VM exits. Certain events, operations or situa-
tions while the processor is in VMX non-root operation may cause VM-exit transitions. 
In addition, VM exits can also occur on failed VM entries.

Chapter 24 — System Management. Describes Intel 64 and IA-32 architectures’ 
system management mode (SMM) facilities.

Chapter 25 — Virtual-Machine Monitoring Programming Considerations. 
Describes programming considerations for VMMs. VMMs manage virtual machines 
(VMs).

Chapter 26 — Virtualization of System Resources. Describes the virtualization 
of the system resources. These include: debugging facilities, address translation, 
physical memory, and microcode update facilities.

Chapter 27 — Handling Boundary Conditions in a Virtual Machine Monitor. 
Describes what a VMM must consider when handling exceptions, interrupts, error 
conditions, and transitions between activity states.

Appendix A — Performance-Monitoring Events. Lists the events that can be 
counted with the performance-monitoring counters and the codes used to select 
these events. Both Pentium processor and P6 family processor events are described.

Appendix B — Model-Specific Registers (MSRs). Lists the MSRs available in the 
Pentium processors, the P6 family processors, the Pentium 4, Intel Xeon, Intel Core 
Solo, Intel Core Duo processors, and Intel Core 2 processor family and describes 
their functions.

Appendix C — MP Initialization For P6 Family Processors. Gives an example of 
how to use of the MP protocol to boot P6 family processors in n MP system.

Appendix D — Programming the LINT0 and LINT1 Inputs. Gives an example of 
how to program the LINT0 and LINT1 pins for specific interrupt vectors.

Appendix E — Interpreting Machine-Check Error Codes. Gives an example of 
how to interpret the error codes for a machine-check error that occurred on a P6 
family processor.

Appendix F — APIC Bus Message Formats. Describes the message formats for 
messages transmitted on the APIC bus for P6 family and Pentium processors.

Appendix G — VMX Capability Reporting Facility. Describes the VMX capability 
MSRs. Support for specific VMX features is determined by reading capability MSRs.
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Appendix H — Field Encoding in VMCS. Enumerates all fields in the VMCS and 
their encodings. Fields are grouped by width (16-bit, 32-bit, etc.) and type (guest-
state, host-state, etc.).

Appendix I — VM Basic Exit Reasons. Describes the 32-bit fields that encode 
reasons for a VM exit. Examples of exit reasons include, but are not limited to: soft-
ware interrupts, processor exceptions, software traps, NMIs, external interrupts, and 
triple faults.

Appendix J — VM Instruction Error Numbers. Describes the VM-instruction error 
codes generated by failed VM instruction executions (that have a valid working-VMCS 
pointer). 

1.3 NOTATIONAL CONVENTIONS
This manual uses specific notation for data-structure formats, for symbolic represen-
tation of instructions, and for hexadecimal and binary numbers. A review of this 
notation makes the manual easier to read.

1.3.1 Bit and Byte Order
In illustrations of data structures in memory, smaller addresses appear toward the 
bottom of the figure; addresses increase toward the top. Bit positions are numbered 
from right to left. The numerical value of a set bit is equal to two raised to the power 
of the bit position. Intel 64 and IA-32 processors are “little endian” machines; this 
means the bytes of a word are numbered starting from the least significant byte. 
Figure 1-1 illustrates these conventions.

1.3.2 Reserved Bits and Software Compatibility
In many register and memory layout descriptions, certain bits are marked as 
reserved. When bits are marked as reserved, it is essential for compatibility with 
future processors that software treat these bits as having a future, though unknown, 
effect. The behavior of reserved bits should be regarded as not only undefined, but 
unpredictable. Software should follow these guidelines in dealing with reserved bits:

• Do not depend on the states of any reserved bits when testing the values of 
registers which contain such bits. Mask out the reserved bits before testing.

• Do not depend on the states of any reserved bits when storing to memory or to a 
register.

• Do not depend on the ability to retain information written into any reserved bits.

• When loading a register, always load the reserved bits with the values indicated 
in the documentation, if any, or reload them with values previously read from the 
same register.
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NOTE
Avoid any software dependence upon the state of reserved bits in 
Intel 64 and IA-32 registers. Depending upon the values of reserved 
register bits will make software dependent upon the unspecified 
manner in which the processor handles these bits. Programs that 
depend upon reserved values risk incompatibility with future 
processors.

1.3.3 Instruction Operands
When instructions are represented symbolically, a subset of assembly language is 
used. In this subset, an instruction has the following format:

label: mnemonic argument1, argument2, argument3

where:

• A label is an identifier which is followed by a colon.

• A mnemonic is a reserved name for a class of instruction opcodes which have 
the same function.

• The operands argument1, argument2, and argument3 are optional. There 
may be from zero to three operands, depending on the opcode. When present, 
they take the form of either literals or identifiers for data items. Operand 
identifiers are either reserved names of registers or are assumed to be assigned 
to data items declared in another part of the program (which may not be shown 
in the example).

When two operands are present in an arithmetic or logical instruction, the right 
operand is the source and the left operand is the destination. 

For example:

Figure 1-1.  Bit and Byte Order
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LOADREG: MOV EAX, SUBTOTAL

In this example LOADREG is a label, MOV is the mnemonic identifier of an opcode, 
EAX is the destination operand, and SUBTOTAL is the source operand. Some 
assembly languages put the source and destination in reverse order.

1.3.4 Hexadecimal and Binary Numbers
Base 16 (hexadecimal) numbers are represented by a string of hexadecimal digits 
followed by the character H (for example, F82EH). A hexadecimal digit is a character 
from the following set: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F.

Base 2 (binary) numbers are represented by a string of 1s and 0s, sometimes 
followed by the character B (for example, 1010B). The “B” designation is only used in 
situations where confusion as to the type of number might arise.

1.3.5 Segmented Addressing
The processor uses byte addressing. This means memory is organized and accessed 
as a sequence of bytes. Whether one or more bytes are being accessed, a byte 
address is used to locate the byte or bytes memory. The range of memory that can 
be addressed is called an address space.

The processor also supports segmented addressing. This is a form of addressing 
where a program may have many independent address spaces, called segments. 
For example, a program can keep its code (instructions) and stack in separate 
segments. Code addresses would always refer to the code space, and stack 
addresses would always refer to the stack space. The following notation is used to 
specify a byte address within a segment:

Segment-register:Byte-address

For example, the following segment address identifies the byte at address FF79H in 
the segment pointed by the DS register:

DS:FF79H

The following segment address identifies an instruction address in the code segment. 
The CS register points to the code segment and the EIP register contains the address 
of the instruction.

CS:EIP

1.3.6 Syntax for CPUID, CR, and MSR Values
Obtain feature flags, status, and system information by using the CPUID instruction, 
by checking control register bits, and by reading model-specific registers. We are 
moving toward a single syntax to represent this type of information. See Figure 1-2.
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1.3.7 Exceptions
An exception is an event that typically occurs when an instruction causes an error. 
For example, an attempt to divide by zero generates an exception. However, some 
exceptions, such as breakpoints, occur under other conditions. Some types of excep-
tions may provide error codes. An error code reports additional information about the 
error. An example of the notation used to show an exception and error code is shown 
below:

#PF(fault code)

Figure 1-2.  Syntax for CPUID, CR, and MSR Data Presentation
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This example refers to a page-fault exception under conditions where an error code 
naming a type of fault is reported. Under some conditions, exceptions which produce 
error codes may not be able to report an accurate code. In this case, the error code 
is zero, as shown below for a general-protection exception:

#GP(0)

1.4 RELATED LITERATURE
Literature related to Intel 64 and IA-32 processors is listed on-line at: 

http://developer.intel.com/products/processor/index.htm

Some of the documents listed at this web site can be viewed on-line; others can be 
ordered. The literature available is listed by Intel processor and then by the following 
literature types: applications notes, data sheets, manuals, papers, and specification 
updates. 

See also: 

• The data sheet for a particular Intel 64 or IA-32 processor

• The specification update for a particular Intel 64 or IA-32 processor

• Intel® C++ Compiler documentation and online help 
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm

• Intel® Fortran Compiler documentation and online help 
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm

• Intel® VTune™ Performance Analyzer documentation and online help 
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm 

• Intel® 64 and IA-32 Architectures Software Developer’s Manual (in five volumes) 
http://developer.intel.com/products/processor/manuals/index.htm

• Intel® 64 and IA-32 Architectures Optimization Reference Manual  
http://developer.intel.com/products/processor/manuals/index.htm

• Intel® Processor Identification with the CPUID Instruction, AP-485 
http://www.intel.com/design/processor/applnots/241618.htm

• TLBs, Paging-Structure Caches, and Their Invalidation, 
http://developer.intel.com/products/processor/manuals/index.htm

• Intel® 64 Architecture Memory Ordering White Paper, 
http://developer.intel.com/products/processor/manuals/index.htm

• Intel® Trusted Execution Technology Measured Launched Environment 
Programming Guide, http://www.intel.com/technology/security/index.htm

• Intel® SSE4 Programming Reference, 
http://developer.intel.com/products/processor/manuals/index.htm

http://developer.intel.com/products/processor/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://developer.intel.com/products/processor/manuals/index.htm

http://developer.intel.com/products/processor/manuals/index.htm
http://www.intel.com/support/processors/sb/cs-009861.htm
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• Developing Multi-threaded Applications: A Platform Consistent Approach 
http://cache-
www.intel.com/cd/00/00/05/15/51534_developing_multithreaded_applications.pdf

• Using Spin-Loops on Intel Pentium 4 Processor and Intel Xeon Processor MP 
http://www3.intel.com/cd/ids/developer/asmo-
na/eng/dc/threading/knowledgebase/19083.htm

More relevant links are:

• Software network link:

http://softwarecommunity.intel.com/isn/home/

• Developer centers:

http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/index.htm

• Processor support general link:

http://www.intel.com/support/processors/

• Software products and packages:

http://www.intel.com/cd/software/products/asmo-na/eng/index.htm

• Intel 64 and IA-32 processor manuals (printed or PDF downloads):

http://developer.intel.com/products/processor/manuals/index.htm

• Intel® Multi-Core Technology:

http://developer.intel.com/multi-core/index.htm

• Hyper-Threading Technology (HT Technology):

http://developer.intel.com/technology/hyperthread/

http://www3.intel.com/cd/ids/developer/asmo-na/eng/dc/threading/knowledgebase/19083.htm
http://softwarecommunity.intel.com/isn/home/
http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/index.htm
http://www.intel.com/support/processors/
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://developer.intel.com/multi-core/index.htm
http://developer.intel.com/technology/hyperthread/
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CHAPTER 2
SYSTEM ARCHITECTURE OVERVIEW

IA-32 architecture (beginning with the Intel386 processor family) provides extensive 
support for operating-system and system-development software. This support offers 
multiple modes of operation, which include:

• Real mode, protected mode, virtual 8086 mode, and system management mode. 
These are sometimes referred to as legacy modes.

Intel 64 architecture supports almost all the system programming facilities available 
in IA-32 architecture and extends them to a new operating mode (IA-32e mode) that 
supports a 64-bit programming environment. IA-32e mode allows software to 
operate in one of two sub-modes: 

• 64-bit mode supports 64-bit OS and 64-bit applications

• Compatibility mode allows most legacy software to run; it co-exists with 64-bit 
applications under a 64-bit OS.

The IA-32 system-level architecture and includes features to assist in the following 
operations:

• Memory management

• Protection of software modules

• Multitasking

• Exception and interrupt handling

• Multiprocessing

• Cache management

• Hardware resource and power management

• Debugging and performance monitoring

This chapter provides a description of each part of this architecture. It also describes 
the system registers that are used to set up and control the processor at the system 
level and gives a brief overview of the processor’s system-level (operating system) 
instructions.

Many features of the system-level architectural are used only by system program-
mers. However, application programmers may need to read this chapter and the 
following chapters in order to create a reliable and secure environment for applica-
tion programs.

This overview and most subsequent chapters of this book focus on protected-mode 
operation of the IA-32 architecture. IA-32e mode operation of the Intel 64 architec-
ture, as it differs from protected mode operation, is also described. 

All Intel 64 and IA-32 processors enter real-address mode following a power-up or 
reset (see Chapter 8, “Processor Management and Initialization”). Software then 
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initiates the switch from real-address mode to protected mode. If IA-32e mode oper-
ation is desired, software also initiates a switch from protected mode to IA-32e 
mode.

2.1 OVERVIEW OF THE SYSTEM-LEVEL ARCHITECTURE
System-level architecture consists of a set of registers, data structures, and instruc-
tions designed to support basic system-level operations such as memory manage-
ment, interrupt and exception handling, task management, and control of multiple 
processors.

Figure 2-1 provides a summary of system registers and data structures that applies 
to 32-bit modes. System registers and data structures that apply to IA-32e mode are 
shown in Figure 2-2.
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Figure 2-1.  IA-32 System-Level Registers and Data Structures
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Figure 2-2.  System-Level Registers and Data Structures in IA-32e Mode
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2.1.1 Global and Local Descriptor Tables
When operating in protected mode, all memory accesses pass through either the 
global descriptor table (GDT) or an optional local descriptor table (LDT) as shown in 
Figure 2-1. These tables contain entries called segment descriptors. Segment 
descriptors provide the base address of segments well as access rights, type, and 
usage information.

Each segment descriptor has an associated segment selector. A segment selector 
provides the software that uses it with an index into the GDT or LDT (the offset of its 
associated segment descriptor), a global/local flag (determines whether the selector 
points to the GDT or the LDT), and access rights information. 

To access a byte in a segment, a segment selector and an offset must be supplied. 
The segment selector provides access to the segment descriptor for the segment (in 
the GDT or LDT). From the segment descriptor, the processor obtains the base 
address of the segment in the linear address space. The offset then provides the 
location of the byte relative to the base address. This mechanism can be used to 
access any valid code, data, or stack segment, provided the segment is accessible 
from the current privilege level (CPL) at which the processor is operating. The CPL is 
defined as the protection level of the currently executing code segment.

See Figure 2-1. The solid arrows in the figure indicate a linear address, dashed lines 
indicate a segment selector, and the dotted arrows indicate a physical address. For 
simplicity, many of the segment selectors are shown as direct pointers to a segment. 
However, the actual path from a segment selector to its associated segment is always 
through a GDT or LDT.

The linear address of the base of the GDT is contained in the GDT register (GDTR); 
the linear address of the LDT is contained in the LDT register (LDTR).

2.1.1.1  Global and Local Descriptor Tables in IA-32e Mode
GDTR and LDTR registers are expanded to 64-bits wide in both IA-32e sub-modes 
(64-bit mode and compatibility mode). For more information: see Section 3.5.2, 
“Segment Descriptor Tables in IA-32e Mode.”

Global and local descriptor tables are expanded in 64-bit mode to support 64-bit base 
addresses, (16-byte LDT descriptors hold a 64-bit base address and various 
attributes). In compatibility mode, descriptors are not expanded. 

2.1.2 System Segments, Segment Descriptors, and Gates
Besides code, data, and stack segments that make up the execution environment of 
a program or procedure, the architecture defines two system segments: the task-
state segment (TSS) and the LDT. The GDT is not considered a segment because it is 
not accessed by means of a segment selector and segment descriptor. TSSs and LDTs 
have segment descriptors defined for them.
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The architecture also defines a set of special descriptors called gates (call gates, 
interrupt gates, trap gates, and task gates). These provide protected gateways to 
system procedures and handlers that may operate at a different privilege level than 
application programs and most procedures. For example, a CALL to a call gate can 
provide access to a procedure in a code segment that is at the same or a numerically 
lower privilege level (more privileged) than the current code segment. To access a 
procedure through a call gate, the calling procedure1 supplies the selector for the call 
gate. The processor then performs an access rights check on the call gate, comparing 
the CPL with the privilege level of the call gate and the destination code segment 
pointed to by the call gate. 

If access to the destination code segment is allowed, the processor gets the segment 
selector for the destination code segment and an offset into that code segment from 
the call gate. If the call requires a change in privilege level, the processor also 
switches to the stack for the targeted privilege level. The segment selector for the 
new stack is obtained from the TSS for the currently running task. Gates also facili-
tate transitions between 16-bit and 32-bit code segments, and vice versa. 

2.1.2.1  Gates in IA-32e Mode
In IA-32e mode, the following descriptors are 16-byte descriptors (expanded to allow 
a 64-bit base): LDT descriptors, 64-bit TSSs, call gates, interrupt gates, and trap 
gates.

Call gates facilitate transitions between 64-bit mode and compatibility mode. Task 
gates are not supported in IA-32e mode. On privilege level changes, stack segment 
selectors are not read from the TSS. Instead, they are set to NULL.

2.1.3 Task-State Segments and Task Gates
The TSS (see Figure 2-1) defines the state of the execution environment for a task. 
It includes the state of general-purpose registers, segment registers, the EFLAGS 
register, the EIP register, and segment selectors with stack pointers for three stack 
segments (one stack for each privilege level). The TSS also includes the segment 
selector for the LDT associated with the task and the page-table base address. 

All program execution in protected mode happens within the context of a task (called 
the current task). The segment selector for the TSS for the current task is stored in 
the task register. The simplest method for switching to a task is to make a call or 
jump to the new task. Here, the segment selector for the TSS of the new task is given 
in the CALL or JMP instruction. In switching tasks, the processor performs the 
following actions:

1. Stores the state of the current task in the current TSS.

1. The word “procedure” is commonly used in this document as a general term for a logical unit or 
block of code (such as a program, procedure, function, or routine). 
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2. Loads the task register with the segment selector for the new task.

3. Accesses the new TSS through a segment descriptor in the GDT.

4. Loads the state of the new task from the new TSS into the general-purpose 
registers, the segment registers, the LDTR, control register CR3 (page-table base 
address), the EFLAGS register, and the EIP register.

5. Begins execution of the new task.

A task can also be accessed through a task gate. A task gate is similar to a call gate, 
except that it provides access (through a segment selector) to a TSS rather than a 
code segment. 

2.1.3.1  Task-State Segments in IA-32e Mode
Hardware task switches are not supported in IA-32e mode. However, TSSs continue 
to exist. The base address of a TSS is specified by its descriptor. 

A 64-bit TSS holds the following information that is important to 64-bit operation: 

• Stack pointer addresses for each privilege level

• Pointer addresses for the interrupt stack table

• Offset address of the IO-permission bitmap (from the TSS base)

The task register is expanded to hold 64-bit base addresses in IA-32e mode. See 
also: Section 6.7, “Task Management in 64-bit Mode.”

2.1.4 Interrupt and Exception Handling
External interrupts, software interrupts and exceptions are handled through the 
interrupt descriptor table (IDT). The IDT stores a collection of gate descriptors that 
provide access to interrupt and exception handlers. Like the GDT, the IDT is not a 
segment. The linear address for the base of the IDT is contained in the IDT register 
(IDTR).

Gate descriptors in the IDT can be interrupt, trap, or task gate descriptors. To access 
an interrupt or exception handler, the processor first receives an interrupt vector 
(interrupt number) from internal hardware, an external interrupt controller, or from 
software by means of an INT, INTO, INT 3, or BOUND instruction. The interrupt 
vector provides an index into the IDT. If the selected gate descriptor is an interrupt 
gate or a trap gate, the associated handler procedure is accessed in a manner similar 
to calling a procedure through a call gate. If the descriptor is a task gate, the handler 
is accessed through a task switch.

2.1.4.1  Interrupt and Exception Handling IA-32e Mode
In IA-32e mode, interrupt descriptors are expanded to 16 bytes to support 64-bit 
base addresses. This is true for 64-bit mode and compatibility mode. 
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The IDTR register is expanded to hold a 64-bit base address. Task gates are not 
supported.

2.1.5 Memory Management
System architecture supports either direct physical addressing of memory or virtual 
memory (through paging). When physical addressing is used, a linear address is 
treated as a physical address. When paging is used: all code, data, stack, and system 
segments (including the GDT and IDT) can be paged with only the most recently 
accessed pages being held in physical memory.

The location of pages (sometimes called page frames) in physical memory is 
contained in two types of system data structures: page directories and page tables. 
Both structures reside in physical memory (see Figure 2-1). 

The base physical address of the page directory is contained in control register CR3. 
An entry in a page directory contains the physical address of the base of a page table, 
access rights and memory management information. An entry in a page table 
contains the physical address of a page frame, access rights and memory manage-
ment information. 

To use this paging mechanism, a linear address is broken into three parts. The parts 
provide separate offsets into the page directory, the page table, and the page frame. 
A system can have a single page directory or several. For example, each task can 
have its own page directory.

2.1.5.1  Memory Management in IA-32e Mode 
In IA-32e mode, physical memory pages are managed by a set of system data struc-
tures. In compatibility mode and 64-bit mode, four levels of system data structures 
are used. These include: 

• The page map level 4 (PML4) — An entry in a PML4 table contains the physical 
address of the base of a page directory pointer table, access rights, and memory 
management information. The base physical address of the PML4 is stored in 
CR3.

• A set of page directory pointers — An entry in a page directory pointer table 
contains the physical address of the base of a page directory table, access rights, 
and memory management information.

• Sets of page directories — An entry in a page directory table contains the 
physical address of the base of a page table, access rights, and memory 
management information.

• Sets of page tables — An entry in a page table contains the physical address of 
a page frame, access rights, and memory management information.
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2.1.6 System Registers
To assist in initializing the processor and controlling system operations, the system 
architecture provides system flags in the EFLAGS register and several system 
registers:

• The system flags and IOPL field in the EFLAGS register control task and mode 
switching, interrupt handling, instruction tracing, and access rights. See also: 
Section 2.3, “System Flags and Fields in the EFLAGS Register.”

• The control registers (CR0, CR2, CR3, and CR4) contain a variety of flags and 
data fields for controlling system-level operations. Other flags in these registers 
are used to indicate support for specific processor capabilities within the 
operating system or executive. See also: Section 2.5, “Control Registers.”

• The debug registers (not shown in Figure 2-1) allow the setting of breakpoints for 
use in debugging programs and systems software. See also: Chapter 18, 
“Debugging and Performance Monitoring.”

• The GDTR, LDTR, and IDTR registers contain the linear addresses and sizes 
(limits) of their respective tables. See also: Section 2.4, “Memory-Management 
Registers.”

• The task register contains the linear address and size of the TSS for the current 
task. See also: Section 2.4, “Memory-Management Registers.”

• Model-specific registers (not shown in Figure 2-1).

The model-specific registers (MSRs) are a group of registers available primarily to 
operating-system or executive procedures (that is, code running at privilege level 0). 
These registers control items such as the debug extensions, the performance-moni-
toring counters, the machine- check architecture, and the memory type ranges 
(MTRRs). 

The number and function of these registers varies among different members of the 
Intel 64 and IA-32 processor families. See also: Section 8.4, “Model-Specific Regis-
ters (MSRs),” and Appendix B, “Model-Specific Registers (MSRs).”

Most systems restrict access to system registers (other than the EFLAGS register) by 
application programs. Systems can be designed, however, where all programs and 
procedures run at the most privileged level (privilege level 0). In such a case, appli-
cation programs would be allowed to modify the system registers.

2.1.6.1  System Registers in IA-32e Mode
In IA-32e mode, the four system-descriptor-table registers (GDTR, IDTR, LDTR, and 
TR) are expanded in hardware to hold 64-bit base addresses. EFLAGS becomes the 
64-bit RFLAGS register. CR0-CR4 are expanded to 64 bits. CR8 becomes available. 
CR8 provides read-write access to the task priority register (TPR) so that the oper-
ating system can control the priority classes of external interrupts. 

In 64-bit mode, debug registers DR0–DR7 are 64 bits. In compatibility mode, 
address-matching in DR0-DR3 is also done at 64-bit granularity.
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On systems that support IA-32e mode, the extended feature enable register 
(IA32_EFER) is available. This model-specific register controls activation of IA-32e 
mode and other IA-32e mode operations. In addition, there are several model-
specific registers that govern IA-32e mode instructions:

• IA32_KernelGSbase — Used by SWAPGS instruction.

• IA32_LSTAR — Used by SYSCALL instruction.

• IA32_SYSCALL_FLAG_MASK — Used by SYSCALL instruction.

• IA32_STAR_CS — Used by SYSCALL and SYSRET instruction.

2.1.7 Other System Resources
Besides the system registers and data structures described in the previous sections, 
system architecture provides the following additional resources:

• Operating system instructions (see also: Section 2.7, “System Instruction 
Summary”).

• Performance-monitoring counters (not shown in Figure 2-1).

• Internal caches and buffers (not shown in Figure 2-1).

Performance-monitoring counters are event counters that can be programmed to 
count processor events such as the number of instructions decoded, the number of 
interrupts received, or the number of cache loads. See also: Section 18, “Debugging 
and Performance Monitoring.”

The processor provides several internal caches and buffers. The caches are used to 
store both data and instructions. The buffers are used to store things like decoded 
addresses to system and application segments and write operations waiting to be 
performed. See also: Chapter 10, “Memory Cache Control.”

2.2 MODES OF OPERATION
The IA-32 supports three operating modes and one quasi-operating mode: 

• Protected mode — This is the native operating mode of the processor. It 
provides a rich set of architectural features, flexibility, high performance and 
backward compatibility to existing software base.

• Real-address mode — This operating mode provides the programming 
environment of the Intel 8086 processor, with a few extensions (such as the 
ability to switch to protected or system management mode).

• System management mode (SMM) — SMM is a standard architectural feature 
in all IA-32 processors, beginning with the Intel386 SL processor. This mode 
provides an operating system or executive with a transparent mechanism for 
implementing power management and OEM differentiation features. SMM is 
entered through activation of an external system interrupt pin (SMI#), which 
generates a system management interrupt (SMI). In SMM, the processor 
switches to a separate address space while saving the context of the currently 
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running program or task. SMM-specific code may then be executed transparently. 
Upon returning from SMM, the processor is placed back into its state prior to the 
SMI.

• Virtual-8086 mode — In protected mode, the processor supports a quasi-
operating mode known as virtual-8086 mode. This mode allows the processor 
execute 8086 software in a protected, multitasking environment.

Intel 64 architecture supports all operating modes of IA-32 architecture and IA-32e 
modes:

• IA-32e mode — In IA-32e mode, the processor supports two sub-modes: 
compatibility mode and 64-bit mode. 64-bit mode provides 64-bit linear 
addressing and support for physical address space larger than 64 GBytes. 
Compatibility mode allows most legacy protected-mode applications to run 
unchanged.

Figure 2-3 shows how the processor moves between operating modes.

The processor is placed in real-address mode following power-up or a reset. The PE 
flag in control register CR0 then controls whether the processor is operating in real-
address or protected mode. See also: Section 8.9, “Mode Switching.”

The VM flag in the EFLAGS register determines whether the processor is operating in 
protected mode or virtual-8086 mode. Transitions between protected mode and 

Figure 2-3.  Transitions Among the Processor’s Operating Modes
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virtual-8086 mode are generally carried out as part of a task switch or a return from 
an interrupt or exception handler. See also: Section 15.2.5, “Entering Virtual-8086 
Mode.”

The LMA bit (IA32_EFER.LMA.LMA[bit 10]) determines whether the processor is 
operating in IA-32e mode. When running in IA-32e mode, 64-bit or compatibility 
sub-mode operation is determined by CS.L bit of the code segment. The processor 
enters into IA-32e mode from protected mode by enabling paging and setting the 
LME bit (IA32_EFER.LME[bit 8]). See also: Chapter 8, “Processor Management and 
Initialization.”

The processor switches to SMM whenever it receives an SMI while the processor is in 
real-address, protected, virtual-8086, or IA-32e modes. Upon execution of the RSM 
instruction, the processor always returns to the mode it was in when the SMI 
occurred.

2.3 SYSTEM FLAGS AND FIELDS IN THE EFLAGS 
REGISTER

The system flags and IOPL field of the EFLAGS register control I/O, maskable hard-
ware interrupts, debugging, task switching, and the virtual-8086 mode (see 
Figure 2-4). Only privileged code (typically operating system or executive code) 
should be allowed to modify these bits.

The system flags and IOPL are:

TF Trap (bit 8) — Set to enable single-step mode for debugging; clear to 
disable single-step mode. In single-step mode, the processor generates a 
debug exception after each instruction. This allows the execution state of a 
program to be inspected after each instruction. If an application program 
sets the TF flag using a POPF, POPFD, or IRET instruction, a debug exception 
is generated after the instruction that follows the POPF, POPFD, or IRET.
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IF Interrupt enable (bit 9) — Controls the response of the processor to 
maskable hardware interrupt requests (see also: Section 5.3.2, “Maskable 
Hardware Interrupts”). The flag is set to respond to maskable hardware 
interrupts; cleared to inhibit maskable hardware interrupts. The IF flag does 
not affect the generation of exceptions or nonmaskable interrupts (NMI 
interrupts). The CPL, IOPL, and the state of the VME flag in control register 
CR4 determine whether the IF flag can be modified by the CLI, STI, POPF, 
POPFD, and IRET.

IOPL I/O privilege level field (bits 12 and 13) — Indicates the I/O privilege 
level (IOPL) of the currently running program or task. The CPL of the 
currently running program or task must be less than or equal to the IOPL to 
access the I/O address space. This field can only be modified by the POPF 
and IRET instructions when operating at a CPL of 0. 

The IOPL is also one of the mechanisms that controls the modification of the 
IF flag and the handling of interrupts in virtual-8086 mode when virtual 
mode extensions are in effect (when CR4.VME = 1). See also: Chapter 13, 
“Input/Output,” in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 1.

NT Nested task (bit 14) — Controls the chaining of interrupted and called 
tasks. The processor sets this flag on calls to a task initiated with a CALL 
instruction, an interrupt, or an exception. It examines and modifies this flag 
on returns from a task initiated with the IRET instruction. The flag can be 
explicitly set or cleared with the POPF/POPFD instructions; however, 

Figure 2-4.  System Flags in the EFLAGS Register
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changing to the state of this flag can generate unexpected exceptions in 
application programs. 

See also: Section 6.4, “Task Linking.”

RF Resume (bit 16) — Controls the processor’s response to instruction-break-
point conditions. When set, this flag temporarily disables debug exceptions 
(#DB) from being generated for instruction breakpoints (although other 
exception conditions can cause an exception to be generated). When clear, 
instruction breakpoints will generate debug exceptions. 

The primary function of the RF flag is to allow the restarting of an instruction 
following a debug exception that was caused by an instruction breakpoint 
condition. Here, debug software must set this flag in the EFLAGS image on 
the stack just prior to returning to the interrupted program with IRETD (to 
prevent the instruction breakpoint from causing another debug exception). 
The processor then automatically clears this flag after the instruction 
returned to has been successfully executed, enabling instruction breakpoint 
faults again.

See also: Section 18.3.1.1, “Instruction-Breakpoint Exception Condition.”

VM Virtual-8086 mode (bit 17) — Set to enable virtual-8086 mode; clear to 
return to protected mode. 

See also: Section 15.2.1, “Enabling Virtual-8086 Mode.”

AC Alignment check (bit 18) — Set this flag and the AM flag in control register 
CR0 to enable alignment checking of memory references; clear the AC flag 
and/or the AM flag to disable alignment checking. An alignment-check 
exception is generated when reference is made to an unaligned operand, 
such as a word at an odd byte address or a doubleword at an address which 
is not an integral multiple of four. Alignment-check exceptions are generated 
only in user mode (privilege level 3). Memory references that default to priv-
ilege level 0, such as segment descriptor loads, do not generate this excep-
tion even when caused by instructions executed in user-mode.

The alignment-check exception can be used to check alignment of data. This 
is useful when exchanging data with processors which require all data to be 
aligned. The alignment-check exception can also be used by interpreters to 
flag some pointers as special by misaligning the pointer. This eliminates 
overhead of checking each pointer and only handles the special pointer when 
used.

VIF Virtual Interrupt (bit 19) — Contains a virtual image of the IF flag. This 
flag is used in conjunction with the VIP flag. The processor only recognizes 
the VIF flag when either the VME flag or the PVI flag in control register CR4 is 
set and the IOPL is less than 3. (The VME flag enables the virtual-8086 mode 
extensions; the PVI flag enables the protected-mode virtual interrupts.) 

See also: Section 15.3.3.5, “Method 6: Software Interrupt Handling,” and 
Section 15.4, “Protected-Mode Virtual Interrupts.”
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VIP Virtual interrupt pending (bit 20) — Set by software to indicate that an 
interrupt is pending; cleared to indicate that no interrupt is pending. This flag 
is used in conjunction with the VIF flag. The processor reads this flag but 
never modifies it. The processor only recognizes the VIP flag when either the 
VME flag or the PVI flag in control register CR4 is set and the IOPL is less than 
3. The VME flag enables the virtual-8086 mode extensions; the PVI flag 
enables the protected-mode virtual interrupts. 

See Section 15.3.3.5, “Method 6: Software Interrupt Handling,” and Section 
15.4, “Protected-Mode Virtual Interrupts.”

ID Identification (bit 21). — The ability of a program or procedure to set or 
clear this flag indicates support for the CPUID instruction.

2.3.1 System Flags and Fields in IA-32e Mode
In 64-bit mode, the RFLAGS register expands to 64 bits with the upper 32 bits 
reserved. System flags in RFLAGS (64-bit mode) or  EFLAGS (compatibility mode) 
are shown in Figure 2-4.

In IA-32e mode, the processor does not allow the VM bit to be set because virtual-
8086 mode is not supported (attempts to set the bit are ignored). Also, the processor 
will not set the NT bit. The processor does, however, allow software to set the NT bit 
(note that an IRET causes a general protection fault in IA-32e mode if the NT bit is 
set).

In IA-32e mode, the SYSCALL/SYSRET instructions have a programmable method of 
specifying which bits are cleared in RFLAGS/EFLAGS. These instructions save/restore 
EFLAGS/RFLAGS.

2.4 MEMORY-MANAGEMENT REGISTERS
The processor provides four memory-management registers (GDTR, LDTR, IDTR, 
and TR) that specify the locations of the data structures which control segmented 
memory management (see Figure 2-5). Special instructions are provided for loading 
and storing these registers.
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2.4.1 Global Descriptor Table Register (GDTR)
The GDTR register holds the base address (32 bits in protected mode; 64 bits in 
IA-32e mode) and the 16-bit table limit for the GDT. The base address specifies the 
linear address of byte 0 of the GDT; the table limit specifies the number of bytes in 
the table. 

The LGDT and SGDT instructions load and store the GDTR register, respectively. On 
power up or reset of the processor, the base address is set to the default value of 0 
and the limit is set to 0FFFFH. A new base address must be loaded into the GDTR as 
part of the processor initialization process for protected-mode operation. 

See also: Section 3.5.1, “Segment Descriptor Tables.”

2.4.2 Local Descriptor Table Register (LDTR)
The LDTR register holds the 16-bit segment selector, base address (32 bits in 
protected mode; 64 bits in IA-32e mode), segment limit, and descriptor attributes 
for the LDT. The base address specifies the linear address of byte 0 of the LDT 
segment; the segment limit specifies the number of bytes in the segment. See also: 
Section 3.5.1, “Segment Descriptor Tables.”

The LLDT and SLDT instructions load and store the segment selector part of the LDTR 
register, respectively. The segment that contains the LDT must have a segment 
descriptor in the GDT. When the LLDT instruction loads a segment selector in the 
LDTR: the base address, limit, and descriptor attributes from the LDT descriptor are 
automatically loaded in the LDTR. 

When a task switch occurs, the LDTR is automatically loaded with the segment 
selector and descriptor for the LDT for the new task. The contents of the LDTR are not 
automatically saved prior to writing the new LDT information into the register.

On power up or reset of the processor, the segment selector and base address are set 
to the default value of 0 and the limit is set to 0FFFFH.

Figure 2-5.  Memory Management Registers
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2.4.3 IDTR Interrupt Descriptor Table Register
The IDTR register holds the base address (32 bits in protected mode; 64 bits in 
IA-32e mode) and 16-bit table limit for the IDT. The base address specifies the linear 
address of byte 0 of the IDT; the table limit specifies the number of bytes in the table. 
The LIDT and SIDT instructions load and store the IDTR register, respectively. On 
power up or reset of the processor, the base address is set to the default value of 0 
and the limit is set to 0FFFFH. The base address and limit in the register can then be 
changed as part of the processor initialization process. 

See also: Section 5.10, “Interrupt Descriptor Table (IDT).”

2.4.4 Task Register (TR)
The task register holds the 16-bit segment selector, base address (32 bits in 
protected mode; 64 bits in IA-32e mode), segment limit, and descriptor attributes 
for the TSS of the current task. The selector references the TSS descriptor in the GDT. 
The base address specifies the linear address of byte 0 of the TSS; the segment limit 
specifies the number of bytes in the TSS. See also: Section 6.2.4, “Task Register.”

The LTR and STR instructions load and store the segment selector part of the task 
register, respectively. When the LTR instruction loads a segment selector in the task 
register, the base address, limit, and descriptor attributes from the TSS descriptor 
are automatically loaded into the task register. On power up or reset of the processor, 
the base address is set to the default value of 0 and the limit is set to 0FFFFH.

When a task switch occurs, the task register is automatically loaded with the 
segment selector and descriptor for the TSS for the new task. The contents of the 
task register are not automatically saved prior to writing the new TSS information 
into the register.

2.5 CONTROL REGISTERS
Control registers (CR0, CR1, CR2, CR3, and CR4; see Figure 2-6) determine oper-
ating mode of the processor and the characteristics of the currently executing task. 
These registers are 32 bits in all 32-bit modes and compatibility mode. 

In 64-bit mode, control registers are expanded to 64 bits. The MOV CRn instructions 
are used to manipulate the register bits. Operand-size prefixes for these instructions 
are ignored. The following is also true:

• Bits 63:32 of CR0 and CR4 are reserved and must be written with zeros. Writing 
a nonzero value to any of the upper 32 bits results in a general-protection 
exception, #GP(0). 

• All 64 bits of CR2 are writable by software. 

• Bits 51:40 of CR3 are reserved and must be 0. 
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• The MOV CRn instructions do not check that addresses written to CR2 and CR3 
are within the linear-address or physical-address limitations of the implemen-
tation. 

• Register CR8 is available in 64-bit mode only. 

The control registers are summarized below, and each architecturally defined control 
field in these control registers are described individually. In Figure 2-6, the width of 
the register in 64-bit mode is indicated in parenthesis (except for CR0).

• CR0 — Contains system control flags that control operating mode and states of 
the processor. 

• CR1 — Reserved.

• CR2 — Contains the page-fault linear address (the linear address that caused a 
page fault).

• CR3 — Contains the physical address of the base of the page directory and two 
flags (PCD and PWT). This register is also known as the page-directory base 
register (PDBR). Only the most-significant bits (less the lower 12 bits) of the base 
address are specified; the lower 12 bits of the address are assumed to be 0. The 
page directory must thus be aligned to a page (4-KByte) boundary. The PCD and 
PWT flags control caching of the page directory in the processor’s internal data 
caches (they do not control TLB caching of page-directory information).

When using the physical address extension, the CR3 register contains the base 
address of the page-directory-pointer table In IA-32e mode, the CR3 register 
contains the base address of the PML4 table.

See also: Section 3.8, “36-Bit Physical Addressing Using the PAE Paging 
Mechanism.”

• CR4 — Contains a group of flags that enable several architectural extensions, 
and indicate operating system or executive support for specific processor capabil-
ities. The control registers can be read and loaded (or modified) using the move-
to-or-from-control-registers forms of the MOV instruction. In protected mode, 
the MOV instructions allow the control registers to be read or loaded (at privilege 
level 0 only). This restriction means that application programs or operating-
system procedures (running at privilege levels 1, 2, or 3) are prevented from 
reading or loading the control registers. 

• CR8 — Provides read and write access to the Task Priority Register (TPR). It 
specifies the priority threshold value that operating systems use to control the 
priority class of external interrupts allowed to interrupt the processor. This 
register is available only in 64-bit mode. However, interrupt filtering continues to 
apply in compatibility mode.
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When loading a control register, reserved bits should always be set to the values 
previously read. The flags in control registers are:

PG Paging (bit 31 of CR0)  — Enables paging when set; disables paging when 
clear. When paging is disabled, all linear addresses are treated as physical 
addresses. The PG flag has no effect if the PE flag (bit 0 of register CR0) is 
not also set; setting the PG flag when the PE flag is clear causes a general-
protection exception (#GP). See also: Section 3.6, “Paging (Virtual Memory) 
Overview.”

On Intel 64 processors, enabling and disabling IA-32e mode operation also 
requires modifying CR0.PG.

CD Cache Disable (bit 30 of CR0) — When the CD and NW flags are clear, 
caching of memory locations for the whole of physical memory in the 
processor’s internal (and external) caches is enabled. When the CD flag is 
set, caching is restricted as described in Table 10-5. To prevent the processor 
from accessing and updating its caches, the CD flag must be set and the 
caches must be invalidated so that no cache hits can occur.

Figure 2-6.  Control Registers
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See also: Section 10.5.3, “Preventing Caching,” and Section 10.5, “Cache 
Control.”

NW Not Write-through (bit 29 of CR0) — When the NW and CD flags are 
clear, write-back (for Pentium 4, Intel Xeon, P6 family, and Pentium proces-
sors) or write-through (for Intel486 processors) is enabled for writes that hit 
the cache and invalidation cycles are enabled. See Table 10-5 for detailed 
information about the affect of the NW flag on caching for other settings of 
the CD and NW flags.

AM Alignment Mask (bit 18 of CR0) — Enables automatic alignment checking 
when set; disables alignment checking when clear. Alignment checking is 
performed only when the AM flag is set, the AC flag in the EFLAGS register is 
set, CPL is 3, and the processor is operating in either protected or virtual-
8086 mode.

WP Write Protect (bit 16 of CR0) — Inhibits supervisor-level procedures from 
writing into user-level read-only pages when set; allows supervisor-level 
procedures to write into user-level read-only pages when clear (regardless of 
the U/S bit setting; see Section 3.7.6). This flag facilitates implementation of 
the copy-on-write method of creating a new process (forking) used by oper-
ating systems such as UNIX.

NE Numeric Error (bit 5 of CR0) — Enables the native (internal) mechanism 
for reporting x87 FPU errors when set; enables the PC-style x87 FPU error 
reporting mechanism when clear. When the NE flag is clear and the IGNNE# 
input is asserted, x87 FPU errors are ignored. When the NE flag is clear and 
the IGNNE# input is deasserted, an unmasked x87 FPU error causes the 
processor to assert the FERR# pin to generate an external interrupt and to 
stop instruction execution immediately before executing the next waiting 
floating-point instruction or WAIT/FWAIT instruction. 

The FERR# pin is intended to drive an input to an external interrupt 
controller (the FERR# pin emulates the ERROR# pin of the Intel 287 and 
Intel 387 DX math coprocessors). The NE flag, IGNNE# pin, and FERR# pin 
are used with external logic to implement PC-style error reporting. 

See also: “Software Exception Handling” in Chapter 8, “Programming with 
the x87 FPU,” and Appendix A, “Eflags Cross-Reference,” in the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 1.

ET Extension Type (bit 4 of CR0) — Reserved in the Pentium 4, Intel Xeon, P6 
family, and Pentium processors. In the Pentium 4, Intel Xeon, and P6 family 
processors, this flag is hardcoded to 1. In the Intel386 and Intel486 proces-
sors, this flag indicates support of Intel 387 DX math coprocessor instruc-
tions when set.

TS Task Switched (bit 3 of CR0) — Allows the saving of the x87 
FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 context on a task switch to be 
delayed until an x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction is 
actually executed by the new task. The processor sets this flag on every task 
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switch and tests it when executing x87 
FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instructions.

• If the TS flag is set and the EM flag (bit 2 of CR0) is clear, a device-not-
available exception (#NM) is raised prior to the execution of any x87 
FPU/MMX/SSE/ SSE2/SSE3/SSSE3/SSE4 instruction; with the exception 
of PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE, MOVNTI, CLFLUSH, 
CRC32, and POPCNT. See the paragraph below for the special case of the 
WAIT/FWAIT instructions.

• If the TS flag is set and the MP flag (bit 1 of CR0) and EM flag are clear, an 
#NM exception is not raised prior to the execution of an x87 FPU 
WAIT/FWAIT instruction.

• If the EM flag is set, the setting of the TS flag has no affect on the 
execution of x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instructions.

Table 2-1 shows the actions taken when the processor encounters an x87 
FPU instruction based on the settings of the TS, EM, and MP flags. Table 11-1 
and 12-1 show the actions taken when the processor encounters an 
MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction.

The processor does not automatically save the context of the x87 FPU, XMM, 
and MXCSR registers on a task switch. Instead, it sets the TS flag, which 
causes the processor to raise an #NM exception whenever it encounters an 
x87 FPU/MMX/SSE /SSE2/SSE3/SSSE3/SSE4 instruction in the instruction 
stream for the new task (with the exception of the instructions listed above). 

The fault handler for the #NM exception can then be used to clear the TS flag (with 
the CLTS instruction) and save the context of the x87 FPU, XMM, and MXCSR regis-
ters. If the task never encounters an x87 FPU/MMX/SSE/SSE2/SSE3//SSSE3/SSE4 
instruction; the x87 FPU/MMX/SSE/SSE2/ SSE3/SSSE3/SSE4 context is never saved.

Table 2-1.  Action Taken By x87 FPU Instructions for Different 
Combinations of EM, MP, and TS

CR0 Flags x87 FPU Instruction Type

EM MP TS Floating-Point WAIT/FWAIT

0 0 0 Execute Execute.

0 0 1 #NM Exception Execute.

0 1 0 Execute Execute.

0 1 1 #NM Exception #NM exception.

1 0 0 #NM Exception Execute.

1 0 1 #NM Exception Execute.

1 1 0 #NM Exception Execute.

1 1 1 #NM Exception #NM exception.



2-22   Vol. 3

SYSTEM ARCHITECTURE OVERVIEW

EM Emulation (bit 2 of CR0) — Indicates that the processor does not have an 
internal or external x87 FPU when set; indicates an x87 FPU is present when 
clear. This flag also affects the execution of 
MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instructions.

When the EM flag is set, execution of an x87 FPU instruction generates a 
device-not-available exception (#NM). This flag must be set when the 
processor does not have an internal x87 FPU or is not connected to an 
external math coprocessor. Setting this flag forces all floating-point instruc-
tions to be handled by software emulation. Table 8-2 shows the recom-
mended setting of this flag, depending on the IA-32 processor and x87 FPU 
or math coprocessor present in the system. Table 2-1 shows the interaction 
of the EM, MP, and TS flags.

Also, when the EM flag is set, execution of an MMX instruction causes an 
invalid-opcode exception (#UD) to be generated (see Table 11-1). Thus, if an 
IA-32 or Intel 64 processor incorporates MMX technology, the EM flag must 
be set to 0 to enable execution of MMX instructions.

Similarly for SSE/SSE2/SSE3/SSSE3/SSE4 extensions, when the EM flag is 
set, execution of most SSE/SSE2/SSE3/SSSE3/SSE4 instructions causes an 
invalid opcode exception (#UD) to be generated (see Table 12-1). If an IA-32 
or Intel 64 processor incorporates the SSE/SSE2/SSE3/SSSE3/SSE4 exten-
sions, the EM flag must be set to 0 to enable execution of these extensions. 
SSE/SSE2/SSE3/SSSE3/SSE4 instructions not affected by the EM flag 
include: PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE, MOVNTI, CLFLUSH, 
CRC32, and POPCNT.

MP Monitor Coprocessor (bit 1 of CR0). — Controls the interaction of the 
WAIT (or FWAIT) instruction with the TS flag (bit 3 of CR0). If the MP flag is 
set, a WAIT instruction generates a device-not-available exception (#NM) if 
the TS flag is also set. If the MP flag is clear, the WAIT instruction ignores the 
setting of the TS flag. Table 8-2 shows the recommended setting of this flag, 
depending on the IA-32 processor and x87 FPU or math coprocessor present 
in the system. Table 2-1 shows the interaction of the MP, EM, and TS flags.

PE Protection Enable (bit 0 of CR0) — Enables protected mode when set; 
enables real-address mode when clear. This flag does not enable paging 
directly. It only enables segment-level protection. To enable paging, both the 
PE and PG flags must be set. 

See also: Section 8.9, “Mode Switching.”

PCD Page-level Cache Disable (bit 4 of CR3) — Controls caching of the 
current page directory. When the PCD flag is set, caching of the page-direc-
tory is prevented; when the flag is clear, the page-directory can be cached. 
This flag affects only the processor’s internal caches (both L1 and L2, when 
present). The processor ignores this flag if paging is not used (the PG flag in 
register CR0 is clear) or the CD (cache disable) flag in CR0 is set. 
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See also: Chapter 10, “Memory Cache Control” (for more about the use of 
the PCD flag) and Section 3.7.6, “Page-Directory and Page-Table Entries” (for 
a description of a companion PCD flag in page-directory and page-table 
entries).

PWT Page-level Writes Transparent (bit 3 of CR3) — Controls the write-
through or write-back caching policy of the current page directory. When the 
PWT flag is set, write-through caching is enabled; when the flag is clear, 
write-back caching is enabled. This flag affects only internal caches (both L1 
and L2, when present). The processor ignores this flag if paging is not used 
(the PG flag in register CR0 is clear) or the CD (cache disable) flag in CR0 is 
set. 

See also: Section 10.5, “Cache Control” (for more information about the use 
of this flag), and Section 3.7.6, “Page-Directory and Page-Table Entries” (for 
a description of a companion PCD flag in the page-directory and page-table 
entries).

VME Virtual-8086 Mode Extensions (bit 0 of CR4) — Enables interrupt- and 
exception-handling extensions in virtual-8086 mode when set; disables the 
extensions when clear. Use of the virtual mode extensions can improve the 
performance of virtual-8086 applications by eliminating the overhead of 
calling the virtual-8086 monitor to handle interrupts and exceptions that 
occur while executing an 8086 program and, instead, redirecting the inter-
rupts and exceptions back to the 8086 program’s handlers. It also provides 
hardware support for a virtual interrupt flag (VIF) to improve reliability of 
running 8086 programs in multitasking and multiple-processor environ-
ments.

See also: Section 15.3, “Interrupt and Exception Handling in Virtual-8086 
Mode.”

PVI Protected-Mode Virtual Interrupts (bit 1 of CR4) — Enables hardware 
support for a virtual interrupt flag (VIF) in protected mode when set; disables 
the VIF flag in protected mode when clear. 

See also: Section 15.4, “Protected-Mode Virtual Interrupts.”

TSD Time Stamp Disable (bit 2 of CR4) — Restricts the execution of the 
RDTSC instruction to procedures running at privilege level 0 when set; allows 
RDTSC instruction to be executed at any privilege level when clear.

DE Debugging Extensions (bit 3 of CR4) — References to debug registers 
DR4 and DR5 cause an undefined opcode (#UD) exception to be generated 
when set; when clear, processor aliases references to registers DR4 and DR5 
for compatibility with software written to run on earlier IA-32 processors. 

See also: Section 18.2.2, “Debug Registers DR4 and DR5.”

PSE Page Size Extensions (bit 4 of CR4) — Enables large page sizes (2 or 4-
MByte pages) when set; restricts pages to 4 KBytes when clear.

See also: Section 3.6.1, “Paging Options.”



2-24   Vol. 3

SYSTEM ARCHITECTURE OVERVIEW

PAE Physical Address Extension (bit 5 of CR4) — When set, enables paging 
mechanism to reference greater-or-equal-than-36-bit physical addresses. 
When clear, restricts physical addresses to 32 bits. PAE must be enabled to 
enable IA-32e mode operation. Enabling and disabling IA-32e mode opera-
tion also requires modifying CR4.PAE.

See also: Section 3.8, “36-Bit Physical Addressing Using the PAE Paging 
Mechanism.”

MCE Machine-Check Enable (bit 6 of CR4) — Enables the machine-check 
exception when set; disables the machine-check exception when clear.

See also: Chapter 14, “Machine-Check Architecture.”

PGE Page Global Enable (bit 7 of CR4) — (Introduced in the P6 family proces-
sors.) Enables the global page feature when set; disables the global page 
feature when clear. The global page feature allows frequently used or shared 
pages to be marked as global to all users (done with the global flag, bit 8, in 
a page-directory or page-table entry). Global pages are not flushed from the 
translation-lookaside buffer (TLB) on a task switch or a write to register CR3.

When enabling the global page feature, paging must be enabled (by setting 
the PG flag in control register CR0) before the PGE flag is set. Reversing this 
sequence may affect program correctness, and processor performance will 
be impacted. 

See also: Section 3.12, “Translation Lookaside Buffers (TLBs).”

PCE Performance-Monitoring Counter Enable (bit 8 of CR4) — Enables 
execution of the RDPMC instruction for programs or procedures running at 
any protection level when set; RDPMC instruction can be executed only at 
protection level 0 when clear.

OSFXSR 
Operating System Support for FXSAVE and FXRSTOR instructions 
(bit 9 of CR4) — When set, this flag: (1) indicates to software that the oper-
ating system supports the use of the FXSAVE and FXRSTOR instructions, (2) 
enables the FXSAVE and FXRSTOR instructions to save and restore the 
contents of the XMM and MXCSR registers along with the contents of the x87 
FPU and MMX registers, and (3) enables the processor to execute 
SSE/SSE2/SSE3/SSSE3/SSE4 instructions, with the exception of the PAUSE, 
PREFETCHh, SFENCE, LFENCE, MFENCE, MOVNTI, CLFLUSH, CRC32, and 
POPCNT. 

If this flag is clear, the FXSAVE and FXRSTOR instructions will save and 
restore the contents of the x87 FPU and MMX instructions, but they may not 
save and restore the contents of the XMM and MXCSR registers. Also, the 
processor will generate an invalid opcode exception (#UD) if it attempts to 
execute any SSE/SSE2/SSE3and instruction, with the exception of PAUSE, 
PREFETCHh, SFENCE, LFENCE, MFENCE, MOVNTI, CLFLUSH, CRC32, and 
POPCNT. The operating system or executive must explicitly set this flag.
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NOTE
CPUID feature flags FXSR indicates availability of the 
FXSAVE/FXRESTOR instructions. The OSFXSR bit provides operating 
system software with a means of enabling FXSAVE/FXRESTOR to 
save/restore the contents of the X87 FPU, XMM and MXCSR registers. 
Consequently OSFXSR bit indicates that the operating system 
provides context switch support for SSE/SSE2/SSE3/SSSE3/SSE4.

OSXMMEXCPT 
Operating System Support for Unmasked SIMD Floating-Point Excep-
tions (bit 10 of CR4) — When set, indicates that the operating system 
supports the handling of unmasked SIMD floating-point exceptions through 
an exception handler that is invoked when a SIMD floating-point exception 
(#XF) is generated. SIMD floating-point exceptions are only generated by 
SSE/SSE2/SSE3/SSE4.1 SIMD floating-point instructions. 

The operating system or executive must explicitly set this flag. If this flag is 
not set, the processor will generate an invalid opcode exception (#UD) 
whenever it detects an unmasked SIMD floating-point exception.

VMXE 
VMX-Enable Bit (bit 13 of CR4) — Enables VMX operation when set. See 
Chapter 19, “Introduction to Virtual-Machine Extensions.”

SMXE 
SMX-Enable Bit (bit 14 of CR4) — Enables SMX operation when set. See 
Chapter 6, “Safer Mode Extensions Reference” of Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2B.

OSXSAVE 
XSAVE and Processor Extended States-Enable Bit (bit 18 of CR4) — 
When set, this flag: (1) indicates (via CPUID.01H:ECX.OSXSAVE[bit 27]) 
that the operating system supports the use of the XGETBV, XSAVE and 
XRSTOR instructions by general software; (2) enables the XSAVE and 
XRSTOR instructions to save and restore the x87 FPU state (including MMX 
registers), the SSE state (XMM registers and MXCSR), along with other 
processor extended states enabled in the XFEATURE_ENABLED_MASK 
register (XCR0); (3) enables the processor to execute XGETBV and XSETBV 
instructions in order to read and write XCR0. See Section 2.6 and Chapter 
12, “System Programming for Instruction Set Extensions and Processor 
Extended States”.

TPL Task Priority Level (bit 3:0 of CR8) — This sets the threshold value corre-
sponding to the highest-priority interrupt to be blocked. A value of 0 means 
all interrupts are enabled. This field is available in 64-bit mode. A value of 15 
means all interrupts will be disabled.
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2.5.1 CPUID Qualification of Control Register Flags
The VME, PVI, TSD, DE, PSE, PAE, MCE, PGE, PCE, OSFXSR, and OSXMMEXCPT flags 
in control register CR4 are model specific. All of these flags (except the PCE flag) can 
be qualified with the CPUID instruction to determine if they are implemented on the 
processor before they are used. 

The CR8 register is available on processors that support Intel 64 architecture.

2.6 EXTENDED CONTROL REGISTERS (INCLUDING THE 
XFEATURE_ENABLED_MASK REGISTER)

If CPUID.01H:ECX.XSAVE[bit 26] is 1, the processor supports one or more 
extended control registers (XCRs). Currently, the only such register defined is 
XCR0, the XFEATURE_ENABLED_MASK register. This register specifies the set of 
processor states that the operating system enables on that processor, e.g. x87 FPU 
States, SSE states, and other processor extended states that Intel 64 architecture 
may introduce in the future. The OS programs XCR0 to reflect the features it 
supports.

Software can access XCR0 only if CR4.OSXSAVE[bit 18] = 1. (This bit is also readable 
as CPUID.01H:ECX.OSXSAVE[bit 27].) The layout of XCR0 is architected to allow 
software to use CPUID leaf function 0DH to enumerate the set of bits that the 
processor supports in XCR0 (see CPUID instruction in Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 2A). Each processor state (X87 FPU 
state, SSE state, or a future processor extended state) is represented by a bit in 
XCR0. The OS can enable future processor extended states in a forward manner by 
specifying the appropriate bit mask value using the XSETBV instruction according to 
the results of the CPUID leaf 0DH.

Figure 2-7.  XFEATURE_ENABLED_MASK Register (XCR0)
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With the exception of bit 63, each bit in the XFEATURE_ENABLED_MASK register 
(XCR0) corresponds to a subset of the processor states. XCR0 thus provides space 
for up to 63 sets of processor state extensions. Bit 63 of XCR0 is reserved for future 
expansion and will not represent a processor extended state.

Currently, the XFEATURE_ENABLED_MASK register (XCR0) has two processor states 
defined, with up to 61 bits reserved for future processor extended states:

• XCR0.X87 (bit 0): If 1, indicates x87 FPU state (including MMX register states) is 
supported in the processor. Bit 0 must be 1. An attempt to write 0 causes a #GP 
exception.

• XCR0.SSE (bit 1): If 1, indicates MXCSR and XMM registers (XMM0-XMM15 in 64-
bit mode, otherwise XMM0-XMM7) are supported by XSAVE/XRESTOR in the 
processor. 

Any attempt to set a reserved bit (as determined by the contents of EAX and EDX 
after executing CPUID with EAX=0DH, ECX= 0H) in the XFEATURE_ENABLED_MASK 
register for a given processor will result in a #GP exception. An attempt to write 0 to 
XFEATURE_ENABLED_MASK.x87 (bit 0) will result in a #GP exception.

A operating system may specify 0 in the bit mask of XSETBV if it chooses not to 
support a processor extended states that the hardware supports. The effects are:

• If a bit Y in XFEATURE_ENABLED_MASK (bit offset > 1 and not reserved) is 0, an 
attempt to execute an instruction that operates on the processor extended states 
associated with XFEATURE_ENABLED_MASK.Y will result in a #UD exception. 

• If an instruction operates only on processor states associated with 
XFEATURE_ENABLED_MASK.x87, XFEATURE_ENABLED_MASK.SSE (including 
general purpose registers) but none of the processor extended states of 
XFEATURE_ENABLED_MASK (bit 2 or higher), the #UD behavior follows the 
requirements of SSE state support. The value of 
XFEATURE_ENABLED_MASK.SSE does not affect the #UD behavior of these 
instructions. The OS must set CR4.OSFXSR to support such instructions. 

If a bit in the XFEATURE_ENABLED_MASK register is 1, XSAVE instruction can selec-
tively (in conjunction with a save mask) save a partial or full set of processor states 
to memory (See XSAVE instruction in Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 2B).

After reset all bits (except bit 0) in the XFEATURE_ENABLED_MASK register (XCR0) 
are cleared to zero. XCR0[0] is set to 1.

2.7 SYSTEM INSTRUCTION SUMMARY
System instructions handle system-level functions such as loading system registers, 
managing the cache, managing interrupts, or setting up the debug registers. Many of 
these instructions can be executed only by operating-system or executive proce-
dures (that is, procedures running at privilege level 0). Others can be executed at 
any privilege level and are thus available to application programs. 
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Table 2-2 lists the system instructions and indicates whether they are available and 
useful for application programs. These instructions are described in the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volumes 2A & 2B.

Table 2-2.  Summary of System Instructions 

 
Instruction

 
Description

Useful to 
Application?

Protected from 
Application?

LLDT Load LDT Register No Yes

SLDT Store LDT Register No No

LGDT Load GDT Register No Yes

SGDT Store GDT Register No No

LTR Load Task Register No Yes

STR Store Task Register No No

LIDT Load IDT Register No Yes

SIDT Store IDT Register No No

MOV CRn Load and store control registers No Yes

SMSW Store MSW Yes No

LMSW Load MSW No Yes

CLTS Clear TS flag in CR0 No Yes

ARPL Adjust RPL Yes1, 5 No

LAR Load Access Rights Yes No

LSL Load Segment Limit Yes No

VERR Verify for Reading Yes No

VERW Verify for Writing Yes No

MOV DRn Load and store debug registers No Yes

INVD Invalidate cache, no writeback No Yes

WBINVD Invalidate cache, with writeback No Yes

INVLPG Invalidate TLB entry No Yes

HLT Halt Processor No Yes

LOCK (Prefix) Bus Lock Yes No

RSM Return from system management 
mode

No Yes

RDMSR3 Read Model-Specific Registers No Yes

WRMSR3 Write Model-Specific Registers No Yes
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2.7.1 Loading and Storing System Registers
The GDTR, LDTR, IDTR, and TR registers each have a load and store instruction for 
loading data into and storing data from the register:

• LGDT (Load GDTR Register) — Loads the GDT base address and limit from 
memory into the GDTR register.

• SGDT (Store GDTR Register) — Stores the GDT base address and limit from 
the GDTR register into memory.

• LIDT (Load IDTR Register) — Loads the IDT base address and limit from 
memory into the IDTR register.

• SIDT (Load IDTR Register — Stores the IDT base address and limit from the 
IDTR register into memory.

• LLDT (Load LDT Register) — Loads the LDT segment selector and segment 
descriptor from memory into the LDTR. (The segment selector operand can also 
be located in a general-purpose register.)

• SLDT (Store LDT Register) — Stores the LDT segment selector from the LDTR 
register into memory or a general-purpose register.

• LTR (Load Task Register) — Loads segment selector and segment descriptor 
for a TSS from memory into the task register. (The segment selector operand can 
also be located in a general-purpose register.)

RDPMC4 Read Performance-Monitoring 
Counter

Yes Yes2

RDTSC3 Read Time-Stamp Counter Yes Yes2

XGETBV Return the state of the the 
XFEATURE_ENABLED_MASK register

Yes No

XSETBV Enable one or more processor 
extended states

No6 Yes

NOTES:
1. Useful to application programs running at a CPL of 1 or 2.
2. The TSD and PCE flags in control register CR4 control access to these instructions by application 

programs running at a CPL of 3.
3. These instructions were introduced into the IA-32 Architecture with the Pentium processor.
4. This instruction was introduced into the IA-32 Architecture with the Pentium Pro processor and 

the Pentium processor with MMX technology.
5. This instruction is not supported in 64-bit mode.
6. Application uses XGETBV to query which set of processor extended states are enabled.

Table 2-2.  Summary of System Instructions (Contd.)

 
Instruction

 
Description

Useful to 
Application?

Protected from 
Application?
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• STR (Store Task Register) — Stores the segment selector for the current task 
TSS from the task register into memory or a general-purpose register.

The LMSW (load machine status word) and SMSW (store machine status word) 
instructions operate on bits 0 through 15 of control register CR0. These instructions 
are provided for compatibility with the 16-bit Intel 286 processor. Programs written 
to run on 32-bit IA-32 processors should not use these instructions. Instead, they 
should access the control register CR0 using the MOV instruction.

The CLTS (clear TS flag in CR0) instruction is provided for use in handling a 
device-not-available exception (#NM) that occurs when the processor attempts to 
execute a floating-point instruction when the TS flag is set. This instruction allows 
the TS flag to be cleared after the x87 FPU context has been saved, preventing 
further #NM exceptions. See Section 2.5, “Control Registers,” for more information 
on the TS flag.

The control registers (CR0, CR1, CR2, CR3, CR4, and CR8) are loaded using the MOV 
instruction. The instruction loads a control register from a general-purpose register 
or stores the content of a control register in a general-purpose register.

2.7.2 Verifying of Access Privileges
The processor provides several instructions for examining segment selectors 
and segment descriptors to determine if access to their associated segments 
is allowed. These instructions duplicate some of the automatic access rights 
and type checking done by the processor, thus allowing operating-system or 
executive software to prevent exceptions from being generated. 

The ARPL (adjust RPL) instruction adjusts the RPL (requestor privilege level) 
of a segment selector to match that of the program or procedure that 
supplied the segment selector. See Section 4.10.4, “Checking Caller Access 
Privileges (ARPL Instruction),” for a detailed explanation of the function and 
use of this instruction. Note that ARPL is not supported in 64-bit mode.

The LAR (load access rights) instruction verifies the accessibility of a speci-
fied segment and loads access rights information from the segment’s 
segment descriptor into a general-purpose register. Software can then 
examine the access rights to determine if the segment type is compatible 
with its intended use. See Section 4.10.1, “Checking Access Rights (LAR 
Instruction),” for a detailed explanation of the function and use of this 
instruction.

The LSL (load segment limit) instruction verifies the accessibility of a speci-
fied segment and loads the segment limit from the segment’s segment 
descriptor into a general-purpose register. Software can then compare the 
segment limit with an offset into the segment to determine whether the 
offset lies within the segment. See Section 4.10.3, “Checking That the 
Pointer Offset Is Within Limits (LSL Instruction),” for a detailed explanation 
of the function and use of this instruction.
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The VERR (verify for reading) and VERW (verify for writing) instructions 
verify if a selected segment is readable or writable, respectively, at a given 
CPL. See Section 4.10.2, “Checking Read/Write Rights (VERR and VERW 
Instructions),” for a detailed explanation of the function and use of this 
instruction.

2.7.3 Loading and Storing Debug Registers
Internal debugging facilities in the processor are controlled by a set of 8 debug regis-
ters (DR0-DR7). The MOV instruction allows setup data to be loaded to and stored 
from these registers.

On processors that support Intel 64 architecture, debug registers DR0-DR7 are 64 
bits. In 32-bit modes and compatibility mode, writes to a debug register fill the upper 
32 bits with zeros. Reads return the lower 32 bits. In 64-bit mode, the upper 32 bits 
of DR6-DR7 are reserved and must be written with zeros. Writing one to any of the 
upper 32 bits causes an exception, #GP(0).

In 64-bit mode, MOV DRn instructions read or write all 64 bits of a debug register 
(operand-size prefixes are ignored). All 64 bits of DR0-DR3 are writable by software. 
However, MOV DRn instructions do not check that addresses written to DR0-DR3 are 
in the limits of the implementation. Address matching is supported only on valid 
addresses generated by the processor implementation.

2.7.4 Invalidating Caches and TLBs
The processor provides several instructions for use in explicitly invalidating its caches 
and TLB entries. The INVD (invalidate cache with no writeback) instruction invali-
dates all data and instruction entries in the internal caches and sends a signal to the 
external caches indicating that they should be also be invalidated.

The WBINVD (invalidate cache with writeback) instruction performs the same func-
tion as the INVD instruction, except that it writes back modified lines in its internal 
caches to memory before it invalidates the caches. After invalidating the internal 
caches, WBINVD signals external caches to write back modified data and invalidate 
their contents.

The INVLPG (invalidate TLB entry) instruction invalidates (flushes) the TLB entry for 
a specified page.

2.7.5 Controlling the Processor

The HLT (halt processor) instruction stops the processor until an enabled interrupt 
(such as NMI or SMI, which are normally enabled), a debug exception, the BINIT# 
signal, the INIT# signal, or the RESET# signal is received. The processor generates a 
special bus cycle to indicate that the halt mode has been entered. 
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Hardware may respond to this signal in a number of ways. An indicator light on the 
front panel may be turned on. An NMI interrupt for recording diagnostic information 
may be generated. Reset initialization may be invoked (note that the BINIT# pin was 
introduced with the Pentium Pro processor). If any non-wake events are pending 
during shutdown, they will be handled after the wake event from shutdown is 
processed (for example, A20M# interrupts).

The LOCK prefix invokes a locked (atomic) read-modify-write operation when modi-
fying a memory operand. This mechanism is used to allow reliable communications 
between processors in multiprocessor systems, as described below:

• In the Pentium processor and earlier IA-32 processors, the LOCK prefix causes 
the processor to assert the LOCK# signal during the instruction. This always 
causes an explicit bus lock to occur. 

• In the Pentium 4, Intel Xeon, and P6 family processors, the locking operation is 
handled with either a cache lock or bus lock. If a memory access is cacheable and 
affects only a single cache line, a cache lock is invoked and the system bus and 
the actual memory location in system memory are not locked during the 
operation. Here, other Pentium 4, Intel Xeon, or P6 family processors on the bus 
write-back any modified data and invalidate their caches as necessary to 
maintain system memory coherency. If the memory access is not cacheable 
and/or it crosses a cache line boundary, the processor’s LOCK# signal is asserted 
and the processor does not respond to requests for bus control during the locked 
operation.

The RSM (return from SMM) instruction restores the processor (from a context 
dump) to the state it was in prior to an system management mode (SMM) interrupt.

2.7.6 Reading Performance-Monitoring and Time-Stamp Counters
The RDPMC (read performance-monitoring counter) and RDTSC (read time-stamp 
counter) instructions allow application programs to read the processor’s perfor-
mance-monitoring and time-stamp counters, respectively. Pentium 4 and Intel Xeon 
processors have eighteen 40-bit performance-monitoring counters; P6 family 
processors have two 40-bit counters. 

Use these counters to record either the occurrence or duration of events. Events that 
can be monitored are model specific; they may include the number of instructions 
decoded, interrupts received, or the number of cache loads. Individual counters can 
be set up to monitor different events. Use the system instruction WRMSR to set up 
values in the one of the 45 ESCRs and one of the 18 CCCR MSRs (for Pentium 4 and 
Intel Xeon processors); or in the PerfEvtSel0 or the PerfEvtSel1 MSR (for the P6 
family processors). The RDPMC instruction loads the current count from the selected 
counter into the EDX:EAX registers.

The time-stamp counter is a model-specific 64-bit counter that is reset to zero each 
time the processor is reset. If not reset, the counter will increment ~9.5 x 1016 

times per year when the processor is operating at a clock rate of 3GHz. At this 
clock frequency, it would take over 190 years for the counter to wrap around. The 
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RDTSC instruction loads the current count of the time-stamp counter into the 
EDX:EAX registers.

See Section 18.11, “Performance Monitoring Overview,” and Section 18.10, “Time-
Stamp Counter,” for more information about the performance monitoring and time-
stamp counters.

The RDTSC instruction was introduced into the IA-32 architecture with the Pentium 
processor. The RDPMC instruction was introduced into the IA-32 architecture with the 
Pentium Pro processor and the Pentium processor with MMX technology. Earlier 
Pentium processors have two performance-monitoring counters, but they can be 
read only with the RDMSR instruction, and only at privilege level 0.

2.7.6.1  Reading Counters in 64-Bit Mode
In 64-bit mode, RDTSC operates the same as in protected mode. The count in the 
time-stamp counter is stored in EDX:EAX (or RDX[31:0]:RAX[31:0] with 
RDX[63:32]:RAX[63:32] cleared).

RDPMC requires an index to specify the offset of the performance-monitoring 
counter. In 64-bit mode for Pentium 4 or Intel Xeon processor families, the index is 
specified in ECX[30:0]. The current count of the performance-monitoring counter is 
stored in EDX:EAX (or RDX[31:0]:RAX[31:0] with RDX[63:32]:RAX[63:32] 
cleared).

2.7.7 Reading and Writing Model-Specific Registers
The RDMSR (read model-specific register) and WRMSR (write model-specific 
register) instructions allow a processor’s 64-bit model-specific registers (MSRs) to be 
read and written, respectively. The MSR to be read or written is specified by the value 
in the ECX register. 
 
RDMSR reads the value from the specified MSR to the EDX:EAX registers; WRMSR 
writes the value in the EDX:EAX registers to the specified MSR. RDMSR and WRMSR 
were introduced into the IA-32 architecture with the Pentium processor.

See Section 8.4, “Model-Specific Registers (MSRs),” for more information.

2.7.7.1  Reading and Writing Model-Specific Registers in 64-Bit Mode
RDMSR and WRMSR require an index to specify the address of an MSR. In 64-bit 
mode, the index is 32 bits; it is specified using ECX.

2.7.8 Enabling Processor Extended States
The XSETBV instruction is required to enable OS support of individual processor 
extended states in the XFEATURE_ENABLED_MASK register (see Section 2.6).
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CHAPTER 3
PROTECTED-MODE MEMORY MANAGEMENT

This chapter describes the Intel 64 and IA-32 architecture’s protected-mode memory 
management facilities, including the physical memory requirements, segmentation 
mechanism, and paging mechanism.

See also: Chapter 4, “Protection” (for a description of the processor’s protection 
mechanism) and Chapter 15, “8086 Emulation” (for a description of memory 
addressing protection in real-address and virtual-8086 modes).

3.1 MEMORY MANAGEMENT OVERVIEW
The memory management facilities of the IA-32 architecture are divided into two 
parts: segmentation and paging. Segmentation provides a mechanism of isolating 
individual code, data, and stack modules so that multiple programs (or tasks) can 
run on the same processor without interfering with one another. Paging provides a 
mechanism for implementing a conventional demand-paged, virtual-memory system 
where sections of a program’s execution environment are mapped into physical 
memory as needed. Paging can also be used to provide isolation between multiple 
tasks. When operating in protected mode, some form of segmentation must be used. 
There is no mode bit to disable segmentation. The use of paging, however, is 
optional.

These two mechanisms (segmentation and paging) can be configured to support 
simple single-program (or single-task) systems, multitasking systems, or multiple-
processor systems that used shared memory.

As shown in Figure 3-1, segmentation provides a mechanism for dividing the 
processor’s addressable memory space (called the linear address space) into 
smaller protected address spaces called segments. Segments can be used to hold 
the code, data, and stack for a program or to hold system data structures (such as a 
TSS or LDT). If more than one program (or task) is running on a processor, each 
program can be assigned its own set of segments. The processor then enforces the 
boundaries between these segments and insures that one program does not interfere 
with the execution of another program by writing into the other program’s segments. 
The segmentation mechanism also allows typing of segments so that the operations 
that may be performed on a particular type of segment can be restricted.

All the segments in a system are contained in the processor’s linear address space. 
To locate a byte in a particular segment, a logical address (also called a far pointer) 
must be provided. A logical address consists of a segment selector and an offset. The 
segment selector is a unique identifier for a segment. Among other things it provides 
an offset into a descriptor table (such as the global descriptor table, GDT) to a data 
structure called a segment descriptor. Each segment has a segment descriptor, which 
specifies the size of the segment, the access rights and privilege level for the 
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segment, the segment type, and the location of the first byte of the segment in the 
linear address space (called the base address of the segment). The offset part of the 
logical address is added to the base address for the segment to locate a byte within 
the segment. The base address plus the offset thus forms a linear address in the 
processor’s linear address space.

If paging is not used, the linear address space of the processor is mapped directly 
into the physical address space of processor. The physical address space is defined as 
the range of addresses that the processor can generate on its address bus.

Because multitasking computing systems commonly define a linear address space 
much larger than it is economically feasible to contain all at once in physical memory, 
some method of “virtualizing” the linear address space is needed. This virtualization 
of the linear address space is handled through the processor’s paging mechanism.

Paging supports a “virtual memory” environment where a large linear address space 
is simulated with a small amount of physical memory (RAM and ROM) and some disk 

Figure 3-1.  Segmentation and Paging
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storage. When using paging, each segment is divided into pages (typically 4 KBytes 
each in size), which are stored either in physical memory or on the disk. The oper-
ating system or executive maintains a page directory and a set of page tables to keep 
track of the pages. When a program (or task) attempts to access an address location 
in the linear address space, the processor uses the page directory and page tables to 
translate the linear address into a physical address and then performs the requested 
operation (read or write) on the memory location. 

If the page being accessed is not currently in physical memory, the processor inter-
rupts execution of the program (by generating a page-fault exception). The oper-
ating system or executive then reads the page into physical memory from the disk 
and continues executing the program. 

When paging is implemented properly in the operating-system or executive, the 
swapping of pages between physical memory and the disk is transparent to the 
correct execution of a program. Even programs written for 16-bit IA-32 processors 
can be paged (transparently) when they are run in virtual-8086 mode.

3.2 USING SEGMENTS
The segmentation mechanism supported by the IA-32 architecture can be used to 
implement a wide variety of system designs. These designs range from flat models 
that make only minimal use of segmentation to protect programs to multi-
segmented models that employ segmentation to create a robust operating environ-
ment in which multiple programs and tasks can be executed reliably.

The following sections give several examples of how segmentation can be employed 
in a system to improve memory management performance and reliability.

3.2.1 Basic Flat Model
The simplest memory model for a system is the basic “flat model,” in which the oper-
ating system and application programs have access to a continuous, unsegmented 
address space. To the greatest extent possible, this basic flat model hides the 
segmentation mechanism of the architecture from both the system designer and the 
application programmer.

To implement a basic flat memory model with the IA-32 architecture, at least two 
segment descriptors must be created, one for referencing a code segment and one 
for referencing a data segment (see Figure 3-2). Both of these segments, however, 
are mapped to the entire linear address space: that is, both segment descriptors 
have the same base address value of 0 and the same segment limit of 4 GBytes. By 
setting the segment limit to 4 GBytes, the segmentation mechanism is kept from 
generating exceptions for out of limit memory references, even if no physical 
memory resides at a particular address. ROM (EPROM) is generally located at the top 
of the physical address space, because the processor begins execution at 



3-4   Vol. 3

PROTECTED-MODE MEMORY MANAGEMENT

FFFF_FFF0H. RAM (DRAM) is placed at the bottom of the address space because the 
initial base address for the DS data segment after reset initialization is 0.

3.2.2 Protected Flat Model
The protected flat model is similar to the basic flat model, except the segment limits 
are set to include only the range of addresses for which physical memory actually 
exists (see Figure 3-3). A general-protection exception (#GP) is then generated on 
any attempt to access nonexistent memory. This model provides a minimum level of 
hardware protection against some kinds of program bugs.

Figure 3-2.  Flat Model

Figure 3-3.  Protected Flat Model
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More complexity can be added to this protected flat model to provide more protec-
tion. For example, for the paging mechanism to provide isolation between user and 
supervisor code and data, four segments need to be defined: code and data 
segments at privilege level 3 for the user, and code and data segments at privilege 
level 0 for the supervisor. Usually these segments all overlay each other and start at 
address 0 in the linear address space. This flat segmentation model along with a 
simple paging structure can protect the operating system from applications, and by 
adding a separate paging structure for each task or process, it can also protect appli-
cations from each other. Similar designs are used by several popular multitasking 
operating systems.

3.2.3 Multi-Segment Model
A multi-segment model (such as the one shown in Figure 3-4) uses the full capabili-
ties of the segmentation mechanism to provided hardware enforced protection of 
code, data structures, and programs and tasks. Here, each program (or task) is given 
its own table of segment descriptors and its own segments. The segments can be 
completely private to their assigned programs or shared among programs. Access to 
all segments and to the execution environments of individual programs running on 
the system is controlled by hardware.
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Access checks can be used to protect not only against referencing an address outside 
the limit of a segment, but also against performing disallowed operations in certain 
segments. For example, since code segments are designated as read-only segments, 
hardware can be used to prevent writes into code segments. The access rights infor-
mation created for segments can also be used to set up protection rings or levels. 
Protection levels can be used to protect operating-system procedures from unautho-
rized access by application programs.

3.2.4 Segmentation in IA-32e Mode
In IA-32e mode of Intel 64 architecture, the effects of segmentation depend on 
whether the processor is running in compatibility mode or 64-bit mode. In compati-
bility mode, segmentation functions just as it does using legacy 16-bit or 32-bit 
protected mode semantics.

Figure 3-4.  Multi-Segment Model
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In 64-bit mode, segmentation is generally (but not completely) disabled, creating a 
flat 64-bit linear-address space. The processor treats the segment base of CS, DS, 
ES, SS as zero, creating a linear address that is equal to the effective address. The FS 
and GS segments are exceptions. These segment registers (which hold the segment 
base) can be used as an additional base registers in linear address calculations. They 
facilitate addressing local data and certain operating system data structures. 

Note that the processor does not perform segment limit checks at runtime in 64-bit 
mode.

3.2.5 Paging and Segmentation
Paging can be used with any of the segmentation models described in Figures 3-2, 
3-3, and 3-4. The processor’s paging mechanism divides the linear address space 
(into which segments are mapped) into pages (as shown in Figure 3-1). These linear-
address-space pages are then mapped to pages in the physical address space. The 
paging mechanism offers several page-level protection facilities that can be used 
with or instead of the segment-protection facilities. For example, it lets read-write 
protection be enforced on a page-by-page basis. The paging mechanism also 
provides two-level user-supervisor protection that can also be specified on a page-
by-page basis.

3.3 PHYSICAL ADDRESS SPACE
In protected mode, the IA-32 architecture provides a normal physical address space 
of 4 GBytes (232

 bytes). This is the address space that the processor can address on 
its address bus. This address space is flat (unsegmented), with addresses ranging 
continuously from 0 to FFFFFFFFH. This physical address space can be mapped to 
read-write memory, read-only memory, and memory mapped I/O. The memory 
mapping facilities described in this chapter can be used to divide this physical 
memory up into segments and/or pages.

Starting with the Pentium Pro processor, the IA-32 architecture also supports an 
extension of the physical address space to 236 bytes (64 GBytes); with a maximum 
physical address of FFFFFFFFFH. This extension is invoked in either of two ways:

• Using the physical address extension (PAE) flag, located in bit 5 of control 
register CR4. 

• Using the 36-bit page size extension (PSE-36) feature (introduced in the Pentium 
III processors).

See Section 3.8, “36-Bit Physical Addressing Using the PAE Paging Mechanism” and 
Section 3.9, “36-Bit Physical Addressing Using the PSE-36 Paging Mechanism” for 
more information about 36-bit physical addressing.
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3.3.1 Intel® 64 Processors and Physical Address Space
On processors that support Intel 64 architecture (CPUID.80000001:EDX[29] = 1), 
the size of the physical address range is implementation-specific and indicated by 
CPUID.80000008H:EAX[bits 7-0]. 

For the format of information returned in EAX, see “CPUID—CPU Identification” in 
Chapter 3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2A. See also: Section 3.8.1, “Enhanced Legacy PAE Paging.”

3.4 LOGICAL AND LINEAR ADDRESSES
At the system-architecture level in protected mode, the processor uses two stages of 
address translation to arrive at a physical address: logical-address translation and 
linear address space paging.

Even with the minimum use of segments, every byte in the processor’s address 
space is accessed with a logical address. A logical address consists of a 16-bit 
segment selector and a 32-bit offset (see Figure 3-5). The segment selector identi-
fies the segment the byte is located in and the offset specifies the location of the byte 
in the segment relative to the base address of the segment. 

The processor translates every logical address into a linear address. A linear address 
is a 32-bit address in the processor’s linear address space. Like the physical address 
space, the linear address space is a flat (unsegmented), 232-byte address space, 
with addresses ranging from 0 to FFFFFFFFH. The linear address space contains all 
the segments and system tables defined for a system. 

To translate a logical address into a linear address, the processor does the following:

1. Uses the offset in the segment selector to locate the segment descriptor for the 
segment in the GDT or LDT and reads it into the processor. (This step is needed 
only when a new segment selector is loaded into a segment register.)

2. Examines the segment descriptor to check the access rights and range of the 
segment to insure that the segment is accessible and that the offset is within the 
limits of the segment.

3. Adds the base address of the segment from the segment descriptor to the offset 
to form a linear address.
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If paging is not used, the processor maps the linear address directly to a physical 
address (that is, the linear address goes out on the processor’s address bus). If the 
linear address space is paged, a second level of address translation is used to trans-
late the linear address into a physical address. 

See also: Section 3.6, “Paging (Virtual Memory) Overview”.

3.4.1 Logical Address Translation in IA-32e Mode
In IA-32e mode, an Intel 64 processor uses the steps described above to translate a 
logical address to a linear address. In 64-bit mode, the offset and base address of the 
segment are 64-bits instead of 32 bits. The linear address format is also 64 bits wide 
and is subject to the canonical form requirement.

Each code segment descriptor provides an L bit. This bit allows a code segment to 
execute 64-bit code or legacy 32-bit code by code segment.

3.4.2 Segment Selectors
A segment selector is a 16-bit identifier for a segment (see Figure 3-6). It does not 
point directly to the segment, but instead points to the segment descriptor that 
defines the segment. A segment selector contains the following items:

Index (Bits 3 through 15) — Selects one of 8192 descriptors in the GDT or 
LDT. The processor multiplies the index value by 8 (the number of 
bytes in a segment descriptor) and adds the result to the base address 
of the GDT or LDT (from the GDTR or LDTR register, respectively).

Figure 3-5.  Logical Address to Linear Address Translation
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TI (table indicator) flag 
(Bit 2) — Specifies the descriptor table to use: clearing this flag 
selects the GDT; setting this flag selects the current LDT.

Requested Privilege Level (RPL) 
(Bits 0 and 1) — Specifies the privilege level of the selector. The priv-
ilege level can range from 0 to 3, with 0 being the most privileged 
level. See Section 4.5, “Privilege Levels”, for a description of the rela-
tionship of the RPL to the CPL of the executing program (or task) and 
the descriptor privilege level (DPL) of the descriptor the segment 
selector points to.

The first entry of the GDT is not used by the processor. A segment selector that points 
to this entry of the GDT (that is, a segment selector with an index of 0 and the TI flag 
set to 0) is used as a “null segment selector.” The processor does not generate an 
exception when a segment register (other than the CS or SS registers) is loaded with 
a null selector. It does, however, generate an exception when a segment register 
holding a null selector is used to access memory. A null selector can be used to 
initialize unused segment registers. Loading the CS or SS register with a null 
segment selector causes a general-protection exception (#GP) to be generated.

Segment selectors are visible to application programs as part of a pointer variable, 
but the values of selectors are usually assigned or modified by link editors or linking 
loaders, not application programs.

3.4.3 Segment Registers
To reduce address translation time and coding complexity, the processor provides 
registers for holding up to 6 segment selectors (see Figure 3-7). Each of these 
segment registers support a specific kind of memory reference (code, stack, or 
data). For virtually any kind of program execution to take place, at least the code-
segment (CS), data-segment (DS), and stack-segment (SS) registers must be 
loaded with valid segment selectors. The processor also provides three additional 
data-segment registers (ES, FS, and GS), which can be used to make additional data 
segments available to the currently executing program (or task).

Figure 3-6.  Segment Selector
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For a program to access a segment, the segment selector for the segment must have 
been loaded in one of the segment registers. So, although a system can define thou-
sands of segments, only 6 can be available for immediate use. Other segments can 
be made available by loading their segment selectors into these registers during 
program execution.

Every segment register has a “visible” part and a “hidden” part. (The hidden part is 
sometimes referred to as a “descriptor cache” or a “shadow register.”) When a 
segment selector is loaded into the visible part of a segment register, the processor 
also loads the hidden part of the segment register with the base address, segment 
limit, and access control information from the segment descriptor pointed to by the 
segment selector. The information cached in the segment register (visible and 
hidden) allows the processor to translate addresses without taking extra bus cycles 
to read the base address and limit from the segment descriptor. In systems in which 
multiple processors have access to the same descriptor tables, it is the responsibility 
of software to reload the segment registers when the descriptor tables are modified. 
If this is not done, an old segment descriptor cached in a segment register might be 
used after its memory-resident version has been modified.

Two kinds of load instructions are provided for loading the segment registers:

1. Direct load instructions such as the MOV, POP, LDS, LES, LSS, LGS, and LFS 
instructions. These instructions explicitly reference the segment registers.

2. Implied load instructions such as the far pointer versions of the CALL, JMP, and 
RET instructions, the SYSENTER and SYSEXIT instructions, and the IRET, INTn, 
INTO and INT3 instructions. These instructions change the contents of the CS 
register (and sometimes other segment registers) as an incidental part of their 
operation.

The MOV instruction can also be used to store visible part of a segment register in a 
general-purpose register.

Figure 3-7.  Segment Registers
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3.4.4 Segment Loading Instructions in IA-32e Mode
Because ES, DS, and SS segment registers are not used in 64-bit mode, their fields 
(base, limit, and attribute) in segment descriptor registers are ignored. Some forms 
of segment load instructions are also invalid (for example, LDS, POP ES). Address 
calculations that reference the ES, DS, or SS segments are treated as if the segment 
base is zero. 

The processor checks that all linear-address references are in canonical form instead 
of performing limit checks. Mode switching does not change the contents of the 
segment registers or the associated descriptor registers. These registers are also not 
changed during 64-bit mode execution, unless explicit segment loads are performed.

In order to set up compatibility mode for an application, segment-load instructions 
(MOV to Sreg, POP Sreg) work normally in 64-bit mode. An entry is read from the 
system descriptor table (GDT or LDT) and is loaded in the hidden portion of the 
segment descriptor register. The descriptor-register base, limit, and attribute fields 
are all loaded. However, the contents of the data and stack segment selector and the 
descriptor registers are ignored.

When FS and GS segment overrides are used in 64-bit mode, their respective base 
addresses are used in the linear address calculation: (FS or GS).base + index + 
displacement. FS.base and GS.base are then expanded to the full linear-address size 
supported by the implementation. The resulting effective address calculation can 
wrap across positive and negative addresses; the resulting linear address must be 
canonical.

In 64-bit mode, memory accesses using FS-segment and GS-segment overrides are 
not checked for a runtime limit nor subjected to attribute-checking. Normal segment 
loads (MOV to Sreg and POP Sreg) into FS and GS load a standard 32-bit base value 
in the hidden portion of the segment descriptor register. The base address bits above 
the standard 32 bits are cleared to 0 to allow consistency for implementations that 
use less than 64 bits. 

The hidden descriptor register fields for FS.base and GS.base are physically mapped 
to MSRs in order to load all address bits supported by a 64-bit implementation. Soft-
ware with CPL = 0 (privileged software) can load all supported linear-address bits 
into FS.base or GS.base using WRMSR. Addresses written into the 64-bit FS.base and 
GS.base registers must be in canonical form. A WRMSR instruction that attempts to 
write a non-canonical address to those registers causes a #GP fault. 

When in compatibility mode, FS and GS overrides operate as defined by 32-bit mode 
behavior regardless of the value loaded into the upper 32 linear-address bits of the 
hidden descriptor register base field. Compatibility mode ignores the upper 32 bits 
when calculating an effective address.

A new 64-bit mode instruction, SWAPGS, can be used to load GS base. SWAPGS 
exchanges the kernel data structure pointer from the IA32_KernelGSbase MSR with 
the GS base register. The kernel can then use the GS prefix on normal memory refer-
ences to access the kernel data structures. An attempt to write a non-canonical value 
(using WRMSR) to the IA32_KernelGSBase MSR causes a #GP fault.
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3.4.5 Segment Descriptors
A segment descriptor is a data structure in a GDT or LDT that provides the processor 
with the size and location of a segment, as well as access control and status informa-
tion. Segment descriptors are typically created by compilers, linkers, loaders, or the 
operating system or executive, but not application programs. Figure 3-8 illustrates 
the general descriptor format for all types of segment descriptors.

The flags and fields in a segment descriptor are as follows:

Segment limit field 
Specifies the size of the segment. The processor puts together the 
two segment limit fields to form a 20-bit value. The processor inter-
prets the segment limit in one of two ways, depending on the setting 
of the G (granularity) flag:

• If the granularity flag is clear, the segment size can range from 
1 byte to 1 MByte, in byte increments.

• If the granularity flag is set, the segment size can range from 
4 KBytes to 4 GBytes, in 4-KByte increments.

The processor uses the segment limit in two different ways, 
depending on whether the segment is an expand-up or an expand-
down segment. See Section 3.4.5.1, “Code- and Data-Segment 
Descriptor Types”, for more information about segment types. For 
expand-up segments, the offset in a logical address can range from 0 

Figure 3-8.  Segment Descriptor
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to the segment limit. Offsets greater than the segment limit generate 
general-protection exceptions (#GP). For expand-down segments, 
the segment limit has the reverse function; the offset can range from 
the segment limit to FFFFFFFFH or FFFFH, depending on the setting of 
the B flag. Offsets less than the segment limit generate general-
protection exceptions. Decreasing the value in the segment limit field 
for an expand-down segment allocates new memory at the bottom of 
the segment's address space, rather than at the top. IA-32 architec-
ture stacks always grow downwards, making this mechanism conve-
nient for expandable stacks.

Base address fields 
Defines the location of byte 0 of the segment within the 4-GByte 
linear address space. The processor puts together the three base 
address fields to form a single 32-bit value. Segment base addresses 
should be aligned to 16-byte boundaries. Although 16-byte alignment 
is not required, this alignment allows programs to maximize perfor-
mance by aligning code and data on 16-byte boundaries.

Type field Indicates the segment or gate type and specifies the kinds of access 
that can be made to the segment and the direction of growth. The 
interpretation of this field depends on whether the descriptor type flag 
specifies an application (code or data) descriptor or a system 
descriptor. The encoding of the type field is different for code, data, 
and system descriptors (see Figure 4-1). See Section 3.4.5.1, “Code- 
and Data-Segment Descriptor Types”, for a description of how this 
field is used to specify code and data-segment types. 

S (descriptor type) flag 
Specifies whether the segment descriptor is for a system segment 
(S flag is clear) or a code or data segment (S flag is set).

DPL (descriptor privilege level) field 
Specifies the privilege level of the segment. The privilege level can 
range from 0 to 3, with 0 being the most privileged level. The DPL is 
used to control access to the segment. See Section 4.5, “Privilege 
Levels”, for a description of the relationship of the DPL to the CPL of 
the executing code segment and the RPL of a segment selector.

P (segment-present) flag 
Indicates whether the segment is present in memory (set) or not 
present (clear). If this flag is clear, the processor generates a 
segment-not-present exception (#NP) when a segment selector that 
points to the segment descriptor is loaded into a segment register. 
Memory management software can use this flag to control which 
segments are actually loaded into physical memory at a given time. It 
offers a control in addition to paging for managing virtual memory.

Figure 3-9 shows the format of a segment descriptor when the 
segment-present flag is clear. When this flag is clear, the operating 
system or executive is free to use the locations marked “Available” to 
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store its own data, such as information regarding the whereabouts of 
the missing segment.

D/B (default operation size/default stack pointer size and/or upper bound) 
flag 
Performs different functions depending on whether the segment 
descriptor is an executable code segment, an expand-down data 
segment, or a stack segment. (This flag should always be set to 1 for 
32-bit code and data segments and to 0 for 16-bit code and data 
segments.)

• Executable code segment. The flag is called the D flag and it 
indicates the default length for effective addresses and operands 
referenced by instructions in the segment. If the flag is set, 32-bit 
addresses and 32-bit or 8-bit operands are assumed; if it is clear, 
16-bit addresses and 16-bit or 8-bit operands are assumed.  
The instruction prefix 66H can be used to select an operand size 
other than the default, and the prefix 67H can be used select an 
address size other than the default.

• Stack segment (data segment pointed to by the SS 
register). The flag is called the B (big) flag and it specifies the 
size of the stack pointer used for implicit stack operations (such as 
pushes, pops, and calls). If the flag is set, a 32-bit stack pointer is 
used, which is stored in the 32-bit ESP register; if the flag is clear, 
a 16-bit stack pointer is used, which is stored in the 16-bit SP 
register. If the stack segment is set up to be an expand-down data 
segment (described in the next paragraph), the B flag also 
specifies the upper bound of the stack segment.

• Expand-down data segment. The flag is called the B flag and it 
specifies the upper bound of the segment. If the flag is set, the 
upper bound is FFFFFFFFH (4 GBytes); if the flag is clear, the 
upper bound is FFFFH (64 KBytes).

Figure 3-9.  Segment Descriptor When Segment-Present Flag Is Clear
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G (granularity) flag 
Determines the scaling of the segment limit field. When the 
granularity flag is clear, the segment limit is interpreted in byte 
units; when flag is set, the segment limit is interpreted in 
4-KByte units. (This flag does not affect the granularity of the 
base address; it is always byte granular.) When the granularity 
flag is set, the twelve least significant bits of an offset are not 
tested when checking the offset against the segment limit. For 
example, when the granularity flag is set, a limit of 0 results in 
valid offsets from 0 to 4095.

L (64-bit code segment) flag 
In IA-32e mode, bit 21 of the second doubleword of the segment 
descriptor indicates whether a code segment contains native 64-bit 
code. A value of 1 indicates instructions in this code segment are 
executed in 64-bit mode. A value of 0 indicates the instructions in this 
code segment are executed in compatibility mode. If L-bit is set, then 
D-bit must be cleared. When not in IA-32e mode or for non-code 
segments, bit 21 is reserved and should always be set to 0.

Available and reserved bits 
Bit 20 of the second doubleword of the segment descriptor is available 
for use by system software.

3.4.5.1  Code- and Data-Segment Descriptor Types
When the S (descriptor type) flag in a segment descriptor is set, the descriptor is for 
either a code or a data segment. The highest order bit of the type field (bit 11 of the 
second double word of the segment descriptor) then determines whether the 
descriptor is for a data segment (clear) or a code segment (set). 

For data segments, the three low-order bits of the type field (bits 8, 9, and 10) are 
interpreted as accessed (A), write-enable (W), and expansion-direction (E). See 
Table 3-1 for a description of the encoding of the bits in the type field for code and 
data segments. Data segments can be read-only or read/write segments, depending 
on the setting of the write-enable bit. 



Vol. 3   3-17

PROTECTED-MODE MEMORY MANAGEMENT

Stack segments are data segments which must be read/write segments. Loading the 
SS register with a segment selector for a nonwritable data segment generates a 
general-protection exception (#GP). If the size of a stack segment needs to be 
changed dynamically, the stack segment can be an expand-down data segment 
(expansion-direction flag set). Here, dynamically changing the segment limit causes 
stack space to be added to the bottom of the stack. If the size of a stack segment is 
intended to remain static, the stack segment may be either an expand-up or expand-
down type.

The accessed bit indicates whether the segment has been accessed since the last 
time the operating-system or executive cleared the bit. The processor sets this bit 
whenever it loads a segment selector for the segment into a segment register, 
assuming that the type of memory that contains the segment descriptor supports 
processor writes. The bit remains set until explicitly cleared. This bit can be used both 
for virtual memory management and for debugging. 

For code segments, the three low-order bits of the type field are interpreted as 
accessed (A), read enable (R), and conforming (C). Code segments can be execute-

Table 3-1.  Code- and Data-Segment Types  

Type Field Descriptor
Type

Description

Decimal 11 10
E

9
W

8
A

0
1
2
3
4
5
6
7

0
0
0
0
0
0
0
0

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

Data
Data
Data
Data
Data
Data
Data
Data

Read-Only

Read-Only, accessed

Read/Write

Read/Write, accessed

Read-Only, expand-down

Read-Only, expand-down, accessed

Read/Write, expand-down

Read/Write, expand-down, accessed

C R A

8
9

10
11
12
13
14
15

1
1
1
1
1
1
1
1

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

Code
Code
Code
Code
Code
Code
Code
Code

Execute-Only

Execute-Only, accessed

Execute/Read

Execute/Read, accessed

Execute-Only, conforming

Execute-Only, conforming, accessed

Execute/Read-Only, conforming

Execute/Read-Only, conforming, 
accessed
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only or execute/read, depending on the setting of the read-enable bit. An 
execute/read segment might be used when constants or other static data have been 
placed with instruction code in a ROM. Here, data can be read from the code segment 
either by using an instruction with a CS override prefix or by loading a segment 
selector for the code segment in a data-segment register (the DS, ES, FS, or GS 
registers). In protected mode, code segments are not writable.

Code segments can be either conforming or nonconforming. A transfer of execution 
into a more-privileged conforming segment allows execution to continue at the 
current privilege level. A transfer into a nonconforming segment at a different privi-
lege level results in a general-protection exception (#GP), unless a call gate or task 
gate is used (see Section 4.8.1, “Direct Calls or Jumps to Code Segments”, for more 
information on conforming and nonconforming code segments). System utilities that 
do not access protected facilities and handlers for some types of exceptions (such as, 
divide error or overflow) may be loaded in conforming code segments. Utilities that 
need to be protected from less privileged programs and procedures should be placed 
in nonconforming code segments. 

NOTE
Execution cannot be transferred by a call or a jump to a less-
privileged (numerically higher privilege level) code segment, 
regardless of whether the target segment is a conforming or noncon-
forming code segment. Attempting such an execution transfer will 
result in a general-protection exception. 

All data segments are nonconforming, meaning that they cannot be accessed by less 
privileged programs or procedures (code executing at numerically high privilege 
levels). Unlike code segments, however, data segments can be accessed by more 
privileged programs or procedures (code executing at numerically lower privilege 
levels) without using a special access gate.

If the segment descriptors in the GDT or an LDT are placed in ROM, the processor can 
enter an indefinite loop if software or the processor attempts to update (write to) the 
ROM-based segment descriptors. To prevent this problem, set the accessed bits for 
all segment descriptors placed in a ROM. Also, remove operating-system or executive 
code that attempts to modify segment descriptors located in ROM.

3.5 SYSTEM DESCRIPTOR TYPES
When the S (descriptor type) flag in a segment descriptor is clear, the descriptor type 
is a system descriptor. The processor recognizes the following types of system 
descriptors:

• Local descriptor-table (LDT) segment descriptor.

• Task-state segment (TSS) descriptor.

• Call-gate descriptor.
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• Interrupt-gate descriptor.

• Trap-gate descriptor.

• Task-gate descriptor.

These descriptor types fall into two categories: system-segment descriptors and gate 
descriptors. System-segment descriptors point to system segments (LDT and TSS 
segments). Gate descriptors are in themselves “gates,” which hold pointers to proce-
dure entry points in code segments (call, interrupt, and trap gates) or which hold 
segment selectors for TSS’s (task gates). 

Table 3-2 shows the encoding of the type field for system-segment descriptors and 
gate descriptors. Note that system descriptors in IA-32e mode are 16 bytes instead 
of 8 bytes.

See also: Section 3.5.1, “Segment Descriptor Tables”, and Section 6.2.2, “TSS 
Descriptor” (for more information on the system-segment descriptors); see Section 

Table 3-2.  System-Segment and Gate-Descriptor Types

Type Field Description

Decimal 11 10 9 8 32-Bit Mode IA-32e Mode

 0 0 0 0 0 Reserved Upper 8 byte of an 16-
byte descriptor

 1 0 0 0 1 16-bit TSS (Available) Reserved

 2 0 0 1 0 LDT LDT

 3 0 0 1 1 16-bit TSS (Busy) Reserved

 4 0 1 0 0 16-bit Call Gate Reserved

 5 0 1 0 1 Task Gate Reserved

 6 0 1 1 0 16-bit Interrupt Gate Reserved

 7 0 1 1 1 16-bit Trap Gate Reserved

 8 1 0 0 0 Reserved Reserved

 9 1 0 0 1 32-bit TSS (Available) 64-bit TSS (Available)

10 1 0 1 0 Reserved Reserved

11 1 0 1 1 32-bit TSS (Busy) 64-bit TSS (Busy)

12 1 1 0 0 32-bit Call Gate 64-bit Call Gate

13 1 1 0 1 Reserved Reserved

14 1 1 1 0 32-bit Interrupt Gate 64-bit Interrupt Gate

15 1 1 1 1 32-bit Trap Gate 64-bit Trap Gate
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4.8.3, “Call Gates”, Section 5.11, “IDT Descriptors”, and Section 6.2.5, “Task-Gate 
Descriptor” (for more information on the gate descriptors).

3.5.1 Segment Descriptor Tables
A segment descriptor table is an array of segment descriptors (see Figure 3-10). A 
descriptor table is variable in length and can contain up to 8192 (213) 8-byte descrip-
tors. There are two kinds of descriptor tables:

• The global descriptor table (GDT)

• The local descriptor tables (LDT)

Each system must have one GDT defined, which may be used for all programs and 
tasks in the system. Optionally, one or more LDTs can be defined. For example, an 

Figure 3-10.  Global and Local Descriptor Tables
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LDT can be defined for each separate task being run, or some or all tasks can share 
the same LDT.

The GDT is not a segment itself; instead, it is a data structure in linear address space. 
The base linear address and limit of the GDT must be loaded into the GDTR register 
(see Section 2.4, “Memory-Management Registers”). The base addresses of the GDT 
should be aligned on an eight-byte boundary to yield the best processor perfor-
mance. The limit value for the GDT is expressed in bytes. As with segments, the limit 
value is added to the base address to get the address of the last valid byte. A limit 
value of 0 results in exactly one valid byte. Because segment descriptors are always 
8 bytes long, the GDT limit should always be one less than an integral multiple of 
eight (that is, 8N – 1).

The first descriptor in the GDT is not used by the processor. A segment selector to 
this “null descriptor” does not generate an exception when loaded into a data-
segment register (DS, ES, FS, or GS), but it always generates a general-protection 
exception (#GP) when an attempt is made to access memory using the descriptor. By 
initializing the segment registers with this segment selector, accidental reference to 
unused segment registers can be guaranteed to generate an exception.

The LDT is located in a system segment of the LDT type. The GDT must contain a 
segment descriptor for the LDT segment. If the system supports multiple LDTs, each 
must have a separate segment selector and segment descriptor in the GDT. The 
segment descriptor for an LDT can be located anywhere in the GDT. See Section 3.5, 
“System Descriptor Types”, information on the LDT segment-descriptor type.

An LDT is accessed with its segment selector. To eliminate address translations when 
accessing the LDT, the segment selector, base linear address, limit, and access rights 
of the LDT are stored in the LDTR register (see Section 2.4, “Memory-Management 
Registers”). 

When the GDTR register is stored (using the SGDT instruction), a 48-bit “pseudo-
descriptor” is stored in memory (see top diagram in Figure 3-11). To avoid alignment 
check faults in user mode (privilege level 3), the pseudo-descriptor should be located 
at an odd word address (that is, address MOD 4 is equal to 2). This causes the 
processor to store an aligned word, followed by an aligned doubleword. User-mode 
programs normally do not store pseudo-descriptors, but the possibility of generating 
an alignment check fault can be avoided by aligning pseudo-descriptors in this way. 
The same alignment should be used when storing the IDTR register using the SIDT 
instruction. When storing the LDTR or task register (using the SLTR or STR instruc-
tion, respectively), the pseudo-descriptor should be located at a doubleword address 
(that is, address MOD 4 is equal to 0).
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3.5.2 Segment Descriptor Tables in IA-32e Mode
In IA-32e mode, a segment descriptor table can contain up to 8192 (213) 8-byte 
descriptors. An entry in the segment descriptor table can be 8 bytes. System descrip-
tors are expanded to 16 bytes (occupying the space of two entries). 

GDTR and LDTR registers are expanded to hold 64-bit base address. The corre-
sponding pseudo-descriptor is 80 bits. (see the bottom diagram in Figure 3-11).

The following system descriptors expand to 16 bytes:

— Call gate descriptors (see Section 4.8.3.1, “IA-32e Mode Call Gates”)

— IDT gate descriptors (see Section 5.14.1, “64-Bit Mode IDT”)

— LDT and TSS descriptors (see Section 6.2.3, “TSS Descriptor in 64-bit 
mode”).

3.6 PAGING (VIRTUAL MEMORY) OVERVIEW
When operating in protected mode, IA-32 architecture permits linear address space 
to be mapped directly into a large physical memory (for example, 4 GBytes of RAM) 
or indirectly (using paging) into a smaller physical memory and disk storage. This 
latter method of mapping the linear address space is referred to as virtual memory or 
demand-paged virtual memory.

When paging is used, the processor divides the linear address space into fixed-size 
pages (of 4 KBytes, 2 MBytes, or 4 MBytes in length) that can be mapped into phys-
ical memory and/or disk storage. When a program (or task) references a logical 
address in memory, the processor translates the address into a linear address and 
then uses its paging mechanism to translate the linear address into a corresponding 
physical address. 

If the page containing the linear address is not currently in physical memory, the 
processor generates a page-fault exception (#PF). The exception handler for the 
page-fault exception typically directs the operating system or executive to load the 
page from disk storage into physical memory (perhaps writing a different page from 
physical memory out to disk in the process). When the page has been loaded in phys-
ical memory, a return from the exception handler causes the instruction that gener-

Figure 3-11.  Pseudo-Descriptor Formats

0
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0
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ated the exception to be restarted. The information that the processor uses to map 
linear addresses into the physical address space and to generate page-fault excep-
tions (when necessary) is contained in page directories and page tables stored in 
memory. 

Paging is different from segmentation through its use of fixed-size pages. Unlike 
segments, which usually are the same size as the code or data structures they hold, 
pages have a fixed size. If segmentation is the only form of address translation used, 
a data structure present in physical memory will have all of its parts in memory. If 
paging is used, a data structure can be partly in memory and partly in disk storage.

To minimize the number of bus cycles required for address translation, the most 
recently accessed page-directory and page-table entries are cached in the processor 
in devices called translation lookaside buffers (TLBs). The TLBs satisfy most requests 
for reading the current page directory and page tables without requiring a bus cycle. 
Extra bus cycles occur only when the TLBs do not contain a page-table entry, which 
typically happens when a page has not been accessed for a long time. See Section 
3.12, “Translation Lookaside Buffers (TLBs)”, for more information on the TLBs.

3.6.1 Paging Options
Paging is controlled by three flags in the processor’s control registers:

• PG (paging) flag. Bit 31 of CR0 (available in all IA-32 processors beginning with 
the Intel386 processor). 

• PSE (page size extensions) flag. Bit 4 of CR4 (introduced in the Pentium 
processor).

• PAE (physical address extension) flag. Bit 5 of CR4 (introduced in the 
Pentium Pro processors).

The PG flag enables the page-translation mechanism. The operating system or exec-
utive usually sets this flag during processor initialization. The PG flag must be set if 
the processor’s page-translation mechanism is to be used to implement a demand-
paged virtual memory system or if the operating system is designed to run more 
than one program (or task) in virtual-8086 mode.

The PSE flag enables large page sizes: 4-MByte pages or 2-MByte pages (when the 
PAE flag is set). When the PSE flag is clear, the more common page length of 
4 KBytes is used. See Section 3.7.2, “Linear Address Translation (4-MByte Pages)”, 
Section 3.8.3, “Linear Address Translation With PAE Enabled (2-MByte Pages)”, and 
Section 3.9, “36-Bit Physical Addressing Using the PSE-36 Paging Mechanism” for 
more information about the use of the PSE flag.

The PAE flag provides a method of extending physical addresses to 36 bits. This 
physical address extension can only be used when paging is enabled. It relies on an 
additional page directory pointer table that is used along with page directories and 
page tables to reference physical addresses above FFFFFFFFH. See Section 3.8, “36-
Bit Physical Addressing Using the PAE Paging Mechanism”, for more information 
about extending physical addresses using the PAE flag.
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When PAE flag is enabled for Intel 64 processors, the PAE mechanism is enhanced to 
support more than 36 bits of physical addressing (if the processor’s implementation 
supports more than 36 bits of physical addressing). This applies to IA-32e mode 
address translation (see Section 3.10, “PAE-Enabled Paging in IA-32e Mode”) and 
enhanced legacy PAE-enabled address translation (see Section 3.8.1, “Enhanced 
Legacy PAE Paging”).

The 36-bit page size extension (PSE-36) feature provides an alternate method of 
extending physical addressing to 36 bits. This paging mechanism uses the page size 
extension mode (enabled with the PSE flag) and modified page directory entries to 
reference physical addresses above FFFFFFFFH. The PSE-36 feature flag (bit 17 in the 
EDX register when the CPUID instruction is executed with a source operand of 1) 
indicates the availability of this addressing mechanism. See Section 3.9, “36-Bit 
Physical Addressing Using the PSE-36 Paging Mechanism”, for more information 
about the PSE-36 physical address extension and page size extension mechanism.

3.6.2 Page Tables and Directories in the Absence of Intel® 64 
Technology

The information that the processor uses to translate linear addresses into physical 
addresses (when paging is enabled) is contained in four data structures: 

• Page directory — An array of 32-bit page-directory entries (PDEs) contained in 
a 4-KByte page. Up to 1024 page-directory entries can be held in a page 
directory.

• Page table — An array of 32-bit page-table entries (PTEs) contained in a 
4-KByte page. Up to 1024 page-table entries can be held in a page table. (Page 
tables are not used for 2-MByte or 4-MByte pages. These page sizes are mapped 
directly from one or more page-directory entries.)

• Page — A 4-KByte, 2-MByte, or 4-MByte flat address space.

• Page-Directory-Pointer Table — An array of four 64-bit entries, each of which 
points to a page directory. This data structure is only used when the physical 
address extension is enabled (see Section 3.8, “36-Bit Physical Addressing Using 
the PAE Paging Mechanism”).

These tables provide access to either 4-KByte or 4-MByte pages when normal 32-bit 
physical addressing is being used and to either 4-KByte or 2-MByte pages or 4-MByte 
pages only when extended (36-bit) physical addressing is being used. 

Table 3-3 shows the page size and physical address size obtained from various 
settings of the paging control flags and the PSE-36 CPUID feature flag. Each page-
directory entry contains a PS (page size) flag that specifies whether the entry points 
to a page table whose entries in turn point to 4-KByte pages (PS set to 0) or whether 
the page-directory entry points directly to a 4-MByte (PSE and PS set to 1) or 
2-MByte page (PAE and PS set to 1).
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3.7 PAGE TRANSLATION USING 32-BIT PHYSICAL 
ADDRESSING

The following sections describe the IA-32 architecture’s page translation mechanism 
when using 32-bit physical addresses and a maximum physical address space of 
4 GBytes. The 32-bit physical addressing described applies to IA-32 processors or 
when the following situations are all true:

• The processor supports Intel 64 architecture but IA-32e mode is not active.

• PAE or PSE mechanism is not active.

Section 3.8, “36-Bit Physical Addressing Using the PAE Paging Mechanism” and 
Section 3.9, “36-Bit Physical Addressing Using the PSE-36 Paging Mechanism” 
describe extensions to this page translation mechanism to support 36-bit physical 
addresses and a maximum physical address space of 64 GBytes.

3.7.1 Linear Address Translation (4-KByte Pages)
Figure 3-12 shows the page directory and page-table hierarchy when mapping linear 
addresses to 4-KByte pages. The entries in the page directory point to page tables, 
and the entries in a page table point to pages in physical memory. This paging 
method can be used to address up to 220 pages, which spans a linear address space 
of 232 bytes (4 GBytes).

Table 3-3.  Page Sizes and Physical Address Sizes
PG Flag, 

CR0
PAE Flag, 

CR4
PSE Flag, 

CR4
PS Flag, 

PDE
PSE-36 CPUID 
Feature Flag Page Size

Physical Address 
Size

0 X X X X — Paging Disabled

1 0 0 X X 4 KBytes 32 Bits

1 0 1 0 X 4 KBytes 32 Bits

1 0 1 1 0 4 MBytes 32 Bits

1 0 1 1 1 4 MBytes 36 Bits

1 1 X 0 X 4 KBytes 36 Bits

1 1 X 1 X 2 MBytes 36 Bits
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To select the various table entries, the linear address is divided into three sections: 

• Page-directory entry — Bits 22 through 31 provide an offset to an entry in the 
page directory. The selected entry provides the base physical address of a page 
table. 

• Page-table entry — Bits 12 through 21 of the linear address provide an offset to 
an entry in the selected page table. This entry provides the base physical address 
of a page in physical memory. 

• Page offset — Bits 0 through 11 provides an offset to a physical address in the 
page.

Memory management software has the option of using one page directory for all 
programs and tasks, one page directory for each task, or some combination of the 
two.

3.7.2 Linear Address Translation (4-MByte Pages)
Figure 3-13 shows how a page directory can be used to map linear addresses to 
4-MByte pages. The entries in the page directory point to 4-MByte pages in physical 
memory. This paging method can be used to map up to 1024 pages into a 4-GByte 
linear address space.

Figure 3-12.  Linear Address Translation (4-KByte Pages)
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The 4-MByte page size is selected by setting the PSE flag in control register CR4 and 
setting the page size (PS) flag in a page-directory entry (see Figure 3-14). With 
these flags set, the linear address is divided into two sections: 

• Page directory entry—Bits 22 through 31 provide an offset to an entry in the page 
directory. The selected entry provides the base physical address of a 4-MByte 
page. 

• Page offset—Bits 0 through 21 provides an offset to a physical address in the 
page.

NOTE
(For the Pentium processor only.) When enabling or disabling large 
page sizes, the TLBs must be invalidated (flushed) after the PSE flag 
in control register CR4 has been set or cleared. Otherwise, incorrect 
page translation might occur due to the processor using outdated 
page translation information stored in the TLBs. See Section 10.9, 
“Invalidating the Translation Lookaside Buffers (TLBs)”, for 
information on how to invalidate the TLBs.

3.7.3 Mixing 4-KByte and 4-MByte Pages
When the PSE flag in CR4 is set, both 4-MByte pages and page tables for 4-KByte 
pages can be accessed from the same page directory. If the PSE flag is clear, only 
page tables for 4-KByte pages can be accessed (regardless of the setting of the PS 
flag in a page-directory entry).

Figure 3-13.  Linear Address Translation (4-MByte Pages)
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A typical example of mixing 4-KByte and 4-MByte pages is to place the operating 
system or executive’s kernel in a large page to reduce TLB misses and thus improve 
overall system performance. 

The processor maintains 4-MByte page entries and 4-KByte page entries in separate 
TLBs. So, placing often used code such as the kernel in a large page, frees up 
4-KByte-page TLB entries for application programs and tasks.

3.7.4 Memory Aliasing
The IA-32 architecture permits memory aliasing by allowing two page-directory 
entries to point to a common page-table entry. Software that needs to implement 
memory aliasing in this manner must manage the consistency of the accessed and 
dirty bits in the page-directory and page-table entries. Allowing the accessed and 
dirty bits for the two page-directory entries to become inconsistent may lead to a 
processor deadlock.

3.7.5 Base Address of the Page Directory
The physical address of the current page directory is stored in the CR3 register (also 
called the page directory base register or PDBR). (See Figure 2-6 and Section 2.5, 
“Control Registers”, for more information on the PDBR.) If paging is to be used, the 
PDBR must be loaded as part of the processor initialization process (prior to enabling 
paging). The PDBR can then be changed either explicitly by loading a new value in 
CR3 with a MOV instruction or implicitly as part of a task switch. (See Section 6.2.1, 
“Task-State Segment (TSS)”, for a description of how the contents of the CR3 
register is set for a task.)

There is no present flag in the PDBR for the page directory. The page directory may 
be not-present (paged out of physical memory) while its associated task is 
suspended, but the operating system must ensure that the page directory indicated 
by the PDBR image in a task's TSS is present in physical memory before the task is 
dispatched. The page directory must also remain in memory as long as the task is 
active.

3.7.6 Page-Directory and Page-Table Entries
Figure 3-14 shows the format for the page-directory and page-table entries when 
4-KByte pages and 32-bit physical addresses are being used. Figure 3-15 shows 
the format for the page-directory entries when 4-MByte pages and 32-bit physical 
addresses are being used. The functions of the flags and fields in the entries in 
Figures 3-14 and 3-15 are as follows:

Page base address, bits 12 through 32 
(Page-table entries for 4-KByte pages) — Specifies the physical 
address of the first byte of a 4-KByte page. The bits in this field are 
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interpreted as the 20 most-significant bits of the physical address, 
which forces pages to be aligned on 4-KByte boundaries.

(Page-directory entries for 4-KByte page tables) — Specifies the 
physical address of the first byte of a page table. The bits in this field 
are interpreted as the 20 most-significant bits of the physical address, 
which forces page tables to be aligned on 4-KByte boundaries.

(Page-directory entries for 4-MByte pages) — Specifies the physical 
address of the first byte of a 4-MByte page. Only bits 22 through 31 of 
this field are used (and bits 12 through 21 are reserved and must be 
set to 0, for IA-32 processors through the Pentium II processor). The 

Figure 3-14.  Format of Page-Directory and Page-Table Entries for 4-KByte Pages 
and 32-Bit Physical Addresses
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base address bits are interpreted as the 10 most-significant bits of the 
physical address, which forces 4-MByte pages to be aligned on 
4-MByte boundaries.

Present (P) flag, bit 0 
Indicates whether the page or page table being pointed to by the 
entry is currently loaded in physical memory. When the flag is set, the 
page is in physical memory and address translation is carried out. 
When the flag is clear, the page is not in memory and, if the processor 
attempts to access the page, it generates a page-fault exception 
(#PF).

The processor does not set or clear this flag; it is up to the operating 
system or executive to maintain the state of the flag. 

If the processor generates a page-fault exception, the operating 
system generally needs to carry out the following operations: 

1. Copy the page from disk storage into physical memory.

2. Load the page address into the page-table or page-directory 
entry and set its present flag. Other flags, such as the dirty and 
accessed flags, may also be set at this time.

3. Invalidate the current page-table entry in the TLB (see Section 
3.12, “Translation Lookaside Buffers (TLBs)”, for a discussion of 
TLBs and how to invalidate them).

4. Return from the page-fault handler to restart the interrupted 
program (or task).

Figure 3-15.  Format of Page-Directory Entries for 4-MByte Pages and 32-Bit 
Addresses
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Read/write (R/W) flag, bit 1 
Specifies the read-write privileges for a page or group of pages (in the 
case of a page-directory entry that points to a page table). When this 
flag is clear, the page is read only; when the flag is set, the page can 
be read and written into. This flag interacts with the U/S flag and the 
WP flag in register CR0. See Section 4.11, “Page-Level Protection”, 
and Table 4-3 for a detailed discussion of the use of these flags.

User/supervisor (U/S) flag, bit 2 
Specifies the user-supervisor privileges for a page or group of pages 
(in the case of a page-directory entry that points to a page table). 
When this flag is clear, the page is assigned the supervisor privilege 
level; when the flag is set, the page is assigned the user privilege 
level. This flag interacts with the R/W flag and the WP flag in register 
CR0. See Section 4.11, “Page-Level Protection”, and Table 4-3 for a 
detail discussion of the use of these flags.

Page-level write-through (PWT) flag, bit 3 
Controls the write-through or write-back caching policy of individual 
pages or page tables. When the PWT flag is set, write-through caching 
is enabled for the associated page or page table; when the flag is 
clear, write-back caching is enabled for the associated page or page 
table. The processor ignores this flag if the CD (cache disable) flag in 
CR0 is set. See Section 10.5, “Cache Control”, for more information 
about the use of this flag. See Section 2.5, “Control Registers”, for a 
description of a companion PWT flag in control register CR3.

Page-level cache disable (PCD) flag, bit 4 
Controls the caching of individual pages or page tables. When the PCD 
flag is set, caching of the associated page or page table is prevented; 
when the flag is clear, the page or page table can be cached. This flag 
permits caching to be disabled for pages that contain memory-
mapped I/O ports or that do not provide a performance benefit when 
cached. The processor ignores this flag (assumes it is set) if the CD 
(cache disable) flag in CR0 is set. See Chapter 10, “Memory Cache 
Control”, for more information about the use of this flag. See Section 
2.5, “Control Registers”, for a description of a companion PCD flag in 
control register CR3.

Accessed (A) flag, bit 5 
Indicates whether a page or page table has been accessed (read from 
or written to) when set. Memory management software typically 
clears this flag when a page or page table is initially loaded into phys-
ical memory. The processor then sets this flag the first time a page or 
page table is accessed. 

This flag is a “sticky” flag, meaning that once set, the processor does 
not implicitly clear it. Only software can clear this flag. The accessed 
and dirty flags are provided for use by memory management software 
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to manage the transfer of pages and page tables into and out of phys-
ical memory.

NOTE: The accesses used by the processor to set this bit may or may 
not be exposed to the processor’s Self-Modifying Code detection logic. 
If the processor is executing code from the same memory area that is 
being used for page table structures, the setting of the bit may or may 
not result in an immediate change to the executing code stream.

Dirty (D) flag, bit 6 
Indicates whether a page has been written to when set. (This flag is 
not used in page-directory entries that point to page tables.) Memory 
management software typically clears this flag when a page is initially 
loaded into physical memory. The processor then sets this flag the 
first time a page is accessed for a write operation. 

This flag is “sticky,” meaning that once set, the processor does not 
implicitly clear it. Only software can clear this flag. The dirty and 
accessed flags are provided for use by memory management software 
to manage the transfer of pages and page tables into and out of phys-
ical memory.

NOTE: The accesses used by the processor to set this bit may or may 
not be exposed to the processor’s Self-Modifying Code detection logic. 
If the processor is executing code from the same memory area that is 
being used for page table structures, the setting of the bit may or may 
not result in an immediate change to the executing code stream.

Page size (PS) flag, bit 7 page-directory entries for 4-KByte pages 
Determines the page size. When this flag is clear, the page size is 4 
KBytes and the page-directory entry points to a page table. When the 
flag is set, the page size is 4 MBytes for normal 32-bit addressing (and 
2 MBytes if extended physical addressing is enabled) and the page-
directory entry points to a page. If the page-directory entry points to 
a page table, all the pages associated with that page table will be 
4-KByte pages.

Page attribute table index (PAT) flag, bit 7 in page-table entries for 4-KByte 
pages and bit 12 in page-directory entries for 4-MByte pages 
(Introduced in the Pentium III processor) — Selects PAT entry. For 
processors that support the page attribute table (PAT), this flag is 
used along with the PCD and PWT flags to select an entry in the PAT, 
which in turn selects the memory type for the page (see Section 
10.12, “Page Attribute Table (PAT)”). For processors that do not 
support the PAT, this bit is reserved and should be set to 0.

Global (G) flag, bit 8 
(Introduced in the Pentium Pro processor) — Indicates a global page 
when set. When a page is marked global and the page global enable 
(PGE) flag in register CR4 is set, the page-table or page-directory 
entry for the page is not invalidated in the TLB when register CR3 is 



Vol. 3   3-33

PROTECTED-MODE MEMORY MANAGEMENT

loaded or a task switch occurs. This flag is provided to prevent 
frequently used pages (such as pages that contain kernel or other 
operating system or executive code) from being flushed from the 
TLB. Only software can set or clear this flag. For page-directory 
entries that point to page tables, this flag is ignored and the global 
characteristics of a page are set in the page-table entries. See 
Section 3.12, “Translation Lookaside Buffers (TLBs)”, for more infor-
mation about the use of this flag. (This bit is reserved in Pentium and 
earlier IA-32 processors.)

Reserved and available-to-software bits 
For all IA-32 processors. Bits 9, 10, and 11 are available for use by 
software. (When the present bit is clear, bits 1 through 31 are avail-
able to software, see Figure 3-16.) In a page-directory entry that 
points to a page table, bit 6 is reserved and should be set to 0. When 
the PSE and PAE flags in control register CR4 are set, the processor 
generates a page fault if reserved bits are not set to 0.

For Pentium II and earlier processors. Bit 7 in a page-table entry is 
reserved and should be set to 0. For a page-directory entry for a 
4-MByte page, bits 12 through 21 are reserved and must be set to 0.

For Pentium III and later processors. For a page-directory entry for a 
4-MByte page, bits 13 through 21 are reserved and must be set to 0.

3.7.7 Not Present Page-Directory and Page-Table Entries
When the present flag is clear for a page-table or page-directory entry, the operating 
system or executive may use the rest of the entry for storage of information such as 
the location of the page in the disk storage system (see Figure 3-16).

3.8 36-BIT PHYSICAL ADDRESSING USING THE PAE 
PAGING MECHANISM

The PAE paging mechanism and support for 36-bit physical addressing were intro-
duced into the IA-32 architecture in the Pentium Pro processors. Implementation of 
this feature in an IA-32 processor is indicated with CPUID feature flag PAE (bit 6 in 
the EDX register when the source operand for the CPUID instruction is 2). The phys-
ical address extension (PAE) flag in register CR4 enables the PAE mechanism and 
extends physical addresses from 32 bits to 36 bits. Here, the processor provides 4 

Figure 3-16.  Format of a Page-Table or Page-Directory Entry for a Not-Present Page
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additional address line pins to accommodate the additional address bits. To use this 
option, the following flags must be set:

• PG flag (bit 31) in control register CR0—Enables paging

• PAE flag (bit 5) in control register CR4 are set—Enables the PAE paging 
mechanism.

When the PAE paging mechanism is enabled, the processor supports two sizes of 
pages: 4-KByte and 2-MByte. As with 32-bit addressing, both page sizes can be 
addressed within the same set of paging tables (that is, a page-directory entry can 
point to either a 2-MByte page or a page table that in turn points to 4-KByte pages). 
To support the 36-bit physical addresses, the following changes are made to the 
paging data structures:

• The paging table entries are increased to 64 bits to accommodate 36-bit base 
physical addresses. Each 4-KByte page directory and page table can thus have 
up to 512 entries.

• A new table, called the page-directory-pointer table, is added to the linear-
address translation hierarchy. This table has 4 entries of 64-bits each, and it lies 
above the page directory in the hierarchy. With the physical address extension 
mechanism enabled, the processor supports up to 4 page directories.

• The 20-bit page-directory base address field in register CR3 (PDBR) is replaced 
with a 27-bit page-directory-pointer-table base address field. The updated field 
provides the 27 most-significant bits of the physical address of the first byte of 
the page-directory pointer table (forcing the table to be located on a 32-byte 
boundary). 

Since CR3 now contains the page-directory-pointer-table base address, it can be 
referred to as the page-directory-pointer-table register (PDPTR). See 
Figure 3-17.

• Linear address translation is changed to allow mapping 32-bit linear addresses 
into the larger physical address space.

3.8.1 Enhanced Legacy PAE Paging
On Intel 64 processors, the page directory pointer entry supports physical address 
size of the underlying implementation (reported by CPUID.80000008H). Legacy PAE 
enabled paging [see Section 3.8.2, “Linear Address Translation With PAE Enabled 
(4-KByte Pages)” and Section 3.8.3, “Linear Address Translation With PAE Enabled 
(2-MByte Pages)”] can address physical memory greater than 64-GByte if the 
implementation’s physical address size is greater than 36 bits.

Figure 3-17.  Register CR3 Format When the Physical Address Extension is Enabled
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3.8.2 Linear Address Translation With PAE Enabled (4-KByte 
Pages)

Figure 3-18 shows the page-directory-pointer, page-directory, and page-table hier-
archy when mapping linear addresses to 4-KByte pages when the PAE paging mech-
anism enabled. This paging method can be used to address up to 220 pages, which 
spans a linear address space of 232 bytes (4 GBytes).

To select the various table entries, the linear address is divided into three sections: 

• Page-directory-pointer-table entry—Bits 30 and 31 provide an offset to one of the 
4 entries in the page-directory-pointer table. The selected entry provides the 
base physical address of a page directory. 

• Page-directory entry—Bits 21 through 29 provide an offset to an entry in the 
selected page directory. The selected entry provides the base physical address of 
a page table. 

• Page-table entry—Bits 12 through 20 provide an offset to an entry in the selected 
page table. This entry provides the base physical address of a page in physical 
memory. 

• Page offset—Bits 0 through 11 provide an offset to a physical address in the 
page.

Figure 3-18.  Linear Address Translation With PAE Enabled (4-KByte Pages)
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3.8.3 Linear Address Translation With PAE Enabled (2-MByte 
Pages)

Figure 3-19 shows how a page-directory-pointer table and page directories can be 
used to map linear addresses to 2-MByte pages when the PAE paging mechanism 
enabled. This paging method can be used to map up to 2048 pages (4 page-direc-
tory-pointer-table entries times 512 page-directory entries) into a 4-GByte linear 
address space.

When PAE is enabled, the 2-MByte page size is selected by setting the page size (PS) 
flag in a page-directory entry (see Figure 3-14). (As shown in Table 3-3, the PSE flag 
in control register CR4 has no affect on the page size when PAE is enabled.) With the 
PS flag set, the linear address is divided into three sections: 

• Page-directory-pointer-table entry—Bits 30 and 31 provide an offset to an entry 
in the page-directory-pointer table. The selected entry provides the base physical 
address of a page directory. 

• Page-directory entry—Bits 21 through 29 provide an offset to an entry in the 
page directory. The selected entry provides the base physical address of a 
2-MByte page. 

• Page offset—Bits 0 through 20 provides an offset to a physical address in the 
page.

Figure 3-19.  Linear Address Translation With PAE Enabled (2-MByte Pages)
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3.8.4 Accessing the Full Extended Physical Address Space With 
the Extended Page-Table Structure

The page-table structure described in the previous two sections allows up to 
4 GBytes of the 64 GByte extended physical address space to be addressed at one 
time. Additional 4-GByte sections of physical memory can be addressed in either of 
two way:

• Change the pointer in register CR3 to point to another page-directory-pointer 
table, which in turn points to another set of page directories and page tables.

• Change entries in the page-directory-pointer table to point to other page direc-
tories, which in turn point to other sets of page tables.

3.8.5 Page-Directory and Page-Table Entries With Extended 
Addressing Enabled

Figure 3-20 shows the format for the page-directory-pointer-table, page-direc-
tory, and page-table entries when 4-KByte pages and 36-bit extended physical 
addresses are being used. Figure 3-21 shows the format for the page-directory-
pointer-table and page-directory entries when 2-MByte pages and 36-bit extended 
physical addresses are being used. The functions of the flags in these entries are the 
same as described in Section 3.7.6, “Page-Directory and Page-Table Entries”. The 
major differences in these entries are as follows:

• A page-directory-pointer-table entry is added.

• The size of the entries are increased from 32 bits to 64 bits.

• The maximum number of entries in a page directory or page table is 512.

• The base physical address field in each entry is extended to 24 bits.

NOTE
Older IA-32 processors that implement the PAE mechanism use 
uncached accesses when loading page-directory-pointer table 
entries. This behavior is model specific and not architectural. More 
recent Intel 64 and IA-32 processors may cache page-directory-
pointer table entries.
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Figure 3-20.  Format of Page-Directory-Pointer-Table, Page-Directory, and Page-
Table Entries for 4-KByte Pages with PAE Enabled
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The base physical address in an entry specifies the following, depending on the type 
of entry:

• Page-directory-pointer-table entry — the physical address of the first byte of 
a 4-KByte page directory.

• Page-directory entry — the physical address of the first byte of a 4-KByte page 
table or a 2-MByte page.

• Page-table entry — the physical address of the first byte of a 4-KByte page. 

For all table entries (except for page-directory entries that point to 2-MByte pages), 
the bits in the page base address are interpreted as the 24 most-significant bits of a 
36-bit physical address, which forces page tables and pages to be aligned on 4-KByte 
boundaries. When a page-directory entry points to a 2-MByte page, the base address 
is interpreted as the 15 most-significant bits of a 36-bit physical address, which 
forces pages to be aligned on 2-MByte boundaries.

The present flag (bit 0) in the page-directory-pointer-table entries can be set to 0 
or 1. If the present flag is clear, the remaining bits in the page-directory-pointer-
table entry are available to the operating system. If the present flag is set, the fields 
of the page-directory-pointer-table entry are defined in Figures 3-20 for 4-KByte 
pages and Figures 3-21 for 2-MByte pages.

The page size (PS) flag (bit 7) in a page-directory entry determines if the entry points 
to a page table or a 2-MByte page. When this flag is clear, the entry points to a page 
table; when the flag is set, the entry points to a 2-MByte page. This flag allows 
4-KByte and 2-MByte pages to be mixed within one set of paging tables.

Figure 3-21.  Format of Page-Directory-Pointer-Table and Page-Directory 
Entries for 2-MByte Pages with PAE Enabled
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Access (A) and dirty (D) flags (bits 5 and 6) are provided for table entries that point 
to pages.

Bits 9, 10, and 11 in all the table entries for the physical address extension are avail-
able for use by software. (When the present flag is clear, bits 1 through 63 are avail-
able to software.) All bits in Figure 3-14 that are marked reserved or 0 should be set 
to 0 by software and not accessed by software. When the PSE and/or PAE flags in 
control register CR4 are set, the processor generates a page fault (#PF) if reserved 
bits in page-directory and page-table entries are not set to 0, and it generates a 
general-protection exception (#GP) if reserved bits in a page-directory-pointer-table 
entry are not set to 0.

3.9 36-BIT PHYSICAL ADDRESSING USING THE PSE-36 
PAGING MECHANISM

The PSE-36 paging mechanism provides an alternate method (from the PAE mecha-
nism) of extending physical memory addressing to 36 bits. This mechanism uses the 
page size extension (PSE) mode and a modified page-directory table to map 4-MByte 
pages into a 64-GByte physical address space. As with the PAE mechanism, the 
processor provides 4 additional address line pins to accommodate the additional 
address bits.

The PSE-36 mechanism was introduced into the IA-32 architecture with the Pentium 
III processors. The availability of this feature is indicated with the PSE-36 feature bit 
(bit 17 of the EDX register when the CPUID instruction is executed with a source 
operand of 1).

As is shown in Table 3-3, the following flags must be set or cleared to enable the PSE-
36 paging mechanism:

• PSE-36 CPUID feature flag — When set, it indicates the availability of the PSE-
36 paging mechanism on the IA-32 processor on which the CPUID instruction is 
executed.

• PG flag (bit 31) in register CR0 — Set to 1 to enable paging.

• PAE flag (bit 5) in control register CR4 — Clear to 0 to disable the PAE paging 
mechanism.

• PSE flag (bit 4) in control register CR4 and the PS flag in PDE — Set to 1 to 
enable the page size extension for 4-MByte pages. 

• Or the PSE flag (bit 4) in control register CR4 — Set to 1 and the PS flag (bit 
7) in PDE— Set to 0 to enable 4-KByte pages with 32-bit addressing (below 
4 GBytes).
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Figure 3-22 shows how the expanded page directory entry can be used to map a 
32-bit linear address to a 36-bit physical address. Here, the linear address is divided 
into two sections: 

• Page directory entry — Bits 22 through 35 provide an offset to an entry in the 
page directory. The selected entry provides the 14 most significant bits of a 
36-bit address, which locates the base physical address of a 4-MByte page. 

• Page offset — Bits 0 through 21 provides an offset to a physical address in the 
page.

This paging method can be used to map up to 1024 pages into a 64-GByte physical 
address space.

Figure 3-23 shows the format for the page-directory entries when 4-MByte pages 
and 36-bit physical addresses are being used. Section 3.7.6, “Page-Directory and 
Page-Table Entries” describes the functions of the flags and fields in bits 0 
through 11. 

Figure 3-22.  Linear Address Translation (4-MByte Pages)
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3.10 PAE-ENABLED PAGING IN IA-32E MODE
Intel 64 architecture expands physical address extension (PAE) paging structures to 
potentially support mapping a 64-bit linear address to a 52-bit physical address. In 
the first implementation of Intel 64 architecture, PAE paging structures support 
translation of a 48-bit linear address into a 40-bit physical address.

When IA-32e mode is enabled, linear address to physical address translation is 
different than in PAE-enabled protected mode. Address translation from a linear 
address to a physical address uses up to four levels of paging data structures. A new 
page mapping table, the page map level 4 table (PML4 table), is added on top of the 
page director pointer table.

Prior to activating IA-32e mode, PAE must be enabled by setting CR4.PAE = 1. PAE 
expands the size of page-directory entries (PDE) and page-table entries (PTE) from 
32 bits to 64 bits. This change is made to support physical-address sizes of greater 
than 32 bits. An attempt to activate IA-32e mode prior to enabling PAE results in a 
general-protection exception, #GP.

PML4 tables are used in page translation only in IA-32e mode. They are not used 
when IA-32e mode is disabled, whether or not PAE is enabled. The existing page-
directory pointer table is expanded to 512 eight-byte entries from four entries. As a 
result, nine bits of the linear address are used to index into a PDP table rather than 
two bits. The size of the page-directory entry (PDE) table and page-table entry (PTE) 
table remains 512 eight-byte entries, each indexed by nine linear-address bits. The 
total of linear-address index bits into the collection of paging data structures (PML4 

Figure 3-23.  Format of Page-Directory Entries for 4-MByte Pages and
36-Bit Physical Addresses
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+ PDP + PDE + PTE + page offset) becomes 48. The method for translating the high-
order 16 linear-address bits into a physical address is currently reserved.

The PS flag in the page directory entry (PDE.PS) selects between 4-KByte and 
2-MByte page sizes. Because PDE.PS is used to control large page selection, the 
CR4.PSE bit is ignored.

3.10.1 IA-32e Mode Linear Address Translation (4-KByte Pages)
Figure 3-24 shows the PML4, page-directory-pointer, page-directory, and page-table 
hierarchy when mapping linear addresses to 4-KByte pages in IA-32e mode. This 
paging method can be used to address up to 236 pages, which spans a linear address 
space of 248 bytes.

To select the various table entries, linear addresses are divided into five sections: 

• PML4-table entry — Bits 47:39 provide an offset to an entry in the PML4 table. 
The selected entry provides the base physical address of a page directory pointer 
table. 

• Page-directory-pointer-table entry — Bits 38:30 provide an offset to an 
entry in the page-directory-pointer table. The selected entry provides the base 
physical address of a page directory table. 

• Page-directory entry — Bits 29:21 provide an offset to an entry in the selected 
page directory. The selected entry provides the base physical address of a page 
table. 

• Page-table entry — Bits 20:12 provide an offset to an entry in the selected 
page table. This entry provides the base physical address of a page in physical 
memory. 

• Page offset — Bits 11:0 provide an offset to a physical address in the page.
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3.10.2 IA-32e Mode Linear Address Translation (2-MByte Pages)
Figure 3-25 shows the PML4 table, page-directory-pointer, and page-directory hier-
archy when mapping linear addresses to 2-MByte pages in IA-32e mode. This 
method can be used to address up to 227 pages, which spans a linear address space 
of 248 bytes.

The 2-MByte page size is selected by setting the page size (PS) flag in a page-direc-
tory entry (see Figure 3-14). The PSE flag in control register CR4 has no affect on the 
page size when PAE is enabled. With the PS flag set, a linear address is divided into 
four sections: 

• PML4-table entry — Bits 47:39 provide an offset to an entry in the PML4 table. 
The selected entry provides the base physical address of a page directory pointer 
table. 

Figure 3-24.  IA-32e Mode Paging Structures (4-KByte Pages)
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• Page-directory-pointer-table entry — Bits 38:30 provide an offset to an 
entry in the page-directory-pointer table. The selected entry provides the base 
physical address of a page directory. 

• Page-directory entry — Bits 29:21 provide an offset to an entry in the page 
directory. The selected entry provides the base physical address of a 2-MByte 
page. 

• Page offset — Bits 20:0 provides an offset to a physical address in the page.

3.10.3 Enhanced Paging Data Structures
Figure 3-26 shows the format for the PML4 table, page-directory-pointer table, 
page-directory and page-table entries when 4-KByte pages are used in IA-32e 
mode. Figure 3-27 shows the format for the PML4 table, the page-directory-
pointer table and page-directory entries when 2-MByte pages are used in IA-32e 
mode. 

Figure 3-25.  IA-32e Mode Paging Structures (2-MByte pages)
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Except for the PML4 table; enhanced formats of page-directory-pointer table, page-
directory, and page-table entries are also used in enhanced legacy PAE-enabled 
paging on processors that support Intel 64 architecture (see Section 3.8.1, 
“Enhanced Legacy PAE Paging”).

Except for bit 63, functions of the flags in these entries are as described in Section 
3.7.6, “Page-Directory and Page-Table Entries”. The differences are:

• A PML4 table entry and a page-directory-pointer-table entry are added.

• Entries are increased from 32 bits to 64 bits.

Figure 3-26.  Format of Paging Structure Entries for 4-KByte Pages in IA-32e Mode
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• The maximum number of entries in a page directory, page table, or PML4 table is 
512.

• The P, R/W, U/S, PWT, PCD, and A flags are implemented uniformly across all four 
levels.

• The base physical address field in each entry is extended to 28 bits if the 
processor’s implementation supports a 40-bit physical address.

• Bits 62:52 are available for use by system programmers.

• Bit 63 is the execute-disable bit if the execute-disable bit feature is supported in 
the processor. If the feature is not supported, bit 63 is reserved. The functionality 
of the execute disable bit is described in Section 4.11, “Page-Level Protection”. It 
requires both PAE and enhanced paging data structures. Note that the execute 
disable bit can provide page protection in 32-bit PAE mode and IA-32e mode.

Figure 3-27.  Format of Paging Structure Entries for 2-MByte Pages in IA-32e Mode
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3.10.3.1  Intel® 64 Processors and Reserved Bit Checking 
On processors supporting Intel 64 architecture and/or supporting the execute disable 
bit, the processor enforces reserved bit checking on paging mode specific bits. 

Table 3-4 shows the reserved bits that are checked on Intel 64 processors when 
execute disable bit checking is either disabled or not supported. The 32-bit mode 
behavior in Table 3-4 also applies to IA-32 processors that support the execute-
disable bit but not Intel 64 architecture.

If the execute disable bit is enabled in an IA-32 or Intel 64 processor, reserved bits in 
paging data structures for legacy 32-bit mode and 64-bit mode are shown in Table 
3-5.

Table 3-4.  Reserved Bit Checking When Execute Disable Bit is Disabled 
Mode Paging Mode Paging Structure Check Bits

32-bit 4-KByte pages (PAE = 0, PSE = 0) PDE and PT No reserved bits checked

4-MByte page (PAE = 0, PSE = 1) PDE Bit [21] 

4-KByte page (PAE = 0, PSE = 1) PDE No reserved bits checked

4-KByte and 4-MByte page (PAE = 0, 
PSE = 1)

PTE No reserved bits checked

4-KByte and 2-MByte pages (PAE = 
1, PSE = x)

PDP table entry Bits [63:40] & [8:5] & [2:1] 

2-MByte page (PAE = 1, PSE = x)  PDE Bits [63:40] & [20:13] 

4-KByte pages (PAE =1, PSE = x) PDE Bits [63:40] 

4-KByte and 2-MByte pages (PAE = 
1, PSE = x)

PTE Bits [63:40] 

64-bit 4-KByte and 2-MByte pages (PAE = 
1, PSE = x)

PML4E Bit [63], bits [51:40], bits [8:7]

4-KByte and 2-MByte pages (PAE = 
1, PSE = x)

PDPTE Bit [63], bits [51:40], bits [8:7] 

2-MByte page (PAE =1, PSE = x) PDE, 2-MByte page Bit [63], bits [51:40] & [20:13] 

4-KByte pages (PAE = 1, PSE = x) PDE, 4-KByte page Bit [63], bits [51:40] 

4-KByte and 2-MByte pages (PAE = 
1, PSE = x)

PTE Bit [63], bits [51:40] 
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3.11 MAPPING SEGMENTS TO PAGES
The segmentation and paging mechanisms provide in the IA-32 architecture support 
a wide variety of approaches to memory management. When segmentation and 
paging is combined, segments can be mapped to pages in several ways. To imple-
ment a flat (unsegmented) addressing environment, for example, all the code, data, 
and stack modules can be mapped to one or more large segments (up to 4-GBytes) 
that share same range of linear addresses (see Figure 3-2). Here, segments are 
essentially invisible to applications and the operating-system or executive. If paging 
is used, the paging mechanism can map a single linear address space (contained in a 
single segment) into virtual memory. Or, each program (or task) can have its own 
large linear address space (contained in its own segment), which is mapped into 
virtual memory through its own page directory and set of page tables.

Segments can be smaller than the size of a page. If one of these segments is placed 
in a page which is not shared with another segment, the extra memory is wasted. For 
example, a small data structure, such as a 1-byte semaphore, occupies 4K bytes if it 

Table 3-5.  Reserved Bit Checking When Execute Disable Bit is Enabled 

Mode Paging Mode Paging Structure Check Bits

32-bit  4-KByte pages (PAE = 0, PSE = 0) PDE and PT No reserved bits checked

4-MByte page (PAE = 0, PSE = 1) PDE Bit [21] 

4-KByte page (PAE = 0, PSE = 1) PDE No reserved bits checked

4-KByte and 4-MByte page (PAE = 
0, PSE = 1)

PTE No reserved bits checked

4-KByte and 2-MByte pages (PAE = 
1, PSE = x)

PDP table entry Bits [63:40] & [8:5] & [2:1] 

2-MByte page (PAE = 1, PSE = x) PDE Bits [62:40] & [20:13] 

4-KByte pages (PAE = 1, PSE = x) PDE Bits [62:40] 

4-KByte pages (PAE = 1, PSE = x) PTE Bits [62:40] 

64-bit 4-KByte and 2-MByte pages (PAE = 
1, PSE = x)

PML4E Bits [51:40], bits [8:7] 

4-KByte and 2-MByte pages (PAE = 
1, PSE = x)

PDPTE Bits [51:40], bits [8:7] 

2-MByte page (PAE = 1, PSE = x) PDE, 2-MByte page Bits [51:40] & [20:13] 

4-KByte pages (PAE = 1, PSE = x) PDE, 4-KByte page Bits [51:40] 

4-KByte pages (PAE = 1, PSE = x) PTE Bits [51:40] 

NOTE:

x = Bit does not impact behavior.
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is placed in a page by itself. If many semaphores are used, it is more efficient to pack 
them into a single page.

The IA-32 architecture does not enforce correspondence between the boundaries of 
pages and segments. A page can contain the end of one segment and the beginning 
of another. Likewise, a segment can contain the end of one page and the beginning of 
another.

Memory-management software may be simpler and more efficient if it enforces some 
alignment between page and segment boundaries. For example, if a segment which 
can fit in one page is placed in two pages, there may be twice as much paging over-
head to support access to that segment.

One approach to combining paging and segmentation that simplifies memory-
management software is to give each segment its own page table, as shown in 
Figure 3-28. This convention gives the segment a single entry in the page directory 
which provides the access control information for paging the entire segment.

3.12 TRANSLATION LOOKASIDE BUFFERS (TLBS)
The processor stores the most recently used page-directory and page-table entries in 
on-chip caches called translation lookaside buffers or TLBs. The P6 family and 
Pentium processors have separate TLBs for the data and instruction caches. Also, the 
P6 family processors maintain separate TLBs for 4-KByte and 4-MByte page sizes. 
The CPUID instruction can be used to determine the sizes of the TLBs provided in the 
P6 family and Pentium processors.

Figure 3-28.  Memory Management Convention That Assigns a Page Table
to Each Segment
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Most paging is performed using the contents of the TLBs. Bus cycles to the page 
directory and page tables in memory are performed only when the TLBs do not 
contain the translation information for a requested page.

The TLBs are inaccessible to application programs and tasks (privilege level greater 
than 0); that is, they cannot invalidate TLBs. Only, operating system or executive 
procedures running at privilege level of 0 can invalidate TLBs or selected TLB entries. 
Whenever a page-directory or page-table entry is changed (including when the 
present flag is set to zero), the operating-system must immediately invalidate the 
corresponding entry in the TLB so that it can be updated the next time the entry is 
referenced. 

All of the (non-global) TLBs are automatically invalidated any time the CR3 register is 
loaded (unless the G flag for a page or page-table entry is set, as describe later in this 
section). The CR3 register can be loaded in either of two ways:

• Explicitly, using the MOV instruction, for example:

  MOV CR3, EAX

where the EAX register contains an appropriate page-directory base address.

• Implicitly by executing a task switch, which automatically changes the contents 
of the CR3 register.

The INVLPG instruction is provided to invalidate a specific page-table entry in the 
TLB. Normally, this instruction invalidates only an individual TLB entry; however, in 
some cases, it may invalidate more than the selected entry and may even invalidate 
all of the TLBs. This instruction ignores the setting of the G flag in a page-directory or 
page-table entry (see following paragraph).

(Introduced in the Pentium Pro processor.) The page global enable (PGE) flag in 
register CR4 and the global (G) flag of a page-directory or page-table entry (bit 8) 
can be used to prevent frequently used pages from being automatically invalidated in 
the TLBs on a task switch or a load of register CR3. (See Section 3.7.6, “Page-Direc-
tory and Page-Table Entries”, for more information about the global flag.) When the 
processor loads a page-directory or page-table entry for a global page into a TLB, the 
entry will remain in the TLB indefinitely. The only ways to deterministically invalidate 
global page entries are as follows:

• Clear the PGE flag; this will invalidate the TLBs.

• Execute the INVLPG instruction to invalidate individual page-directory or page-
table entries in the TLBs.

For additional information about invalidation of the TLBs, see Section 10.9, “Invali-
dating the Translation Lookaside Buffers (TLBs)”.
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CHAPTER 4
PROTECTION

In protected mode, the Intel 64 and IA-32 architectures provide a protection mecha-
nism that operates at both the segment level and the page level. This protection 
mechanism provides the ability to limit access to certain segments or pages based on 
privilege levels (four privilege levels for segments and two privilege levels for pages). 
For example, critical operating-system code and data can be protected by placing 
them in more privileged segments than those that contain applications code. The 
processor’s protection mechanism will then prevent application code from accessing 
the operating-system code and data in any but a controlled, defined manner.

Segment and page protection can be used at all stages of software development to 
assist in localizing and detecting design problems and bugs. It can also be incorpo-
rated into end-products to offer added robustness to operating systems, utilities soft-
ware, and applications software.

When the protection mechanism is used, each memory reference is checked to verify 
that it satisfies various protection checks. All checks are made before the memory 
cycle is started; any violation results in an exception. Because checks are performed 
in parallel with address translation, there is no performance penalty. The protection 
checks that are performed fall into the following categories:

• Limit checks.

• Type checks.

• Privilege level checks.

• Restriction of addressable domain.

• Restriction of procedure entry-points.

• Restriction of instruction set.

All protection violation results in an exception being generated. See Chapter 5, 
“Interrupt and Exception Handling,” for an explanation of the exception mechanism. 
This chapter describes the protection mechanism and the violations which lead to 
exceptions.

The following sections describe the protection mechanism available in protected 
mode. See Chapter 15, “8086 Emulation,” for information on protection in real-
address and virtual-8086 mode.

4.1 ENABLING AND DISABLING SEGMENT AND PAGE 
PROTECTION

Setting the PE flag in register CR0 causes the processor to switch to protected mode, 
which in turn enables the segment-protection mechanism. Once in protected mode, 
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there is no control bit for turning the protection mechanism on or off. The part of the 
segment-protection mechanism that is based on privilege levels can essentially be 
disabled while still in protected mode by assigning a privilege level of 0 (most privi-
leged) to all segment selectors and segment descriptors. This action disables the 
privilege level protection barriers between segments, but other protection checks 
such as limit checking and type checking are still carried out.

Page-level protection is automatically enabled when paging is enabled (by setting the 
PG flag in register CR0). Here again there is no mode bit for turning off page-level 
protection once paging is enabled. However, page-level protection can be disabled by 
performing the following operations:

• Clear the WP flag in control register CR0.

• Set the read/write (R/W) and user/supervisor (U/S) flags for each page-directory 
and page-table entry. 

This action makes each page a writable, user page, which in effect disables page-
level protection.

4.2 FIELDS AND FLAGS USED FOR SEGMENT-LEVEL AND  
PAGE-LEVEL PROTECTION

The processor’s protection mechanism uses the following fields and flags in the 
system data structures to control access to segments and pages:

• Descriptor type (S) flag — (Bit 12 in the second doubleword of a segment 
descriptor.) Determines if the segment descriptor is for a system segment or a 
code or data segment.

• Type field — (Bits 8 through 11 in the second doubleword of a segment 
descriptor.) Determines the type of code, data, or system segment.

• Limit field — (Bits 0 through 15 of the first doubleword and bits 16 through 19 
of the second doubleword of a segment descriptor.) Determines the size of the 
segment, along with the G flag and E flag (for data segments).

• G flag — (Bit 23 in the second doubleword of a segment descriptor.) Determines 
the size of the segment, along with the limit field and E flag (for data segments).

• E flag — (Bit 10 in the second doubleword of a data-segment descriptor.) 
Determines the size of the segment, along with the limit field and G flag.

• Descriptor privilege level (DPL) field — (Bits 13 and 14 in the second 
doubleword of a segment descriptor.) Determines the privilege level of the 
segment.

• Requested privilege level (RPL) field — (Bits 0 and 1 of any segment 
selector.) Specifies the requested privilege level of a segment selector. 

• Current privilege level (CPL) field — (Bits 0 and 1 of the CS segment 
register.) Indicates the privilege level of the currently executing program or 
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procedure. The term current privilege level (CPL) refers to the setting of this 
field.

• User/supervisor (U/S) flag — (Bit 2 of a page-directory or page-table entry.) 
Determines the type of page: user or supervisor.

• Read/write (R/W) flag — (Bit 1 of a page-directory or page-table entry.) 
Determines the type of access allowed to a page: read only or read-write.

Figure 4-1 shows the location of the various fields and flags in the data, code, and 
system- segment descriptors; Figure 3-6 shows the location of the RPL (or CPL) field 
in a segment selector (or the CS register); and Figure 3-14 shows the location of the 
U/S and R/W flags in the page-directory and page-table entries.
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Many different styles of protection schemes can be implemented with these fields 
and flags. When the operating system creates a descriptor, it places values in these 
fields and flags in keeping with the particular protection style chosen for an operating 
system or executive. Application program do not generally access or modify these 
fields and flags. 

Figure 4-1.  Descriptor Fields Used for Protection
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The following sections describe how the processor uses these fields and flags to 
perform the various categories of checks described in the introduction to this chapter.

4.2.1 Code Segment Descriptor in 64-bit Mode
Code segments continue to exist in 64-bit mode even though, for address calcula-
tions, the segment base is treated as zero. Some code-segment (CS) descriptor 
content (the base address and limit fields) is ignored; the remaining fields function 
normally (except for the readable bit in the type field). 

Code segment descriptors and selectors are needed in IA-32e mode to establish the 
processor’s operating mode and execution privilege-level. The usage is as follows:

• IA-32e mode uses a previously unused bit in the CS descriptor. Bit 53 is defined 
as the 64-bit (L) flag and is used to select between 64-bit mode and compatibility 
mode when IA-32e mode is active (IA32_EFER.LMA = 1). See Figure 4-2.

— If CS.L = 0 and IA-32e mode is active, the processor is running in compati-
bility mode. In this case, CS.D selects the default size for data and addresses. 
If CS.D = 0, the default data and address size is 16 bits. If CS.D = 1, the 
default data and address size is 32 bits.

— If CS.L = 1 and IA-32e mode is active, the only valid setting is CS.D = 0. This 
setting indicates a default operand size of 32 bits and a default address size 
of 64 bits. The CS.L = 1 and CS.D = 1 bit combination is reserved for future 
use and a #GP fault will be generated on an attempt to use a code segment 
with these bits set in IA-32e mode.

• In IA-32e mode, the CS descriptor’s DPL is used for execution privilege checks 
(as in legacy 32-bit mode).
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4.3 LIMIT CHECKING
The limit field of a segment descriptor prevents programs or procedures from 
addressing memory locations outside the segment. The effective value of the limit 
depends on the setting of the G (granularity) flag (see Figure 4-1). For data 
segments, the limit also depends on the E (expansion direction) flag and the B 
(default stack pointer size and/or upper bound) flag. The E flag is one of the bits in 
the type field when the segment descriptor is for a data-segment type.

When the G flag is clear (byte granularity), the effective limit is the value of the 
20-bit limit field in the segment descriptor. Here, the limit ranges from 0 to FFFFFH 
(1 MByte). When the G flag is set (4-KByte page granularity), the processor scales 
the value in the limit field by a factor of 212 (4 KBytes). In this case, the effective 
limit ranges from FFFH (4 KBytes) to FFFFFFFFH (4 GBytes). Note that when scaling 
is used (G flag is set), the lower 12 bits of a segment offset (address) are not checked 
against the limit; for example, note that if the segment limit is 0, offsets 0 through 
FFFH are still valid.

For all types of segments except expand-down data segments, the effective limit is 
the last address that is allowed to be accessed in the segment, which is one less than 
the size, in bytes, of the segment. The processor causes a general-protection excep-
tion any time an attempt is made to access the following addresses in a segment:

• A byte at an offset greater than the effective limit

• A word at an offset greater than the (effective-limit – 1)

Figure 4-2.  Descriptor Fields with Flags used in IA-32e Mode
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• A doubleword at an offset greater than the (effective-limit – 3)

• A quadword at an offset greater than the (effective-limit – 7)

For expand-down data segments, the segment limit has the same function but is 
interpreted differently. Here, the effective limit specifies the last address that is not 
allowed to be accessed within the segment; the range of valid offsets is from (effec-
tive-limit + 1) to FFFFFFFFH if the B flag is set and from (effective-limit + 1) to FFFFH 
if the B flag is clear. An expand-down segment has maximum size when the segment 
limit is 0.

Limit checking catches programming errors such as runaway code, runaway 
subscripts, and invalid pointer calculations. These errors are detected when they 
occur, so identification of the cause is easier. Without limit checking, these errors 
could overwrite code or data in another segment.

In addition to checking segment limits, the processor also checks descriptor table 
limits. The GDTR and IDTR registers contain 16-bit limit values that the processor 
uses to prevent programs from selecting a segment descriptors outside the respec-
tive descriptor tables. The LDTR and task registers contain 32-bit segment limit value 
(read from the segment descriptors for the current LDT and TSS, respectively). The 
processor uses these segment limits to prevent accesses beyond the bounds of the 
current LDT and TSS. See Section 3.5.1, “Segment Descriptor Tables,” for more infor-
mation on the GDT and LDT limit fields; see Section 5.10, “Interrupt Descriptor Table 
(IDT),” for more information on the IDT limit field; and see Section 6.2.4, “Task 
Register,” for more information on the TSS segment limit field.

4.3.1 Limit Checking in 64-bit Mode
In 64-bit mode, the processor does not perform runtime limit checking on code or 
data segments. However, the processor does check descriptor-table limits.

4.4 TYPE CHECKING
Segment descriptors contain type information in two places:

• The S (descriptor type) flag.

• The type field.

The processor uses this information to detect programming errors that result in an 
attempt to use a segment or gate in an incorrect or unintended manner.

The S flag indicates whether a descriptor is a system type or a code or data type. The 
type field provides 4 additional bits for use in defining various types of code, data, 
and system descriptors. Table 3-1 shows the encoding of the type field for code and 
data descriptors; Table 3-2 shows the encoding of the field for system descriptors.
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The processor examines type information at various times while operating on 
segment selectors and segment descriptors. The following list gives examples of 
typical operations where type checking is performed (this list is not exhaustive):

• When a segment selector is loaded into a segment register — Certain 
segment registers can contain only certain descriptor types, for example:

— The CS register only can be loaded with a selector for a code segment.

— Segment selectors for code segments that are not readable or for system 
segments cannot be loaded into data-segment registers (DS, ES, FS, and 
GS).

— Only segment selectors of writable data segments can be loaded into the SS 
register.

• When a segment selector is loaded into the LDTR or task register — For example:

— The LDTR can only be loaded with a selector for an LDT.

— The task register can only be loaded with a segment selector for a TSS.

• When instructions access segments whose descriptors are already 
loaded into segment registers — Certain segments can be used by instruc-
tions only in certain predefined ways, for example:

— No instruction may write into an executable segment.

— No instruction may write into a data segment if it is not writable.

— No instruction may read an executable segment unless the readable flag is 
set.

• When an instruction operand contains a segment selector — Certain 
instructions can access segments or gates of only a particular type, for example:

— A far CALL or far JMP instruction can only access a segment descriptor for a 
conforming code segment, nonconforming code segment, call gate, task 
gate, or TSS.

— The LLDT instruction must reference a segment descriptor for an LDT.

— The LTR instruction must reference a segment descriptor for a TSS.

— The LAR instruction must reference a segment or gate descriptor for an LDT, 
TSS, call gate, task gate, code segment, or data segment.

— The LSL instruction must reference a segment descriptor for a LDT, TSS, code 
segment, or data segment.

— IDT entries must be interrupt, trap, or task gates.

• During certain internal operations — For example:

— On a far call or far jump (executed with a far CALL or far JMP instruction), the 
processor determines the type of control transfer to be carried out (call or 
jump to another code segment, a call or jump through a gate, or a task 
switch) by checking the type field in the segment (or gate) descriptor pointed 
to by the segment (or gate) selector given as an operand in the CALL or JMP 
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instruction. If the descriptor type is for a code segment or call gate, a call or 
jump to another code segment is indicated; if the descriptor type is for a TSS 
or task gate, a task switch is indicated.

— On a call or jump through a call gate (or on an interrupt- or exception-handler 
call through a trap or interrupt gate), the processor automatically checks that 
the segment descriptor being pointed to by the gate is for a code segment.

— On a call or jump to a new task through a task gate (or on an interrupt- or 
exception-handler call to a new task through a task gate), the processor 
automatically checks that the segment descriptor being pointed to by the 
task gate is for a TSS.

— On a call or jump to a new task by a direct reference to a TSS, the processor 
automatically checks that the segment descriptor being pointed to by the 
CALL or JMP instruction is for a TSS.

— On return from a nested task (initiated by an IRET instruction), the processor 
checks that the previous task link field in the current TSS points to a TSS.

4.4.1 Null Segment Selector Checking
Attempting to load a null segment selector (see Section 3.4.2, “Segment Selectors”) 
into the CS or SS segment register generates a general-protection exception (#GP). 
A null segment selector can be loaded into the DS, ES, FS, or GS register, but any 
attempt to access a segment through one of these registers when it is loaded with a 
null segment selector results in a #GP exception being generated. Loading unused 
data-segment registers with a null segment selector is a useful method of detecting 
accesses to unused segment registers and/or preventing unwanted accesses to data 
segments.

4.4.1.1  NULL Segment Checking in 64-bit Mode
In 64-bit mode, the processor does not perform runtime checking on NULL segment 
selectors. The processor does not cause a #GP fault when an attempt is made to 
access memory where the referenced segment register has a NULL segment selector. 

4.5 PRIVILEGE LEVELS
The processor’s segment-protection mechanism recognizes 4 privilege levels, 
numbered from 0 to 3. The greater numbers mean lesser privileges. Figure 4-3 
shows how these levels of privilege can be interpreted as rings of protection. 

The center (reserved for the most privileged code, data, and stacks) is used for the 
segments containing the critical software, usually the kernel of an operating system. 
Outer rings are used for less critical software. (Systems that use only 2 of the 4 
possible privilege levels should use levels 0 and 3.) 
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The processor uses privilege levels to prevent a program or task operating at a lesser 
privilege level from accessing a segment with a greater privilege, except under 
controlled situations. When the processor detects a privilege level violation, it gener-
ates a general-protection exception (#GP).

To carry out privilege-level checks between code segments and data segments, the 
processor recognizes the following three types of privilege levels: 

• Current privilege level (CPL) — The CPL is the privilege level of the currently 
executing program or task. It is stored in bits 0 and 1 of the CS and SS segment 
registers. Normally, the CPL is equal to the privilege level of the code segment 
from which instructions are being fetched. The processor changes the CPL when 
program control is transferred to a code segment with a different privilege level. 
The CPL is treated slightly differently when accessing conforming code segments. 
Conforming code segments can be accessed from any privilege level that is equal 
to or numerically greater (less privileged) than the DPL of the conforming code 
segment. Also, the CPL is not changed when the processor accesses a conforming 
code segment that has a different privilege level than the CPL.

• Descriptor privilege level (DPL) — The DPL is the privilege level of a segment 
or gate. It is stored in the DPL field of the segment or gate descriptor for the 
segment or gate. When the currently executing code segment attempts to access 
a segment or gate, the DPL of the segment or gate is compared to the CPL and 
RPL of the segment or gate selector (as described later in this section). The DPL 
is interpreted differently, depending on the type of segment or gate being 
accessed:

— Data segment — The DPL indicates the numerically highest privilege level 
that a program or task can have to be allowed to access the segment. For 

Figure 4-3.  Protection Rings
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example, if the DPL of a data segment is 1, only programs running at a CPL of 
0 or 1 can access the segment. 

— Nonconforming code segment (without using a call gate) — The DPL 
indicates the privilege level that a program or task must be at to access the 
segment. For example, if the DPL of a nonconforming code segment is 0, only 
programs running at a CPL of 0 can access the segment. 

— Call gate — The DPL indicates the numerically highest privilege level that the 
currently executing program or task can be at and still be able to access the 
call gate. (This is the same access rule as for a data segment.)

— Conforming code segment and nonconforming code segment 
accessed through a call gate — The DPL indicates the numerically lowest 
privilege level that a program or task can have to be allowed to access the 
segment. For example, if the DPL of a conforming code segment is 2, 
programs running at a CPL of 0 or 1 cannot access the segment. 

— TSS — The DPL indicates the numerically highest privilege level that the 
currently executing program or task can be at and still be able to access the 
TSS. (This is the same access rule as for a data segment.)

• Requested privilege level (RPL) — The RPL is an override privilege level that 
is assigned to segment selectors. It is stored in bits 0 and 1 of the segment 
selector. The processor checks the RPL along with the CPL to determine if access 
to a segment is allowed. Even if the program or task requesting access to a 
segment has sufficient privilege to access the segment, access is denied if the 
RPL is not of sufficient privilege level. That is, if the RPL of a segment selector is 
numerically greater than the CPL, the RPL overrides the CPL, and vice versa. The 
RPL can be used to insure that privileged code does not access a segment on 
behalf of an application program unless the program itself has access privileges 
for that segment. See Section 4.10.4, “Checking Caller Access Privileges (ARPL 
Instruction),” for a detailed description of the purpose and typical use of the RPL.

Privilege levels are checked when the segment selector of a segment descriptor is 
loaded into a segment register. The checks used for data access differ from those 
used for transfers of program control among code segments; therefore, the two 
kinds of accesses are considered separately in the following sections.

4.6 PRIVILEGE LEVEL CHECKING WHEN ACCESSING DATA 
SEGMENTS

To access operands in a data segment, the segment selector for the data segment 
must be loaded into the data-segment registers (DS, ES, FS, or GS) or into the stack-
segment register (SS). (Segment registers can be loaded with the MOV, POP, LDS, 
LES, LFS, LGS, and LSS instructions.) Before the processor loads a segment selector 
into a segment register, it performs a privilege check (see Figure 4-4) by comparing 
the privilege levels of the currently running program or task (the CPL), the RPL of the 
segment selector, and the DPL of the segment’s segment descriptor. The processor 
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loads the segment selector into the segment register if the DPL is numerically greater 
than or equal to both the CPL and the RPL. Otherwise, a general-protection fault is 
generated and the segment register is not loaded.

Figure 4-5 shows four procedures (located in codes segments A, B, C, and D), each 
running at different privilege levels and each attempting to access the same data 
segment. 

1. The procedure in code segment A is able to access data segment E using segment 
selector E1, because the CPL of code segment A and the RPL of segment selector 
E1 are equal to the DPL of data segment E.

2. The procedure in code segment B is able to access data segment E using segment 
selector E2, because the CPL of code segment B and the RPL of segment selector 
E2 are both numerically lower than (more privileged) than the DPL of data 
segment E. A code segment B procedure can also access data segment E using 
segment selector E1.

3. The procedure in code segment C is not able to access data segment E using 
segment selector E3 (dotted line), because the CPL of code segment C and the 
RPL of segment selector E3 are both numerically greater than (less privileged) 
than the DPL of data segment E. Even if a code segment C procedure were to use 
segment selector E1 or E2, such that the RPL would be acceptable, it still could 
not access data segment E because its CPL is not privileged enough.

4. The procedure in code segment D should be able to access data segment E 
because code segment D’s CPL is numerically less than the DPL of data segment 
E. However, the RPL of segment selector E3 (which the code segment D 
procedure is using to access data segment E) is numerically greater than the DPL 
of data segment E, so access is not allowed. If the code segment D procedure 
were to use segment selector E1 or E2 to access the data segment, access would 
be allowed.

Figure 4-4.  Privilege Check for Data Access
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As demonstrated in the previous examples, the addressable domain of a program or 
task varies as its CPL changes. When the CPL is 0, data segments at all privilege 
levels are accessible; when the CPL is 1, only data segments at privilege levels 1 
through 3 are accessible; when the CPL is 3, only data segments at privilege level 3 
are accessible. 

The RPL of a segment selector can always override the addressable domain of a 
program or task. When properly used, RPLs can prevent problems caused by acci-
dental (or intensional) use of segment selectors for privileged data segments by less 
privileged programs or procedures.

It is important to note that the RPL of a segment selector for a data segment is under 
software control. For example, an application program running at a CPL of 3 can set 
the RPL for a data- segment selector to 0. With the RPL set to 0, only the CPL checks, 
not the RPL checks, will provide protection against deliberate, direct attempts to 
violate privilege-level security for the data segment. To prevent these types of privi-
lege-level-check violations, a program or procedure can check access privileges 
whenever it receives a data-segment selector from another procedure (see Section 
4.10.4, “Checking Caller Access Privileges (ARPL Instruction)”).

4.6.1 Accessing Data in Code Segments
In some instances it may be desirable to access data structures that are contained in 
a code segment. The following methods of accessing data in code segments are 
possible:

Figure 4-5.  Examples of Accessing Data Segments From Various Privilege Levels
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• Load a data-segment register with a segment selector for a nonconforming, 
readable, code segment.

• Load a data-segment register with a segment selector for a conforming, 
readable, code segment.

• Use a code-segment override prefix (CS) to read a readable, code segment 
whose selector is already loaded in the CS register.

The same rules for accessing data segments apply to method 1. Method 2 is always 
valid because the privilege level of a conforming code segment is effectively the 
same as the CPL, regardless of its DPL. Method 3 is always valid because the DPL of 
the code segment selected by the CS register is the same as the CPL.

4.7 PRIVILEGE LEVEL CHECKING WHEN LOADING THE SS 
REGISTER

Privilege level checking also occurs when the SS register is loaded with the segment 
selector for a stack segment. Here all privilege levels related to the stack segment 
must match the CPL; that is, the CPL, the RPL of the stack-segment selector, and the 
DPL of the stack-segment descriptor must be the same. If the RPL and DPL are not 
equal to the CPL, a general-protection exception (#GP) is generated.

4.8 PRIVILEGE LEVEL CHECKING WHEN TRANSFERRING 
PROGRAM CONTROL BETWEEN CODE SEGMENTS

To transfer program control from one code segment to another, the segment selector 
for the destination code segment must be loaded into the code-segment register 
(CS). As part of this loading process, the processor examines the segment descriptor 
for the destination code segment and performs various limit, type, and privilege 
checks. If these checks are successful, the CS register is loaded, program control is 
transferred to the new code segment, and program execution begins at the instruc-
tion pointed to by the EIP register. 

Program control transfers are carried out with the JMP, CALL, RET, SYSENTER, 
SYSEXIT, INT n, and IRET instructions, as well as by the exception and interrupt 
mechanisms. Exceptions, interrupts, and the IRET instruction are special cases 
discussed in Chapter 5, “Interrupt and Exception Handling.” This chapter discusses 
only the JMP, CALL, RET, SYSENTER, and SYSEXIT instructions.

A JMP or CALL instruction can reference another code segment in any of four ways:

• The target operand contains the segment selector for the target code segment.

• The target operand points to a call-gate descriptor, which contains the segment 
selector for the target code segment.
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• The target operand points to a TSS, which contains the segment selector for the 
target code segment. 

• The target operand points to a task gate, which points to a TSS, which in turn 
contains the segment selector for the target code segment. 

The following sections describe first two types of references. See Section 6.3, “Task 
Switching,” for information on transferring program control through a task gate 
and/or TSS.

The SYSENTER and SYSEXIT instructions are special instructions for making fast calls 
to and returns from operating system or executive procedures. These instructions 
are discussed briefly in Section 4.8.7, “Performing Fast Calls to System Procedures 
with the SYSENTER and SYSEXIT Instructions.”

4.8.1 Direct Calls or Jumps to Code Segments
The near forms of the JMP, CALL, and RET instructions transfer program control 
within the current code segment, so privilege-level checks are not performed. The far 
forms of the JMP, CALL, and RET instructions transfer control to other code segments, 
so the processor does perform privilege-level checks. 

When transferring program control to another code segment without going through a 
call gate, the processor examines four kinds of privilege level and type information 
(see Figure 4-6):

• The CPL. (Here, the CPL is the privilege level of the calling code segment; that is, 
the code segment that contains the procedure that is making the call or jump.)

• The DPL of the segment descriptor for the destination code segment that 
contains the called procedure. 

Figure 4-6.  Privilege Check for Control Transfer Without Using a Gate
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• The RPL of the segment selector of the destination code segment.

• The conforming (C) flag in the segment descriptor for the destination code 
segment, which determines whether the segment is a conforming (C flag is set) 
or nonconforming (C flag is clear) code segment. See Section 3.4.5.1, “Code- 
and Data-Segment Descriptor Types,” for more information about this flag.

The rules that the processor uses to check the CPL, RPL, and DPL depends on the 
setting of the C flag, as described in the following sections.

4.8.1.1  Accessing Nonconforming Code Segments
When accessing nonconforming code segments, the CPL of the calling procedure 
must be equal to the DPL of the destination code segment; otherwise, the processor 
generates a general-protection exception (#GP). For example in Figure 4-7:

• Code segment C is a nonconforming code segment. A procedure in code segment 
A can call a procedure in code segment C (using segment selector C1) because 
they are at the same privilege level (CPL of code segment A is equal to the DPL of 
code segment C). 

• A procedure in code segment B cannot call a procedure in code segment C (using 
segment selector C2 or C1) because the two code segments are at different 
privilege levels.
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The RPL of the segment selector that points to a nonconforming code segment has a 
limited effect on the privilege check. The RPL must be numerically less than or equal 
to the CPL of the calling procedure for a successful control transfer to occur. So, in the 
example in Figure 4-7, the RPLs of segment selectors C1 and C2 could legally be set 
to 0, 1, or 2, but not to 3.

When the segment selector of a nonconforming code segment is loaded into the CS 
register, the privilege level field is not changed; that is, it remains at the CPL (which 
is the privilege level of the calling procedure). This is true, even if the RPL of the 
segment selector is different from the CPL.

4.8.1.2  Accessing Conforming Code Segments
When accessing conforming code segments, the CPL of the calling procedure may be 
numerically equal to or greater than (less privileged) the DPL of the destination code 
segment; the processor generates a general-protection exception (#GP) only if the 
CPL is less than the DPL. (The segment selector RPL for the destination code segment 
is not checked if the segment is a conforming code segment.)

Figure 4-7.  Examples of Accessing Conforming and Nonconforming Code Segments 
From Various Privilege Levels
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In the example in Figure 4-7, code segment D is a conforming code segment. There-
fore, calling procedures in both code segment A and B can access code segment D 
(using either segment selector D1 or D2, respectively), because they both have CPLs 
that are greater than or equal to the DPL of the conforming code segment. For 
conforming code segments, the DPL represents the numerically lowest priv-
ilege level that a calling procedure may be at to successfully make a call to 
the code segment.

(Note that segments selectors D1 and D2 are identical except for their respective 
RPLs. But since RPLs are not checked when accessing conforming code segments, 
the two segment selectors are essentially interchangeable.)

When program control is transferred to a conforming code segment, the CPL does not 
change, even if the DPL of the destination code segment is less than the CPL. This 
situation is the only one where the CPL may be different from the DPL of the current 
code segment. Also, since the CPL does not change, no stack switch occurs.

Conforming segments are used for code modules such as math libraries and excep-
tion handlers, which support applications but do not require access to protected 
system facilities. These modules are part of the operating system or executive soft-
ware, but they can be executed at numerically higher privilege levels (less privileged 
levels). Keeping the CPL at the level of a calling code segment when switching to a 
conforming code segment prevents an application program from accessing noncon-
forming code segments while at the privilege level (DPL) of a conforming code 
segment and thus prevents it from accessing more privileged data.

Most code segments are nonconforming. For these segments, program control can 
be transferred only to code segments at the same level of privilege, unless the 
transfer is carried out through a call gate, as described in the following sections.

4.8.2 Gate Descriptors
To provide controlled access to code segments with different privilege levels, the 
processor provides special set of descriptors called gate descriptors. There are four 
kinds of gate descriptors:

• Call gates

• Trap gates

• Interrupt gates

• Task gates

Task gates are used for task switching and are discussed in Chapter 6, “Task Manage-
ment”. Trap and interrupt gates are special kinds of call gates used for calling excep-
tion and interrupt handlers. The are described in Chapter 5, “Interrupt and Exception 
Handling.” This chapter is concerned only with call gates. 
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4.8.3 Call Gates
Call gates facilitate controlled transfers of program control between different privi-
lege levels. They are typically used only in operating systems or executives that use 
the privilege-level protection mechanism. Call gates are also useful for transferring 
program control between 16-bit and 32-bit code segments, as described in Section 
16.4, “Transferring Control Among Mixed-Size Code Segments.”

Figure 4-8 shows the format of a call-gate descriptor. A call-gate descriptor may 
reside in the GDT or in an LDT, but not in the interrupt descriptor table (IDT). It 
performs six functions:

• It specifies the code segment to be accessed.

• It defines an entry point for a procedure in the specified code segment.

• It specifies the privilege level required for a caller trying to access the procedure.

• If a stack switch occurs, it specifies the number of optional parameters to be 
copied between stacks.

• It defines the size of values to be pushed onto the target stack: 16-bit gates force 
16-bit pushes and 32-bit gates force 32-bit pushes.

• It specifies whether the call-gate descriptor is valid. 

The segment selector field in a call gate specifies the code segment to be accessed. 
The offset field specifies the entry point in the code segment. This entry point is 
generally to the first instruction of a specific procedure. The DPL field indicates the 
privilege level of the call gate, which in turn is the privilege level required to access 
the selected procedure through the gate. The P flag indicates whether the call-gate 
descriptor is valid. (The presence of the code segment to which the gate points is 
indicated by the P flag in the code segment’s descriptor.) The parameter count field 
indicates the number of parameters to copy from the calling procedures stack to the 
new stack if a stack switch occurs (see Section 4.8.5, “Stack Switching”). The param-
eter count specifies the number of words for 16-bit call gates and doublewords for 
32-bit call gates.

Figure 4-8.  Call-Gate Descriptor
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Note that the P flag in a gate descriptor is normally always set to 1. If it is set to 0, a 
not present (#NP) exception is generated when a program attempts to access the 
descriptor. The operating system can use the P flag for special purposes. For 
example, it could be used to track the number of times the gate is used. Here, the P 
flag is initially set to 0 causing a trap to the not-present exception handler. The 
exception handler then increments a counter and sets the P flag to 1, so that on 
returning from the handler, the gate descriptor will be valid.

4.8.3.1  IA-32e Mode Call Gates
Call-gate descriptors in 32-bit mode provide a 32-bit offset for the instruction pointer 
(EIP); 64-bit extensions double the size of 32-bit mode call gates in order to store 
64-bit instruction pointers (RIP). See Figure 4-9:

• The first eight bytes (bytes 7:0) of a 64-bit mode call gate are similar but not 
identical to legacy 32-bit mode call gates. The parameter-copy-count field has 
been removed. 

• Bytes 11:8 hold the upper 32 bits of the target-segment offset in canonical form. 
A general-protection exception (#GP) is generated if software attempts to use a 
call gate with a target offset that is not in canonical form.

• 16-byte descriptors may reside in the same descriptor table with 16-bit and 
32-bit descriptors. A type field, used for consistency checking, is defined in bits 
12:8 of the 64-bit descriptor’s highest dword (cleared to zero). A general-
protection exception (#GP) results if an attempt is made to access the upper half 
of a 64-bit mode descriptor as a 32-bit mode descriptor.
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• Target code segments referenced by a 64-bit call gate must be 64-bit code 
segments (CS.L = 1, CS.D = 0). If not, the reference generates a general-
protection exception, #GP (CS selector). 

• Only 64-bit mode call gates can be referenced in IA-32e mode (64-bit mode and 
compatibility mode). The legacy 32-bit mode call gate type (0CH) is redefined in 
IA-32e mode as a 64-bit call-gate type; no 32-bit call-gate type exists in IA-32e 
mode. 

• If a far call references a 16-bit call gate type (04H) in IA-32e mode, a general-
protection exception (#GP) is generated.

When a call references a 64-bit mode call gate, actions taken are identical to those 
taken in 32-bit mode, with the following exceptions:

• Stack pushes are made in eight-byte increments.

• A 64-bit RIP is pushed onto the stack.

• Parameter copying is not performed.

Use a matching far-return instruction size for correct operation (returns from 64-bit 
calls must be performed with a 64-bit operand-size return to process the stack 
correctly).

Figure 4-9.  Call-Gate Descriptor in IA-32e Mode
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4.8.4 Accessing a Code Segment Through a Call Gate
To access a call gate, a far pointer to the gate is provided as a target operand in a 
CALL or JMP instruction. The segment selector from this pointer identifies the call 
gate (see Figure 4-10); the offset from the pointer is required, but not used or 
checked by the processor. (The offset can be set to any value.) 

When the processor has accessed the call gate, it uses the segment selector from the 
call gate to locate the segment descriptor for the destination code segment. (This 
segment descriptor can be in the GDT or the LDT.) It then combines the base address 
from the code-segment descriptor with the offset from the call gate to form the linear 
address of the procedure entry point in the code segment.

As shown in Figure 4-11, four different privilege levels are used to check the validity 
of a program control transfer through a call gate:

• The CPL (current privilege level).

• The RPL (requestor's privilege level) of the call gate’s selector.

• The DPL (descriptor privilege level) of the call gate descriptor.

• The DPL of the segment descriptor of the destination code segment.

The C flag (conforming) in the segment descriptor for the destination code segment 
is also checked.

Figure 4-10.  Call-Gate Mechanism
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The privilege checking rules are different depending on whether the control transfer 
was initiated with a CALL or a JMP instruction, as shown in Table 4-1.

The DPL field of the call-gate descriptor specifies the numerically highest privilege 
level from which a calling procedure can access the call gate; that is, to access a call 
gate, the CPL of a calling procedure must be equal to or less than the DPL of the call 
gate. For example, in Figure 4-15, call gate A has a DPL of 3. So calling procedures at 
all CPLs (0 through 3) can access this call gate, which includes calling procedures in 
code segments A, B, and C. Call gate B has a DPL of 2, so only calling procedures at 
a CPL or 0, 1, or 2 can access call gate B, which includes calling procedures in code 

Figure 4-11.  Privilege Check for Control Transfer with Call Gate
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segments B and C. The dotted line shows that a calling procedure in code segment A 
cannot access call gate B.

The RPL of the segment selector to a call gate must satisfy the same test as the CPL 
of the calling procedure; that is, the RPL must be less than or equal to the DPL of the 
call gate. In the example in Figure 4-15, a calling procedure in code segment C can 
access call gate B using gate selector B2 or B1, but it could not use gate selector B3 
to access call gate B.

If the privilege checks between the calling procedure and call gate are successful, the 
processor then checks the DPL of the code-segment descriptor against the CPL of the 
calling procedure. Here, the privilege check rules vary between CALL and JMP 
instructions. Only CALL instructions can use call gates to transfer program control to 
more privileged (numerically lower privilege level) nonconforming code segments; 
that is, to nonconforming code segments with a DPL less than the CPL. A JMP instruc-
tion can use a call gate only to transfer program control to a nonconforming code 
segment with a DPL equal to the CPL. CALL and JMP instruction can both transfer 
program control to a more privileged conforming code segment; that is, to a 
conforming code segment with a DPL less than or equal to the CPL.

If a call is made to a more privileged (numerically lower privilege level) noncon-
forming destination code segment, the CPL is lowered to the DPL of the destination 
code segment and a stack switch occurs (see Section 4.8.5, “Stack Switching”). If a 
call or jump is made to a more privileged conforming destination code segment, the 
CPL is not changed and no stack switch occurs. 
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Call gates allow a single code segment to have procedures that can be accessed at 
different privilege levels. For example, an operating system located in a code 
segment may have some services which are intended to be used by both the oper-
ating system and application software (such as procedures for handling character 
I/O). Call gates for these procedures can be set up that allow access at all privilege 
levels (0 through 3). More privileged call gates (with DPLs of 0 or 1) can then be set 
up for other operating system services that are intended to be used only by the oper-
ating system (such as procedures that initialize device drivers).

4.8.5 Stack Switching
Whenever a call gate is used to transfer program control to a more privileged 
nonconforming code segment (that is, when the DPL of the nonconforming destina-
tion code segment is less than the CPL), the processor automatically switches to the 
stack for the destination code segment’s privilege level. This stack switching is 
carried out to prevent more privileged procedures from crashing due to insufficient 
stack space. It also prevents less privileged procedures from interfering (by accident 
or intent) with more privileged procedures through a shared stack.

Figure 4-12.  Example of Accessing Call Gates At Various Privilege Levels
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Each task must define up to 4 stacks: one for applications code (running at privilege 
level 3) and one for each of the privilege levels 2, 1, and 0 that are used. (If only two 
privilege levels are used [3 and 0], then only two stacks must be defined.) Each of 
these stacks is located in a separate segment and is identified with a segment 
selector and an offset into the stack segment (a stack pointer).

The segment selector and stack pointer for the privilege level 3 stack is located in the 
SS and ESP registers, respectively, when privilege-level-3 code is being executed and 
is automatically stored on the called procedure’s stack when a stack switch occurs. 

Pointers to the privilege level 0, 1, and 2 stacks are stored in the TSS for the currently 
running task (see Figure 6-2). Each of these pointers consists of a segment selector 
and a stack pointer (loaded into the ESP register). These initial pointers are strictly 
read-only values. The processor does not change them while the task is running. 
They are used only to create new stacks when calls are made to more privileged 
levels (numerically lower privilege levels). These stacks are disposed of when a 
return is made from the called procedure. The next time the procedure is called, a 
new stack is created using the initial stack pointer. (The TSS does not specify a stack 
for privilege level 3 because the processor does not allow a transfer of program 
control from a procedure running at a CPL of 0, 1, or 2 to a procedure running at a 
CPL of 3, except on a return.)

The operating system is responsible for creating stacks and stack-segment descrip-
tors for all the privilege levels to be used and for loading initial pointers for these 
stacks into the TSS. Each stack must be read/write accessible (as specified in the 
type field of its segment descriptor) and must contain enough space (as specified in 
the limit field) to hold the following items:

• The contents of the SS, ESP, CS, and EIP registers for the calling procedure.

• The parameters and temporary variables required by the called procedure.

• The EFLAGS register and error code, when implicit calls are made to an exception 
or interrupt handler.

The stack will need to require enough space to contain many frames of these items, 
because procedures often call other procedures, and an operating system may 
support nesting of multiple interrupts. Each stack should be large enough to allow for 
the worst case nesting scenario at its privilege level.

(If the operating system does not use the processor’s multitasking mechanism, it still 
must create at least one TSS for this stack-related purpose.) 

When a procedure call through a call gate results in a change in privilege level, the 
processor performs the following steps to switch stacks and begin execution of the 
called procedure at a new privilege level:

1. Uses the DPL of the destination code segment (the new CPL) to select a pointer 
to the new stack (segment selector and stack pointer) from the TSS. 

2. Reads the segment selector and stack pointer for the stack to be switched to from 
the current TSS. Any limit violations detected while reading the stack-segment 
selector, stack pointer, or stack-segment descriptor cause an invalid TSS (#TS) 
exception to be generated.
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3. Checks the stack-segment descriptor for the proper privileges and type and 
generates an invalid TSS (#TS) exception if violations are detected.

4. Temporarily saves the current values of the SS and ESP registers.

5. Loads the segment selector and stack pointer for the new stack in the SS and ESP 
registers.

6. Pushes the temporarily saved values for the SS and ESP registers (for the calling 
procedure) onto the new stack (see Figure 4-13).

7. Copies the number of parameter specified in the parameter count field of the call 
gate from the calling procedure’s stack to the new stack. If the count is 0, no 
parameters are copied.

8. Pushes the return instruction pointer (the current contents of the CS and EIP 
registers) onto the new stack.

9. Loads the segment selector for the new code segment and the new instruction 
pointer from the call gate into the CS and EIP registers, respectively, and begins 
execution of the called procedure.

See the description of the CALL instruction in Chapter 3, Instruction Set Reference, in 
the IA-32 Intel Architecture Software Developer’s Manual, Volume 2, for a detailed 
description of the privilege level checks and other protection checks that the 
processor performs on a far call through a call gate.

The parameter count field in a call gate specifies the number of data items (up to 31) 
that the processor should copy from the calling procedure’s stack to the stack of the 
called procedure. If more than 31 data items need to be passed to the called proce-

Figure 4-13.  Stack Switching During an Interprivilege-Level Call

Parameter 1

Parameter 2

Parameter 3

Calling SS

Calling ESP

Parameter 1

Parameter 2

Parameter 3

Calling CS

Calling EIP

Called Procedure’s Stack

ESP

ESP

Calling Procedure’s Stack



4-28   Vol. 3

PROTECTION

dure, one of the parameters can be a pointer to a data structure, or the saved 
contents of the SS and ESP registers may be used to access parameters in the old 
stack space. The size of the data items passed to the called procedure depends on 
the call gate size, as described in Section 4.8.3, “Call Gates.”

4.8.5.1  Stack Switching in 64-bit Mode
Although protection-check rules for call gates are unchanged from 32-bit mode, 
stack-switch changes in 64-bit mode are different.

When stacks are switched as part of a 64-bit mode privilege-level change through a 
call gate, a new SS (stack segment) descriptor is not loaded; 64-bit mode only loads 
an inner-level RSP from the TSS. The new SS is forced to NULL and the SS selector’s 
RPL field is forced to the new CPL. The new SS is set to NULL in order to handle 
nested far transfers (CALLF, INTn, interrupts and exceptions). The old SS and RSP 
are saved on the new stack. 

On a subsequent RETF, the old SS is popped from the stack and loaded into the SS 
register. See Table 4-2.

In 64-bit mode, stack operations resulting from a privilege-level-changing far call or 
far return are eight-bytes wide and change the RSP by eight. The mode does not 
support the automatic parameter-copy feature found in 32-bit mode. The call-gate 
count field is ignored. Software can access the old stack, if necessary, by referencing 
the old stack-segment selector and stack pointer saved on the new process stack. 

In 64-bit mode, RETF is allowed to load a NULL SS under certain conditions. If the 
target mode is 64-bit mode and the target CPL< >3, IRET allows SS to be loaded with 
a NULL selector. If the called procedure itself is interrupted, the NULL SS is pushed on 
the stack frame. On the subsequent RETF, the NULL SS on the stack acts as a flag to 
tell the processor not to load a new SS descriptor.

4.8.6 Returning from a Called Procedure
The RET instruction can be used to perform a near return, a far return at the same 
privilege level, and a far return to a different privilege level. This instruction is 

Table 4-2.  64-Bit-Mode Stack Layout After CALLF with CPL Change 
32-bit Mode IA-32e mode

Old SS Selector +12 +24 Old SS Selector

Old ESP +8 +16 Old RSP

CS Selector +4 +8 Old CS Selector

EIP 0 ESP  RSP 0 RIP

<  4 Bytes  > <  8 Bytes  >
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intended to execute returns from procedures that were called with a CALL instruc-
tion. It does not support returns from a JMP instruction, because the JMP instruction 
does not save a return instruction pointer on the stack.

A near return only transfers program control within the current code segment; there-
fore, the processor performs only a limit check. When the processor pops the return 
instruction pointer from the stack into the EIP register, it checks that the pointer does 
not exceed the limit of the current code segment.

On a far return at the same privilege level, the processor pops both a segment 
selector for the code segment being returned to and a return instruction pointer from 
the stack. Under normal conditions, these pointers should be valid, because they 
were pushed on the stack by the CALL instruction. However, the processor performs 
privilege checks to detect situations where the current procedure might have altered 
the pointer or failed to maintain the stack properly.

A far return that requires a privilege-level change is only allowed when returning to a 
less privileged level (that is, the DPL of the return code segment is numerically 
greater than the CPL). The processor uses the RPL field from the CS register value 
saved for the calling procedure (see Figure 4-13) to determine if a return to a numer-
ically higher privilege level is required. If the RPL is numerically greater (less privi-
leged) than the CPL, a return across privilege levels occurs. 

The processor performs the following steps when performing a far return to a calling 
procedure (see Figures 6-2 and 6-4 in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1, for an illustration of the stack contents prior to 
and after a return):

1. Checks the RPL field of the saved CS register value to determine if a privilege 
level change is required on the return.

2. Loads the CS and EIP registers with the values on the called procedure’s stack. 
(Type and privilege level checks are performed on the code-segment descriptor 
and RPL of the code- segment selector.)

3. (If the RET instruction includes a parameter count operand and the return 
requires a privilege level change.) Adds the parameter count (in bytes obtained 
from the RET instruction) to the current ESP register value (after popping the CS 
and EIP values), to step past the parameters on the called procedure’s stack. The 
resulting value in the ESP register points to the saved SS and ESP values for the 
calling procedure’s stack. (Note that the byte count in the RET instruction must 
be chosen to match the parameter count in the call gate that the calling 
procedure referenced when it made the original call multiplied by the size of the 
parameters.)

4. (If the return requires a privilege level change.) Loads the SS and ESP registers 
with the saved SS and ESP values and switches back to the calling procedure’s 
stack. The SS and ESP values for the called procedure’s stack are discarded. Any 
limit violations detected while loading the stack-segment selector or stack 
pointer cause a general-protection exception (#GP) to be generated. The new 
stack-segment descriptor is also checked for type and privilege violations.
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5. (If the RET instruction includes a parameter count operand.) Adds the parameter 
count (in bytes obtained from the RET instruction) to the current ESP register 
value, to step past the parameters on the calling procedure’s stack. The resulting 
ESP value is not checked against the limit of the stack segment. If the ESP value 
is beyond the limit, that fact is not recognized until the next stack operation.

6. (If the return requires a privilege level change.) Checks the contents of the DS, 
ES, FS, and GS segment registers. If any of these registers refer to segments 
whose DPL is less than the new CPL (excluding conforming code segments), the 
segment register is loaded with a null segment selector.

See the description of the RET instruction in Chapter 4 of the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2B, for a detailed description of 
the privilege level checks and other protection checks that the processor performs on 
a far return.

4.8.7 Performing Fast Calls to System Procedures with the 
SYSENTER and SYSEXIT Instructions

The SYSENTER and SYSEXIT instructions were introduced into the IA-32 architecture 
in the Pentium II processors for the purpose of providing a fast (low overhead) mech-
anism for calling operating system or executive procedures. SYSENTER is intended 
for use by user code running at privilege level 3 to access operating system or exec-
utive procedures running at privilege level 0. SYSEXIT is intended for use by privilege 
level 0 operating system or executive procedures for fast returns to privilege level 3 
user code. SYSENTER can be executed from privilege levels 3, 2, 1, or 0; SYSEXIT 
can only be executed from privilege level 0.

The SYSENTER and SYSEXIT instructions are companion instructions, but they do not 
constitute a call/return pair. This is because SYSENTER does not save any state infor-
mation for use by SYSEXIT on a return.

The target instruction and stack pointer for these instructions are not specified 
through instruction operands. Instead, they are specified through parameters 
entered in MSRs and general-purpose registers. 

For SYSENTER, target fields are generated using the following sources:

• Target code segment — Reads this from IA32_SYSENTER_CS.

• Target instruction — Reads this from IA32_SYSENTER_EIP.

• Stack segment — Computed by adding 8 to the value in IA32_SYSENTER_CS.

• Stack pointer — Reads this from the IA32_SYSENTER_ESP.

For SYSEXIT, target fields are generated using the following sources:

• Target code segment — Computed by adding 16 to the value in the 
IA32_SYSENTER_CS.

• Target instruction — Reads this from EDX.
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• Stack segment — Computed by adding 24 to the value in IA32_SYSENTER_CS.

• Stack pointer — Reads this from ECX.

The SYSENTER and SYSEXIT instructions preform “fast” calls and returns because 
they force the processor into a predefined privilege level 0 state when SYSENTER is 
executed and into a predefined privilege level 3 state when SYSEXIT is executed. By 
forcing predefined and consistent processor states, the number of privilege checks 
ordinarily required to perform a far call to another privilege levels are greatly 
reduced. Also, by predefining the target context state in MSRs and general-purpose 
registers eliminates all memory accesses except when fetching the target code.

Any additional state that needs to be saved to allow a return to the calling procedure 
must be saved explicitly by the calling procedure or be predefined through program-
ming conventions.

4.8.7.1  SYSENTER and SYSEXIT Instructions in IA-32e Mode
For Intel 64 processors, the SYSENTER and SYSEXIT instructions are enhanced to 
allow fast system calls from user code running at privilege level 3 (in compatibility 
mode or 64-bit mode) to 64-bit executive procedures running at privilege level 0. 
IA32_SYSENTER_EIP MSR and IA32_SYSENTER_ESP MSR are expanded to hold 
64-bit addresses. If IA-32e mode is inactive, only the lower 32-bit addresses stored 
in these MSRs are used. If 64-bit mode is active, addresses stored in 
IA32_SYSENTER_EIP and IA32_SYSENTER_ESP must be canonical. Note that, in 
64-bit mode, IA32_SYSENTER_CS must not contain a NULL selector. 

When SYSENTER transfers control, the following fields are generated and bits set:

• Target code segment — Reads non-NULL selector from IA32_SYSENTER_CS.

• New CS attributes — CS base = 0, CS limit = FFFFFFFFH.

• Target instruction — Reads 64-bit canonical address from 
IA32_SYSENTER_EIP.

• Stack segment — Computed by adding 8 to the value from 
IA32_SYSENTER_CS.

• Stack pointer — Reads 64-bit canonical address from IA32_SYSENTER_ESP.

• New SS attributes — SS base = 0, SS limit = FFFFFFFFH.

When the SYSEXIT instruction transfers control to 64-bit mode user code using 
REX.W, the following fields are generated and bits set:

• Target code segment — Computed by adding 32 to the value in 
IA32_SYSENTER_CS.

• New CS attributes — L-bit = 1 (go to 64-bit mode).

• Target instruction — Reads 64-bit canonical address in RDX.

• Stack segment — Computed by adding 40 to the value of IA32_SYSENTER_CS.

• Stack pointer — Update RSP using 64-bit canonical address in RCX.
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When SYSEXIT transfers control to compatibility mode user code when the operand 
size attribute is 32 bits, the following fields are generated and bits set:

• Target code segment — Computed by adding 16 to the value in 
IA32_SYSENTER_CS.

• New CS attributes — L-bit = 0 (go to compatibility mode).

• Target instruction — Fetch the target instruction from 32-bit address in EDX.

• Stack segment — Computed by adding 24 to the value in IA32_SYSENTER_CS.

• Stack pointer — Update ESP from 32-bit address in ECX.

4.8.8 Fast System Calls in 64-bit Mode
The SYSCALL and SYSRET instructions are designed for operating systems that use a 
flat memory model (segmentation is not used). The instructions, along with 
SYSENTER and SYSEXIT, are suited for IA-32e mode operation. SYSCALL and 
SYSRET, however, are not supported in compatibility mode. Use CPUID to check if 
SYSCALL and SYSRET are available (CPUID.80000001H.EDX[bit 11] = 1). 

SYSCALL is intended for use by user code running at privilege level 3 to access oper-
ating system or executive procedures running at privilege level 0. SYSRET is 
intended for use by privilege level 0 operating system or executive procedures for 
fast returns to privilege level 3 user code. 

Stack pointers for SYSCALL/SYSRET are not specified through model specific regis-
ters. The clearing of bits in RFLAGS is programmable rather than fixed. 
SYSCALL/SYSRET save and restore the RFLAGS register. 

For SYSCALL, the processor saves the RIP of the instruction in RCX and gets the priv-
ilege level 0 target instruction and stack pointer from:

• Target code segment — Reads a non-NULL selector from IA32_STAR[47:32].

• Target instruction — Reads a 64-bit canonical address from IA32_LSTAR.

• Stack segment — Computed by adding 8 to the value in IA32_STAR[47:32].

• System flags — The processor uses a mask derived from IA32_FMASK to 
perform a logical-AND operation with the lower 32-bits of RFLAGS. The result is 
saved into R11. The mask is the complement of the value supplied by privileged 
executives using the IA32_FMASK MSR.

When SYSRET transfers control to 64-bit mode user code using REX.W, the processor 
gets the privilege level 3 target instruction and stack pointer from:

• Target code segment — Reads a non-NULL selector from IA32_STAR[63:48] + 
16.

• Target instruction — Copies the value in RCX into RIP.

• Stack segment — IA32_STAR[63:48] + 8.

• EFLAGS — Loaded from R11.
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When SYSRET transfers control to 32-bit mode user code using a 32-bit operand size, 
the processor gets the privilege level 3 target instruction and stack pointer from:

• Target code segment — Reads a non-NULL selector from IA32_STAR[63:48].

• Target instruction — Copies the value in ECX into EIP.

• Stack segment — IA32_STAR[63:48] + 8.

• EFLAGS — Loaded from R11.

It is the responsibility of the OS to ensure the descriptors in the GDT/LDT correspond 
to the selectors loaded by SYSCALL/SYSRET (consistent with the base, limit, and 
attribute values forced by the instructions). 

Any address written to IA32_LSTAR is first checked by WRMSR to ensure canonical 
form. If an address is not canonical, an exception is generated (#GP). 

See Figure 4-14 for the layout of IA32_STAR, IA32_LSTAR and IA32_FMASK.

4.9 PRIVILEGED INSTRUCTIONS
Some of the system instructions (called “privileged instructions”) are protected from 
use by application programs. The privileged instructions control system functions 
(such as the loading of system registers). They can be executed only when the CPL is 
0 (most privileged). If one of these instructions is executed when the CPL is not 0, a 

Figure 4-14.  MSRs Used by SYSCALL and SYSRET
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general-protection exception (#GP) is generated. The following system instructions 
are privileged instructions:

• LGDT — Load GDT register.

• LLDT — Load LDT register.

• LTR — Load task register.

• LIDT — Load IDT register.

• MOV (control registers) — Load and store control registers.

• LMSW — Load machine status word.

• CLTS — Clear task-switched flag in register CR0.

• MOV (debug registers) — Load and store debug registers.

• INVD — Invalidate cache, without writeback.

• WBINVD — Invalidate cache, with writeback.

• INVLPG —Invalidate TLB entry.

• HLT— Halt processor.

• RDMSR — Read Model-Specific Registers.

• WRMSR —Write Model-Specific Registers.

• RDPMC — Read Performance-Monitoring Counter.

• RDTSC — Read Time-Stamp Counter.

Some of the privileged instructions are available only in the more recent families of 
Intel 64 and IA-32 processors (see Section 17.12, “New Instructions In the Pentium 
and Later IA-32 Processors”).

The PCE and TSD flags in register CR4 (bits 4 and 2, respectively) enable the RDPMC 
and RDTSC instructions, respectively, to be executed at any CPL.

4.10 POINTER VALIDATION
When operating in protected mode, the processor validates all pointers to enforce 
protection between segments and maintain isolation between privilege levels. 
Pointer validation consists of the following checks:

1. Checking access rights to determine if the segment type is compatible with its 
use.

2. Checking read/write rights.

3. Checking if the pointer offset exceeds the segment limit.

4. Checking if the supplier of the pointer is allowed to access the segment.

5. Checking the offset alignment.
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The processor automatically performs first, second, and third checks during instruc-
tion execution. Software must explicitly request the fourth check by issuing an ARPL 
instruction. The fifth check (offset alignment) is performed automatically at privilege 
level 3 if alignment checking is turned on. Offset alignment does not affect isolation 
of privilege levels.

4.10.1 Checking Access Rights (LAR Instruction)
When the processor accesses a segment using a far pointer, it performs an access 
rights check on the segment descriptor pointed to by the far pointer. This check is 
performed to determine if type and privilege level (DPL) of the segment descriptor 
are compatible with the operation to be performed. For example, when making a far 
call in protected mode, the segment-descriptor type must be for a conforming or 
nonconforming code segment, a call gate, a task gate, or a TSS. Then, if the call is to 
a nonconforming code segment, the DPL of the code segment must be equal to the 
CPL, and the RPL of the code segment’s segment selector must be less than or equal 
to the DPL. If type or privilege level are found to be incompatible, the appropriate 
exception is generated.

To prevent type incompatibility exceptions from being generated, software can check 
the access rights of a segment descriptor using the LAR (load access rights) instruc-
tion. The LAR instruction specifies the segment selector for the segment descriptor 
whose access rights are to be checked and a destination register. The instruction then 
performs the following operations:

1. Check that the segment selector is not null.

2. Checks that the segment selector points to a segment descriptor that is within 
the descriptor table limit (GDT or LDT).

3. Checks that the segment descriptor is a code, data, LDT, call gate, task gate, or 
TSS segment-descriptor type.

4. If the segment is not a conforming code segment, checks if the segment 
descriptor is visible at the CPL (that is, if the CPL and the RPL of the segment 
selector are less than or equal to the DPL).

5. If the privilege level and type checks pass, loads the second doubleword of the 
segment descriptor into the destination register (masked by the value 
00FXFF00H, where X indicates that the corresponding 4 bits are undefined) and 
sets the ZF flag in the EFLAGS register. If the segment selector is not visible at 
the current privilege level or is an invalid type for the LAR instruction, the 
instruction does not modify the destination register and clears the ZF flag.

Once loaded in the destination register, software can preform additional checks on 
the access rights information.
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4.10.2 Checking Read/Write Rights (VERR and VERW Instructions)
When the processor accesses any code or data segment it checks the read/write priv-
ileges assigned to the segment to verify that the intended read or write operation is 
allowed. Software can check read/write rights using the VERR (verify for reading) 
and VERW (verify for writing) instructions. Both these instructions specify the 
segment selector for the segment being checked. The instructions then perform the 
following operations:

1. Check that the segment selector is not null.

2. Checks that the segment selector points to a segment descriptor that is within 
the descriptor table limit (GDT or LDT).

3. Checks that the segment descriptor is a code or data-segment descriptor type.

4. If the segment is not a conforming code segment, checks if the segment 
descriptor is visible at the CPL (that is, if the CPL and the RPL of the segment 
selector are less than or equal to the DPL).

5. Checks that the segment is readable (for the VERR instruction) or writable (for 
the VERW) instruction.

The VERR instruction sets the ZF flag in the EFLAGS register if the segment is visible 
at the CPL and readable; the VERW sets the ZF flag if the segment is visible and writ-
able. (Code segments are never writable.) The ZF flag is cleared if any of these 
checks fail.

4.10.3 Checking That the Pointer Offset Is Within Limits (LSL 
Instruction)

When the processor accesses any segment it performs a limit check to insure that the 
offset is within the limit of the segment. Software can perform this limit check using 
the LSL (load segment limit) instruction. Like the LAR instruction, the LSL instruction 
specifies the segment selector for the segment descriptor whose limit is to be 
checked and a destination register. The instruction then performs the following oper-
ations:

1. Check that the segment selector is not null.

2. Checks that the segment selector points to a segment descriptor that is within 
the descriptor table limit (GDT or LDT).

3. Checks that the segment descriptor is a code, data, LDT, or TSS segment-
descriptor type.

4. If the segment is not a conforming code segment, checks if the segment 
descriptor is visible at the CPL (that is, if the CPL and the RPL of the segment 
selector less than or equal to the DPL).

5. If the privilege level and type checks pass, loads the unscrambled limit (the limit 
scaled according to the setting of the G flag in the segment descriptor) into the 
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destination register and sets the ZF flag in the EFLAGS register. If the segment 
selector is not visible at the current privilege level or is an invalid type for the LSL 
instruction, the instruction does not modify the destination register and clears 
the ZF flag.

Once loaded in the destination register, software can compare the segment limit with 
the offset of a pointer. 

4.10.4 Checking Caller Access Privileges (ARPL Instruction)
The requestor’s privilege level (RPL) field of a segment selector is intended to carry 
the privilege level of a calling procedure (the calling procedure’s CPL) to a called 
procedure. The called procedure then uses the RPL to determine if access to a 
segment is allowed. The RPL is said to “weaken” the privilege level of the called 
procedure to that of the RPL. 

Operating-system procedures typically use the RPL to prevent less privileged appli-
cation programs from accessing data located in more privileged segments. When an 
operating-system procedure (the called procedure) receives a segment selector from 
an application program (the calling procedure), it sets the segment selector’s RPL to 
the privilege level of the calling procedure. Then, when the operating system uses 
the segment selector to access its associated segment, the processor performs priv-
ilege checks using the calling procedure’s privilege level (stored in the RPL) rather 
than the numerically lower privilege level (the CPL) of the operating-system proce-
dure. The RPL thus insures that the operating system does not access a segment on 
behalf of an application program unless that program itself has access to the 
segment.

Figure 4-15 shows an example of how the processor uses the RPL field. In this 
example, an application program (located in code segment A) possesses a segment 
selector (segment selector D1) that points to a privileged data structure (that is, a 
data structure located in a data segment D at privilege level 0). 

The application program cannot access data segment D, because it does not have 
sufficient privilege, but the operating system (located in code segment C) can. So, in 
an attempt to access data segment D, the application program executes a call to the 
operating system and passes segment selector D1 to the operating system as a 
parameter on the stack. Before passing the segment selector, the (well behaved) 
application program sets the RPL of the segment selector to its current privilege level 
(which in this example is 3). If the operating system attempts to access data 
segment D using segment selector D1, the processor compares the CPL (which is 
now 0 following the call), the RPL of segment selector D1, and the DPL of data 
segment D (which is 0). Since the RPL is greater than the DPL, access to data 
segment D is denied. The processor’s protection mechanism thus protects data 
segment D from access by the operating system, because application program’s priv-
ilege level (represented by the RPL of segment selector B) is greater than the DPL of 
data segment D.
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Now assume that instead of setting the RPL of the segment selector to 3, the appli-
cation program sets the RPL to 0 (segment selector D2). The operating system can 
now access data segment D, because its CPL and the RPL of segment selector D2 are 
both equal to the DPL of data segment D. 

Because the application program is able to change the RPL of a segment selector to 
any value, it can potentially use a procedure operating at a numerically lower privi-
lege level to access a protected data structure. This ability to lower the RPL of a 
segment selector breaches the processor’s protection mechanism.

Because a called procedure cannot rely on the calling procedure to set the RPL 
correctly, operating-system procedures (executing at numerically lower privilege-
levels) that receive segment selectors from numerically higher privilege-level proce-
dures need to test the RPL of the segment selector to determine if it is at the appro-
priate level. The ARPL (adjust requested privilege level) instruction is provided for 
this purpose. This instruction adjusts the RPL of one segment selector to match that 
of another segment selector.

Figure 4-15.  Use of RPL to Weaken Privilege Level of Called Procedure
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The example in Figure 4-15 demonstrates how the ARPL instruction is intended to be 
used. When the operating-system receives segment selector D2 from the application 
program, it uses the ARPL instruction to compare the RPL of the segment selector 
with the privilege level of the application program (represented by the code-segment 
selector pushed onto the stack). If the RPL is less than application program’s privi-
lege level, the ARPL instruction changes the RPL of the segment selector to match the 
privilege level of the application program (segment selector D1). Using this instruc-
tion thus prevents a procedure running at a numerically higher privilege level from 
accessing numerically lower privilege-level (more privileged) segments by lowering 
the RPL of a segment selector.

Note that the privilege level of the application program can be determined by reading 
the RPL field of the segment selector for the application-program’s code segment. 
This segment selector is stored on the stack as part of the call to the operating 
system. The operating system can copy the segment selector from the stack into a 
register for use as an operand for the ARPL instruction.

4.10.5 Checking Alignment
When the CPL is 3, alignment of memory references can be checked by setting the 
AM flag in the CR0 register and the AC flag in the EFLAGS register. Unaligned memory 
references generate alignment exceptions (#AC). The processor does not generate 
alignment exceptions when operating at privilege level 0, 1, or 2. See Table 5-7 for a 
description of the alignment requirements when alignment checking is enabled.

4.11 PAGE-LEVEL PROTECTION
Page-level protection can be used alone or applied to segments. When page-level 
protection is used with the flat memory model, it allows supervisor code and data 
(the operating system or executive) to be protected from user code and data (appli-
cation programs). It also allows pages containing code to be write protected. When 
the segment- and page-level protection are combined, page-level read/write protec-
tion allows more protection granularity within segments.

With page-level protection (as with segment-level protection) each memory refer-
ence is checked to verify that protection checks are satisfied. All checks are made 
before the memory cycle is started, and any violation prevents the cycle from 
starting and results in a page-fault exception being generated. Because checks are 
performed in parallel with address translation, there is no performance penalty.

The processor performs two page-level protection checks:

• Restriction of addressable domain (supervisor and user modes).

• Page type (read only or read/write).

Violations of either of these checks results in a page-fault exception being generated. 
See Chapter 5, “Interrupt 14—Page-Fault Exception (#PF),” for an explanation of the 
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page-fault exception mechanism. This chapter describes the protection violations 
which lead to page-fault exceptions.

4.11.1 Page-Protection Flags
Protection information for pages is contained in two flags in a page-directory or page-
table entry (see Figure 3-14): the read/write flag (bit 1) and the user/supervisor flag 
(bit 2). The protection checks are applied to both first- and second-level page tables 
(that is, page directories and page tables). 

4.11.2 Restricting Addressable Domain
The page-level protection mechanism allows restricting access to pages based on 
two privilege levels:

• Supervisor mode (U/S flag is 0)—(Most privileged) For the operating system or 
executive, other system software (such as device drivers), and protected system 
data (such as page tables).

• User mode (U/S flag is 1)—(Least privileged) For application code and data.

The segment privilege levels map to the page privilege levels as follows. If the 
processor is currently operating at a CPL of 0, 1, or 2, it is in supervisor mode; if it is 
operating at a CPL of 3, it is in user mode. When the processor is in supervisor mode, 
it can access all pages; when in user mode, it can access only user-level pages. (Note 
that the WP flag in control register CR0 modifies the supervisor permissions, as 
described in Section 4.11.3, “Page Type.”)

Note that to use the page-level protection mechanism, code and data segments must 
be set up for at least two segment-based privilege levels: level 0 for supervisor code 
and data segments and level 3 for user code and data segments. (In this model, the 
stacks are placed in the data segments.) To minimize the use of segments, a flat 
memory model can be used (see Section 3.2.1, “Basic Flat Model”). 

Here, the user and supervisor code and data segments all begin at address zero in 
the linear address space and overlay each other. With this arrangement, operating-
system code (running at the supervisor level) and application code (running at the 
user level) can execute as if there are no segments. Protection between operating-
system and application code and data is provided by the processor’s page-level 
protection mechanism. 

4.11.3 Page Type
The page-level protection mechanism recognizes two page types:

• Read-only access (R/W flag is 0).

• Read/write access (R/W flag is 1).
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When the processor is in supervisor mode and the WP flag in register CR0 is clear (its 
state following reset initialization), all pages are both readable and writable (write-
protection is ignored). When the processor is in user mode, it can write only to user-
mode pages that are read/write accessible. User-mode pages which are read/write or 
read-only are readable; supervisor-mode pages are neither readable nor writable 
from user mode. A page-fault exception is generated on any attempt to violate the 
protection rules.

Starting with the P6 family, Intel processors allow user-mode pages to be write-
protected against supervisor-mode access. Setting CR0.WP = 1 enables supervisor-
mode sensitivity to user-mode, write protected pages. Supervisor pages which are 
read-only are not writable from any privilege level (if CR0.WP = 1). This supervisor 
write-protect feature is useful for implementing a “copy-on-write” strategy used by 
some operating systems, such as UNIX*, for task creation (also called forking or 
spawning). When a new task is created, it is possible to copy the entire address space 
of the parent task. This gives the child task a complete, duplicate set of the parent's 
segments and pages. An alternative copy-on-write strategy saves memory space and 
time by mapping the child's segments and pages to the same segments and pages 
used by the parent task. A private copy of a page gets created only when one of the 
tasks writes to the page. By using the WP flag and marking the shared pages as read-
only, the supervisor can detect an attempt to write to a user-level page, and can copy 
the page at that time.

4.11.4 Combining Protection of Both Levels of Page Tables
For any one page, the protection attributes of its page-directory entry (first-level 
page table) may differ from those of its page-table entry (second-level page table). 
The processor checks the protection for a page in both its page-directory and the 
page-table entries. Table 4-3 shows the protection provided by the possible combina-
tions of protection attributes when the WP flag is clear.

4.11.5 Overrides to Page Protection
The following types of memory accesses are checked as if they are privilege-level 0 
accesses, regardless of the CPL at which the processor is currently operating:

• Access to segment descriptors in the GDT, LDT, or IDT.

• Access to an inner-privilege-level stack during an inter-privilege-level call or a 
call to in exception or interrupt handler, when a change of privilege level occurs.

4.12 COMBINING PAGE AND SEGMENT PROTECTION
When paging is enabled, the processor evaluates segment protection first, then 
evaluates page protection. If the processor detects a protection violation at either 
the segment level or the page level, the memory access is not carried out and an 
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exception is generated. If an exception is generated by segmentation, no paging 
exception is generated.

Page-level protections cannot be used to override segment-level protection. For 
example, a code segment is by definition not writable. If a code segment is paged, 
setting the R/W flag for the pages to read-write does not make the pages writable. 
Attempts to write into the pages will be blocked by segment-level protection checks.

Page-level protection can be used to enhance segment-level protection. For 
example, if a large read-write data segment is paged, the page-protection mecha-
nism can be used to write-protect individual pages.

Table 4-3.  Combined Page-Directory and Page-Table Protection

Page-Directory Entry Page-Table Entry Combined Effect

Privilege Access Type Privilege Access Type Privilege Access Type

User Read-Only User Read-Only User Read-Only

User Read-Only User Read-Write User Read-Only

User Read-Write User Read-Only User Read-Only 

User Read-Write User Read-Write User Read/Write

User Read-Only Supervisor Read-Only Supervisor Read/Write*

User Read-Only Supervisor Read-Write Supervisor Read/Write*

User Read-Write Supervisor Read-Only Supervisor Read/Write*

User Read-Write Supervisor Read-Write Supervisor Read/Write

Supervisor Read-Only User Read-Only Supervisor Read/Write*

Supervisor Read-Only User Read-Write Supervisor Read/Write*

Supervisor Read-Write User Read-Only Supervisor Read/Write*

Supervisor Read-Write User Read-Write Supervisor Read/Write

Supervisor Read-Only Supervisor Read-Only Supervisor Read/Write*

Supervisor Read-Only Supervisor Read-Write Supervisor Read/Write*

Supervisor Read-Write Supervisor Read-Only Supervisor Read/Write*

Supervisor Read-Write Supervisor Read-Write Supervisor Read/Write

NOTE:
* If CR0.WP = 1, access type is determined by the R/W flags of the page-directory and page-table 

entries. IF CR0.WP = 0, supervisor privilege permits read-write access.
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4.13 PAGE-LEVEL PROTECTION AND EXECUTE-DISABLE 
BIT

In addition to page-level protection offered by the U/S and R/W flags, enhanced PAE-
enabled paging structures (see Section 3.10.3, “Enhanced Paging Data Structures”) 
provide the execute-disable bit. This bit offers additional protection for data pages. 

An Intel 64 or IA-32 processor with the execute disable bit capability can prevent 
data pages from being used by malicious software to execute code. This capability is 
provided in:

• 32-bit protected mode with PAE enabled.

• IA-32e mode.

While the execute disable bit capability does not introduce new instructions, it does 
require operating systems to use a PAE-enabled environment and establish a page-
granular protection policy for memory pages. 

If the execute disable bit of a memory page is set, that page can be used only as 
data. An attempt to execute code from a memory page with the execute-disable bit 
set causes a page-fault exception. 

The page sizes and physical address sizes supported by execute disable bit capability 
are shown in Table 4-4. Existing page-level protection mechanisms (see Section 
4.11, “Page-Level Protection”) continue to apply to memory pages independent of 
the execute-disable bit setting.

4.13.1 Detecting and Enabling the Execute-Disable Bit Capability
Detect the presence of the execute disable bit capability using the CPUID instruction. 
CPUID.80000001H. EDX[bit 20] = 1 indicates the bit is available.

If the bit is available and PAE is enabled, enable the execute disable bit capability by 
setting the IA32_EFER.NXE[bit 11] = 1. IA32_EFER is available if 
CPUID.80000001H.EDX[bit 20 or 29] = 1. 

If the execute disable bit capability is not available, a write to IA32_EFER.NXE 
produces a #GP exception. See Table 4-5.

Table 4-4.  Page Sizes and Physical Address Sizes Supported by 
Execute-Disable Bit Capability

PG Flag, 
CR0

PAE Flag, 
CR4

PS Flag, 
PDE

CPUID Feature 
Flag ECX[IA-32e]

Page Size Physical Address Size

1 1 0 0 4 KBytes Implementation specific

1 1 1 0 2 MBytes Implementation specific

1 1 0 1 4 KBytes 40 Bits

1 1 1 1 2 MBytes 40 Bits
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4.13.2 Execute-Disable Bit Page Protection
The execute-disable bit in paging structures enhances page protection for data 
pages. Memory pages that contain data cannot be used to execute code if 
IA32_EFER.NXE =1 and the execute-disable bit of the memory page is set. Table 4-6 
lists the valid usage of a page in relation to the value of execute-disable bit (bit 63) 
of the corresponding entry in each level of the paging structures. Execute-disable bit 
protection can be activated using the execute-disable bit at any level of the paging 
structure, irrespective of the corresponding entry in other levels. When execute-
disable-bit protection is not activated, the page can be used as code or data.

In legacy PAE-enabled mode, Table 4-7 and Table 4-8 show the effect of setting the 
execute-disable bit for code and data pages. 
   

Table 4-5.  Extended Feature Enable MSR (IA32_EFER)
63:12 11 10 9 8 7:1 0

Reserved Execute-
disable bit 
enable (NXE)

IA-32e mode 
active (LMA)

Reserve
d

IA-32e mode 
enable (LME)

Reserve
d

SysCall enable 
(SCE)

Table 4-6.  IA-32e Mode Page Level Protection Matrix 
with Execute-Disable Bit Capability 

Execute Disable Bit Value (Bit 63) Valid Usage

PML4 PDP PDE PTE

Bit 63 = 1 * * * Data

* Bit 63 = 1 * * Data

* * Bit 63 = 1 * Data

* * * Bit 63 = 1 Data

Bit 63 = 0 Bit 63 = 0 Bit 63 = 0 Bit 63 = 0 Data/Code

NOTES:
* Value not checked.
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4.13.3 Reserved Bit Checking
The processor enforces reserved bit checking in paging data structure entries. The 
bits being checked varies with paging mode and may vary with the size of physical 
address space. 

Table 4-9 shows the reserved bits that are checked when the execute disable bit 
capability is enabled (CR4.PAE = 1 and IA32_EFER.NXE = 1). Table 4-9 and Table  
show the following paging modes:

• Non-PAE 4-KByte paging: 4-KByte-page only paging (CR4.PAE = 0, 
CR4.PSE = 0).

• PSE36: 4-KByte and 4-MByte pages (CR4.PAE = 0, CR4.PSE = 1).

• PAE: 4-KByte and 2-MByte pages (CR4.PAE = 1, CR4.PSE = X).

In legacy PAE-enabled paging, some processors may only support a 36-bit (or 
32-bit) physical address size; in such cases reserved bit checking still applies to bits 
39:36 (or bits 39:32). See the table note. 

Table 4-7.  Legacy PAE-Enabled 4-KByte Page Level Protection Matrix 
with Execute-Disable Bit Capability 

Execute Disable Bit Value (Bit 63) Valid Usage

PDE PTE

Bit 63 = 1 * Data

* Bit 63 = 1 Data

Bit 63 = 0 Bit 63 = 0 Data/Code

NOTE:
*  Value not checked.

Table 4-8.  Legacy PAE-Enabled 2-MByte Page Level Protection 
with Execute-Disable Bit Capability

Execute Disable Bit Value (Bit 63) Valid Usage

PDE

Bit 63 = 1 Data

Bit 63 = 0 Data/Code
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If execute disable bit capability is not enabled or not available, reserved bit checking 
in 64-bit mode includes bit 63 and additional bits. This and reserved bit checking for 
legacy 32-bit paging modes are shown in Table 4-10.

 

Table 4-9.  IA-32e Mode Page Level Protection Matrix with Execute-Disable Bit 
Capability Enabled 

Mode Paging Mode Check Bits

32-bit 4-KByte paging (non-PAE) No reserved bits checked

PSE36 - PDE, 4-MByte page Bit [21] 

PSE36 - PDE, 4-KByte page No reserved bits checked

PSE36 - PTE No reserved bits checked

PAE - PDP table entry Bits [63:40] & [8:5] & [2:1] *

PAE - PDE, 2-MByte page Bits [62:40] & [20:13] *

PAE - PDE, 4-KByte page Bits [62:40] *

PAE - PTE Bits [62:40] *

64-bit PML4E Bits [51:40] 

PDPTE Bits [51:40] 

PDE, 2-MByte page Bits [51:40] & [20:13] 

PDE, 4-KByte page Bits [51:40] 

PTE Bits [51:40] 

NOTES:
* Reserved bit checking also applies to bits 39:36 for processors that support only 36-bits of 

physical address. For processor that support only 32 bits of physical address, reserved bit check-
ing also applies to bits 39:32.
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4.13.4 Exception Handling
When execute disable bit capability is enabled (IA32_EFER.NXE = 1), conditions for 
a page fault to occur include the same conditions that apply to an Intel 64 or IA-32 
processor without execute disable bit capability plus the following new condition: an 
instruction fetch to a linear address that translates to physical address in a memory 
page that has the execute-disable bit set.

An Execute Disable Bit page fault can occur at all privilege levels. It can occur on any 
instruction fetch, including (but not limited to): near branches, far branches, 
CALL/RET/INT/IRET execution, sequential instruction fetches, and task switches. The 
execute-disable bit in the page translation mechanism is checked only when:

• IA32_EFER.NXE = 1.

• The instruction translation look-aside buffer (ITLB) is loaded with a page that is 
not already present in the ITLB.

Table 4-10.  Reserved Bit Checking WIth Execute-Disable Bit Capability Not Enabled
Mode Paging Mode Check Bits

32-bit KByte paging (non-PAE)  No reserved bits checked

PSE36 - PDE, 4-MByte page  Bit [21] 

PSE36 - PDE, 4-KByte page  No reserved bits checked

PSE36 - PTE  No reserved bits checked

PAE - PDP table entry  Bits [63:40] & [8:5] & [2:1]*

PAE - PDE, 2-MByte page  Bits [63:40] & [20:13]*

PAE - PDE, 4-KByte page  Bits [63:40]*

PAE - PTE  Bits [63:40]*

64-bit PML4E  Bit [63], bits [51:40] 

PDPTE  Bit [63], bits [51:40] 

PDE, 2-MByte page  Bit [63], bits [51:40] & [20:13] 

PDE, 4-KByte page  Bit [63], bits [51:40] 

PTE  Bit [63], bits [51:40] 

NOTES:
* Reserved bit checking also applies to bits 39:36 for processors that support only 36-bits of phys-

ical address. For processor that support only 32 bits of physical address, reserved bit checking 
also applies to bits 39:32.
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CHAPTER 5
INTERRUPT AND EXCEPTION HANDLING

This chapter describes the interrupt and exception-handling mechanism when oper-
ating in protected mode on an Intel 64 or IA-32 processor. Most of the information 
provided here also applies to interrupt and exception mechanisms used in real-
address, virtual-8086 mode, and 64-bit mode. 

Chapter 15, “8086 Emulation,” describes information specific to interrupt and excep-
tion mechanisms in real-address and virtual-8086 mode. Section 5.14, “Exception 
and Interrupt Handling in 64-bit Mode,” describes information specific to interrupt 
and exception mechanisms in IA-32e mode and 64-bit sub-mode.

5.1 INTERRUPT AND EXCEPTION OVERVIEW
Interrupts and exceptions are events that indicate that a condition exists somewhere 
in the system, the processor, or within the currently executing program or task that 
requires the attention of a processor. They typically result in a forced transfer of 
execution from the currently running program or task to a special software routine or 
task called an interrupt handler or an exception handler. The action taken by a 
processor in response to an interrupt or exception is referred to as servicing or 
handling the interrupt or exception.

Interrupts occur at random times during the execution of a program, in response to 
signals from hardware. System hardware uses interrupts to handle events external 
to the processor, such as requests to service peripheral devices. Software can also 
generate interrupts by executing the INT n instruction. 

Exceptions occur when the processor detects an error condition while executing an 
instruction, such as division by zero. The processor detects a variety of error condi-
tions including protection violations, page faults, and internal machine faults. The 
machine-check architecture of the Pentium 4, Intel Xeon, P6 family, and Pentium 
processors also permits a machine-check exception to be generated when internal 
hardware errors and bus errors are detected.

When an interrupt is received or an exception is detected, the currently running 
procedure or task is suspended while the processor executes an interrupt or excep-
tion handler. When execution of the handler is complete, the processor resumes 
execution of the interrupted procedure or task. The resumption of the interrupted 
procedure or task happens without loss of program continuity, unless recovery from 
an exception was not possible or an interrupt caused the currently running program 
to be terminated.

This chapter describes the processor’s interrupt and exception-handling mechanism, 
when operating in protected mode. A description of the exceptions and the conditions 
that cause them to be generated is given at the end of this chapter.
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5.2 EXCEPTION AND INTERRUPT VECTORS
To aid in handling exceptions and interrupts, each architecturally defined exception 
and each interrupt condition requiring special handling by the processor is assigned 
a unique identification number, called a vector. The processor uses the vector 
assigned to an exception or interrupt as an index into the interrupt descriptor table 
(IDT). The table provides the entry point to an exception or interrupt handler (see 
Section 5.10, “Interrupt Descriptor Table (IDT)”).

The allowable range for vector numbers is 0 to 255. Vectors in the range 0 through 
31 are reserved by the Intel 64 and IA-32 architectures for architecture-defined 
exceptions and interrupts. Not all of the vectors in this range have a currently defined 
function. The unassigned vectors in this range are reserved. Do not use the reserved 
vectors. 

Vectors in the range 32 to 255 are designated as user-defined interrupts and are not 
reserved by the Intel 64 and IA-32 architecture. These interrupts are generally 
assigned to external I/O devices to enable those devices to send interrupts to the 
processor through one of the external hardware interrupt mechanisms (see Section 
5.3, “Sources of Interrupts”).

Table 5-1 shows vector assignments for architecturally defined exceptions and for the 
NMI interrupt. This table gives the exception type (see Section 5.5, “Exception Clas-
sifications”) and indicates whether an error code is saved on the stack for the excep-
tion. The source of each predefined exception and the NMI interrupt is also given.

5.3 SOURCES OF INTERRUPTS
The processor receives interrupts from two sources:

• External (hardware generated) interrupts.

• Software-generated interrupts.

5.3.1 External Interrupts
External interrupts are received through pins on the processor or through the local 
APIC. The primary interrupt pins on Pentium 4, Intel Xeon, P6 family, and Pentium 
processors are the LINT[1:0] pins, which are connected to the local APIC (see 
Chapter 9, “Advanced Programmable Interrupt Controller (APIC)”). When the local 
APIC is enabled, the LINT[1:0] pins can be programmed through the APIC’s local 
vector table (LVT) to be associated with any of the processor’s exception or interrupt 
vectors.

When the local APIC is global/hardware disabled, these pins are configured as INTR 
and NMI pins, respectively. Asserting the INTR pin signals the processor that an 
external interrupt has occurred. The processor reads from the system bus the inter-
rupt vector number provided by an external interrupt controller, such as an 8259A 
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(see Section 5.2, “Exception and Interrupt Vectors”). Asserting the NMI pin signals a 
non-maskable interrupt (NMI), which is assigned to interrupt vector 2.

Table 5-1.  Protected-Mode Exceptions and Interrupts  

Vector 
No.

Mne-
monic

Description Type Error 
Code

Source

 0 #DE Divide Error Fault No DIV and IDIV instructions.

 1 #DB RESERVED Fault/ 
Trap

No For Intel use only.

 2 — NMI Interrupt Interrupt No Nonmaskable external 
interrupt.

 3 #BP Breakpoint Trap No INT 3 instruction.

 4 #OF Overflow Trap No INTO instruction.

 5 #BR BOUND Range Exceeded Fault No BOUND instruction.

 6 #UD Invalid Opcode (Undefined 
Opcode)

Fault No UD2 instruction or reserved 
opcode.1

 7 #NM Device Not Available (No 
Math Coprocessor)

Fault No Floating-point or WAIT/FWAIT 
instruction.

 8 #DF Double Fault Abort Yes 
(zero)

Any instruction that can 
generate an exception, an NMI, 
or an INTR.

 9 Coprocessor Segment 
Overrun (reserved)

Fault No Floating-point instruction.2

10 #TS Invalid TSS Fault Yes Task switch or TSS access.

11 #NP Segment Not Present Fault Yes Loading segment registers or 
accessing system segments.

12 #SS Stack-Segment Fault Fault Yes Stack operations and SS 
register loads.

13 #GP General Protection Fault Yes Any memory reference and 
other protection checks.

14 #PF Page Fault Fault Yes Any memory reference.

15 — (Intel reserved. Do not 
use.)

No

16 #MF x87 FPU Floating-Point 
Error (Math Fault)

Fault No x87 FPU floating-point or 
WAIT/FWAIT instruction.

17 #AC Alignment Check Fault Yes 
(Zero)

Any data reference in 
memory.3
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The processor’s local APIC is normally connected to a system-based I/O APIC. Here, 
external interrupts received at the I/O APIC’s pins can be directed to the local APIC 
through the system bus (Pentium 4 and Intel Xeon processors) or the APIC serial bus 
(P6 family and Pentium processors). The I/O APIC determines the vector number of 
the interrupt and sends this number to the local APIC. When a system contains 
multiple processors, processors can also send interrupts to one another by means of 
the system bus (Pentium 4 and Intel Xeon processors) or the APIC serial bus (P6 
family and Pentium processors). 

The LINT[1:0] pins are not available on the Intel486 processor and earlier Pentium 
processors that do not contain an on-chip local APIC. These processors have dedi-
cated NMI and INTR pins. With these processors, external interrupts are typically 
generated by a system-based interrupt controller (8259A), with the interrupts being 
signaled through the INTR pin.

Note that several other pins on the processor can cause a processor interrupt to 
occur. However, these interrupts are not handled by the interrupt and exception 
mechanism described in this chapter. These pins include the RESET#, FLUSH#, 
STPCLK#, SMI#, R/S#, and INIT# pins. Whether they are included on a particular 
processor is implementation dependent. Pin functions are described in the data 
books for the individual processors. The SMI# pin is described in Chapter 24, 
“System Management.”

5.3.2 Maskable Hardware Interrupts
Any external interrupt that is delivered to the processor by means of the INTR pin or 
through the local APIC is called a maskable hardware interrupt. Maskable hardware 
interrupts that can be delivered through the INTR pin include all IA-32 architecture 

18 #MC Machine Check Abort No Error codes (if any) and source 
are model dependent.4

19 #XM SIMD Floating-Point 
Exception

Fault No SSE/SSE2/SSE3 floating-point 
instructions5

20-31 — Intel reserved. Do not use.

32-
255

— User Defined (Non-
reserved) Interrupts

Interrupt External interrupt or INT n 
instruction.

NOTES:
1. The UD2 instruction was introduced in the Pentium Pro processor.
2. Processors after the Intel386 processor do not generate this exception.
3. This exception was introduced in the Intel486 processor.
4. This exception was introduced in the Pentium processor and enhanced in the P6 family proces-

sors.
5. This exception was introduced in the Pentium III processor.

Table 5-1.  Protected-Mode Exceptions and Interrupts  (Contd.)
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defined interrupt vectors from 0 through 255; those that can be delivered through 
the local APIC include interrupt vectors 16 through 255. 

The IF flag in the EFLAGS register permits all maskable hardware interrupts to be 
masked as a group (see Section 5.8.1, “Masking Maskable Hardware Interrupts”). 
Note that when interrupts 0 through 15 are delivered through the local APIC, the 
APIC indicates the receipt of an illegal vector. 

5.3.3 Software-Generated Interrupts
The INT n instruction permits interrupts to be generated from within software by 
supplying an interrupt vector number as an operand. For example, the INT 35 
instruction forces an implicit call to the interrupt handler for interrupt 35. 

Any of the interrupt vectors from 0 to 255 can be used as a parameter in this instruc-
tion. If the processor’s predefined NMI vector is used, however, the response of the 
processor will not be the same as it would be from an NMI interrupt generated in the 
normal manner. If vector number 2 (the NMI vector) is used in this instruction, the 
NMI interrupt handler is called, but the processor’s NMI-handling hardware is not 
activated. 

Interrupts generated in software with the INT n instruction cannot be masked by the 
IF flag in the EFLAGS register.

5.4 SOURCES OF EXCEPTIONS
The processor receives exceptions from three sources:

• Processor-detected program-error exceptions.

• Software-generated exceptions.

• Machine-check exceptions.

5.4.1 Program-Error Exceptions
The processor generates one or more exceptions when it detects program errors 
during the execution in an application program or the operating system or executive. 
Intel 64 and IA-32 architectures define a vector number for each processor-detect-
able exception. Exceptions are classified as faults, traps, and aborts (see Section 
5.5, “Exception Classifications”).
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5.4.2 Software-Generated Exceptions
The INTO, INT 3, and BOUND instructions permit exceptions to be generated in soft-
ware. These instructions allow checks for exception conditions to be performed at 
points in the instruction stream. For example, INT 3 causes a breakpoint exception to 
be generated.

The INT n instruction can be used to emulate exceptions in software; but there is a 
limitation. If INT n provides a vector for one of the architecturally-defined excep-
tions, the processor generates an interrupt to the correct vector (to access the 
exception handler) but does not push an error code on the stack. This is true even if 
the associated hardware-generated exception normally produces an error code. The 
exception handler will still attempt to pop an error code from the stack while handling 
the exception. Because no error code was pushed, the handler will pop off and 
discard the EIP instead (in place of the missing error code). This sends the return to 
the wrong location.

5.4.3 Machine-Check Exceptions
The P6 family and Pentium processors provide both internal and external machine-
check mechanisms for checking the operation of the internal chip hardware and bus 
transactions. These implementation dependent. When a machine-check error is 
detected, the processor signals a machine-check exception (vector 18) and returns 
an error code. 

See Chapter 5, “Interrupt 18—Machine-Check Exception (#MC)” and Chapter 14, 
“Machine-Check Architecture,” for more information about the machine-check 
mechanism.

5.5 EXCEPTION CLASSIFICATIONS
Exceptions are classified as faults, traps, or aborts depending on the way they are 
reported and whether the instruction that caused the exception can be restarted 
without loss of program or task continuity.

• Faults — A fault is an exception that can generally be corrected and that, once 
corrected, allows the program to be restarted with no loss of continuity. When a 
fault is reported, the processor restores the machine state to the state prior to 
the beginning of execution of the faulting instruction. The return address (saved 
contents of the CS and EIP registers) for the fault handler points to the faulting 
instruction, rather than to the instruction following the faulting instruction.

• Traps — A trap is an exception that is reported immediately following the 
execution of the trapping instruction. Traps allow execution of a program or task 
to be continued without loss of program continuity. The return address for the 
trap handler points to the instruction to be executed after the trapping 
instruction.
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• Aborts — An abort is an exception that does not always report the precise 
location of the instruction causing the exception and does not allow a restart of 
the program or task that caused the exception. Aborts are used to report severe 
errors, such as hardware errors and inconsistent or illegal values in system 
tables.

NOTE
One exception subset normally reported as a fault is not restartable. 
Such exceptions result in loss of some processor state. For example, 
executing a POPAD instruction where the stack frame crosses over 
the end of the stack segment causes a fault to be reported. In this 
situation, the exception handler sees that the instruction pointer 
(CS:EIP) has been restored as if the POPAD instruction had not been 
executed. However, internal processor state (the general-purpose 
registers) will have been modified. Such cases are considered 
programming errors. An application causing this class of exceptions 
should be terminated by the operating system.

5.6 PROGRAM OR TASK RESTART
To allow the restarting of program or task following the handling of an exception or 
an interrupt, all exceptions (except aborts) are guaranteed to report exceptions on 
an instruction boundary. All interrupts are guaranteed to be taken on an instruction 
boundary.

For fault-class exceptions, the return instruction pointer (saved when the processor 
generates an exception) points to the faulting instruction. So, when a program or task 
is restarted following the handling of a fault, the faulting instruction is restarted (re-
executed). Restarting the faulting instruction is commonly used to handle exceptions 
that are generated when access to an operand is blocked. The most common example 
of this type of fault is a page-fault exception (#PF) that occurs when a program or 
task references an operand located on a page that is not in memory. When a page-
fault exception occurs, the exception handler can load the page into memory and 
resume execution of the program or task by restarting the faulting instruction. To 
insure that the restart is handled transparently to the currently executing program or 
task, the processor saves the necessary registers and stack pointers to allow a restart 
to the state prior to the execution of the faulting instruction.

For trap-class exceptions, the return instruction pointer points to the instruction 
following the trapping instruction. If a trap is detected during an instruction which 
transfers execution, the return instruction pointer reflects the transfer. For example, 
if a trap is detected while executing a JMP instruction, the return instruction pointer 
points to the destination of the JMP instruction, not to the next address past the JMP 
instruction. All trap exceptions allow program or task restart with no loss of conti-
nuity. For example, the overflow exception is a trap exception. Here, the return 
instruction pointer points to the instruction following the INTO instruction that tested 
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EFLAGS.OF (overflow) flag. The trap handler for this exception resolves the overflow 
condition. Upon return from the trap handler, program or task execution continues at 
the instruction following the INTO instruction.

The abort-class exceptions do not support reliable restarting of the program or task. 
Abort handlers are designed to collect diagnostic information about the state of the 
processor when the abort exception occurred and then shut down the application and 
system as gracefully as possible.

Interrupts rigorously support restarting of interrupted programs and tasks without 
loss of continuity. The return instruction pointer saved for an interrupt points to the 
next instruction to be executed at the instruction boundary where the processor took 
the interrupt. If the instruction just executed has a repeat prefix, the interrupt is 
taken at the end of the current iteration with the registers set to execute the next 
iteration. 

The ability of a P6 family processor to speculatively execute instructions does not 
affect the taking of interrupts by the processor. Interrupts are taken at instruction 
boundaries located during the retirement phase of instruction execution; so they are 
always taken in the “in-order” instruction stream. See Chapter 2, “Intel® 64 and IA-
32 Architectures,” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 1, for more information about the P6 family processors’ microarchi-
tecture and its support for out-of-order instruction execution.

Note that the Pentium processor and earlier IA-32 processors also perform varying 
amounts of prefetching and preliminary decoding. With these processors as well, 
exceptions and interrupts are not signaled until actual “in-order” execution of the 
instructions. For a given code sample, the signaling of exceptions occurs uniformly 
when the code is executed on any family of IA-32 processors (except where new 
exceptions or new opcodes have been defined).

5.7 NONMASKABLE INTERRUPT (NMI)
The nonmaskable interrupt (NMI) can be generated in either of two ways:

• External hardware asserts the NMI pin.

• The processor receives a message on the system bus (Pentium 4 and Intel Xeon 
processors) or the APIC serial bus (P6 family and Pentium processors) with a 
delivery mode NMI.

When the processor receives a NMI from either of these sources, the processor 
handles it immediately by calling the NMI handler pointed to by interrupt vector 
number 2. The processor also invokes certain hardware conditions to insure that no 
other interrupts, including NMI interrupts, are received until the NMI handler has 
completed executing (see Section 5.7.1, “Handling Multiple NMIs”).

Also, when an NMI is received from either of the above sources, it cannot be masked 
by the IF flag in the EFLAGS register.
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It is possible to issue a maskable hardware interrupt (through the INTR pin) to vector 
2 to invoke the NMI interrupt handler; however, this interrupt will not truly be an NMI 
interrupt. A true NMI interrupt that activates the processor’s NMI-handling hardware 
can only be delivered through one of the mechanisms listed above.

5.7.1 Handling Multiple NMIs
While an NMI interrupt handler is executing, the processor disables additional calls to 
the NMI handler until the next IRET instruction is executed. This blocking of subse-
quent NMIs prevents stacking up calls to the NMI handler. It is recommended that the 
NMI interrupt handler be accessed through an interrupt gate to disable maskable 
hardware interrupts (see Section 5.8.1, “Masking Maskable Hardware Interrupts”). If 
the NMI handler is a virtual-8086 task with an IOPL of less than 3, an IRET instruction 
issued from the handler generates a general-protection exception (see Section 
15.2.7, “Sensitive Instructions”). In this case, the NMI is unmasked before the 
general-protection exception handler is invoked.

5.8 ENABLING AND DISABLING INTERRUPTS
The processor inhibits the generation of some interrupts, depending on the state of 
the processor and of the IF and RF flags in the EFLAGS register, as described in the 
following sections.

5.8.1 Masking Maskable Hardware Interrupts
The IF flag can disable the servicing of maskable hardware interrupts received on the 
processor’s INTR pin or through the local APIC (see Section 5.3.2, “Maskable Hard-
ware Interrupts”). When the IF flag is clear, the processor inhibits interrupts deliv-
ered to the INTR pin or through the local APIC from generating an internal interrupt 
request; when the IF flag is set, interrupts delivered to the INTR or through the local 
APIC pin are processed as normal external interrupts. 

The IF flag does not affect non-maskable interrupts (NMIs) delivered to the NMI pin 
or delivery mode NMI messages delivered through the local APIC, nor does it affect 
processor generated exceptions. As with the other flags in the EFLAGS register, the 
processor clears the IF flag in response to a hardware reset.

The fact that the group of maskable hardware interrupts includes the reserved inter-
rupt and exception vectors 0 through 32 can potentially cause confusion. Architectur-
ally, when the IF flag is set, an interrupt for any of the vectors from 0 through 32 can 
be delivered to the processor through the INTR pin and any of the vectors from 16 
through 32 can be delivered through the local APIC. The processor will then generate 
an interrupt and call the interrupt or exception handler pointed to by the vector 
number. So for example, it is possible to invoke the page-fault handler through the 
INTR pin (by means of vector 14); however, this is not a true page-fault exception. It 
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is an interrupt. As with the INT n instruction (see Section 5.4.2, “Software-Generated 
Exceptions”), when an interrupt is generated through the INTR pin to an exception 
vector, the processor does not push an error code on the stack, so the exception 
handler may not operate correctly.

The IF flag can be set or cleared with the STI (set interrupt-enable flag) and CLI 
(clear interrupt-enable flag) instructions, respectively. These instructions may be 
executed only if the CPL is equal to or less than the IOPL. A general-protection excep-
tion (#GP) is generated if they are executed when the CPL is greater than the IOPL. 
(The effect of the IOPL on these instructions is modified slightly when the virtual 
mode extension is enabled by setting the VME flag in control register CR4: see 
Section 15.3, “Interrupt and Exception Handling in Virtual-8086 Mode.” Behavior is 
also impacted by the PVI flag: see Section 15.4, “Protected-Mode Virtual Interrupts.”

The IF flag is also affected by the following operations:

• The PUSHF instruction stores all flags on the stack, where they can be examined 
and modified. The POPF instruction can be used to load the modified flags back 
into the EFLAGS register.

• Task switches and the POPF and IRET instructions load the EFLAGS register; 
therefore, they can be used to modify the setting of the IF flag.

• When an interrupt is handled through an interrupt gate, the IF flag is automati-
cally cleared, which disables maskable hardware interrupts. (If an interrupt is 
handled through a trap gate, the IF flag is not cleared.)

See the descriptions of the CLI, STI, PUSHF, POPF, and IRET instructions in Chapter 
3, “Instruction Set Reference, A-M,” in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2A, for a detailed description of the operations 
these instructions are allowed to perform on the IF flag.

5.8.2 Masking Instruction Breakpoints
The RF (resume) flag in the EFLAGS register controls the response of the processor 
to instruction-breakpoint conditions (see the description of the RF flag in Section 2.3, 
“System Flags and Fields in the EFLAGS Register”). 

When set, it prevents an instruction breakpoint from generating a debug exception 
(#DB); when clear, instruction breakpoints will generate debug exceptions. The 
primary function of the RF flag is to prevent the processor from going into a debug 
exception loop on an instruction-breakpoint. See Section 18.3.1.1, “Instruction-
Breakpoint Exception Condition,” for more information on the use of this flag.
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5.8.3 Masking Exceptions and Interrupts When Switching Stacks
To switch to a different stack segment, software often uses a pair of instructions, for 
example:

MOV SS, AX
MOV ESP, StackTop

If an interrupt or exception occurs after the segment selector has been loaded into 
the SS register but before the ESP register has been loaded, these two parts of the 
logical address into the stack space are inconsistent for the duration of the interrupt 
or exception handler.

To prevent this situation, the processor inhibits interrupts, debug exceptions, and 
single-step trap exceptions after either a MOV to SS instruction or a POP to SS 
instruction, until the instruction boundary following the next instruction is reached. 
All other faults may still be generated. If the LSS instruction is used to modify the 
contents of the SS register (which is the recommended method of modifying this 
register), this problem does not occur.

5.9 PRIORITY AMONG SIMULTANEOUS EXCEPTIONS AND 
INTERRUPTS 

If more than one exception or interrupt is pending at an instruction boundary, the 
processor services them in a predictable order. Table 5-2 shows the priority among 
classes of exception and interrupt sources. 

Table 5-2.  Priority Among Simultaneous Exceptions and Interrupts 

Priority Description

1 (Highest) Hardware Reset and Machine Checks

- RESET

- Machine Check

2 Trap on Task Switch

- T flag in TSS is set

3 External Hardware Interventions

- FLUSH

- STOPCLK

- SMI

- INIT

4 Traps on the Previous Instruction

- Breakpoints

- Debug Trap Exceptions (TF flag set or data/I-O breakpoint)
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While priority among these classes listed in Table 5-2 is consistent throughout the 
architecture, exceptions within each class are implementation-dependent and may 
vary from processor to processor. The processor first services a pending exception or 
interrupt from the class which has the highest priority, transferring execution to the 
first instruction of the handler. Lower priority exceptions are discarded; lower priority 
interrupts are held pending. Discarded exceptions are re-generated when the inter-
rupt handler returns execution to the point in the program or task where the excep-
tions and/or interrupts occurred. 

5.10 INTERRUPT DESCRIPTOR TABLE (IDT)
The interrupt descriptor table (IDT) associates each exception or interrupt vector 
with a gate descriptor for the procedure or task used to service the associated excep-
tion or interrupt. Like the GDT and LDTs, the IDT is an array of 8-byte descriptors (in 

5 Nonmaskable Interrupts (NMI) 1

6 Maskable Hardware Interrupts 1

7 Code Breakpoint Fault

8 Faults from Fetching Next Instruction 

- Code-Segment Limit Violation

- Code Page Fault

9 Faults from Decoding the Next Instruction

- Instruction length > 15 bytes 

- Invalid Opcode 

- Coprocessor Not Available

10 (Lowest) Faults on Executing an Instruction

- Overflow

- Bound error

- Invalid TSS

- Segment Not Present

- Stack fault

- General Protection

- Data Page Fault

- Alignment Check

- x87 FPU Floating-point exception

- SIMD floating-point exception

NOTE:

1. The Intel486™ processor and earlier processors group nonmaskable and maskable interrupts in 
the same priority class.

Table 5-2.  Priority Among Simultaneous Exceptions and Interrupts (Contd.)
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protected mode). Unlike the GDT, the first entry of the IDT may contain a descriptor. 
To form an index into the IDT, the processor scales the exception or interrupt vector 
by eight (the number of bytes in a gate descriptor). Because there are only 256 inter-
rupt or exception vectors, the IDT need not contain more than 256 descriptors. It can 
contain fewer than 256 descriptors, because descriptors are required only for the 
interrupt and exception vectors that may occur. All empty descriptor slots in the IDT 
should have the present flag for the descriptor set to 0.

The base addresses of the IDT should be aligned on an 8-byte boundary to maximize 
performance of cache line fills. The limit value is expressed in bytes and is added to 
the base address to get the address of the last valid byte. A limit value of 0 results in 
exactly 1 valid byte. Because IDT entries are always eight bytes long, the limit should 
always be one less than an integral multiple of eight (that is, 8N – 1).

The IDT may reside anywhere in the linear address space. As shown in Figure 5-1, 
the processor locates the IDT using the IDTR register. This register holds both a 
32-bit base address and 16-bit limit for the IDT.

The LIDT (load IDT register) and SIDT (store IDT register) instructions load and store 
the contents of the IDTR register, respectively. The LIDT instruction loads the IDTR 
register with the base address and limit held in a memory operand. This instruction 
can be executed only when the CPL is 0. It normally is used by the initialization code 
of an operating system when creating an IDT. An operating system also may use it to 
change from one IDT to another. The SIDT instruction copies the base and limit value 
stored in IDTR to memory. This instruction can be executed at any privilege level. 

If a vector references a descriptor beyond the limit of the IDT, a general-protection 
exception (#GP) is generated.

NOTE
Because interrupts are delivered to the processor core only once, an 
incorrectly configured IDT could result in incomplete interrupt 
handling and/or the blocking of interrupt delivery. 

IA-32 architecture rules need to be followed for setting up IDTR 
base/limit/access fields and each field in the gate descriptors. The 
same apply for the Intel 64 architecture. This includes implicit 
referencing of the destination code segment through the GDT or LDT 
and accessing the stack.
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5.11 IDT DESCRIPTORS
The IDT may contain any of three kinds of gate descriptors:

• Task-gate descriptor

• Interrupt-gate descriptor

• Trap-gate descriptor

Figure 5-2 shows the formats for the task-gate, interrupt-gate, and trap-gate 
descriptors. The format of a task gate used in an IDT is the same as that of a task 
gate used in the GDT or an LDT (see Section 6.2.5, “Task-Gate Descriptor”). The task 
gate contains the segment selector for a TSS for an exception and/or interrupt 
handler task. 

Interrupt and trap gates are very similar to call gates (see Section 4.8.3, “Call 
Gates”). They contain a far pointer (segment selector and offset) that the processor 
uses to transfer program execution to a handler procedure in an exception- or inter-
rupt-handler code segment. These gates differ in the way the processor handles the 
IF flag in the EFLAGS register (see Section 5.12.1.2, “Flag Usage By Exception- or 
Interrupt-Handler Procedure”).

Figure 5-1.  Relationship of the IDTR and IDT
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5.12 EXCEPTION AND INTERRUPT HANDLING
The processor handles calls to exception- and interrupt-handlers similar to the way it 
handles calls with a CALL instruction to a procedure or a task. When responding to an 
exception or interrupt, the processor uses the exception or interrupt vector as an 
index to a descriptor in the IDT. If the index points to an interrupt gate or trap gate, 
the processor calls the exception or interrupt handler in a manner similar to a CALL 
to a call gate (see Section 4.8.2, “Gate Descriptors,” through Section 4.8.6, 

Figure 5-2.  IDT Gate Descriptors
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“Returning from a Called Procedure”). If index points to a task gate, the processor 
executes a task switch to the exception- or interrupt-handler task in a manner similar 
to a CALL to a task gate (see Section 6.3, “Task Switching”).

5.12.1 Exception- or Interrupt-Handler Procedures
An interrupt gate or trap gate references an exception- or interrupt-handler proce-
dure that runs in the context of the currently executing task (see Figure 5-3). The 
segment selector for the gate points to a segment descriptor for an executable code 
segment in either the GDT or the current LDT. The offset field of the gate descriptor 
points to the beginning of the exception- or interrupt-handling procedure.

Figure 5-3.  Interrupt Procedure Call
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When the processor performs a call to the exception- or interrupt-handler procedure:

• If the handler procedure is going to be executed at a numerically lower privilege 
level, a stack switch occurs. When the stack switch occurs: 

a. The segment selector and stack pointer for the stack to be used by the 
handler are obtained from the TSS for the currently executing task. On this 
new stack, the processor pushes the stack segment selector and stack 
pointer of the interrupted procedure. 

b. The processor then saves the current state of the EFLAGS, CS, and EIP 
registers on the new stack (see Figures 5-4). 

c. If an exception causes an error code to be saved, it is pushed on the new 
stack after the EIP value.

• If the handler procedure is going to be executed at the same privilege level as the 
interrupted procedure:

a. The processor saves the current state of the EFLAGS, CS, and EIP registers 
on the current stack (see Figures 5-4). 

b. If an exception causes an error code to be saved, it is pushed on the current 
stack after the EIP value.
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To return from an exception- or interrupt-handler procedure, the handler must use 
the IRET (or IRETD) instruction. The IRET instruction is similar to the RET instruction 
except that it restores the saved flags into the EFLAGS register. The IOPL field of the 
EFLAGS register is restored only if the CPL is 0. The IF flag is changed only if the CPL 
is less than or equal to the IOPL. See Chapter 3, “Instruction Set Reference, A-M,” of 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A, for 
a description of the complete operation performed by the IRET instruction.

If a stack switch occurred when calling the handler procedure, the IRET instruction 
switches back to the interrupted procedure’s stack on the return.

5.12.1.1  Protection of Exception- and Interrupt-Handler Procedures
The privilege-level protection for exception- and interrupt-handler procedures is 
similar to that used for ordinary procedure calls when called through a call gate (see 
Section 4.8.4, “Accessing a Code Segment Through a Call Gate”). The processor does 

Figure 5-4.  Stack Usage on Transfers to Interrupt and Exception-Handling Routines
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not permit transfer of execution to an exception- or interrupt-handler procedure in a 
less privileged code segment (numerically greater privilege level) than the CPL. 

An attempt to violate this rule results in a general-protection exception (#GP). The 
protection mechanism for exception- and interrupt-handler procedures is different in 
the following ways:

• Because interrupt and exception vectors have no RPL, the RPL is not checked on 
implicit calls to exception and interrupt handlers.

• The processor checks the DPL of the interrupt or trap gate only if an exception or 
interrupt is generated with an INT n, INT 3, or INTO instruction. Here, the CPL 
must be less than or equal to the DPL of the gate. This restriction prevents 
application programs or procedures running at privilege level 3 from using a 
software interrupt to access critical exception handlers, such as the page-fault 
handler, providing that those handlers are placed in more privileged code 
segments (numerically lower privilege level). For hardware-generated interrupts 
and processor-detected exceptions, the processor ignores the DPL of interrupt 
and trap gates.

Because exceptions and interrupts generally do not occur at predictable times, these 
privilege rules effectively impose restrictions on the privilege levels at which excep-
tion and interrupt- handling procedures can run. Either of the following techniques 
can be used to avoid privilege-level violations.

• The exception or interrupt handler can be placed in a conforming code segment. 
This technique can be used for handlers that only need to access data available 
on the stack (for example, divide error exceptions). If the handler needs data 
from a data segment, the data segment needs to be accessible from privilege 
level 3, which would make it unprotected.

• The handler can be placed in a nonconforming code segment with privilege level 
0. This handler would always run, regardless of the CPL that the interrupted 
program or task is running at.

5.12.1.2  Flag Usage By Exception- or Interrupt-Handler Procedure
When accessing an exception or interrupt handler through either an interrupt gate or 
a trap gate, the processor clears the TF flag in the EFLAGS register after it saves the 
contents of the EFLAGS register on the stack. (On calls to exception and interrupt 
handlers, the processor also clears the VM, RF, and NT flags in the EFLAGS register, 
after they are saved on the stack.) Clearing the TF flag prevents instruction tracing 
from affecting interrupt response. A subsequent IRET instruction restores the TF 
(and VM, RF, and NT) flags to the values in the saved contents of the EFLAGS register 
on the stack.

The only difference between an interrupt gate and a trap gate is the way the 
processor handles the IF flag in the EFLAGS register. When accessing an exception- 
or interrupt-handling procedure through an interrupt gate, the processor clears the 
IF flag to prevent other interrupts from interfering with the current interrupt handler. 
A subsequent IRET instruction restores the IF flag to its value in the saved contents 
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of the EFLAGS register on the stack. Accessing a handler procedure through a trap 
gate does not affect the IF flag.

5.12.2 Interrupt Tasks
When an exception or interrupt handler is accessed through a task gate in the IDT, a 
task switch results. Handling an exception or interrupt with a separate task offers 
several advantages:

• The entire context of the interrupted program or task is saved automatically.

• A new TSS permits the handler to use a new privilege level 0 stack when handling 
the exception or interrupt. If an exception or interrupt occurs when the current 
privilege level 0 stack is corrupted, accessing the handler through a task gate can 
prevent a system crash by providing the handler with a new privilege level 0 
stack.

• The handler can be further isolated from other tasks by giving it a separate 
address space. This is done by giving it a separate LDT.

The disadvantage of handling an interrupt with a separate task is that the amount of 
machine state that must be saved on a task switch makes it slower than using an 
interrupt gate, resulting in increased interrupt latency.

A task gate in the IDT references a TSS descriptor in the GDT (see Figure 5-5). A 
switch to the handler task is handled in the same manner as an ordinary task switch 
(see Section 6.3, “Task Switching”). The link back to the interrupted task is stored in 
the previous task link field of the handler task’s TSS. If an exception caused an error 
code to be generated, this error code is copied to the stack of the new task.

When exception- or interrupt-handler tasks are used in an operating system, there 
are actually two mechanisms that can be used to dispatch tasks: the software sched-
uler (part of the operating system) and the hardware scheduler (part of the 
processor's interrupt mechanism). The software scheduler needs to accommodate 
interrupt tasks that may be dispatched when interrupts are enabled.

NOTE
Because IA-32 architecture tasks are not re-entrant, an interrupt-
handler task must disable interrupts between the time it completes 
handling the interrupt and the time it executes the IRET instruction. 
This action prevents another interrupt from occurring while the 
interrupt task’s TSS is still marked busy, which would cause a 
general-protection (#GP) exception.
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5.13 ERROR CODE
When an exception condition is related to a specific segment, the processor pushes 
an error code onto the stack of the exception handler (whether it is a procedure or 
task). The error code has the format shown in Figure 5-6. The error code resembles 
a segment selector; however, instead of a TI flag and RPL field, the error code 
contains 3 flags:

EXT External event (bit 0) — When set, indicates that an event external 
to the program, such as a hardware interrupt, caused the exception.

IDT Descriptor location (bit 1) — When set, indicates that the index 
portion of the error code refers to a gate descriptor in the IDT; when 

Figure 5-5.  Interrupt Task Switch
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clear, indicates that the index refers to a descriptor in the GDT or the 
current LDT.

TI GDT/LDT (bit 2) — Only used when the IDT flag is clear. When set, 
the TI flag indicates that the index portion of the error code refers to 
a segment or gate descriptor in the LDT; when clear, it indicates that 
the index refers to a descriptor in the current GDT.

The segment selector index field provides an index into the IDT, GDT, or current LDT 
to the segment or gate selector being referenced by the error code. In some cases 
the error code is null (that is, all bits in the lower word are clear). A null error code 
indicates that the error was not caused by a reference to a specific segment or that a 
null segment descriptor was referenced in an operation.

The format of the error code is different for page-fault exceptions (#PF). See the 
“Interrupt 14—Page-Fault Exception (#PF)” section in this chapter.

The error code is pushed on the stack as a doubleword or word (depending on the 
default interrupt, trap, or task gate size). To keep the stack aligned for doubleword 
pushes, the upper half of the error code is reserved. Note that the error code is not 
popped when the IRET instruction is executed to return from an exception handler, so 
the handler must remove the error code before executing a return.

Error codes are not pushed on the stack for exceptions that are generated externally 
(with the INTR or LINT[1:0] pins) or the INT n instruction, even if an error code is 
normally produced for those exceptions.

5.14 EXCEPTION AND INTERRUPT HANDLING IN 64-BIT 
MODE

In 64-bit mode, interrupt and exception handling is similar to what has been 
described for non-64-bit modes. The following are the exceptions:

• All interrupt handlers pointed by the IDT are in 64-bit code (this does not apply to 
the SMI handler).

• The size of interrupt-stack pushes is fixed at 64 bits; and the processor uses 
8-byte, zero extended stores.

Figure 5-6.  Error Code
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• The stack pointer (SS:RSP) is pushed unconditionally on interrupts. In legacy 
modes, this push is conditional and based on a change in current privilege level 
(CPL).

• The new SS is set to NULL if there is a change in CPL.

• IRET behavior changes.

• There is a new interrupt stack-switch mechanism.

• The alignment of interrupt stack frame is different.

5.14.1 64-Bit Mode IDT
Interrupt and trap gates are 16 bytes in length to provide a 64-bit offset for the 
instruction pointer (RIP). The 64-bit RIP referenced by interrupt-gate descriptors 
allows an interrupt service routine to be located anywhere in the linear-address 
space. See Figure 5-7.

In 64-bit mode, the IDT index is formed by scaling the interrupt vector by 16. The 
first eight bytes (bytes 7:0) of a 64-bit mode interrupt gate are similar but not iden-
tical to legacy 32-bit interrupt gates. The type field (bits 11:8 in bytes 7:4) is 
described in Table 3-2. The Interrupt Stack Table (IST) field (bits 4:0 in bytes 7:4) is 
used by the stack switching mechanisms described in Section 5.14.5, “Interrupt 
Stack Table.” Bytes 11:8 hold the upper 32 bits of the target RIP (interrupt segment 
offset) in canonical form. A general-protection exception (#GP) is generated if soft-

Figure 5-7.  64-Bit IDT Gate Descriptors

31 16 15 1314 12 8 7 0

POffset 31..16
D
P
L

0 4

31 16 15 0

Segment Selector Offset 15..0 0

TYPE

Interrupt/Trap Gate

DPL
Offset
P
Selector

Descriptor Privilege Level
Offset to procedure entry point
Segment Present flag
Segment Selector for destination code segment

45

0   0   0

31 0

Offset 63..32 8

31 0

12

11

IST0 0

2

Reserved

IST Interrupt Stack Table



5-24   Vol. 3

INTERRUPT AND EXCEPTION HANDLING

ware attempts to reference an interrupt gate with a target RIP that is not in canonical 
form.

The target code segment referenced by the interrupt gate must be a 64-bit code 
segment (CS.L = 1, CS.D = 0). If the target is not a 64-bit code segment, a general-
protection exception (#GP) is generated with the IDT vector number reported as the 
error code.

Only 64-bit interrupt and trap gates can be referenced in IA-32e mode (64-bit mode 
and compatibility mode). Legacy 32-bit interrupt or trap gate types (0EH or 0FH) are 
redefined in IA-32e mode as 64-bit interrupt and trap gate types. No 32-bit interrupt 
or trap gate type exists in IA-32e mode. If a reference is made to a 16-bit interrupt 
or trap gate (06H or 07H), a general-protection exception (#GP(0)) is generated.

5.14.2 64-Bit Mode Stack Frame
In legacy mode, the size of an IDT entry (16 bits or 32 bits) determines the size of 
interrupt-stack-frame pushes. SS:ESP is pushed only on a CPL change. In 64-bit 
mode, the size of interrupt stack-frame pushes is fixed at eight bytes. This is because 
only 64-bit mode gates can be referenced. 64-bit mode also pushes SS:RSP uncon-
ditionally, rather than only on a CPL change.

Aside from error codes, pushing SS:RSP unconditionally presents operating systems 
with a consistent interrupt-stackframe size across all interrupts. Interrupt service-
routine entry points that handle interrupts generated by the INTn instruction or 
external INTR# signal can push an additional error code place-holder to maintain 
consistency.

In legacy mode, the stack pointer may be at any alignment when an interrupt or 
exception causes a stack frame to be pushed. This causes the stack frame and 
succeeding pushes done by an interrupt handler to be at arbitrary alignments. In 
IA-32e mode, the RSP is aligned to a 16-byte boundary before pushing the stack 
frame. The stack frame itself is aligned on a 16-byte boundary when the interrupt 
handler is called. The processor can arbitrarily realign the new RSP on interrupts 
because the previous (possibly unaligned) RSP is unconditionally saved on the newly 
aligned stack. The previous RSP will be automatically restored by a subsequent IRET.

Aligning the stack permits exception and interrupt frames to be aligned on a 16-byte 
boundary before interrupts are re-enabled. This allows the stack to be formatted for 
optimal storage of 16-byte XMM registers, which enables the interrupt handler to use 
faster 16-byte aligned loads and stores (MOVAPS rather than MOVUPS) to save and 
restore XMM registers. 

Although the RSP alignment is always performed when LMA = 1, it is only of conse-
quence for the kernel-mode case where there is no stack switch or IST used. For a 
stack switch or IST, the OS would have presumably put suitably aligned RSP values in 
the TSS.
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5.14.3 IRET in IA-32e Mode 
In IA-32e mode, IRET executes with an 8-byte operand size. There is nothing that 
forces this requirement. The stack is formatted in such a way that for actions where 
IRET is required, the 8-byte IRET operand size works correctly. 

Because interrupt stack-frame pushes are always eight bytes in IA-32e mode, an 
IRET must pop eight byte items off the stack. This is accomplished by preceding the 
IRET with a 64-bit operand-size prefix. The size of the pop is determined by the 
address size of the instruction. The SS/ESP/RSP size adjustment is determined by 
the stack size.

IRET pops SS:RSP unconditionally off the interrupt stack frame only when it is 
executed in 64-bit mode. In compatibility mode, IRET pops SS:RSP off the stack only 
if there is a CPL change. This allows legacy applications to execute properly in 
compatibility mode when using the IRET instruction. 64-bit interrupt service routines 
that exit with an IRET unconditionally pop SS:RSP off of the interrupt stack frame, 
even if the target code segment is running in 64-bit mode or at CPL = 0. This is 
because the original interrupt always pushes SS:RSP.

In IA-32e mode, IRET is allowed to load a NULL SS under certain conditions. If the 
target mode is 64-bit mode and the target CPL <> 3, IRET allows SS to be loaded 
with a NULL selector. As part of the stack switch mechanism, an interrupt or excep-
tion sets the new SS to NULL, instead of fetching a new SS selector from the TSS and 
loading the corresponding descriptor from the GDT or LDT. The new SS selector is set 
to NULL in order to properly handle returns from subsequent nested far transfers. If 
the called procedure itself is interrupted, the NULL SS is pushed on the stack frame. 
On the subsequent IRET, the NULL SS on the stack acts as a flag to tell the processor 
not to load a new SS descriptor.

5.14.4 Stack Switching in IA-32e Mode 
The IA-32 architecture provides a mechanism to automatically switch stack frames in 
response to an interrupt. The 64-bit extensions of Intel 64 architecture implement a 
modified version of the legacy stack-switching mechanism and an alternative stack-
switching mechanism called the interrupt stack table (IST).

In IA-32 modes, the legacy IA-32 stack-switch mechanism is unchanged. In IA-32e 
mode, the legacy stack-switch mechanism is modified. When stacks are switched as 
part of a 64-bit mode privilege-level change (resulting from an interrupt), a new SS 
descriptor is not loaded. IA-32e mode loads only an inner-level RSP from the TSS. 
The new SS selector is forced to NULL and the SS selector’s RPL field is set to the new 
CPL. The new SS is set to NULL in order to handle nested far transfers (CALLF, INT, 
interrupts and exceptions). The old SS and RSP are saved on the new stack 
(Figure 5-8). On the subsequent IRET, the old SS is popped from the stack and 
loaded into the SS register.
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In summary, a stack switch in IA-32e mode works like the legacy stack switch, 
except that a new SS selector is not loaded from the TSS. Instead, the new SS is 
forced to NULL.

5.14.5 Interrupt Stack Table 
In IA-32e mode, a new interrupt stack table (IST) mechanism is available as an alter-
native to the modified legacy stack-switching mechanism described above. This 
mechanism unconditionally switches stacks when it is enabled. It can be enabled on 
an individual interrupt-vector basis using a field in the IDT entry. This means that 
some interrupt vectors can use the modified legacy mechanism and others can use 
the IST mechanism. 

The IST mechanism is only available in IA-32e mode. It is part of the 64-bit mode 
TSS. The motivation for the IST mechanism is to provide a method for specific inter-
rupts (such as NMI, double-fault, and machine-check) to always execute on a known 
good stack. In legacy mode, interrupts can use the task-switch mechanism to set up 
a known-good stack by accessing the interrupt service routine through a task gate 
located in the IDT. However, the legacy task-switch mechanism is not supported in 
IA-32e mode. 

The IST mechanism provides up to seven IST pointers in the TSS. The pointers are 
referenced by an interrupt-gate descriptor in the interrupt-descriptor table (IDT); 
see Figure 5-7. The gate descriptor contains a 3-bit IST index field that provides an 
offset into the IST section of the TSS. Using the IST mechanism, the processor loads 
the value pointed by an IST pointer into the RSP.

When an interrupt occurs, the new SS selector is forced to NULL and the SS selector’s 
RPL field is set to the new CPL. The old SS, RSP, RFLAGS, CS, and RIP are pushed 
onto the new stack. Interrupt processing then proceeds as normal. If the IST index is 
zero, the modified legacy stack-switching mechanism described above is used.

Figure 5-8.  IA-32e Mode Stack Usage After Privilege Level Change
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5.15 EXCEPTION AND INTERRUPT REFERENCE
The following sections describe conditions which generate exceptions and interrupts. 
They are arranged in the order of vector numbers. The information contained in 
these sections are as follows:

• Exception Class — Indicates whether the exception class is a fault, trap, or 
abort type. Some exceptions can be either a fault or trap type, depending on 
when the error condition is detected. (This section is not applicable to interrupts.)

• Description — Gives a general description of the purpose of the exception or 
interrupt type. It also describes how the processor handles the exception or 
interrupt.

• Exception Error Code — Indicates whether an error code is saved for the 
exception. If one is saved, the contents of the error code are described. (This 
section is not applicable to interrupts.)

• Saved Instruction Pointer — Describes which instruction the saved (or return) 
instruction pointer points to. It also indicates whether the pointer can be used to 
restart a faulting instruction.

• Program State Change — Describes the effects of the exception or interrupt on 
the state of the currently running program or task and the possibilities of 
restarting the program or task without loss of continuity.
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Interrupt 0—Divide Error Exception (#DE)

Exception Class Fault.

Description

Indicates the divisor operand for a DIV or IDIV instruction is 0 or that the result 
cannot be represented in the number of bits specified for the destination operand.

Exception Error Code

None.

Saved Instruction Pointer

Saved contents of CS and EIP registers point to the instruction that generated the 
exception.

Program State Change

A program-state change does not accompany the divide error, because the exception 
occurs before the faulting instruction is executed.
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Interrupt 1—Debug Exception (#DB)

Exception Class Trap or Fault. The exception handler can distinguish 
between traps or faults by examining the contents of DR6 
and the other debug registers.

Description

Indicates that one or more of several debug-exception conditions has been detected. 
Whether the exception is a fault or a trap depends on the condition (see Table 5-3). 
See Chapter 18, “Debugging and Performance Monitoring,” for detailed information 
about the debug exceptions.

Exception Error Code

None. An exception handler can examine the debug registers to determine which 
condition caused the exception.

Saved Instruction Pointer

Fault — Saved contents of CS and EIP registers point to the instruction that gener-
ated the exception.

Trap — Saved contents of CS and EIP registers point to the instruction following the 
instruction that generated the exception.

Program State Change

Fault — A program-state change does not accompany the debug exception, because 
the exception occurs before the faulting instruction is executed. The program can 
resume normal execution upon returning from the debug exception handler.

Trap — A program-state change does accompany the debug exception, because the 
instruction or task switch being executed is allowed to complete before the exception 
is generated. However, the new state of the program is not corrupted and execution 
of the program can continue reliably.

Table 5-3.  Debug Exception Conditions and Corresponding Exception Classes

Exception Condition Exception Class

Instruction fetch breakpoint Fault

Data read or write breakpoint Trap

I/O read or write breakpoint Trap

General detect condition (in conjunction with in-circuit emulation) Fault

Single-step Trap

Task-switch Trap
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Interrupt 2—NMI Interrupt

Exception Class Not applicable.

Description

The nonmaskable interrupt (NMI) is generated externally by asserting the 
processor’s NMI pin or through an NMI request set by the I/O APIC to the local APIC. 
This interrupt causes the NMI interrupt handler to be called.

Exception Error Code

Not applicable.

Saved Instruction Pointer

The processor always takes an NMI interrupt on an instruction boundary. The saved 
contents of CS and EIP registers point to the next instruction to be executed at the 
point the interrupt is taken. See Section 5.5, “Exception Classifications,” for more 
information about when the processor takes NMI interrupts.

Program State Change

The instruction executing when an NMI interrupt is received is completed before the 
NMI is generated. A program or task can thus be restarted upon returning from an 
interrupt handler without loss of continuity, provided the interrupt handler saves the 
state of the processor before handling the interrupt and restores the processor’s 
state prior to a return.
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Interrupt 3—Breakpoint Exception (#BP)

Exception Class Trap.

Description

Indicates that a breakpoint instruction (INT 3) was executed, causing a breakpoint 
trap to be generated. Typically, a debugger sets a breakpoint by replacing the first 
opcode byte of an instruction with the opcode for the INT 3 instruction. (The INT 3 
instruction is one byte long, which makes it easy to replace an opcode in a code 
segment in RAM with the breakpoint opcode.) The operating system or a debugging 
tool can use a data segment mapped to the same physical address space as the code 
segment to place an INT 3 instruction in places where it is desired to call the 
debugger.

With the P6 family, Pentium, Intel486, and Intel386 processors, it is more convenient 
to set breakpoints with the debug registers. (See Section 18.3.2, “Breakpoint Excep-
tion (#BP)—Interrupt Vector 3,” for information about the breakpoint exception.) If 
more breakpoints are needed beyond what the debug registers allow, the INT 3 
instruction can be used. 

The breakpoint (#BP) exception can also be generated by executing the INT n 
instruction with an operand of 3. The action of this instruction (INT 3) is slightly 
different than that of the INT 3 instruction (see “INTn/INTO/INT3—Call to Interrupt 
Procedure” in Chapter 3 of the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 2A).

Exception Error Code

None.

Saved Instruction Pointer

Saved contents of CS and EIP registers point to the instruction following the INT 3 
instruction.

Program State Change

Even though the EIP points to the instruction following the breakpoint instruction, the 
state of the program is essentially unchanged because the INT 3 instruction does not 
affect any register or memory locations. The debugger can thus resume the 
suspended program by replacing the INT 3 instruction that caused the breakpoint 
with the original opcode and decrementing the saved contents of the EIP register. 
Upon returning from the debugger, program execution resumes with the replaced 
instruction.
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Interrupt 4—Overflow Exception (#OF)

Exception Class Trap.

Description

Indicates that an overflow trap occurred when an INTO instruction was executed. The 
INTO instruction checks the state of the OF flag in the EFLAGS register. If the OF flag 
is set, an overflow trap is generated.

Some arithmetic instructions (such as the ADD and SUB) perform both signed and 
unsigned arithmetic. These instructions set the OF and CF flags in the EFLAGS 
register to indicate signed overflow and unsigned overflow, respectively. When 
performing arithmetic on signed operands, the OF flag can be tested directly or the 
INTO instruction can be used. The benefit of using the INTO instruction is that if the 
overflow exception is detected, an exception handler can be called automatically to 
handle the overflow condition.

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction following the INTO 
instruction.

Program State Change

Even though the EIP points to the instruction following the INTO instruction, the state 
of the program is essentially unchanged because the INTO instruction does not affect 
any register or memory locations. The program can thus resume normal execution 
upon returning from the overflow exception handler.
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Interrupt 5—BOUND Range Exceeded Exception (#BR)

Exception Class Fault.

Description

Indicates that a BOUND-range-exceeded fault occurred when a BOUND instruction 
was executed. The BOUND instruction checks that a signed array index is within the 
upper and lower bounds of an array located in memory. If the array index is not 
within the bounds of the array, a BOUND-range-exceeded fault is generated.

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the BOUND instruction that 
generated the exception.

Program State Change

A program-state change does not accompany the bounds-check fault, because the 
operands for the BOUND instruction are not modified. Returning from the BOUND-
range-exceeded exception handler causes the BOUND instruction to be restarted.
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Interrupt 6—Invalid Opcode Exception (#UD)

Exception Class Fault.

Description

Indicates that the processor did one of the following things:

• Attempted to execute an invalid or reserved opcode.

• Attempted to execute an instruction with an operand type that is invalid for its 
accompanying opcode; for example, the source operand for a LES instruction is 
not a memory location.

• Attempted to execute an MMX or SSE/SSE2/SSE3 instruction on an Intel 64 or 
IA-32 processor that does not support the MMX technology or 
SSE/SSE2/SSE3/SSSE3 extensions, respectively. CPUID feature flags MMX (bit 
23), SSE (bit 25), SSE2 (bit 26), SSE3 (ECX, bit 0), SSSE3 (ECX, bit 9) indicate 
support for these extensions.

• Attempted to execute an MMX instruction or SSE/SSE2/SSE3/SSSE3 SIMD 
instruction (with the exception of the MOVNTI, PAUSE, PREFETCHh, SFENCE, 
LFENCE, MFENCE, CLFLUSH, MONITOR, and MWAIT instructions) when the EM 
flag in control register CR0 is set (1).

• Attempted to execute an SSE/SE2/SSE3/SSSE3 instruction when the OSFXSR bit 
in control register CR4 is clear (0). Note this does not include the following 
SSE/SSE2/SSE3 instructions: MASKMOVQ, MOVNTQ, MOVNTI, PREFETCHh, 
SFENCE, LFENCE, MFENCE, and CLFLUSH; or the 64-bit versions of the PAVGB, 
PAVGW, PEXTRW, PINSRW, PMAXSW, PMAXUB, PMINSW, PMINUB, PMOVMSKB, 
PMULHUW, PSADBW, PSHUFW, PADDQ, PSUBQ, PALIGNR, PABSB, PABSD, 
PABSW, PHADDD, PHADDSW, PHADDW, PHSUBD, PHSUBSW, PHSUBW, 
PMADDUBSM, PMULHRSW, PSHUFB, PSIGNB, PSIGND, and PSIGNW.

• Attempted to execute an SSE/SSE2/SSE3/SSSE3 instruction on an Intel 64 or 
IA-32 processor that caused a SIMD floating-point exception when the 
OSXMMEXCPT bit in control register CR4 is clear (0).

• Executed a UD2 instruction. Note that even though it is the execution of the UD2 
instruction that causes the invalid opcode exception, the saved instruction 
pointer will still points at the UD2 instruction.

• Detected a LOCK prefix that precedes an instruction that may not be locked or 
one that may be locked but the destination operand is not a memory location.

• Attempted to execute an LLDT, SLDT, LTR, STR, LSL, LAR, VERR, VERW, or ARPL 
instruction while in real-address or virtual-8086 mode.

• Attempted to execute the RSM instruction when not in SMM mode.

In Intel 64 and IA-32 processors that implement out-of-order execution microarchi-
tectures, this exception is not generated until an attempt is made to retire the result 
of executing an invalid instruction; that is, decoding and speculatively attempting to 
execute an invalid opcode does not generate this exception. Likewise, in the Pentium 



Vol. 3   5-35

INTERRUPT AND EXCEPTION HANDLING

processor and earlier IA-32 processors, this exception is not generated as the result 
of prefetching and preliminary decoding of an invalid instruction. (See Section 5.5, 
“Exception Classifications,” for general rules for taking of interrupts and exceptions.)

The opcodes D6 and F1 are undefined opcodes reserved by the Intel 64 and IA-32 
architectures. These opcodes, even though undefined, do not generate an invalid 
opcode exception.

The UD2 instruction is guaranteed to generate an invalid opcode exception.

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the 
exception.

Program State Change

A program-state change does not accompany an invalid-opcode fault, because the 
invalid instruction is not executed.



5-36   Vol. 3

INTERRUPT AND EXCEPTION HANDLING

Interrupt 7—Device Not Available Exception (#NM)

Exception Class Fault.

Description

Indicates one of the following things:

The device-not-available exception is generated by either of three conditions:

• The processor executed an x87 FPU floating-point instruction while the EM flag in 
control register CR0 was set (1). See the paragraph below for the special case of 
the WAIT/FWAIT instruction.

• The processor executed a WAIT/FWAIT instruction while the MP and TS flags of 
register CR0 were set, regardless of the setting of the EM flag.

• The processor executed an x87 FPU, MMX, or SSE/SSE2/SSE3 instruction (with 
the exception of MOVNTI, PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE, and 
CLFLUSH) while the TS flag in control register CR0 was set and the EM flag is 
clear.

The EM flag is set when the processor does not have an internal x87 FPU floating-
point unit. A device-not-available exception is then generated each time an x87 FPU 
floating-point instruction is encountered, allowing an exception handler to call 
floating-point instruction emulation routines.

The TS flag indicates that a context switch (task switch) has occurred since the last 
time an x87 floating-point, MMX, or SSE/SSE2/SSE3 instruction was executed; but 
that the context of the x87 FPU, XMM, and MXCSR registers were not saved. When 
the TS flag is set and the EM flag is clear, the processor generates a device-not-avail-
able exception each time an x87 floating-point, MMX, or SSE/SSE2/SSE3 instruction 
is encountered (with the exception of the instructions listed above). The exception 
handler can then save the context of the x87 FPU, XMM, and MXCSR registers before 
it executes the instruction. See Section 2.5, “Control Registers,” for more information 
about the TS flag.

The MP flag in control register CR0 is used along with the TS flag to determine if WAIT 
or FWAIT instructions should generate a device-not-available exception. It extends 
the function of the TS flag to the WAIT and FWAIT instructions, giving the exception 
handler an opportunity to save the context of the x87 FPU before the WAIT or FWAIT 
instruction is executed. The MP flag is provided primarily for use with the Intel 286 
and Intel386 DX processors. For programs running on the Pentium 4, Intel Xeon, P6 
family, Pentium, or Intel486 DX processors, or the Intel 487 SX coprocessors, the MP 
flag should always be set; for programs running on the Intel486 SX processor, the MP 
flag should be clear. 

Exception Error Code

None.
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Saved Instruction Pointer

The saved contents of CS and EIP registers point to the floating-point instruction or 
the WAIT/FWAIT instruction that generated the exception.

Program State Change

A program-state change does not accompany a device-not-available fault, because 
the instruction that generated the exception is not executed.

If the EM flag is set, the exception handler can then read the floating-point instruc-
tion pointed to by the EIP and call the appropriate emulation routine.

If the MP and TS flags are set or the TS flag alone is set, the exception handler can 
save the context of the x87 FPU, clear the TS flag, and continue execution at the 
interrupted floating-point or WAIT/FWAIT instruction.
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Interrupt 8—Double Fault Exception (#DF)

Exception Class Abort.

Description

Indicates that the processor detected a second exception while calling an exception 
handler for a prior exception. Normally, when the processor detects another excep-
tion while trying to call an exception handler, the two exceptions can be handled seri-
ally. If, however, the processor cannot handle them serially, it signals the double-fault 
exception. To determine when two faults need to be signalled as a double fault, the 
processor divides the exceptions into three classes: benign exceptions, contributory 
exceptions, and page faults (see Table 5-4).

 
Table 5-5 shows the various combinations of exception classes that cause a double 
fault to be generated. A double-fault exception falls in the abort class of exceptions. 
The program or task cannot be restarted or resumed. The double-fault handler can 
be used to collect diagnostic information about the state of the machine and/or, when 
possible, to shut the application and/or system down gracefully or restart the 
system.

Table 5-4.  Interrupt and Exception Classes  

Class Vector Number Description

Benign Exceptions and 
Interrupts

 1 
 2 
 3 
 4 
 5 
 6 
 7 
9 
16 
17 
18

19 
All 
All

Debug 
NMI Interrupt 
Breakpoint 
Overflow 
BOUND Range Exceeded 
Invalid Opcode 
Device Not Available 
Coprocessor Segment Overrun 
Floating-Point Error 
Alignment Check 
Machine Check

SIMD floating-point 
INT n 
INTR

Contributory Exceptions   0 
10 
11 
12 
13

Divide Error 
Invalid TSS 
Segment Not Present 
Stack Fault 
General Protection

Page Faults 14 Page Fault
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A segment or page fault may be encountered while prefetching instructions; 
however, this behavior is outside the domain of Table 5-5. Any further faults gener-
ated while the processor is attempting to transfer control to the appropriate fault 
handler could still lead to a double-fault sequence.

 
If another exception occurs while attempting to call the double-fault handler, the 
processor enters shutdown mode. This mode is similar to the state following execu-
tion of an HLT instruction. In this mode, the processor stops executing instructions 
until an NMI interrupt, SMI interrupt, hardware reset, or INIT# is received. The 
processor generates a special bus cycle to indicate that it has entered shutdown 
mode. Software designers may need to be aware of the response of hardware when 
it goes into shutdown mode. For example, hardware may turn on an indicator light on 
the front panel, generate an NMI interrupt to record diagnostic information, invoke 
reset initialization, generate an INIT initialization, or generate an SMI. If any events 
are pending during shutdown, they will be handled after an wake event from shut-
down is processed (for example, A20M# interrupts).

If a shutdown occurs while the processor is executing an NMI interrupt handler, then 
only a hardware reset can restart the processor. Likewise, if the shutdown occurs 
while executing in SMM, a hardware reset must be used to restart the processor.

Exception Error Code

Zero. The processor always pushes an error code of 0 onto the stack of the double-
fault handler. 

Saved Instruction Pointer

The saved contents of CS and EIP registers are undefined.

Program State Change

A program-state following a double-fault exception is undefined. The program or task 
cannot be resumed or restarted. The only available action of the double-fault excep-
tion handler is to collect all possible context information for use in diagnostics and 
then close the application and/or shut down or reset the processor.

Table 5-5.  Conditions for Generating a Double Fault  

Second Exception

First Exception Benign Contributory Page Fault

Benign Handle Exceptions 
Serially

Handle Exceptions 
Serially

Handle Exceptions 
Serially

Contributory Handle Exceptions 
Serially

Generate a Double 
Fault

Handle Exceptions 
Serially

Page Fault Handle Exceptions 
Serially

Generate a Double 
Fault

Generate a Double Fault
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If the double fault occurs when any portion of the exception handling machine state 
is corrupted, the handler cannot be invoked and the processor must be reset.
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Interrupt 9—Coprocessor Segment Overrun

Exception Class Abort. (Intel reserved; do not use. Recent IA-32 processors 
do not generate this exception.)

Description

Indicates that an Intel386 CPU-based systems with an Intel 387 math coprocessor 
detected a page or segment violation while transferring the middle portion of an 
Intel 387 math coprocessor operand. The P6 family, Pentium, and Intel486 proces-
sors do not generate this exception; instead, this condition is detected with a general 
protection exception (#GP), interrupt 13.

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the 
exception.

Program State Change

A program-state following a coprocessor segment-overrun exception is unde-
fined. The program or task cannot be resumed or restarted. The only available action 
of the exception handler is to save the instruction pointer and reinitialize the x87 FPU 
using the FNINIT instruction.
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Interrupt 10—Invalid TSS Exception (#TS)

Exception Class Fault.

Description

Indicates that there was an error related to a TSS. Such an error might be detected 
during a task switch or during the execution of instructions that use information from 
a TSS. Table 5-6 shows the conditions that cause an invalid TSS exception to be 
generated. 

Table 5-6.  Invalid TSS Conditions  
Error Code Index Invalid Condition

TSS segment selector index The TSS segment limit is less than 67H for 32-bit TSS or less than 
2CH for 16-bit TSS.

TSS segment selector index During an IRET task switch, the TI flag in the TSS segment selector 
indicates the LDT.

TSS segment selector index During an IRET task switch, the TSS segment selector exceeds 
descriptor table limit.

TSS segment selector index During an IRET task switch, the busy flag in the TSS descriptor 
indicates an inactive task.

TSS segment selector index During an IRET task switch, an attempt to load the backlink limit 
faults.

TSS segment selector index During an IRET task switch, the backlink is a NULL selector.

TSS segment selector index During an IRET task switch, the backlink points to a descriptor 
which is not a busy TSS.

TSS segment selector index The new TSS descriptor is beyond the GDT limit.

TSS segment selector index The new TSS descriptor is not writable.

TSS segment selector index Stores to the old TSS encounter a fault condition.

TSS segment selector index The old TSS descriptor is not writable for a jump or IRET task 
switch.

TSS segment selector index The new TSS backlink is not writable for a call or exception task 
switch.

TSS segment selector index The new TSS selector is null on an attempt to lock the new TSS.

TSS segment selector index The new TSS selector has the TI bit set on an attempt to lock the 
new TSS.

TSS segment selector index The new TSS descriptor is not an available TSS descriptor on an 
attempt to lock the new TSS.

LDT segment selector index LDT or LDT not present.
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Stack segment selector 
index

The stack segment selector exceeds descriptor table limit.

Stack segment selector 
index

The stack segment selector is NULL.

Stack segment selector 
index

The stack segment descriptor is a non-data segment.

Stack segment selector 
index

The stack segment is not writable.

Stack segment selector 
index

The stack segment DPL != CPL.

Stack segment selector 
index

The stack segment selector RPL != CPL.

Code segment selector 
index

The code segment selector exceeds descriptor table limit.

Code segment selector 
index

The code segment selector is NULL.

Code segment selector 
index

The code segment descriptor is not a code segment type.

Code segment selector 
index

The nonconforming code segment DPL != CPL.

Code segment selector 
index

The conforming code segment DPL is greater than CPL.

Data segment selector index The data segment selector exceeds the descriptor table limit.

Data segment selector index The data segment descriptor is not a readable code or data type.

Data segment selector index The data segment descriptor is a nonconforming code type and RPL 
> DPL.

Data segment selector index The data segment descriptor is a nonconforming code type and CPL 
> DPL.

TSS segment selector index The TSS segment selector is NULL for LTR.

TSS segment selector index The TSS segment selector has the TI bit set for LTR.

TSS segment selector index The TSS segment descriptor/upper descriptor is beyond the GDT 
segment limit.

TSS segment selector index The TSS segment descriptor is not an available TSS type.

TSS segment selector index The TSS segment descriptor is an available 286 TSS type in IA-32e 
mode.

Table 5-6.  Invalid TSS Conditions  (Contd.)
Error Code Index Invalid Condition
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This exception can generated either in the context of the original task or in the 
context of the new task (see Section 6.3, “Task Switching”). Until the processor has 
completely verified the presence of the new TSS, the exception is generated in the 
context of the original task. Once the existence of the new TSS is verified, the task 
switch is considered complete. Any invalid-TSS conditions detected after this point 
are handled in the context of the new task. (A task switch is considered complete 
when the task register is loaded with the segment selector for the new TSS and, if the 
switch is due to a procedure call or interrupt, the previous task link field of the new 
TSS references the old TSS.)

The invalid-TSS handler must be a task called using a task gate. Handling this excep-
tion inside the faulting TSS context is not recommended because the processor state 
may not be consistent. 

Exception Error Code

An error code containing the segment selector index for the segment descriptor that 
caused the violation is pushed onto the stack of the exception handler. If the EXT flag 
is set, it indicates that the exception was caused by an event external to the currently 
running program (for example, if an external interrupt handler using a task gate 
attempted a task switch to an invalid TSS).

Saved Instruction Pointer

If the exception condition was detected before the task switch was carried out, the 
saved contents of CS and EIP registers point to the instruction that invoked the task 
switch. If the exception condition was detected after the task switch was carried out, 
the saved contents of CS and EIP registers point to the first instruction of the new 
task. 

Program State Change

The ability of the invalid-TSS handler to recover from the fault depends on the error 
condition than causes the fault. See Section 6.3, “Task Switching,” for more informa-
tion on the task switch process and the possible recovery actions that can be taken.

TSS segment selector index The TSS segment upper descriptor is not the correct type.

TSS segment selector index The TSS segment descriptor contains a non-canonical base.

TSS segment selector index There is a limit violation in attempting to load SS selector or ESP 
from a TSS on a call or exception which changes privilege levels in 
legacy mode.

TSS segment selector index There is a limit violation or canonical fault in attempting to load RSP 
or IST from a TSS on a call or exception which changes privilege 
levels in IA-32e mode.

Table 5-6.  Invalid TSS Conditions  (Contd.)
Error Code Index Invalid Condition
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If an invalid TSS exception occurs during a task switch, it can occur before or after 
the commit-to-new-task point. If it occurs before the commit point, no program state 
change occurs. If it occurs after the commit point (when the segment descriptor 
information for the new segment selectors have been loaded in the segment regis-
ters), the processor will load all the state information from the new TSS before it 
generates the exception. During a task switch, the processor first loads all the 
segment registers with segment selectors from the TSS, then checks their contents 
for validity. If an invalid TSS exception is discovered, the remaining segment regis-
ters are loaded but not checked for validity and therefore may not be usable for refer-
encing memory. The invalid TSS handler should not rely on being able to use the 
segment selectors found in the CS, SS, DS, ES, FS, and GS registers without causing 
another exception. The exception handler should load all segment registers before 
trying to resume the new task; otherwise, general-protection exceptions (#GP) may 
result later under conditions that make diagnosis more difficult. The Intel recom-
mended way of dealing situation is to use a task for the invalid TSS exception 
handler. The task switch back to the interrupted task from the invalid-TSS exception-
handler task will then cause the processor to check the registers as it loads them 
from the TSS.
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Interrupt 11—Segment Not Present (#NP)

Exception Class Fault.

Description

Indicates that the present flag of a segment or gate descriptor is clear. The processor 
can generate this exception during any of the following operations:

• While attempting to load CS, DS, ES, FS, or GS registers. [Detection of a not-
present segment while loading the SS register causes a stack fault exception 
(#SS) to be generated.] This situation can occur while performing a task switch.

• While attempting to load the LDTR using an LLDT instruction. Detection of a not-
present LDT while loading the LDTR during a task switch operation causes an 
invalid-TSS exception (#TS) to be generated.

• When executing the LTR instruction and the TSS is marked not present.

• While attempting to use a gate descriptor or TSS that is marked segment-not-
present, but is otherwise valid.

An operating system typically uses the segment-not-present exception to implement 
virtual memory at the segment level. If the exception handler loads the segment and 
returns, the interrupted program or task resumes execution.

A not-present indication in a gate descriptor, however, does not indicate that a 
segment is not present (because gates do not correspond to segments). The oper-
ating system may use the present flag for gate descriptors to trigger exceptions of 
special significance to the operating system.

A contributory exception or page fault that subsequently referenced a not-present 
segment would cause a double fault (#DF) to be generated instead of #NP.

Exception Error Code

An error code containing the segment selector index for the segment descriptor that 
caused the violation is pushed onto the stack of the exception handler. If the EXT flag 
is set, it indicates that the exception resulted from either:

• an external event (NMI or INTR) that caused an interrupt, which subsequently 
referenced a not-present segment

• a benign exception that subsequently referenced a not-present segment 

The IDT flag is set if the error code refers to an IDT entry. This occurs when the IDT 
entry for an interrupt being serviced references a not-present gate. Such an event 
could be generated by an INT instruction or a hardware interrupt.

Saved Instruction Pointer

The saved contents of CS and EIP registers normally point to the instruction that 
generated the exception. If the exception occurred while loading segment descrip-
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tors for the segment selectors in a new TSS, the CS and EIP registers point to the first 
instruction in the new task. If the exception occurred while accessing a gate 
descriptor, the CS and EIP registers point to the instruction that invoked the access 
(for example a CALL instruction that references a call gate).

Program State Change

If the segment-not-present exception occurs as the result of loading a register (CS, 
DS, SS, ES, FS, GS, or LDTR), a program-state change does accompany the excep-
tion because the register is not loaded. Recovery from this exception is possible by 
simply loading the missing segment into memory and setting the present flag in the 
segment descriptor.

If the segment-not-present exception occurs while accessing a gate descriptor, a 
program-state change does not accompany the exception. Recovery from this excep-
tion is possible merely by setting the present flag in the gate descriptor.

If a segment-not-present exception occurs during a task switch, it can occur before 
or after the commit-to-new-task point (see Section 6.3, “Task Switching”). If it 
occurs before the commit point, no program state change occurs. If it occurs after 
the commit point, the processor will load all the state information from the new TSS 
(without performing any additional limit, present, or type checks) before it generates 
the exception. The segment-not-present exception handler should not rely on being 
able to use the segment selectors found in the CS, SS, DS, ES, FS, and GS registers 
without causing another exception. (See the Program State Change description for 
“Interrupt 10—Invalid TSS Exception (#TS)” in this chapter for additional information 
on how to handle this situation.) 
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Interrupt 12—Stack Fault Exception (#SS)

Exception Class Fault.

Description

Indicates that one of the following stack related conditions was detected:

• A limit violation is detected during an operation that refers to the SS register. 
Operations that can cause a limit violation include stack-oriented instructions 
such as POP, PUSH, CALL, RET, IRET, ENTER, and LEAVE, as well as other memory 
references which implicitly or explicitly use the SS register (for example, MOV 
AX, [BP+6] or MOV AX, SS:[EAX+6]). The ENTER instruction generates this 
exception when there is not enough stack space for allocating local variables.

• A not-present stack segment is detected when attempting to load the SS register. 
This violation can occur during the execution of a task switch, a CALL instruction 
to a different privilege level, a return to a different privilege level, an LSS 
instruction, or a MOV or POP instruction to the SS register.

• A canonical violation is detected in 64-bit mode during an operation that 
reference memory using the stack pointer register containing a non-canonical 
memory address.

Recovery from this fault is possible by either extending the limit of the stack segment 
(in the case of a limit violation) or loading the missing stack segment into memory (in 
the case of a not-present violation. 

In the case of a canonical violation that was caused intentionally by software, 
recovery is possible by loading the correct canonical value into RSP. Otherwise, a 
canonical violation of the address in RSP likely reflects some register corruption in 
the software.

Exception Error Code

If the exception is caused by a not-present stack segment or by overflow of the new 
stack during an inter-privilege-level call, the error code contains a segment selector 
for the segment that caused the exception. Here, the exception handler can test the 
present flag in the segment descriptor pointed to by the segment selector to deter-
mine the cause of the exception. For a normal limit violation (on a stack segment 
already in use) the error code is set to 0.

Saved Instruction Pointer

The saved contents of CS and EIP registers generally point to the instruction that 
generated the exception. However, when the exception results from attempting to 
load a not-present stack segment during a task switch, the CS and EIP registers point 
to the first instruction of the new task.
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Program State Change

A program-state change does not generally accompany a stack-fault exception, 
because the instruction that generated the fault is not executed. Here, the instruction 
can be restarted after the exception handler has corrected the stack fault condition.

If a stack fault occurs during a task switch, it occurs after the commit-to-new-task 
point (see Section 6.3, “Task Switching”). Here, the processor loads all the state 
information from the new TSS (without performing any additional limit, present, or 
type checks) before it generates the exception. The stack fault handler should thus 
not rely on being able to use the segment selectors found in the CS, SS, DS, ES, FS, 
and GS registers without causing another exception. The exception handler should 
check all segment registers before trying to resume the new task; otherwise, general 
protection faults may result later under conditions that are more difficult to diagnose. 
(See the Program State Change description for “Interrupt 10—Invalid TSS Exception 
(#TS)” in this chapter for additional information on how to handle this situation.) 
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Interrupt 13—General Protection Exception (#GP)

Exception Class Fault.

Description

Indicates that the processor detected one of a class of protection violations called 
“general-protection violations.” The conditions that cause this exception to be gener-
ated comprise all the protection violations that do not cause other exceptions to be 
generated (such as, invalid-TSS, segment-not-present, stack-fault, or page-fault 
exceptions). The following conditions cause general-protection exceptions to be 
generated:

• Exceeding the segment limit when accessing the CS, DS, ES, FS, or GS 
segments.

• Exceeding the segment limit when referencing a descriptor table (except during a 
task switch or a stack switch).

• Transferring execution to a segment that is not executable.

• Writing to a code segment or a read-only data segment.

• Reading from an execute-only code segment.

• Loading the SS register with a segment selector for a read-only segment (unless 
the selector comes from a TSS during a task switch, in which case an invalid-TSS 
exception occurs).

• Loading the SS, DS, ES, FS, or GS register with a segment selector for a system 
segment.

• Loading the DS, ES, FS, or GS register with a segment selector for an execute-
only code segment.

• Loading the SS register with the segment selector of an executable segment or a 
null segment selector.

• Loading the CS register with a segment selector for a data segment or a null 
segment selector.

• Accessing memory using the DS, ES, FS, or GS register when it contains a null 
segment selector.

• Switching to a busy task during a call or jump to a TSS.

• Using a segment selector on a non-IRET task switch that points to a TSS 
descriptor in the current LDT. TSS descriptors can only reside in the GDT. This 
condition causes a #TS exception during an IRET task switch.

• Violating any of the privilege rules described in Chapter 4, “Protection.”

• Exceeding the instruction length limit of 15 bytes (this only can occur when 
redundant prefixes are placed before an instruction).

• Loading the CR0 register with a set PG flag (paging enabled) and a clear PE flag 
(protection disabled).



Vol. 3   5-51

INTERRUPT AND EXCEPTION HANDLING

• Loading the CR0 register with a set NW flag and a clear CD flag.

• Referencing an entry in the IDT (following an interrupt or exception) that is not 
an interrupt, trap, or task gate.

• Attempting to access an interrupt or exception handler through an interrupt or 
trap gate from virtual-8086 mode when the handler’s code segment DPL is 
greater than 0.

• Attempting to write a 1 into a reserved bit of CR4.

• Attempting to execute a privileged instruction when the CPL is not equal to 0 (see 
Section 4.9, “Privileged Instructions,” for a list of privileged instructions).

• Writing to a reserved bit in an MSR.

• Accessing a gate that contains a null segment selector.

• Executing the INT n instruction when the CPL is greater than the DPL of the 
referenced interrupt, trap, or task gate.

• The segment selector in a call, interrupt, or trap gate does not point to a code 
segment.

• The segment selector operand in the LLDT instruction is a local type (TI flag is 
set) or does not point to a segment descriptor of the LDT type.

• The segment selector operand in the LTR instruction is local or points to a TSS 
that is not available.

• The target code-segment selector for a call, jump, or return is null.

• If the PAE and/or PSE flag in control register CR4 is set and the processor detects 
any reserved bits in a page-directory-pointer-table entry set to 1. These bits are 
checked during a write to control registers CR0, CR3, or CR4 that causes a 
reloading of the page-directory-pointer-table entry.

• Attempting to write a non-zero value into the reserved bits of the MXCSR register.

• Executing an SSE/SSE2/SSE3 instruction that attempts to access a 128-bit 
memory location that is not aligned on a 16-byte boundary when the instruction 
requires 16-byte alignment. This condition also applies to the stack segment.

A program or task can be restarted following any general-protection exception. If the 
exception occurs while attempting to call an interrupt handler, the interrupted 
program can be restartable, but the interrupt may be lost.

Exception Error Code

The processor pushes an error code onto the exception handler's stack. If the fault 
condition was detected while loading a segment descriptor, the error code contains a 
segment selector to or IDT vector number for the descriptor; otherwise, the error 
code is 0. The source of the selector in an error code may be any of the following:

• An operand of the instruction.

• A selector from a gate which is the operand of the instruction.
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• A selector from a TSS involved in a task switch.

• IDT vector number.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the 
exception.

Program State Change

In general, a program-state change does not accompany a general-protection excep-
tion, because the invalid instruction or operation is not executed. An exception 
handler can be designed to correct all of the conditions that cause general-protection 
exceptions and restart the program or task without any loss of program continuity.

If a general-protection exception occurs during a task switch, it can occur before or 
after the commit-to-new-task point (see Section 6.3, “Task Switching”). If it occurs 
before the commit point, no program state change occurs. If it occurs after the 
commit point, the processor will load all the state information from the new TSS 
(without performing any additional limit, present, or type checks) before it generates 
the exception. The general-protection exception handler should thus not rely on 
being able to use the segment selectors found in the CS, SS, DS, ES, FS, and GS 
registers without causing another exception. (See the Program State Change 
description for “Interrupt 10—Invalid TSS Exception (#TS)” in this chapter for addi-
tional information on how to handle this situation.)

General Protection Exception in 64-bit Mode

The following conditions cause general-protection exceptions in 64-bit mode:

• If the memory address is in a non-canonical form.

• If a segment descriptor memory address is in non-canonical form.

• If the target offset in a destination operand of a call or jmp is in a non-canonical 
form.

• If a code segment or 64-bit call gate overlaps non-canonical space.

• If the code segment descriptor pointed to by the selector in the 64-bit gate 
doesn't have the L-bit set and the D-bit clear.

• If the EFLAGS.NT bit is set in IRET.

• If the stack segment selector of IRET is null when going back to compatibility 
mode.

• If the stack segment selector of IRET is null going back to CPL3 and 64-bit mode.

• If a null stack segment selector RPL of IRET is not equal to CPL going back to non-
CPL3 and 64-bit mode.

• If the proposed new code segment descriptor of IRET has both the D-bit and the 
L-bit set.
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• If the segment descriptor pointed to by the segment selector in the destination 
operand is a code segment and it has both the D-bit and the L-bit set.

• If the segment descriptor from a 64-bit call gate is in non-canonical space.

• If the DPL from a 64-bit call-gate is less than the CPL or than the RPL of the 64-bit 
call-gate.

• If the upper type field of a 64-bit call gate is not 0x0.

• If an attempt is made to load a null selector in the SS register in compatibility 
mode.

• If an attempt is made to load null selector in the SS register in CPL3 and 64-bit 
mode.

• If an attempt is made to load a null selector in the SS register in non-CPL3 and 
64-bit mode where RPL is not equal to CPL.

• If an attempt is made to clear CR0.PG while IA-32e mode is enabled.

• If an attempt is made to set a reserved bit in CR3, CR4 or CR8.
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Interrupt 14—Page-Fault Exception (#PF)

Exception Class Fault.

Description

Indicates that, with paging enabled (the PG flag in the CR0 register is set), the 
processor detected one of the following conditions while using the page-translation 
mechanism to translate a linear address to a physical address:

• The P (present) flag in a page-directory or page-table entry needed for the 
address translation is clear, indicating that a page table or the page containing 
the operand is not present in physical memory.

• The procedure does not have sufficient privilege to access the indicated page 
(that is, a procedure running in user mode attempts to access a supervisor-mode 
page).

• Code running in user mode attempts to write to a read-only page. In the Intel486 
and later processors, if the WP flag is set in CR0, the page fault will also be 
triggered by code running in supervisor mode that tries to write to a read-only 
user-mode page.

• An instruction fetch to a linear address that translates to a physical address in a 
memory page with the execute-disable bit set (for Intel 64 and IA-32 processors 
that support the execute disable bit, see Section 3.10, “PAE-Enabled Paging in 
IA-32e Mode”).

• One or more reserved bits in page directory entry are set to 1. See description 
below of RSVD error code flag.

The exception handler can recover from page-not-present conditions and restart the 
program or task without any loss of program continuity. It can also restart the 
program or task after a privilege violation, but the problem that caused the privilege 
violation may be uncorrectable.

Exception Error Code

Yes (special format). The processor provides the page-fault handler with two items of 
information to aid in diagnosing the exception and recovering from it:

• An error code on the stack. The error code for a page fault has a format different 
from that for other exceptions (see Figure 5-9). The error code tells the 
exception handler four things:

— The P flag indicates whether the exception was due to a not-present page (0) 
or to either an access rights violation or the use of a reserved bit (1).

— The W/R flag indicates whether the memory access that caused the exception 
was a read (0) or write (1).

— The U/S flag indicates whether the processor was executing at user mode (1) 
or supervisor mode (0) at the time of the exception.
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— The RSVD flag indicates that the processor detected 1s in reserved bits of the 
page directory, when the PSE or PAE flags in control register CR4 are set to 1. 
Note: 

• The PSE flag is only available in recent Intel 64 and IA-32 processors 
including the Pentium 4, Intel Xeon, P6 family, and Pentium processors. 

• The PAE flag is only available on recent Intel 64 and IA-32 processors 
including the Pentium 4, Intel Xeon, and P6 family processors. 

• In earlier IA-32 processor, the bit position of the RSVD flag is reserved.

— The I/D flag indicates whether the exception was caused by an instruction 
fetch. This flag is reserved if the processor does not support execute-disable 
bit or execute disable bit feature is not enabled (see Section 3.10). 

• The contents of the CR2 register. The processor loads the CR2 register with the 
32-bit linear address that generated the exception. The page-fault handler can 
use this address to locate the corresponding page directory and page-table 
entries. Another page fault can potentially occur during execution of the page-
fault handler; the handler should save the contents of the CR2 register before a 
second page fault can occur.1 If a page fault is caused by a page-level protection 

 

Figure 5-9.  Page-Fault Error Code

1. Processors update CR2 whenever a page fault is detected. If a second page fault occurs while an 
earlier page fault is being delivered, the faulting linear address of the second fault will overwrite 
the contents of CR2 (replacing the previous address). These updates to CR2 occur even if the 
page fault results in a double fault or occurs during the delivery of a double fault.

The fault was caused by a non-present page.
The fault was caused by a page-level protection violation.

The access causing the fault was a read.
The access causing the fault was a write.
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violation, the access flag in the page-directory entry is set when the fault occurs. 
The behavior of IA-32 processors regarding the access flag in the corresponding 
page-table entry is model specific and not architecturally defined.

Saved Instruction Pointer

The saved contents of CS and EIP registers generally point to the instruction that 
generated the exception. If the page-fault exception occurred during a task switch, 
the CS and EIP registers may point to the first instruction of the new task (as 
described in the following “Program State Change” section).

Program State Change

A program-state change does not normally accompany a page-fault exception, 
because the instruction that causes the exception to be generated is not executed. 
After the page-fault exception handler has corrected the violation (for example, 
loaded the missing page into memory), execution of the program or task can be 
resumed.

When a page-fault exception is generated during a task switch, the program-state 
may change, as follows. During a task switch, a page-fault exception can occur 
during any of following operations:

• While writing the state of the original task into the TSS of that task.

• While reading the GDT to locate the TSS descriptor of the new task.

• While reading the TSS of the new task.

• While reading segment descriptors associated with segment selectors from the 
new task.

• While reading the LDT of the new task to verify the segment registers stored in 
the new TSS.

In the last two cases the exception occurs in the context of the new task. The instruc-
tion pointer refers to the first instruction of the new task, not to the instruction which 
caused the task switch (or the last instruction to be executed, in the case of an inter-
rupt). If the design of the operating system permits page faults to occur during task-
switches, the page-fault handler should be called through a task gate.

If a page fault occurs during a task switch, the processor will load all the state infor-
mation from the new TSS (without performing any additional limit, present, or type 
checks) before it generates the exception. The page-fault handler should thus not 
rely on being able to use the segment selectors found in the CS, SS, DS, ES, FS, and 
GS registers without causing another exception. (See the Program State Change 
description for “Interrupt 10—Invalid TSS Exception (#TS)” in this chapter for addi-
tional information on how to handle this situation.) 

Additional Exception-Handling Information

Special care should be taken to ensure that an exception that occurs during an 
explicit stack switch does not cause the processor to use an invalid stack pointer 
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(SS:ESP). Software written for 16-bit IA-32 processors often use a pair of instruc-
tions to change to a new stack, for example:

MOV SS, AX
MOV SP, StackTop

When executing this code on one of the 32-bit IA-32 processors, it is possible to get 
a page fault, general-protection fault (#GP), or alignment check fault (#AC) after the 
segment selector has been loaded into the SS register but before the ESP register 
has been loaded. At this point, the two parts of the stack pointer (SS and ESP) are 
inconsistent. The new stack segment is being used with the old stack pointer.

The processor does not use the inconsistent stack pointer if the exception handler 
switches to a well defined stack (that is, the handler is a task or a more privileged 
procedure). However, if the exception handler is called at the same privilege level 
and from the same task, the processor will attempt to use the inconsistent stack 
pointer.

In systems that handle page-fault, general-protection, or alignment check excep-
tions within the faulting task (with trap or interrupt gates), software executing at the 
same privilege level as the exception handler should initialize a new stack by using 
the LSS instruction rather than a pair of MOV instructions, as described earlier in this 
note. When the exception handler is running at privilege level 0 (the normal case), 
the problem is limited to procedures or tasks that run at privilege level 0, typically 
the kernel of the operating system.
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Interrupt 16—x87 FPU Floating-Point Error (#MF)

Exception Class Fault.

Description

Indicates that the x87 FPU has detected a floating-point error. The NE flag in the 
register CR0 must be set for an interrupt 16 (floating-point error exception) to be 
generated. (See Section 2.5, “Control Registers,” for a detailed description of the NE 
flag.)

NOTE
SIMD floating-point exceptions (#XM) are signaled through interrupt 
19.  

While executing x87 FPU instructions, the x87 FPU detects and reports six types of 
floating-point error conditions:

• Invalid operation (#I)

— Stack overflow or underflow (#IS)

— Invalid arithmetic operation (#IA)

• Divide-by-zero (#Z)

• Denormalized operand (#D)

• Numeric overflow (#O)

• Numeric underflow (#U)

• Inexact result (precision) (#P)

Each of these error conditions represents an x87 FPU exception type, and for each of 
exception type, the x87 FPU provides a flag in the x87 FPU status register and a mask 
bit in the x87 FPU control register. If the x87 FPU detects a floating-point error and 
the mask bit for the exception type is set, the x87 FPU handles the exception auto-
matically by generating a predefined (default) response and continuing program 
execution. The default responses have been designed to provide a reasonable result 
for most floating-point applications.

If the mask for the exception is clear and the NE flag in register CR0 is set, the x87 
FPU does the following:

1. Sets the necessary flag in the FPU status register.

2. Waits until the next “waiting” x87 FPU instruction or WAIT/FWAIT instruction is 
encountered in the program’s instruction stream.

3. Generates an internal error signal that cause the processor to generate a 
floating-point exception (#MF).
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Prior to executing a waiting x87 FPU instruction or the WAIT/FWAIT instruction, the 
x87 FPU checks for pending x87 FPU floating-point exceptions (as described in step 2 
above). Pending x87 FPU floating-point exceptions are ignored for “non-waiting” x87 
FPU instructions, which include the FNINIT, FNCLEX, FNSTSW, FNSTSW AX, FNSTCW, 
FNSTENV, and FNSAVE instructions. Pending x87 FPU exceptions are also ignored 
when executing the state management instructions FXSAVE and FXRSTOR.

All of the x87 FPU floating-point error conditions can be recovered from. The x87 FPU 
floating-point-error exception handler can determine the error condition that caused 
the exception from the settings of the flags in the x87 FPU status word. See “Soft-
ware Exception Handling” in Chapter 8 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1, for more information on handling x87 FPU 
floating-point exceptions.

Exception Error Code

None. The x87 FPU provides its own error information.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the floating-point or WAIT/FWAIT 
instruction that was about to be executed when the floating-point-error exception 
was generated. This is not the faulting instruction in which the error condition was 
detected. The address of the faulting instruction is contained in the x87 FPU instruc-
tion pointer register. See “x87 FPU Instruction and Operand (Data) Pointers” in 
Chapter 8 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 1, for more information about information the FPU saves for use in handling 
floating-point-error exceptions.

Program State Change

A program-state change generally accompanies an x87 FPU floating-point exception 
because the handling of the exception is delayed until the next waiting x87 FPU 
floating-point or WAIT/FWAIT instruction following the faulting instruction. The x87 
FPU, however, saves sufficient information about the error condition to allow 
recovery from the error and re-execution of the faulting instruction if needed.

In situations where non- x87 FPU floating-point instructions depend on the results of 
an x87 FPU floating-point instruction, a WAIT or FWAIT instruction can be inserted in 
front of a dependent instruction to force a pending x87 FPU floating-point exception 
to be handled before the dependent instruction is executed. See “x87 FPU Exception 
Synchronization” in Chapter 8 of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1, for more information about synchronization of x87 
floating-point-error exceptions.
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Interrupt 17—Alignment Check Exception (#AC)

Exception Class Fault.

Description

Indicates that the processor detected an unaligned memory operand when alignment 
checking was enabled. Alignment checks are only carried out in data (or stack) 
accesses (not in code fetches or system segment accesses). An example of an align-
ment-check violation is a word stored at an odd byte address, or a doubleword stored 
at an address that is not an integer multiple of 4. Table 5-7 lists the alignment 
requirements various data types recognized by the processor.

Note that the alignment check exception (#AC) is generated only for data types that 
must be aligned on word, doubleword, and quadword boundaries. A general-protec-
tion exception (#GP) is generated 128-bit data types that are not aligned on a 
16-byte boundary.

To enable alignment checking, the following conditions must be true:

• AM flag in CR0 register is set.

Table 5-7.  Alignment Requirements by Data Type

Data Type Address Must Be Divisible By

Word 2

Doubleword 4

Single-precision floating-point (32-bits) 4

Double-precision floating-point (64-bits) 8

Double extended-precision floating-point (80-
bits)

8

Quadword 8

Double quadword 16

Segment Selector 2

32-bit Far Pointer 2

48-bit Far Pointer 4

32-bit Pointer 4

GDTR, IDTR, LDTR, or Task Register Contents 4

FSTENV/FLDENV Save Area 4 or 2, depending on operand size

FSAVE/FRSTOR Save Area 4 or 2, depending on operand size

Bit String 2 or 4 depending on the operand-size attribute.
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• AC flag in the EFLAGS register is set.

• The CPL is 3 (protected mode or virtual-8086 mode).

Alignment-check exceptions (#AC) are generated only when operating at privilege 
level 3 (user mode). Memory references that default to privilege level 0, such as 
segment descriptor loads, do not generate alignment-check exceptions, even when 
caused by a memory reference made from privilege level 3.

Storing the contents of the GDTR, IDTR, LDTR, or task register in memory while at 
privilege level 3 can generate an alignment-check exception. Although application 
programs do not normally store these registers, the fault can be avoided by aligning 
the information stored on an even word-address.

The FXSAVE and FXRSTOR instructions save and restore a 512-byte data structure, 
the first byte of which must be aligned on a 16-byte boundary. If the alignment-check 
exception (#AC) is enabled when executing these instructions (and CPL is 3), a 
misaligned memory operand can cause either an alignment-check exception or a 
general-protection exception (#GP) depending on the processor implementation 
(see “FXSAVE-Save x87 FPU, MMX, SSE, and SSE2 State” and “FXRSTOR-Restore 
x87 FPU, MMX, SSE, and SSE2 State” in Chapter 3 of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2A).

The MOVUPS and MOVUPD instructions perform 128-bit unaligned loads or stores. 
The LDDQU instructions loads 128-bit unaligned data.They do not generate general-
protection exceptions (#GP) when operands are not aligned on a 16-byte boundary. 
If alignment checking is enabled, alignment-check exceptions (#AC) may or may not 
be generated depending on processor implementation when data addresses are not 
aligned on an 8-byte boundary.

FSAVE and FRSTOR instructions can generate unaligned references, which can cause 
alignment-check faults. These instructions are rarely needed by application 
programs. 

Exception Error Code

Yes (always zero).

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the 
exception.

Program State Change

A program-state change does not accompany an alignment-check fault, because the 
instruction is not executed.
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Interrupt 18—Machine-Check Exception (#MC)

Exception Class Abort.

Description

Indicates that the processor detected an internal machine error or a bus error, or that 
an external agent detected a bus error. The machine-check exception is model-
specific, available only on the Pentium 4, Intel Xeon, P6 family, and Pentium proces-
sors. The implementation of the machine-check exception is different between the 
Pentium 4, Intel Xeon, P6 family, and Pentium processors, and these implementa-
tions may not be compatible with future Intel 64 or IA-32 processors. (Use the CPUID 
instruction to determine whether this feature is present.)

Bus errors detected by external agents are signaled to the processor on dedicated 
pins: the BINIT# and MCERR# pins on the Pentium 4, Intel Xeon, and P6 family 
processors and the BUSCHK# pin on the Pentium processor. When one of these pins 
is enabled, asserting the pin causes error information to be loaded into machine-
check registers and a machine-check exception is generated.

The machine-check exception and machine-check architecture are discussed in detail 
in Chapter 14, “Machine-Check Architecture.” Also, see the data books for the indi-
vidual processors for processor-specific hardware information. 

Exception Error Code

None. Error information is provide by machine-check MSRs.

Saved Instruction Pointer

For the Pentium 4 and Intel Xeon processors, the saved contents of extended 
machine-check state registers are directly associated with the error that caused the 
machine-check exception to be generated (see Section 14.3.1.2, 
“IA32_MCG_STATUS MSR,” and Section 14.3.2.5, “IA32_MCG Extended Machine 
Check State MSRs”).

For the P6 family processors, if the EIPV flag in the MCG_STATUS MSR is set, the 
saved contents of CS and EIP registers are directly associated with the error that 
caused the machine-check exception to be generated; if the flag is clear, the saved 
instruction pointer may not be associated with the error (see Section 14.3.1.2, 
“IA32_MCG_STATUS MSR”).

For the Pentium processor, contents of the CS and EIP registers may not be associ-
ated with the error.

Program State Change

The machine-check mechanism is enabled by setting the MCE flag in control register 
CR4. 
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For the Pentium 4, Intel Xeon, P6 family, and Pentium processors, a program-state 
change always accompanies a machine-check exception, and an abort class excep-
tion is generated. For abort exceptions, information about the exception can be 
collected from the machine-check MSRs, but the program cannot generally be 
restarted. 

If the machine-check mechanism is not enabled (the MCE flag in control register CR4 
is clear), a machine-check exception causes the processor to enter the shutdown 
state.
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Interrupt 19—SIMD Floating-Point Exception (#XM)

Exception Class Fault.

Description

Indicates the processor has detected an SSE/SSE2/SSE3 SIMD floating-point excep-
tion. The appropriate status flag in the MXCSR register must be set and the particular 
exception unmasked for this interrupt to be generated.

There are six classes of numeric exception conditions that can occur while executing 
an SSE/ SSE2/SSE3 SIMD floating-point instruction:

• Invalid operation (#I)

• Divide-by-zero (#Z)

• Denormal operand (#D)

• Numeric overflow (#O)

• Numeric underflow (#U)

• Inexact result (Precision) (#P)

The invalid operation, divide-by-zero, and denormal-operand exceptions are pre-
computation exceptions; that is, they are detected before any arithmetic operation 
occurs. The numeric underflow, numeric overflow, and inexact result exceptions are 
post-computational exceptions.

See "SIMD Floating-Point Exceptions" in Chapter 11 of the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 1, for additional information 
about the SIMD floating-point exception classes.

When a SIMD floating-point exception occurs, the processor does either of the 
following things:

• It handles the exception automatically by producing the most reasonable result 
and allowing program execution to continue undisturbed. This is the response to 
masked exceptions.

• It generates a SIMD floating-point exception, which in turn invokes a software 
exception handler. This is the response to unmasked exceptions.

Each of the six SIMD floating-point exception conditions has a corresponding flag bit 
and mask bit in the MXCSR register. If an exception is masked (the corresponding 
mask bit in the MXCSR register is set), the processor takes an appropriate automatic 
default action and continues with the computation. If the exception is unmasked (the 
corresponding mask bit is clear) and the operating system supports SIMD floating-
point exceptions (the OSXMMEXCPT flag in control register CR4 is set), a software 
exception handler is invoked through a SIMD floating-point exception. If the excep-
tion is unmasked and the OSXMMEXCPT bit is clear (indicating that the operating 
system does not support unmasked SIMD floating-point exceptions), an invalid 
opcode exception (#UD) is signaled instead of a SIMD floating-point exception.
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Note that because SIMD floating-point exceptions are precise and occur immediately, 
the situation does not arise where an x87 FPU instruction, a WAIT/FWAIT instruction, 
or another SSE/SSE2/SSE3 instruction will catch a pending unmasked SIMD floating-
point exception.

In situations where a SIMD floating-point exception occurred while the SIMD 
floating-point exceptions were masked (causing the corresponding exception flag to 
be set) and the SIMD floating-point exception was subsequently unmasked, then no 
exception is generated when the exception is unmasked.

When SSE/SSE2/SSE3 SIMD floating-point instructions operate on packed operands 
(made up of two or four sub-operands), multiple SIMD floating-point exception 
conditions may be detected. If no more than one exception condition is detected for 
one or more sets of sub-operands, the exception flags are set for each exception 
condition detected. For example, an invalid exception detected for one sub-operand 
will not prevent the reporting of a divide-by-zero exception for another sub-operand. 
However, when two or more exceptions conditions are generated for one sub-
operand, only one exception condition is reported, according to the precedences 
shown in Table 5-8. This exception precedence sometimes results in the higher 
priority exception condition being reported and the lower priority exception condi-
tions being ignored.

Exception Error Code

None.

Table 5-8.  SIMD Floating-Point Exceptions Priority

Priority Description

1 (Highest) Invalid operation exception due to SNaN operand (or any NaN operand for 
maximum, minimum, or certain compare and convert operations).

2 QNaN operand1.

3 Any other invalid operation exception not mentioned above or a divide-by-zero 
exception2.

4 Denormal operand exception2.

5 Numeric overflow and underflow exceptions possibly in conjunction with the 
inexact result exception2.

6 (Lowest) Inexact result exception.

NOTES:
1. Though a QNaN this is not an exception, the handling of a QNaN operand has precedence over 

lower priority exceptions. For example, a QNaN divided by zero results in a QNaN, not a divide-
by-zero- exception.

2. If masked, then instruction execution continues, and a lower priority exception can occur as 
well.
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Saved Instruction Pointer

The saved contents of CS and EIP registers point to the SSE/SSE2/SSE3 instruction 
that was executed when the SIMD floating-point exception was generated. This is the 
faulting instruction in which the error condition was detected.

Program State Change

A program-state change does not accompany a SIMD floating-point exception 
because the handling of the exception is immediate unless the particular exception is 
masked. The available state information is often sufficient to allow recovery from the 
error and re-execution of the faulting instruction if needed.
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Interrupts 32 to 255—User Defined Interrupts

Exception Class Not applicable.

Description

Indicates that the processor did one of the following things:

• Executed an INT n instruction where the instruction operand is one of the vector 
numbers from 32 through 255.

• Responded to an interrupt request at the INTR pin or from the local APIC when 
the interrupt vector number associated with the request is from 32 through 255.

Exception Error Code

Not applicable.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that follows the 
INT n instruction or instruction following the instruction on which the INTR signal 
occurred.

Program State Change

A program-state change does not accompany interrupts generated by the INT n 
instruction or the INTR signal. The INT n instruction generates the interrupt within 
the instruction stream. When the processor receives an INTR signal, it commits all 
state changes for all previous instructions before it responds to the interrupt; so, 
program execution can resume upon returning from the interrupt handler.
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CHAPTER 6
TASK MANAGEMENT

This chapter describes the IA-32 architecture’s task management facilities. These 
facilities are only available when the processor is running in protected mode.

This chapter focuses on 32-bit tasks and the 32-bit TSS structure. For information on 
16-bit tasks and the 16-bit TSS structure, see Section 6.6, “16-Bit Task-State 
Segment (TSS).” For information specific to task management in 64-bit mode, see 
Section 6.7, “Task Management in 64-bit Mode.”

6.1 TASK MANAGEMENT OVERVIEW
A task is a unit of work that a processor can dispatch, execute, and suspend. It can 
be used to execute a program, a task or process, an operating-system service utility, 
an interrupt or exception handler, or a kernel or executive utility.

The IA-32 architecture provides a mechanism for saving the state of a task, for 
dispatching tasks for execution, and for switching from one task to another. When 
operating in protected mode, all processor execution takes place from within a task. 
Even simple systems must define at least one task. More complex systems can use 
the processor’s task management facilities to support multitasking applications.

6.1.1 Task Structure
A task is made up of two parts: a task execution space and a task-state segment 
(TSS). The task execution space consists of a code segment, a stack segment, and 
one or more data segments (see Figure 6-1). If an operating system or executive 
uses the processor’s privilege-level protection mechanism, the task execution space 
also provides a separate stack for each privilege level.

The TSS specifies the segments that make up the task execution space and provides 
a storage place for task state information. In multitasking systems, the TSS also 
provides a mechanism for linking tasks.

A task is identified by the segment selector for its TSS. When a task is loaded into the 
processor for execution, the segment selector, base address, limit, and segment 
descriptor attributes for the TSS are loaded into the task register (see Section 2.4.4, 
“Task Register (TR)”).

If paging is implemented for the task, the base address of the page directory used by 
the task is loaded into control register CR3.
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6.1.2 Task State
The following items define the state of the currently executing task:

• The task’s current execution space, defined by the segment selectors in the 
segment registers (CS, DS, SS, ES, FS, and GS).

• The state of the general-purpose registers.

• The state of the EFLAGS register.

• The state of the EIP register.

• The state of control register CR3.

• The state of the task register.

• The state of the LDTR register.

• The I/O map base address and I/O map (contained in the TSS).

• Stack pointers to the privilege 0, 1, and 2 stacks (contained in the TSS).

• Link to previously executed task (contained in the TSS).

Prior to dispatching a task, all of these items are contained in the task’s TSS, except 
the state of the task register. Also, the complete contents of the LDTR register are not 
contained in the TSS, only the segment selector for the LDT.

Figure 6-1.  Structure of a Task
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6.1.3 Executing a Task
Software or the processor can dispatch a task for execution in one of the following 
ways:

• A explicit call to a task with the CALL instruction.

• A explicit jump to a task with the JMP instruction.

• An implicit call (by the processor) to an interrupt-handler task.

• An implicit call to an exception-handler task.

• A return (initiated with an IRET instruction) when the NT flag in the EFLAGS 
register is set.

All of these methods for dispatching a task identify the task to be dispatched with a 
segment selector that points to a task gate or the TSS for the task. When dispatching 
a task with a CALL or JMP instruction, the selector in the instruction may select the 
TSS directly or a task gate that holds the selector for the TSS. When dispatching a 
task to handle an interrupt or exception, the IDT entry for the interrupt or exception 
must contain a task gate that holds the selector for the interrupt- or exception-
handler TSS. 

When a task is dispatched for execution, a task switch occurs between the currently 
running task and the dispatched task. During a task switch, the execution environ-
ment of the currently executing task (called the task’s state or context) is saved in 
its TSS and execution of the task is suspended. The context for the dispatched task is 
then loaded into the processor and execution of that task begins with the instruction 
pointed to by the newly loaded EIP register. If the task has not been run since the 
system was last initialized, the EIP will point to the first instruction of the task’s code; 
otherwise, it will point to the next instruction after the last instruction that the task 
executed when it was last active.

If the currently executing task (the calling task) called the task being dispatched (the 
called task), the TSS segment selector for the calling task is stored in the TSS of the 
called task to provide a link back to the calling task.

For all IA-32 processors, tasks are not recursive. A task cannot call or jump to itself.

Interrupts and exceptions can be handled with a task switch to a handler task. Here, 
the processor performs a task switch to handle the interrupt or exception and auto-
matically switches back to the interrupted task upon returning from the interrupt-
handler task or exception-handler task. This mechanism can also handle interrupts 
that occur during interrupt tasks.

As part of a task switch, the processor can also switch to another LDT, allowing each 
task to have a different logical-to-physical address mapping for LDT-based segments. 
The page-directory base register (CR3) also is reloaded on a task switch, allowing 
each task to have its own set of page tables. These protection facilities help isolate 
tasks and prevent them from interfering with one another. 

If protection mechanisms are not used, the processor provides no protection 
between tasks. This is true even with operating systems that use multiple privilege 
levels for protection. A task running at privilege level 3 that uses the same LDT and 
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page tables as other privilege-level-3 tasks can access code and corrupt data and the 
stack of other tasks.

Use of task management facilities for handling multitasking applications is optional. 
Multitasking can be handled in software, with each software defined task executed in 
the context of a single IA-32 architecture task.

6.2 TASK MANAGEMENT DATA STRUCTURES
The processor defines five data structures for handling task-related activities:

• Task-state segment (TSS).

• Task-gate descriptor.

• TSS descriptor.

• Task register.

• NT flag in the EFLAGS register.

When operating in protected mode, a TSS and TSS descriptor must be created for at 
least one task, and the segment selector for the TSS must be loaded into the task 
register (using the LTR instruction).

6.2.1 Task-State Segment (TSS)
The processor state information needed to restore a task is saved in a system 
segment called the task-state segment (TSS). Figure 6-2 shows the format of a TSS 
for tasks designed for 32-bit CPUs. The fields of a TSS are divided into two main cate-
gories: dynamic fields and static fields.

For information about 16-bit Intel 286 processor task structures, see Section 6.6, 
“16-Bit Task-State Segment (TSS).” For information about 64-bit mode task struc-
tures, see Section 6.7, “Task Management in 64-bit Mode.”
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The processor updates dynamic fields when a task is suspended during a task switch. 
The following are dynamic fields:

• General-purpose register fields — State of the EAX, ECX, EDX, EBX, ESP, EBP, 
ESI, and EDI registers prior to the task switch.

• Segment selector fields — Segment selectors stored in the ES, CS, SS, DS, FS, 
and GS registers prior to the task switch.

• EFLAGS register field — State of the EFAGS register prior to the task switch.

Figure 6-2.  32-Bit Task-State Segment (TSS)
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• EIP (instruction pointer) field — State of the EIP register prior to the task 
switch.

• Previous task link field — Contains the segment selector for the TSS of the 
previous task (updated on a task switch that was initiated by a call, interrupt, or 
exception). This field (which is sometimes called the back link field) permits a 
task switch back to the previous task by using the IRET instruction.

The processor reads the static fields, but does not normally change them. These 
fields are set up when a task is created. The following are static fields:

• LDT segment selector field — Contains the segment selector for the task's 
LDT.

• CR3 control register field — Contains the base physical address of the page 
directory to be used by the task. Control register CR3 is also known as the page-
directory base register (PDBR).

• Privilege level-0, -1, and -2 stack pointer fields — These stack pointers 
consist of a logical address made up of the segment selector for the stack 
segment (SS0, SS1, and SS2) and an offset into the stack (ESP0, ESP1, and 
ESP2). Note that the values in these fields are static for a particular task; 
whereas, the SS and ESP values will change if stack switching occurs within the 
task.

• T (debug trap) flag (byte 100, bit 0) — When set, the T flag causes the 
processor to raise a debug exception when a task switch to this task occurs (see 
Section 18.3.1.5, “Task-Switch Exception Condition”).

• I/O map base address field — Contains a 16-bit offset from the base of the 
TSS to the I/O permission bit map and interrupt redirection bitmap. When 
present, these maps are stored in the TSS at higher addresses. The I/O map base 
address points to the beginning of the I/O permission bit map and the end of the 
interrupt redirection bit map. See Chapter 13, “Input/Output,” in the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 1, for more 
information about the I/O permission bit map. See Section 15.3, “Interrupt and 
Exception Handling in Virtual-8086 Mode,” for a detailed description of the 
interrupt redirection bit map.

If paging is used: 

• Avoid placing a page boundary in the part of the TSS that the processor reads 
during a task switch (the first 104 bytes). The processor may not correctly 
perform address translations if a boundary occurs in this area. During a task 
switch, the processor reads and writes into the first 104 bytes of each TSS (using 
contiguous physical addresses beginning with the physical address of the first 
byte of the TSS). So, after TSS access begins, if part of the 104 bytes is not 
physically contiguous, the processor will access incorrect information without 
generating a page-fault exception.

• Pages corresponding to the previous task’s TSS, the current task’s TSS, and the 
descriptor table entries for each all should be marked as read/write. 
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• Task switches are carried out faster if the pages containing these structures are 
present in memory before the task switch is initiated.

6.2.2 TSS Descriptor
The TSS, like all other segments, is defined by a segment descriptor. Figure 6-3 
shows the format of a TSS descriptor. TSS descriptors may only be placed in the GDT; 
they cannot be placed in an LDT or the IDT. 

An attempt to access a TSS using a segment selector with its TI flag set (which indi-
cates the current LDT) causes a general-protection exception (#GP) to be generated 
during CALLs and JMPs; it causes an invalid TSS exception (#TS) during IRETs. A 
general-protection exception is also generated if an attempt is made to load a 
segment selector for a TSS into a segment register.

The busy flag (B) in the type field indicates whether the task is busy. A busy task is 
currently running or suspended. A type field with a value of 1001B indicates an inac-
tive task; a value of 1011B indicates a busy task. Tasks are not recursive. The 
processor uses the busy flag to detect an attempt to call a task whose execution has 
been interrupted. To insure that there is only one busy flag is associated with a task, 
each TSS should have only one TSS descriptor that points to it.

The base, limit, and DPL fields and the granularity and present flags have functions 
similar to their use in data-segment descriptors (see Section 3.4.5, “Segment 
Descriptors”). When the G flag is 0 in a TSS descriptor for a 32-bit TSS, the limit field 
must have a value equal to or greater than 67H, one byte less than the minimum size 

Figure 6-3.  TSS Descriptor
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of a TSS. Attempting to switch to a task whose TSS descriptor has a limit less than 
67H generates an invalid-TSS exception (#TS). A larger limit is required if an I/O 
permission bit map is included or if the operating system stores additional data. The 
processor does not check for a limit greater than 67H on a task switch; however, it 
does check when accessing the I/O permission bit map or interrupt redirection bit 
map.

Any program or procedure with access to a TSS descriptor (that is, whose CPL is 
numerically equal to or less than the DPL of the TSS descriptor) can dispatch the task 
with a call or a jump. 

In most systems, the DPLs of TSS descriptors are set to values less than 3, so that 
only privileged software can perform task switching. However, in multitasking appli-
cations, DPLs for some TSS descriptors may be set to 3 to allow task switching at the 
application (or user) privilege level.

6.2.3 TSS Descriptor in 64-bit mode
In 64-bit mode, task switching is not supported, but TSS descriptors still exist. The 
format of a 64-bit TSS is described in Section 6.7. 

In 64-bit mode, the TSS descriptor is expanded to 16 bytes (see Figure 6-4). This 
expansion also applies to an LDT descriptor in 64-bit mode. Table 3-2 provides the 
encoding information for the segment type field.
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6.2.4 Task Register
The task register holds the 16-bit segment selector and the entire segment 
descriptor (32-bit base address, 16-bit segment limit, and descriptor attributes) for 
the TSS of the current task (see Figure 2-5). This information is copied from the TSS 
descriptor in the GDT for the current task. Figure 6-5 shows the path the processor 
uses to access the TSS (using the information in the task register).

The task register has a visible part (that can be read and changed by software) and 
an invisible part (maintained by the processor and is inaccessible by software). The 
segment selector in the visible portion points to a TSS descriptor in the GDT. The 
processor uses the invisible portion of the task register to cache the segment 
descriptor for the TSS. Caching these values in a register makes execution of the task 
more efficient. The LTR (load task register) and STR (store task register) instructions 
load and read the visible portion of the task register: 

Figure 6-4.  Format of TSS and LDT Descriptors in 64-bit Mode
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The LTR instruction loads a segment selector (source operand) into the task register 
that points to a TSS descriptor in the GDT. It then loads the invisible portion of the 
task register with information from the TSS descriptor. LTR is a privileged instruction 
that may be executed only when the CPL is 0. It’s used during system initialization to 
put an initial value in the task register. Afterwards, the contents of the task register 
are changed implicitly when a task switch occurs.

The STR (store task register) instruction stores the visible portion of the task register 
in a general-purpose register or memory. This instruction can be executed by code 
running at any privilege level in order to identify the currently running task. However, 
it is normally used only by operating system software.

On power up or reset of the processor, segment selector and base address are set to 
the default value of 0; the limit is set to FFFFH.

Figure 6-5.  Task Register
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6.2.5 Task-Gate Descriptor
A task-gate descriptor provides an indirect, protected reference to a task (see 
Figure 6-6). It can be placed in the GDT, an LDT, or the IDT. The TSS segment 
selector field in a task-gate descriptor points to a TSS descriptor in the GDT. The RPL 
in this segment selector is not used.

The DPL of a task-gate descriptor controls access to the TSS descriptor during a task 
switch. When a program or procedure makes a call or jump to a task through a task 
gate, the CPL and the RPL field of the gate selector pointing to the task gate must be 
less than or equal to the DPL of the task-gate descriptor. Note that when a task gate 
is used, the DPL of the destination TSS descriptor is not used.

A task can be accessed either through a task-gate descriptor or a TSS descriptor. 
Both of these structures satisfy the following needs:

• Need for a task to have only one busy flag — Because the busy flag for a task 
is stored in the TSS descriptor, each task should have only one TSS descriptor. 
There may, however, be several task gates that reference the same TSS 
descriptor. 

• Need to provide selective access to tasks — Task gates fill this need, because 
they can reside in an LDT and can have a DPL that is different from the TSS 
descriptor's DPL. A program or procedure that does not have sufficient privilege 
to access the TSS descriptor for a task in the GDT (which usually has a DPL of 0) 
may be allowed access to the task through a task gate with a higher DPL. Task 
gates give the operating system greater latitude for limiting access to specific 
tasks.

• Need for an interrupt or exception to be handled by an independent task 
— Task gates may also reside in the IDT, which allows interrupts and exceptions 

Figure 6-6.  Task-Gate Descriptor
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to be handled by handler tasks. When an interrupt or exception vector points to 
a task gate, the processor switches to the specified task.

Figure 6-7 illustrates how a task gate in an LDT, a task gate in the GDT, and a task 
gate in the IDT can all point to the same task.

6.3 TASK SWITCHING
The processor transfers execution to another task in one of four cases:

• The current program, task, or procedure executes a JMP or CALL instruction to a 
TSS descriptor in the GDT.

• The current program, task, or procedure executes a JMP or CALL instruction to a 
task-gate descriptor in the GDT or the current LDT.

Figure 6-7.  Task Gates Referencing the Same Task
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• An interrupt or exception vector points to a task-gate descriptor in the IDT.

• The current task executes an IRET when the NT flag in the EFLAGS register is set. 

JMP, CALL, and IRET instructions, as well as interrupts and exceptions, are all mech-
anisms for redirecting a program. The referencing of a TSS descriptor or a task gate 
(when calling or jumping to a task) or the state of the NT flag (when executing an 
IRET instruction) determines whether a task switch occurs.

The processor performs the following operations when switching to a new task:

1. Obtains the TSS segment selector for the new task as the operand of the JMP or 
CALL instruction, from a task gate, or from the previous task link field (for a task 
switch initiated with an IRET instruction).

2. Checks that the current (old) task is allowed to switch to the new task. Data-
access privilege rules apply to JMP and CALL instructions. The CPL of the current 
(old) task and the RPL of the segment selector for the new task must be less than 
or equal to the DPL of the TSS descriptor or task gate being referenced. 
Exceptions, interrupts (except for interrupts generated by the INT n instruction), 
and the IRET instruction are permitted to switch tasks regardless of the DPL of 
the destination task-gate or TSS descriptor. For interrupts generated by the INT n 
instruction, the DPL is checked.

3. Checks that the TSS descriptor of the new task is marked present and has a valid 
limit (greater than or equal to 67H).

4. Checks that the new task is available (call, jump, exception, or interrupt) or busy 
(IRET return).

5. Checks that the current (old) TSS, new TSS, and all segment descriptors used in 
the task switch are paged into system memory.

6. If the task switch was initiated with a JMP or IRET instruction, the processor 
clears the busy (B) flag in the current (old) task’s TSS descriptor; if initiated with 
a CALL instruction, an exception, or an interrupt: the busy (B) flag is left set. 
(See Table 6-2.)

7. If the task switch was initiated with an IRET instruction, the processor clears the 
NT flag in a temporarily saved image of the EFLAGS register; if initiated with a 
CALL or JMP instruction, an exception, or an interrupt, the NT flag is left 
unchanged in the saved EFLAGS image.

8. Saves the state of the current (old) task in the current task’s TSS. The processor 
finds the base address of the current TSS in the task register and then copies the 
states of the following registers into the current TSS: all the general-purpose 
registers, segment selectors from the segment registers, the temporarily saved 
image of the EFLAGS register, and the instruction pointer register (EIP).

9. If the task switch was initiated with a CALL instruction, an exception, or an 
interrupt, the processor will set the NT flag in the EFLAGS loaded from the new 
task. If initiated with an IRET instruction or JMP instruction, the NT flag will reflect 
the state of NT in the EFLAGS loaded from the new task (see Table 6-2).



6-14   Vol. 3

TASK MANAGEMENT

10. If the task switch was initiated with a CALL instruction, JMP instruction, an 
exception, or an interrupt, the processor sets the busy (B) flag in the new task’s 
TSS descriptor; if initiated with an IRET instruction, the busy (B) flag is left set.

11. Loads the task register with the segment selector and descriptor for the new 
task's TSS.

12. The TSS state is loaded into the processor. This includes the LDTR register, the 
PDBR (control register CR3), the EFLAGS registers, the EIP register, the general-
purpose registers, and the segment selectors. Note that a fault during the load of 
this state may corrupt architectural state. 

13. The descriptors associated with the segment selectors are loaded and qualified. 
Any errors associated with this loading and qualification occur in the context of 
the new task. 

NOTES
If all checks and saves have been carried out successfully, the 
processor commits to the task switch. If an unrecoverable error 
occurs in steps 1 through 11, the processor does not complete the 
task switch and insures that the processor is returned to its state 
prior to the execution of the instruction that initiated the task switch. 
 
If an unrecoverable error occurs in step 12, architectural state may 
be corrupted, but an attempt will be made to handle the error in the 
prior execution environment. If an unrecoverable error occurs after 
the commit point (in step 13), the processor completes the task 
switch (without performing additional access and segment avail-
ability checks) and generates the appropriate exception prior to 
beginning execution of the new task. 
 
If exceptions occur after the commit point, the exception handler 
must finish the task switch itself before allowing the processor to 
begin executing the new task. See Chapter 5, “Interrupt 10—Invalid 
TSS Exception (#TS),” for more information about the affect of 
exceptions on a task when they occur after the commit point of a task 
switch.

14. Begins executing the new task. (To an exception handler, the first instruction of 
the new task appears not to have been executed.)

The state of the currently executing task is always saved when a successful task 
switch occurs. If the task is resumed, execution starts with the instruction pointed to 
by the saved EIP value, and the registers are restored to the values they held when 
the task was suspended.

When switching tasks, the privilege level of the new task does not inherit its privilege 
level from the suspended task. The new task begins executing at the privilege level 
specified in the CPL field of the CS register, which is loaded from the TSS. Because 
tasks are isolated by their separate address spaces and TSSs and because privilege 
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rules control access to a TSS, software does not need to perform explicit privilege 
checks on a task switch.

Table 6-1 shows the exception conditions that the processor checks for when 
switching tasks. It also shows the exception that is generated for each check if an 
error is detected and the segment that the error code references. (The order of the 
checks in the table is the order used in the P6 family processors. The exact order is 
model specific and may be different for other IA-32 processors.) Exception handlers 
designed to handle these exceptions may be subject to recursive calls if they attempt 
to reload the segment selector that generated the exception. The cause of the excep-
tion (or the first of multiple causes) should be fixed before reloading the selector.

Table 6-1.  Exception Conditions Checked During a Task Switch  
Condition Checked Exception1 Error Code 

Reference2

Segment selector for a TSS descriptor references  
the GDT and is within the limits of the table.

#GP

#TS (for IRET)

New Task’s TSS

TSS descriptor is present in memory. #NP New Task’s TSS

TSS descriptor is not busy (for task switch initiated 
by a call, interrupt, or exception).

#GP (for JMP, CALL, 
INT)

Task’s back-link TSS

TSS descriptor is not busy (for task switch initiated 
by an IRET instruction).

#TS (for IRET) New Task’s TSS

TSS segment limit greater than or equal to 108 (for 
32-bit TSS) or 44 (for 16-bit TSS).

#TS New Task’s TSS

Registers are loaded from the values in the TSS.

LDT segment selector of new task is valid 3. #TS New Task’s LDT

Code segment DPL matches segment selector RPL. #TS New Code Segment

SS segment selector is valid 2. #TS New Stack Segment

Stack segment is present in memory. #SS New Stack Segment

Stack segment DPL matches CPL. #TS New stack segment

LDT of new task is present in memory. #TS New Task’s LDT

CS segment selector is valid 3. #TS New Code Segment

Code segment is present in memory. #NP New Code Segment

Stack segment DPL matches selector RPL. #TS New Stack Segment

DS, ES, FS, and GS segment selectors are valid 3. #TS New Data Segment

DS, ES, FS, and GS segments are readable. #TS New Data Segment
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The TS (task switched) flag in the control register CR0 is set every time a task switch 
occurs. System software uses the TS flag to coordinate the actions of floating-point 
unit when generating floating-point exceptions with the rest of the processor. The TS 
flag indicates that the context of the floating-point unit may be different from that of 
the current task. See Section 2.5, “Control Registers”, for a detailed description of 
the function and use of the TS flag.

6.4 TASK LINKING
The previous task link field of the TSS (sometimes called the “backlink”) and the NT 
flag in the EFLAGS register are used to return execution to the previous task. 
EFLAGS.NT = 1 indicates that the currently executing task is nested within the 
execution of another task. 

When a CALL instruction, an interrupt, or an exception causes a task switch: the 
processor copies the segment selector for the current TSS to the previous task link 
field of the TSS for the new task; it then sets EFLAGS.NT = 1. If software uses an 
IRET instruction to suspend the new task, the processor checks for EFLAGS.NT = 1; 
it then uses the value in the previous task link field to return to the previous task. See 
Figures 6-8.

When a JMP instruction causes a task switch, the new task is not nested. The 
previous task link field is not used and EFLAGS.NT = 0. Use a JMP instruction to 
dispatch a new task when nesting is not desired.

DS, ES, FS, and GS segments are present in memory. #NP New Data Segment

DS, ES, FS, and GS segment DPL greater than or 
equal to CPL (unless these are 
conforming segments).

#TS New Data Segment

NOTES:
1. #NP is segment-not-present exception, #GP is general-protection exception, #TS is invalid-TSS 

exception, and #SS is stack-fault exception.
2. The error code contains an index to the segment descriptor referenced in this column.
3. A segment selector is valid if it is in a compatible type of table (GDT or LDT), occupies an address 

within the table's segment limit, and refers to a compatible type of descriptor (for example, a seg-
ment selector in the CS register only is valid when it points to a code-segment descriptor).

Table 6-1.  Exception Conditions Checked During a Task Switch  (Contd.)
Condition Checked Exception1 Error Code 

Reference2
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Table 6-2 shows the busy flag (in the TSS segment descriptor), the NT flag, the 
previous task link field, and TS flag (in control register CR0) during a task switch.

The NT flag may be modified by software executing at any privilege level. It is 
possible for a program to set the NT flag and execute an IRET instruction. This might 
randomly invoke the task specified in the previous link field of the current task's TSS. 
To keep such spurious task switches from succeeding, the operating system should 
initialize the previous task link field in every TSS that it creates to 0. 

Figure 6-8.  Nested Tasks

Table 6-2.  Effect of a Task Switch on Busy Flag, NT Flag, 
Previous Task Link Field, and TS Flag

Flag or Field Effect of JMP 
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Effect of CALL 
Instruction or 

Interrupt

Effect of IRET
Instruction

Busy (B) flag of new 
task.

Flag is set. Must have 
been clear before.

Flag is set. Must have 
been clear before.

No change. Must have 
been set.

Busy flag of old task. Flag is cleared. No change. Flag is 
currently set.

Flag is cleared.

NT flag of new task. Set to value from TSS 
of new task.

Flag is set. Set to value from TSS 
of new task.

NT flag of old task. No change. No change. Flag is cleared.

Previous task link field 
of new task.

No change. Loaded with selector  
for old task’s TSS.

No change.

Previous task link field 
of old task.

No change. No change. No change.

TS flag in control 
register CR0.
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6.4.1 Use of Busy Flag To Prevent Recursive Task Switching
A TSS allows only one context to be saved for a task; therefore, once a task is called 
(dispatched), a recursive (or re-entrant) call to the task would cause the current 
state of the task to be lost. The busy flag in the TSS segment descriptor is provided 
to prevent re-entrant task switching and a subsequent loss of task state information. 
The processor manages the busy flag as follows:

1. When dispatching a task, the processor sets the busy flag of the new task.

2. If during a task switch, the current task is placed in a nested chain (the task 
switch is being generated by a CALL instruction, an interrupt, or an exception), 
the busy flag for the current task remains set. 

3. When switching to the new task (initiated by a CALL instruction, interrupt, or 
exception), the processor generates a general-protection exception (#GP) if the 
busy flag of the new task is already set. If the task switch is initiated with an IRET 
instruction, the exception is not raised because the processor expects the busy 
flag to be set.

4. When a task is terminated by a jump to a new task (initiated with a JMP 
instruction in the task code) or by an IRET instruction in the task code, the 
processor clears the busy flag, returning the task to the “not busy” state.

The processor prevents recursive task switching by preventing a task from switching 
to itself or to any task in a nested chain of tasks. The chain of nested suspended tasks 
may grow to any length, due to multiple calls, interrupts, or exceptions. The busy 
flag prevents a task from being invoked if it is in this chain.

The busy flag may be used in multiprocessor configurations, because the processor 
follows a LOCK protocol (on the bus or in the cache) when it sets or clears the busy 
flag. This lock keeps two processors from invoking the same task at the same time. 
See Section 7.1.2.1, “Automatic Locking,” for more information about setting the 
busy flag in a multiprocessor applications.

6.4.2 Modifying Task Linkages
In a uniprocessor system, in situations where it is necessary to remove a task from a 
chain of linked tasks, use the following procedure to remove the task:

1. Disable interrupts.

2. Change the previous task link field in the TSS of the pre-empting task (the task 
that suspended the task to be removed). It is assumed that the pre-empting task 
is the next task (newer task) in the chain from the task to be removed. Change 
the previous task link field to point to the TSS of the next oldest task in the chain 
or to an even older task in the chain.

3. Clear the busy (B) flag in the TSS segment descriptor for the task being removed 
from the chain. If more than one task is being removed from the chain, the busy 
flag for each task being remove must be cleared.

4. Enable interrupts.
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In a multiprocessing system, additional synchronization and serialization operations 
must be added to this procedure to insure that the TSS and its segment descriptor 
are both locked when the previous task link field is changed and the busy flag is 
cleared.

6.5 TASK ADDRESS SPACE
The address space for a task consists of the segments that the task can access. 
These segments include the code, data, stack, and system segments referenced in 
the TSS and any other segments accessed by the task code. The segments are 
mapped into the processor’s linear address space, which is in turn mapped into the 
processor’s physical address space (either directly or through paging).

The LDT segment field in the TSS can be used to give each task its own LDT. Giving a 
task its own LDT allows the task address space to be isolated from other tasks by 
placing the segment descriptors for all the segments associated with the task in the 
task’s LDT.

It also is possible for several tasks to use the same LDT. This is a memory-efficient 
way to allow specific tasks to communicate with or control each other, without drop-
ping the protection barriers for the entire system.

Because all tasks have access to the GDT, it also is possible to create shared 
segments accessed through segment descriptors in this table.

If paging is enabled, the CR3 register (PDBR) field in the TSS allows each task to 
have its own set of page tables for mapping linear addresses to physical addresses. 
Or, several tasks can share the same set of page tables.

6.5.1 Mapping Tasks to the Linear and Physical Address Spaces
Tasks can be mapped to the linear address space and physical address space in one 
of two ways:

• One linear-to-physical address space mapping is shared among all tasks. 
— When paging is not enabled, this is the only choice. Without paging, all linear 
addresses map to the same physical addresses. When paging is enabled, this 
form of linear-to-physical address space mapping is obtained by using one page 
directory for all tasks. The linear address space may exceed the available 
physical space if demand-paged virtual memory is supported.

• Each task has its own linear address space that is mapped to the physical 
address space. — This form of mapping is accomplished by using a different 
page directory for each task. Because the PDBR (control register CR3) is loaded 
on task switches, each task may have a different page directory.

The linear address spaces of different tasks may map to completely distinct physical 
addresses. If the entries of different page directories point to different page tables 
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and the page tables point to different pages of physical memory, then the tasks do 
not share physical addresses.

With either method of mapping task linear address spaces, the TSSs for all tasks 
must lie in a shared area of the physical space, which is accessible to all tasks. This 
mapping is required so that the mapping of TSS addresses does not change while the 
processor is reading and updating the TSSs during a task switch. The linear address 
space mapped by the GDT also should be mapped to a shared area of the physical 
space; otherwise, the purpose of the GDT is defeated. Figure 6-9 shows how the 
linear address spaces of two tasks can overlap in the physical space by sharing page 
tables. 

6.5.2 Task Logical Address Space
To allow the sharing of data among tasks, use the following techniques to create 
shared logical-to-physical address-space mappings for data segments:

• Through the segment descriptors in the GDT — All tasks must have access 
to the segment descriptors in the GDT. If some segment descriptors in the GDT 
point to segments in the linear-address space that are mapped into an area of the 
physical-address space common to all tasks, then all tasks can share the data 
and code in those segments.

• Through a shared LDT — Two or more tasks can use the same LDT if the LDT 
fields in their TSSs point to the same LDT. If some segment descriptors in a 

Figure 6-9.  Overlapping Linear-to-Physical Mappings
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shared LDT point to segments that are mapped to a common area of the physical 
address space, the data and code in those segments can be shared among the 
tasks that share the LDT. This method of sharing is more selective than sharing 
through the GDT, because the sharing can be limited to specific tasks. Other 
tasks in the system may have different LDTs that do not give them access to the 
shared segments.

• Through segment descriptors in distinct LDTs that are mapped to 
common addresses in linear address space — If this common area of the 
linear address space is mapped to the same area of the physical address space 
for each task, these segment descriptors permit the tasks to share segments. 
Such segment descriptors are commonly called aliases. This method of sharing is 
even more selective than those listed above, because, other segment descriptors 
in the LDTs may point to independent linear addresses which are not shared.

6.6 16-BIT TASK-STATE SEGMENT (TSS)
The 32-bit IA-32 processors also recognize a 16-bit TSS format like the one used in 
Intel 286 processors (see Figure 6-10). This format is supported for compatibility 
with software written to run on earlier IA-32 processors. 

The following information is important to know about the 16-bit TSS.

• Do not use a 16-bit TSS to implement a virtual-8086 task.

• The valid segment limit for a 16-bit TSS is 2CH.

• The 16-bit TSS does not contain a field for the base address of the page directory, 
which is loaded into control register CR3. A separate set of page tables for each 
task is not supported for 16-bit tasks. If a 16-bit task is dispatched, the page-
table structure for the previous task is used.

• The I/O base address is not included in the 16-bit TSS. None of the functions of 
the I/O map are supported.

• When task state is saved in a 16-bit TSS, the upper 16 bits of the EFLAGS register 
and the EIP register are lost.

• When the general-purpose registers are loaded or saved from a 16-bit TSS, the 
upper 16 bits of the registers are modified and not maintained.
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6.7 TASK MANAGEMENT IN 64-BIT MODE
In 64-bit mode, task structure and task state are similar to those in protected mode. 
However, the task switching mechanism available in protected mode is not supported 
in 64-bit mode. Task management and switching must be performed by software. 
The processor issues a general-protection exception (#GP) if the following is 
attempted in 64-bit mode:

• Control transfer to a TSS or a task gate using JMP, CALL, INTn, or interrupt.

• An IRET with EFLAGS.NT (nested task) set to 1.

Figure 6-10.  16-Bit TSS Format
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Although hardware task-switching is not supported in 64-bit mode, a 64-bit task 
state segment (TSS) must exist. Figure 6-11 shows the format of a 64-bit TSS. The 
TSS holds information important to 64-bit mode and that is not directly related to the 
task-switch mechanism. This information includes:

• RSPn — The full 64-bit canonical forms of the stack pointers (RSP) for privilege 
levels 0-2.

• ISTn — The full 64-bit canonical forms of the interrupt stack table (IST) pointers.

• I/O map base address — The 16-bit offset to the I/O permission bit map from 
the 64-bit TSS base.

The operating system must create at least one 64-bit TSS after activating IA-32e 
mode. It must execute the LTR instruction (in 64-bit mode) to load the TR register 
with a pointer to the 64-bit TSS responsible for both 64-bit-mode programs and 
compatibility-mode programs.
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Figure 6-11.  64-Bit TSS Format
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Reserved

Reserved

Reserved

Reserved

Reserved

Reserved
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CHAPTER 7
MULTIPLE-PROCESSOR MANAGEMENT

The Intel 64 and IA-32 architectures provide mechanisms for managing and 
improving the performance of multiple processors connected to the same system 
bus. These include:

• Bus locking and/or cache coherency management for performing atomic 
operations on system memory.

• Serializing instructions. These instructions apply only to the Pentium 4, Intel 
Xeon, P6 family, and Pentium processors.

• An advance programmable interrupt controller (APIC) located on the processor 
chip (see Chapter 9, “Advanced Programmable Interrupt Controller (APIC)”). This 
feature was introduced by the Pentium processor.

• A second-level cache (level 2, L2). For the Pentium 4, Intel Xeon, and P6 family 
processors, the L2 cache is included in the processor package and is tightly 
coupled to the processor. For the Pentium and Intel486 processors, pins are 
provided to support an external L2 cache.

• A third-level cache (level 3, L3). For Intel Xeon processors, the L3 cache is 
included in the processor package and is tightly coupled to the processor.

• Hyper-Threading Technology. This extension to the Intel 64 and IA-32 architec-
tures enables a single processor core to execute two or more threads concur-
rently (see Section 7.6, “Hyper-Threading and Multi-Core Technology”).

These mechanisms are particularly useful in symmetric-multiprocessing (SMP) 
systems. However, they can also be used when an Intel 64 or IA-32 processor and a 
special-purpose processor (such as a communications, graphics, or video processor) 
share the system bus.

These multiprocessing mechanisms have the following characteristics:

• To maintain system memory coherency — When two or more processors are 
attempting simultaneously to access the same address in system memory, some 
communication mechanism or memory access protocol must be available to 
promote data coherency and, in some instances, to allow one processor to 
temporarily lock a memory location.

• To maintain cache consistency — When one processor accesses data cached on 
another processor, it must not receive incorrect data. If it modifies data, all other 
processors that access that data must receive the modified data.

• To allow predictable ordering of writes to memory — In some circumstances, it is 
important that memory writes be observed externally in precisely the same order 
as programmed.

• To distribute interrupt handling among a group of processors — When several 
processors are operating in a system in parallel, it is useful to have a centralized 
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mechanism for receiving interrupts and distributing them to available processors 
for servicing.

• To increase system performance by exploiting the multi-threaded and multi-
process nature of contemporary operating systems and applications.

The caching mechanism and cache consistency of Intel 64 and IA-32 processors are 
discussed in Chapter 10. The APIC architecture is described in Chapter 9. Bus and 
memory locking, serializing instructions, memory ordering, and Hyper-Threading 
Technology are discussed in the following sections. 

7.1 LOCKED ATOMIC OPERATIONS
The 32-bit IA-32 processors support locked atomic operations on locations in system 
memory. These operations are typically used to manage shared data structures (such 
as semaphores, segment descriptors, system segments, or page tables) in which two 
or more processors may try simultaneously to modify the same field or flag. The 
processor uses three interdependent mechanisms for carrying out locked atomic 
operations:

• Guaranteed atomic operations

• Bus locking, using the LOCK# signal and the LOCK instruction prefix

• Cache coherency protocols that insure that atomic operations can be carried out 
on cached data structures (cache lock); this mechanism is present in the 
Pentium 4, Intel Xeon, and P6 family processors

These mechanisms are interdependent in the following ways. Certain basic memory 
transactions (such as reading or writing a byte in system memory) are always guar-
anteed to be handled atomically. That is, once started, the processor guarantees that 
the operation will be completed before another processor or bus agent is allowed 
access to the memory location. The processor also supports bus locking for 
performing selected memory operations (such as a read-modify-write operation in a 
shared area of memory) that typically need to be handled atomically, but are not 
automatically handled this way. Because frequently used memory locations are often 
cached in a processor’s L1 or L2 caches, atomic operations can often be carried out 
inside a processor’s caches without asserting the bus lock. Here the processor’s 
cache coherency protocols insure that other processors that are caching the same 
memory locations are managed properly while atomic operations are performed on 
cached memory locations.

NOTE
Where there are contested lock accesses, software may need to 
implement algorithms that ensure fair access to resources in order to 
prevent lock starvation. The hardware provides no resource that 
guarantees fairness to participating agents. It is the responsibility of 
software to manage the fairness of semaphores and exclusive locking 
functions.
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The mechanisms for handling locked atomic operations have evolved with the 
complexity of IA-32 processors. More recent IA-32 processors (such as the 
Pentium 4, Intel Xeon, and P6 family processors) and Intel 64 provide a more refined 
locking mechanism than earlier processors. These mechanisms are described in the 
following sections.

7.1.1 Guaranteed Atomic Operations
The Intel486 processor (and newer processors since) guarantees that the following 
basic memory operations will always be carried out atomically:

• Reading or writing a byte

• Reading or writing a word aligned on a 16-bit boundary

• Reading or writing a doubleword aligned on a 32-bit boundary

The Pentium processor (and newer processors since) guarantees that the following 
additional memory operations will always be carried out atomically:

• Reading or writing a quadword aligned on a 64-bit boundary

• 16-bit accesses to uncached memory locations that fit within a 32-bit data bus

The P6 family processors (and newer processors since) guarantee that the following 
additional memory operation will always be carried out atomically:

• Unaligned 16-, 32-, and 64-bit accesses to cached memory that fit within a cache 
line

Accesses to cacheable memory that are split across bus widths, cache lines, and 
page boundaries are not guaranteed to be atomic by the Intel Core 2 Duo, Intel Core 
Duo, Pentium M, Pentium 4, Intel Xeon, P6 family, Pentium, and Intel486 processors. 
The Intel Core 2 Duo, Intel Core Duo, Pentium M, Pentium 4, Intel Xeon, and P6 
family processors provide bus control signals that permit external memory 
subsystems to make split accesses atomic; however, nonaligned data accesses will 
seriously impact the performance of the processor and should be avoided.

7.1.2 Bus Locking
Intel 64 and IA-32 processors provide a LOCK# signal that is asserted automatically 
during certain critical memory operations to lock the system bus. While this output 
signal is asserted, requests from other processors or bus agents for control of the bus 
are blocked. Software can specify other occasions when the LOCK semantics are to 
be followed by prepending the LOCK prefix to an instruction.

In the case of the Intel386, Intel486, and Pentium processors, explicitly locked 
instructions will result in the assertion of the LOCK# signal. It is the responsibility of 
the hardware designer to make the LOCK# signal available in system hardware to 
control memory accesses among processors.
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For the P6 and more recent processor families, if the memory area being accessed is 
cached internally in the processor, the LOCK# signal is generally not asserted; 
instead, locking is only applied to the processor’s caches (see Section 7.1.4, “Effects 
of a LOCK Operation on Internal Processor Caches”).

7.1.2.1  Automatic Locking
The operations on which the processor automatically follows the LOCK semantics are 
as follows:

• When executing an XCHG instruction that references memory.

• When setting the B (busy) flag of a TSS descriptor — The processor tests 
and sets the busy flag in the type field of the TSS descriptor when switching to a 
task. To insure that two processors do not switch to the same task simulta-
neously, the processor follows the LOCK semantics while testing and setting this 
flag.

• When updating segment descriptors — When loading a segment descriptor, 
the processor will set the accessed flag in the segment descriptor if the flag is 
clear. During this operation, the processor follows the LOCK semantics so that the 
descriptor will not be modified by another processor while it is being updated. For 
this action to be effective, operating-system procedures that update descriptors 
should use the following steps:

— Use a locked operation to modify the access-rights byte to indicate that the 
segment descriptor is not-present, and specify a value for the type field that 
indicates that the descriptor is being updated.

— Update the fields of the segment descriptor. (This operation may require 
several memory accesses; therefore, locked operations cannot be used.)

— Use a locked operation to modify the access-rights byte to indicate that the 
segment descriptor is valid and present.

• The Intel386 processor always updates the accessed flag in the segment 
descriptor, whether it is clear or not. The Pentium 4, Intel Xeon, P6 family, 
Pentium, and Intel486 processors only update this flag if it is not already set.

• When updating page-directory and page-table entries — When updating 
page-directory and page-table entries, the processor uses locked cycles to set 
the accessed and dirty flag in the page-directory and page-table entries.

• Acknowledging interrupts — After an interrupt request, an interrupt controller 
may use the data bus to send the interrupt vector for the interrupt to the 
processor. The processor follows the LOCK semantics during this time to ensure 
that no other data appears on the data bus when the interrupt vector is being 
transmitted.
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7.1.2.2  Software Controlled Bus Locking
To explicitly force the LOCK semantics, software can use the LOCK prefix with the 
following instructions when they are used to modify a memory location. An invalid-
opcode exception (#UD) is generated when the LOCK prefix is used with any other 
instruction or when no write operation is made to memory (that is, when the destina-
tion operand is in a register).

• The bit test and modify instructions (BTS, BTR, and BTC).

• The exchange instructions (XADD, CMPXCHG, and CMPXCHG8B). 

• The LOCK prefix is automatically assumed for XCHG instruction.

• The following single-operand arithmetic and logical instructions: INC, DEC, NOT, 
and NEG.

• The following two-operand arithmetic and logical instructions: ADD, ADC, SUB, 
SBB, AND, OR, and XOR.

A locked instruction is guaranteed to lock only the area of memory defined by the 
destination operand, but may be interpreted by the system as a lock for a larger 
memory area.

Software should access semaphores (shared memory used for signalling between 
multiple processors) using identical addresses and operand lengths. For example, if 
one processor accesses a semaphore using a word access, other processors should 
not access the semaphore using a byte access. 

NOTE
Do not implement semaphores using the WC memory type. Do not 
perform non-temporal stores to a cache line containing a location 
used to implement a semaphore. 

The integrity of a bus lock is not affected by the alignment of the memory field. The 
LOCK semantics are followed for as many bus cycles as necessary to update the 
entire operand. However, it is recommend that locked accesses be aligned on their 
natural boundaries for better system performance:

• Any boundary for an 8-bit access (locked or otherwise).

• 16-bit boundary for locked word accesses.

• 32-bit boundary for locked doubleword accesses.

• 64-bit boundary for locked quadword accesses.

Locked operations are atomic with respect to all other memory operations and all 
externally visible events. Only instruction fetch and page table accesses can pass 
locked instructions. Locked instructions can be used to synchronize data written by 
one processor and read by another processor.

For the P6 family processors, locked operations serialize all outstanding load and 
store operations (that is, wait for them to complete). This rule is also true for the 
Pentium 4 and Intel Xeon processors, with one exception. Load operations that refer-
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ence weakly ordered memory types (such as the WC memory type) may not be seri-
alized.

Locked instructions should not be used to insure that data written can be fetched as 
instructions. 

NOTE
The locked instructions for the current versions of the Pentium 4, 
Intel Xeon, P6 family, Pentium, and Intel486 processors allow data 
written to be fetched as instructions. However, Intel recommends 
that developers who require the use of self-modifying code use a 
different synchronizing mechanism, described in the following 
sections.

7.1.3 Handling Self- and Cross-Modifying Code
The act of a processor writing data into a currently executing code segment with 
the intent of executing that data as code is called self-modifying code. IA-32 
processors exhibit model-specific behavior when executing self-modified code, 
depending upon how far ahead of the current execution pointer the code has been 
modified. 

As processor microarchitectures become more complex and start to speculatively 
execute code ahead of the retirement point (as in P6 and more recent processor 
families), the rules regarding which code should execute, pre- or post-modification, 
become blurred. To write self-modifying code and ensure that it is compliant with 
current and future versions of the IA-32 architectures, use one of the following 
coding options:

(* OPTION 1 *)
Store modified code (as data) into code segment; 
Jump to new code or an intermediate location;
Execute new code;

(* OPTION 2 *)
Store modified code (as data) into code segment;
Execute a serializing instruction; (* For example, CPUID instruction *)
Execute new code;

The use of one of these options is not required for programs intended to run on the 
Pentium or Intel486 processors, but are recommended to insure compatibility with 
the P6 and more recent processor families.

Self-modifying code will execute at a lower level of performance than non-self-modi-
fying or normal code. The degree of the performance deterioration will depend upon 
the frequency of modification and specific characteristics of the code.
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The act of one processor writing data into the currently executing code segment of a 
second processor with the intent of having the second processor execute that data as 
code is called cross-modifying code. As with self-modifying code, IA-32 processors 
exhibit model-specific behavior when executing cross-modifying code, depending 
upon how far ahead of the executing processors current execution pointer the code 
has been modified. 

To write cross-modifying code and insure that it is compliant with current and future 
versions of the IA-32 architecture, the following processor synchronization algorithm 
must be implemented:

(* Action of Modifying Processor *)
Memory_Flag ← 0; (* Set Memory_Flag to value other than 1 *)
Store modified code (as data) into code segment;
Memory_Flag ← 1;

(* Action of Executing Processor *)
WHILE (Memory_Flag ≠ 1)

Wait for code to update;
ELIHW; 

Execute serializing instruction; (* For example, CPUID instruction *)
Begin executing modified code;

(The use of this option is not required for programs intended to run on the Intel486 
processor, but is recommended to insure compatibility with the Pentium 4, Intel 
Xeon, P6 family, and Pentium processors.)

Like self-modifying code, cross-modifying code will execute at a lower level of perfor-
mance than non-cross-modifying (normal) code, depending upon the frequency of 
modification and specific characteristics of the code.

The restrictions on self-modifying code and cross-modifying code also apply to the 
Intel 64 architecture.

7.1.4 Effects of a LOCK Operation on Internal Processor Caches
For the Intel486 and Pentium processors, the LOCK# signal is always asserted on the 
bus during a LOCK operation, even if the area of memory being locked is cached in 
the processor.

For the P6 and more recent processor families, if the area of memory being locked 
during a LOCK operation is cached in the processor that is performing the LOCK oper-
ation as write-back memory and is completely contained in a cache line, the 
processor may not assert the LOCK# signal on the bus. Instead, it will modify the 
memory location internally and allow it’s cache coherency mechanism to insure that 
the operation is carried out atomically. This operation is called “cache locking.” The 
cache coherency mechanism automatically prevents two or more processors that 
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have cached the same area of memory from simultaneously modifying data in that 
area.

7.2 MEMORY ORDERING
The term memory ordering refers to the order in which the processor issues reads 
(loads) and writes (stores) through the system bus to system memory. The Intel 64 
and IA-32 architectures support several memory-ordering models depending on the 
implementation of the architecture. For example, the Intel386 processor enforces 
program ordering (generally referred to as strong ordering), where reads and 
writes are issued on the system bus in the order they occur in the instruction stream 
under all circumstances. 

To allow performance optimization of instruction execution, the IA-32 architecture 
allows departures from strong-ordering model called processor ordering in 
Pentium 4, Intel Xeon, and P6 family processors. These processor-ordering varia-
tions (called here the Intel-64 memory-ordering model) allow performance 
enhancing operations such as allowing reads to go ahead of buffered writes. The goal 
of any of these variations is to increase instruction execution speeds, while main-
taining memory coherency, even in multiple-processor systems.

Section 7.2.1 and Section 7.2.2 describe the memory-ordering implemented by 
Intel486, Pentium, Intel Core 2 Duo, Intel Core Duo, Pentium 4, Intel Xeon, and P6 
family processors. Section 7.2.3 gives examples illustrating the behavior of the 
Intel-64 memory-ordering model. Section 7.2.4 considers the special treatment of 
stores for string operations and Section 7.2.5 discusses how memory-ordering 
behavior may be modified through the use of specific instructions.

7.2.1 Memory Ordering in the Intel® Pentium® and Intel486™ 
Processors

The Pentium and Intel486 processors follow the processor-ordered memory model; 
however, they operate as strongly-ordered processors under most circumstances. 
Reads and writes always appear in programmed order at the system bus—except for 
the following situation where processor ordering is exhibited. Read misses are 
permitted to go ahead of buffered writes on the system bus when all the buffered 
writes are cache hits and, therefore, are not directed to the same address being 
accessed by the read miss. 

In the case of I/O operations, both reads and writes always appear in programmed 
order.

Software intended to operate correctly in processor-ordered processors (such as the 
Pentium 4, Intel Xeon, and P6 family processors) should not depend on the relatively 
strong ordering of the Pentium or Intel486 processors. Instead, it should insure that 
accesses to shared variables that are intended to control concurrent execution 
among processors are explicitly required to obey program ordering through the use 
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of appropriate locking or serializing operations (see Section 7.2.5, “Strengthening or 
Weakening the Memory-Ordering Model”).

7.2.2 Memory Ordering in P6 and More Recent Processor Families
The Intel Core 2 Duo, Intel Core Duo, Pentium 4, and P6 family processors also use a 
processor-ordered memory-ordering model that can be further defined as “write 
ordered with store-buffer forwarding.” This model can be characterized as follows. 

In a single-processor system for memory regions defined as write-back cacheable, 
the following ordering principles apply (Note the memory-ordering principles for 
single-processor and multiple-processor systems are written from the perspective of 
software executing on the processor, where the term “processor“ refers to a logical 
processor. For example, a physical processor supporting multiple cores and/or 
HyperThreading Technology is treated as a multi-processor systems.):

• Reads are not reordered with other reads.

• Writes are not reordered with older reads.

• Writes to memory are not reordered with other writes, with the exception of 
writes executed with the CLFLUSH instruction and streaming stores (writes) 
executed with the non-temporal move instructions (MOVNTI, MOVNTQ, 
MOVNTDQ, MOVNTPS, and MOVNTPD).

• Reads may be reordered with older writes to different locations but not with older 
writes to the same location. 

• Reads or writes cannot be reordered with I/O instructions, locked instructions, or 
serializing instructions.

• Reads cannot pass LFENCE and MFENCE instructions.

• Writes cannot pass SFENCE and MFENCE instructions.

In a multiple-processor system, the following ordering principles apply:

• Individual processors use the same ordering principles as in a single-processor 
system.

• Writes by a single processor are observed in the same order by all processors.

• Writes from an individual processor are NOT ordered with respect to the writes 
from other processors.

• Memory ordering obeys causality (memory ordering respects transitive 
visibility).

• Writes to the same location have a total order.

• Locked instructions have a total order.

See the example in Figure 7-1. Consider three processors in a system and each 
processor performs three writes, one to each of three defined locations (A, B, and C). 
Individually, the processors perform the writes in the same program order, but 
because of bus arbitration and other memory access mechanisms, the order that the 
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three processors write the individual memory locations can differ each time the 
respective code sequences are executed on the processors. The final values in loca-
tion A, B, and C would possibly vary on each execution of the write sequence.

The processor-ordering model described in this section is virtually identical to that 
used by the Pentium and Intel486 processors. The only enhancements in the Pentium 
4, Intel Xeon, and P6 family processors are:

• Added support for speculative reads, while still adhering to the ordering 
principles above.

• Store-buffer forwarding, when a read passes a write to the same memory 
location.

• Out of order store from long string store and string move operations (see Section 
7.2.4, “Out-of-Order Stores For String Operations,” below).

NOTE
In P6 processor family, store-buffer forwarding to reads of WC memory from 
streaming stores to the same address does not occur due to errata.

Figure 7-1.  Example of Write Ordering in Multiple-Processor Systems

Processor #1 Processor #2 Processor #3
Write A.3
Write B.3
Write C.3

Write A.1
Write B.1
Write A.2
Write A.3
Write C.1
Write B.2
Write C.2
Write B.3
Write C.3

Order of Writes From Individual Processors

Write A.2
Write B.2
Write C.2

Write A.1
Write B.1
Write C.1

Writes from all
processors are
not guaranteed
to occur in a
particular order.

Each processor
is guaranteed to
perform writes in
program order.

Writes are in order
with respect to 
individual processes.

Example of order of actual writes
from all processors to memory
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7.2.3 Examples Illustrating the Intel-64 Memory-Ordering 
Principles

This section provides a set of examples that illustrate the behavior of the Intel-64 
memory-ordering principles introduced in Section 7.2.2. They are designed to give 
software writers an understanding of how memory ordering may affect the results of 
different sequences of instructions.

These examples are limited to accesses to memory regions defined as write-back 
cacheable (WB). (Section 7.2.3.1 describes other limitations on the generality of the 
examples.) The reader should understand that they describe only software-visible 
behavior. A logical processor may reorder two accesses even if one of examples indi-
cates that they may not be reordered. Such an example states only that software 
cannot detect that such a reordering occurred. Similarly, a logical processor may 
execute a memory access more than once as long as the behavior visible to software 
is consistent with a single execution of the memory access.

7.2.3.1  Assumptions, Terminology, and Notation
As noted above, the examples in this section are limited to accesses to memory 
regions defined as write-back cacheable (WB). They apply only to ordinary loads 
stores and to locked read-modify-write instructions. They do not necessarily apply to 
any of the following: out-of-order stores for string instructions (see Section 7.2.4); 
accesses with a non-temporal hint; reads from memory by the processor as part of 
address translation (e.g., page walks); and updates to segmentation and paging 
structures by the processor (e.g., to update “accessed” bits).

The principles underlying the examples in this section apply to individual memory 
accesses and to locked read-modify-write instructions. The Intel-64 memory-
ordering model guarantees that, for each of the following memory-access instruc-
tions, the constituent memory operation appears to execute as a single memory 
access:

• Instructions that read or write a single byte.

• Instructions that read or write a word (2 bytes) whose address is aligned on a 2 
byte boundary.

• Instructions that read or write a doubleword (4 bytes) whose address is aligned 
on a 4 byte boundary.

• Instructions that read or write a quadword (8 bytes) whose address is aligned on 
an 8 byte boundary.

Any locked instruction (either the XCHG instruction or another read-modify-write 
instruction with a LOCK prefix) appears to execute as an indivisible and uninterrupt-
ible sequence of load(s) followed by store(s) regardless of alignment.

Other instructions may be implemented with multiple memory accesses. From a 
memory-ordering point of view, there are no guarantees regarding the relative order 
in which the constituent memory accesses are made. There is also no guarantee that 
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the constituent operations of a store are executed in the same order as the constit-
uent operations of a load.

Section 7.2.3.2 through Section 7.2.3.7 give examples using the MOV instruction. 
The principles that underlie these examples apply to load and store accesses in 
general and to other instructions that load from or store to memory. Section 7.2.3.8 
and Section 7.2.3.9 give examples using the XCHG instruction. The principles that 
underlie these examples apply to other locked read-modify-write instructions.

This section uses the term “processor” is to refer to a logical processor. The examples 
are written using Intel-64 assembly-language syntax and use the following nota-
tional conventions:

• Arguments beginning with an “r”, such as r1 or r2 refer to registers (e.g., EAX) 
visible only to the processor being considered.

• Memory locations are denoted with x, y, z.

• Stores are written as mov [ _x], val, which implies that val is being stored into 
the memory location x.

• Loads are written as mov r, [ _x], which implies that the contents of the memory 
location x are being loaded into the register r.

As noted earlier, the examples refer only to software visible behavior. When the 
succeeding sections make statement such as “the two stores are reordered,” the 
implication is only that “the two stores appear to be reordered from the point of view 
of software.”

7.2.3.2  Neither Loads Nor Stores Are Reordered with Like Operations
The Intel-64 memory-ordering model allows neither loads nor stores to be reordered 
with the same kind of operation. That is, it ensures that loads are seen in program 
order and that stores are seen in program order. This is illustrated by the following 
example:

The disallowed return values could be exhibited only if processor 0’s two stores are 
reordered (with the two loads occurring between them) or if processor 1’s two loads 
are reordered (with the two stores occurring between them). 
 
If r1 == 1, the store to y occurs before the load from y. Because the Intel-64 
memory-ordering model does not allow stores to be reordered, the earlier store to x 
occurs before the load from y. Because the Intel-64 memory-ordering model does 

Processor 0 Processor 1

mov [ _x], 1 mov r1, [ _y]

mov [ _y], 1 mov r2, [ _x]

Initially x == y == 0

r1 == 1 and r2 == 0 is not allowed
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not allow loads to be reordered, the store to x also occurs before the later load from 
x. This r2 == 1.

7.2.3.3  Stores Are Not Reordered With Earlier Loads
The Intel-64 memory-ordering model ensures that a store by a processor may not 
occur before a previous load by the same processor. This is illustrated by the 
following example:

Assume r1 == 1.

• Because r1 == 1, processor 1’s store to x occurs before processor 0’s load from 
x.

• Because the Intel-64 memory-ordering model prevents each store from being 
reordered with the earlier load by the same processor, processor 1’s load from y 
occurs before its store to x.

• Similarly, processor 0’s load from x occurs before its store to y.

• Thus, processor 1’s load from y occurs before processor 0’s store to y, implying 
r2 == 0.

7.2.3.4  Loads May Be Reordered with Earlier Stores to Different 
Locations

The Intel-64 memory-ordering model allows a load to be reordered with an earlier 
store to a different location. However, loads are not reordered with stores to the 
same location.

The fact that a load may be reordered with an earlier store to a different location is 
illustrated by the following example:

At each processor, the load and the store are to different locations and hence may be 
reordered. Any interleaving of the operations is thus allowed. One such interleaving 

Processor 0 Processor 1

mov r1, [ _x] mov r2, [ _y]

mov [ _y], 1 mov [ _x], 1

Initially x == y == 0

r1 == 1 and r2 == 1 is not allowed

Processor 0 Processor 1

mov [ _x], 1 mov [ _y], 1

mov r1, [ _y] mov r2, [ _x]

Initially x == y == 0

r1 == 0 and r2 == 0 is allowed
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has the two loads occurring before the two stores. This would result in each load 
returning value 0.

The fact that a load may not be reordered with an earlier store to the same location 
is illustrated by the following example:

The Intel-64 memory-ordering model does not allow the load to be reordered with 
the earlier store because the accesses are to the same location. Therefore, r1 == 1 
must hold.

7.2.3.5  Intra-Processor Forwarding Is Allowed
The Intel-64 memory-ordering model allows concurrent stores by two processors to 
be seen in different orders by those two processors; specifically, each processor may 
perceive its own store occurring before that of the other. This is illustrated by the 
following example:

The Intel-64 memory-ordering model imposes no constraints on the order in which 
the two stores appear to execute by the two processors. This fact allows processor 0 
to see its store before seeing processor 1's, while processor 1 sees its store before 
seeing processor 0's. (Each processor is self consistent.) This allows r2 == 0 and 
r4 == 0.

In practice, the reordering in this example can arise as a result of store-buffer 
forwarding. While a store is temporarily held in a processor's store buffer, it can 
satisfy the processor's own loads but is not visible to (and cannot satisfy) loads by 
other processors.

Processor 0

mov [ _x], 1

mov r1, [ _x]

Initially x == 0

r1 == 0 is not allowed

Processor 0 Processor 1

mov [ _x], 1 mov [ _y], 1

mov r1, [ _x] mov r3, [ _y]

mov r2, [ _y] mov r4, [ _x]

Initially x == y == 0

r2 == 0 and r4 == 0 is allowed
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7.2.3.6  Stores Are Transitively Visible
The Intel-64 memory-ordering model ensures transitive visibility of stores; stores 
that are causally related appear to all processors to occur in an order consistent with 
the causality relation. This is illustrated by the following example:

Assume that r1 == 1 and r2 == 1.

• Because r1 == 1, processor 0’s store occurs before processor 1’s load.

• Because the Intel-64 memory-ordering model prevents a store from being 
reordered with an earlier load (see Section 7.2.3.3), processor 1’s load occurs 
before its store. Thus, processor 0’s store causally precedes processor 1’s store.

• Because processor 0’s store causally precedes processor 1’s store, the Intel-64 
memory-ordering model ensures that processor 0’s store appears to occur before 
processor 1’s store from the point of view of all processors.

• Because r2 == 1, processor 1’s store occurs before processor 2’s load.

• Because the Intel-64 memory-ordering model prevents loads from being 
reordered (see Section 7.2.3.2), processor 2’s load occur in order.

• The above items imply that processor 0’s store to x occurs before processor 2’s 
load from x. This implies that r3 == 1.

7.2.3.7  Total Order on Stores to the Same Location
Accesses to write-back memory are coherent. This implies that any two stores to the 
same memory location (even by different processors) must appear to all processors 
to occur in the same order. This is illustrated by the following example:

Processor 0 Processor 1 Processor 2

mov [ _x], 1 mov r1, [ _x]

mov [ _y], 1 mov r2, [ _y]

mov r3, [_x]

Initially x == y == 0

r1 == 1, r2 == 1, r3 == 0 is not allowed

Processor 0 Processor 1 Processor 2 Processor 3

mov [ _x], 1 mov [ _x], 2

mov r1, [ _x] mov r3, [_x]

mov r2, [ _x] mov r4, [_x]

Initially x == 0

r1 == 1, r2 == 2, r3 == 2, r4 == 1 is not allowed
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Processor 2 and processor 3 must agree on the order of the two stores. Without loss 
of generality, suppose that processor 0’s store appears to occur first (processor 1 
subsequently overwrites x with 2).

• If r3 == 2, processor 1’s store occurs before processor 3’s first load.

• Because the Intel-64 memory-ordering model prevents loads from being 
reordered (see Section 7.2.3.2), processor 3’s loads occur in order and, 
therefore, processor 1’s store occurs before processor 3’s second load.

• Since processor 0’s store appears to occur before processor 1’s store (by 
assumption), processor 3’s second load cannot return 1.

A similar argument (referring instead to processor 2’s loads) applies if processor 1’s 
store appears to occur before processor 0’s store.

7.2.3.8  Locked Instructions Have a Total Order
The Intel-64 memory-ordering model ensures that all processors agree on a single 
execution order of all locked instructions, including those that access different loca-
tions. This is illustrated by the following example:

Processor 2 and processor 3 must agree on the order of the two executions of XCHG. 
Without loss of generality, suppose that processor 0’s XCHG occurs first.

• If r5 == 1, processor 1’s XCHG into y occurs before processor 3’s load from y.

• Because the Intel-64 memory-ordering model prevents loads from being 
reordered (see Section 7.2.3.2), processor 3’s loads occur in order and, 
therefore, processor 1’s XCHG occurs before processor 3’s load from x.

• Since processor 0’s XCHG into x occurs before processor 1’s XCHG (by 
assumption), it occurs before processor 3’s load from x. Thus, r6 == 1.

A similar argument (referring instead to processor 2’s loads) applies if processor 1’s 
XCHG occurs before processor 0’s XCHG.

7.2.3.9  Loads and Stores Are Not Reordered with Locked Instructions
The Intel-64 memory-ordering model prevents loads and stores from being reor-
dered with locked instructions that execute earlier or later. The examples in this 
section illustrate only cases in which a locked instruction is executed before a load or 

Processor 0 Processor 1 Processor 2 Processor 3

xchg [ _x], r1 xchg [ _y], r2

mov r3, [ _x] mov r5, [_y]

mov r4, [ _y] mov r6, [_x]

Initially r1 == r2 == 1, x == y == 0

r3 == 1, r4 == 0, r5 == 1, r6 == 0 is not allowed



Vol. 3   7-17

MULTIPLE-PROCESSOR MANAGEMENT

a store. The reader should note that reordering is prevented also if the locked 
instruction is executed after a load or a store.

The first example illustrates that loads may not be reordered with earlier locked 
instructions:

As explained in Section 7.2.3.8, there is a total order of the executions of locked 
instructions. Without loss of generality, suppose that processor 0’s XCHG occurs first.

Because the Intel-64 memory-ordering model prevents processor 1’s load from 
being reordered with its earlier XCHG, processor 0’s XCHG occurs before 
processor 1’s load. This implies r4 == 1.

A similar argument (referring instead to processor 2’s accesses) applies if 
processor 1’s XCHG occurs before processor 0’s XCHG.

The second example illustrates that a store may not be reordered with an earlier 
locked instruction:

Assume r2 == 1.

• Because r2 == 1, processor 0’s store to y occurs before processor 1’s load from 
y.

• Because the Intel-64 memory-ordering model prevents a store from being 
reordered with an earlier locked instruction, processor 0’s XCHG into x occurs 
before its store to y. Thus, processor 0’s XCHG into x occurs before processor 1’s 
load from y.

• Because the Intel-64 memory-ordering model prevents loads from being 
reordered (see Section 7.2.3.2), processor 1’s loads occur in order and, 
therefore, processor 1’s XCHG into x occurs before processor 1’s load from x. 
Thus, r3 == 1.

Processor 0 Processor 1

xchg [ _x], r1 xchg [ _y], r3

mov r2, [ _y] mov r4, [ _x]

Initially x == y == 0, r1 == r3 == 1

r2 == 0 and r4 == 0 is not allowed

Processor 0 Processor 1

xchg [ _x], r1 mov r2, [ _y]

mov [ _y], 1 mov r3, [ _x]

Initially x == y == 0, r1 == 1

r2 == 1 and r3 == 0 is not allowed
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7.2.4 Out-of-Order Stores For String Operations 
The Intel Core 2 Duo, Intel Core, Pentium 4, and P6 family processors modify the 
processors operation during the string store operations (initiated with the MOVS and 
STOS instructions) to maximize performance. Once the “fast string” operations initial 
conditions are met (as described below), the processor will essentially operate on, 
from an external perspective, the string in a cache line by cache line mode. This 
results in the processor looping on issuing a cache-line read for the source address 
and an invalidation on the external bus for the destination address, knowing that all 
bytes in the destination cache line will be modified, for the length of the string. In this 
mode interrupts will only be accepted by the processor on cache line boundaries. It is 
possible in this mode that the destination line invalidations, and therefore stores, will 
be issued on the external bus out of order. 

Code dependent upon sequential store ordering should not use the string operations 
for the entire data structure to be stored. Data and semaphores should be separated. 
Order dependent code should use a discrete semaphore uniquely stored to after any 
string operations to allow correctly ordered data to be seen by all processors.

Initial conditions for “fast string” operations:

• EDI and ESI must be 8-byte aligned for the Pentium III processor. EDI must be 8-
byte aligned for the Pentium 4 processor.

• String operation must be performed in ascending address order.

• The initial operation counter (ECX) must be equal to or greater than 64.

• Source and destination must not overlap by less than a cache line (64 bytes, for 
Intel Core 2 Duo, Intel Core, Pentium M, and Pentium 4 processors; 32 bytes P6 
family and Pentium processors).

• The memory type for both source and destination addresses must be either WB 
or WC.

7.2.5 Strengthening or Weakening the Memory-Ordering Model
The Intel 64 and IA-32 architectures provide several mechanisms for strengthening 
or weakening the memory-ordering model to handle special programming situations. 
These mechanisms include:

• The I/O instructions, locking instructions, the LOCK prefix, and serializing 
instructions force stronger ordering on the processor.

• The SFENCE instruction (introduced to the IA-32 architecture in the Pentium III 
processor) and the LFENCE and MFENCE instructions (introduced in the Pentium 
4 processor) provide memory-ordering and serialization capabilities for specific 
types of memory operations.

• The memory type range registers (MTRRs) can be used to strengthen or weaken 
memory ordering for specific area of physical memory (see Section 10.11, 
“Memory Type Range Registers (MTRRs)”). MTRRs are available only in the 
Pentium 4, Intel Xeon, and P6 family processors. 
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• The page attribute table (PAT) can be used to strengthen memory ordering for a 
specific page or group of pages (see Section 10.12, “Page Attribute Table (PAT)”). 
The PAT is available only in the Pentium 4, Intel Xeon, and Pentium III processors. 

These mechanisms can be used as follows:

Memory mapped devices and other I/O devices on the bus are often sensitive to the 
order of writes to their I/O buffers. I/O instructions can be used to (the IN and OUT 
instructions) impose strong write ordering on such accesses as follows. Prior to 
executing an I/O instruction, the processor waits for all previous instructions in the 
program to complete and for all buffered writes to drain to memory. Only instruction 
fetch and page tables walks can pass I/O instructions. Execution of subsequent 
instructions do not begin until the processor determines that the I/O instruction has 
been completed.

Synchronization mechanisms in multiple-processor systems may depend upon a 
strong memory-ordering model. Here, a program can use a locking instruction such 
as the XCHG instruction or the LOCK prefix to insure that a read-modify-write opera-
tion on memory is carried out atomically. Locking operations typically operate like 
I/O operations in that they wait for all previous instructions to complete and for all 
buffered writes to drain to memory (see Section 7.1.2, “Bus Locking”).

Program synchronization can also be carried out with serializing instructions (see 
Section 7.4). These instructions are typically used at critical procedure or task 
boundaries to force completion of all previous instructions before a jump to a new 
section of code or a context switch occurs. Like the I/O and locking instructions, the 
processor waits until all previous instructions have been completed and all buffered 
writes have been drained to memory before executing the serializing instruction.

The SFENCE, LFENCE, and MFENCE instructions provide a performance-efficient way 
of insuring load and store memory ordering between routines that produce weakly-
ordered results and routines that consume that data. The functions of these instruc-
tions are as follows:

• SFENCE — Serializes all store (write) operations that occurred prior to the 
SFENCE instruction in the program instruction stream, but does not affect load 
operations.

• LFENCE — Serializes all load (read) operations that occurred prior to the LFENCE 
instruction in the program instruction stream, but does not affect store 
operations.

• MFENCE — Serializes all store and load operations that occurred prior to the 
MFENCE instruction in the program instruction stream.

Note that the SFENCE, LFENCE, and MFENCE instructions provide a more efficient 
method of controlling memory ordering than the CPUID instruction.

The MTRRs were introduced in the P6 family processors to define the cache charac-
teristics for specified areas of physical memory. The following are two examples of 
how memory types set up with MTRRs can be used strengthen or weaken memory 
ordering for the Pentium 4, Intel Xeon, and P6 family processors:
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• The strong uncached (UC) memory type forces a strong-ordering model on 
memory accesses. Here, all reads and writes to the UC memory region appear on 
the bus and out-of-order or speculative accesses are not performed. This 
memory type can be applied to an address range dedicated to memory mapped 
I/O devices to force strong memory ordering.

• For areas of memory where weak ordering is acceptable, the write back (WB) 
memory type can be chosen. Here, reads can be performed speculatively and 
writes can be buffered and combined. For this type of memory, cache locking is 
performed on atomic (locked) operations that do not split across cache lines, 
which helps to reduce the performance penalty associated with the use of the 
typical synchronization instructions, such as XCHG, that lock the bus during the 
entire read-modify-write operation. With the WB memory type, the XCHG 
instruction locks the cache instead of the bus if the memory access is contained 
within a cache line.

The PAT was introduced in the Pentium III processor to enhance the caching charac-
teristics that can be assigned to pages or groups of pages. The PAT mechanism typi-
cally used to strengthen caching characteristics at the page level with respect to the 
caching characteristics established by the MTRRs. Table 10-7 shows the interaction of 
the PAT with the MTRRs.

We recommended that software written to run on Intel Core 2 Duo, Intel Core Duo, 
Pentium 4, Intel Xeon, and P6 family processors assume the processor-ordering 
model or a weaker memory-ordering model. The Intel Core 2 Duo, Intel Core Duo, 
Pentium 4, Intel Xeon, and P6 family processors do not implement a strong memory-
ordering model, except when using the UC memory type. Despite the fact that 
Pentium 4, Intel Xeon, and P6 family processors support processor ordering, Intel 
does not guarantee that future processors will support this model. To make software 
portable to future processors, it is recommended that operating systems provide crit-
ical region and resource control constructs and API’s (application program interfaces) 
based on I/O, locking, and/or serializing instructions be used to synchronize access 
to shared areas of memory in multiple-processor systems. Also, software should not 
depend on processor ordering in situations where the system hardware does not 
support this memory-ordering model.

7.3 PROPAGATION OF PAGE TABLE AND PAGE 
DIRECTORY ENTRY CHANGES TO MULTIPLE 
PROCESSORS

In a multiprocessor system, when one processor changes a page table or page direc-
tory entry, the changes must also be propagated to all other processors. This process 
is commonly referred to as “TLB shootdown.” The propagation of changes to page 
table or page directory entries can be done using memory-based semaphores and/or 
interprocessor interrupts (IPI). 
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For example, the following describes a simple TLB shootdown sequence for an Intel 
64 or IA-32 processor:

1. Begin barrier — Stop all but one processor; that is, cause all but one to HALT or 
stop in a spin loop.

2. Let the active processor change the necessary PTEs and/or PDEs.

3. Let all processors invalidate the PTEs and PDEs modified in their TLBs.

4. End barrier — Resume all processors; resume general processing.

Alternate, performance-optimized, TLB shootdown algorithms may be developed; 
however, care must be taken by the developers to ensure that either of the following 
conditions are met:

• Different TLB mappings are not used on different processors during the update 
process.

• The operating system is prepared to deal with the case where processors are 
using the stale mapping during the update process.

7.4 SERIALIZING INSTRUCTIONS
The Intel 64 and IA-32 architectures define several serializing instructions. These 
instructions force the processor to complete all modifications to flags, registers, and 
memory by previous instructions and to drain all buffered writes to memory before 
the next instruction is fetched and executed. For example, when a MOV to control 
register instruction is used to load a new value into control register CR0 to enable 
protected mode, the processor must perform a serializing operation before it enters 
protected mode. This serializing operation insures that all operations that were 
started while the processor was in real-address mode are completed before the 
switch to protected mode is made.

The concept of serializing instructions was introduced into the IA-32 architecture 
with the Pentium processor to support parallel instruction execution. Serializing 
instructions have no meaning for the Intel486 and earlier processors that do not 
implement parallel instruction execution.

It is important to note that executing of serializing instructions on P6 and more 
recent processor families constrain speculative execution because the results of 
speculatively executed instructions are discarded. The following instructions are seri-
alizing instructions:

• Privileged serializing instructions — MOV (to control register, with the 
exception of MOV CR81), MOV (to debug register), WRMSR, INVD, INVLPG, 
WBINVD, LGDT, LLDT, LIDT, and LTR.

• Non-privileged serializing instructions — CPUID, IRET, and RSM.

1. MOV CR8 is not defined architecturally as a serializing instruction.
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When the processor serializes instruction execution, it ensures that all pending 
memory transactions are completed (including writes stored in its store buffer) 
before it executes the next  instruction. Nothing can pass a serializing instruction and 
a serializing instruction cannot pass any other instruction (read, write, instruction 
fetch, or I/O). For example, CPUID can be executed at any privilege level to serialize 
instruction execution with no effect on program flow, except that the EAX, EBX, ECX, 
and EDX registers are modified.

The following instructions are memory-ordering instructions, not serializing instruc-
tions. These drain the data memory subsystem. They do not effect the instruction 
execution stream:

• Non-privileged memory-ordering instructions — SFENCE, LFENCE, and 
MFENCE.

The SFENCE, LFENCE, and MFENCE instructions provide more granularity in control-
ling the serialization of memory loads and stores (see Section 7.2.5, “Strengthening 
or Weakening the Memory-Ordering Model”).

The following additional information is worth noting regarding serializing instruc-
tions:

• The processor does not writeback the contents of modified data in its data cache 
to external memory when it serializes instruction execution. Software can force 
modified data to be written back by executing the WBINVD instruction, which is a 
serializing instruction. It should be noted that frequent use of the WBINVD 
instruction will seriously reduce system performance.

• When an instruction is executed that enables or disables paging (that is, changes 
the PG flag in control register CR0), the instruction should be followed by a jump 
instruction. The target instruction of the jump instruction is fetched with the new 
setting of the PG flag (that is, paging is enabled or disabled), but the jump 
instruction itself is fetched with the previous setting. The Pentium 4, Intel Xeon, 
and P6 family processors do not require the jump operation following the move to 
register CR0 (because any use of the MOV instruction in a Pentium 4, Intel Xeon, 
or P6 family processor to write to CR0 is completely serializing). However, to 
maintain backwards and forward compatibility with code written to run on other 
IA-32 processors, it is recommended that the jump operation be performed.

• Whenever an instruction is executed to change the contents of CR3 while paging 
is enabled, the next instruction is fetched using the translation tables that 
correspond to the new value of CR3. Therefore the next instruction and the 
sequentially following instructions should have a mapping based upon the new 
value of CR3. (Global entries in the TLBs are not invalidated, see Section 10.9, 
“Invalidating the Translation Lookaside Buffers (TLBs)”.)

• The Pentium processor and more recent processor families use branch-prediction 
techniques to improve performance by prefetching the destination of a branch 
instruction before the branch instruction is executed. Consequently, instruction 
execution is not deterministically serialized when a branch instruction is 
executed.
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7.5 MULTIPLE-PROCESSOR (MP) INITIALIZATION
The IA-32 architecture (beginning with the P6 family processors) defines a multiple-
processor (MP) initialization protocol called the Multiprocessor Specification Version 
1.4. This specification defines the boot protocol to be used by IA-32 processors in 
multiple-processor systems. (Here, multiple processors is defined as two or more 
processors.) The MP initialization protocol has the following important features:

• It supports controlled booting of multiple processors without requiring dedicated 
system hardware.

• It allows hardware to initiate the booting of a system without the need for a 
dedicated signal or a predefined boot processor.

• It allows all IA-32 processors to be booted in the same manner, including those 
supporting Hyper-Threading Technology.

• The MP initialization protocol also applies to MP systems using Intel 64 
processors.

The mechanism for carrying out the MP initialization protocol differs depending on 
the IA-32 processor family, as follows:

• For P6 family processors — The selection of the BSP and APs (see Section 
7.5.1, “BSP and AP Processors”) is handled through arbitration on the APIC bus, 
using BIPI and FIPI messages. See Appendix C, “MP Initialization For P6 Family 
Processors,” for a complete discussion of MP initialization for P6 family 
processors.

• Intel Xeon processors with family, model, and stepping IDs up to F09H — 
The selection of the BSP and APs (see Section 7.5.1, “BSP and AP Processors”) is 
handled through arbitration on the system bus, using BIPI and FIPI messages 
(see Section 7.5.3, “MP Initialization Protocol Algorithm for 
Intel Xeon Processors”).

• Intel Xeon processors with family, model, and stepping IDs of F0AH and 
beyond, 6E0H and beyond, 6F0H and beyond — The selection of the BSP and 
APs is handled through a special system bus cycle, without using BIPI and FIPI 
message arbitration (see Section 7.5.3, “MP Initialization Protocol Algorithm for 
Intel Xeon Processors”).

The family, model, and stepping ID for a processor is given in the EAX register when 
the CPUID instruction is executed with a value of 1 in the EAX register.

7.5.1 BSP and AP Processors
The MP initialization protocol defines two classes of processors: the bootstrap 
processor (BSP) and the application processors (APs). Following a power-up or 
RESET of an MP system, system hardware dynamically selects one of the processors 
on the system bus as the BSP. The remaining processors are designated as APs.
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As part of the BSP selection mechanism, the BSP flag is set in the IA32_APIC_BASE 
MSR (see Figure 9-5) of the BSP, indicating that it is the BSP. This flag is cleared for 
all other processors. 

The BSP executes the BIOS’s boot-strap code to configure the APIC environment, 
sets up system-wide data structures, and starts and initializes the APs. When the BSP 
and APs are initialized, the BSP then begins executing the operating-system initial-
ization code.

Following a power-up or reset, the APs complete a minimal self-configuration, then 
wait for a startup signal (a SIPI message) from the BSP processor. Upon receiving a 
SIPI message, an AP executes the BIOS AP configuration code, which ends with the 
AP being placed in halt state.

For Intel 64 and IA-32 processors supporting Hyper-Threading Technology, the MP 
initialization protocol treats each of the logical processors on the system bus as a 
separate processor (with a unique APIC ID). During boot-up, one of the logical 
processors is selected as the BSP and the remainder of the logical processors are 
designated as APs.

7.5.2 MP Initialization Protocol Requirements and Restrictions 
for Intel Xeon Processors

The MP initialization protocol imposes the following requirements and restrictions on 
the system:

• The MP protocol is executed only after a power-up or RESET. If the MP protocol 
has completed and a BSP is chosen, subsequent INITs (either to a specific 
processor or system wide) do not cause the MP protocol to be repeated. Instead, 
each logical processor examines its BSP flag (in the IA32_APIC_BASE MSR) to 
determine whether it should execute the BIOS boot-strap code (if it is the BSP) or 
enter a wait-for-SIPI state (if it is an AP).

• All devices in the system that are capable of delivering interrupts to the 
processors must be inhibited from doing so for the duration of the MP initial-
ization protocol. The time during which interrupts must be inhibited includes the 
window between when the BSP issues an INIT-SIPI-SIPI sequence to an AP and 
when the AP responds to the last SIPI in the sequence.

7.5.3 MP Initialization Protocol Algorithm for 
Intel Xeon Processors

Following a power-up or RESET of an MP system, the Intel Xeon processors in the 
system execute the MP initialization protocol algorithm to initialize each of the logical 
processors on the system bus. In the course of executing this algorithm, the 
following boot-up and initialization operations are carried out:
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1. Each logical processor on the system bus is assigned a unique 8-bit APIC ID, 
based on system topology (see Section 7.5.5, “Identifying Logical Processors in 
an MP System”). This ID is written into the local APIC ID register for each 
processor.

2. Each logical processor is assigned a unique arbitration priority based on its 
APIC ID.

3. Each logical processor executes its internal BIST simultaneously with the other 
logical processors on the system bus. 

4. Upon completion of the BIST, the logical processors use a hardware-defined 
selection mechanism to select the BSP and the APs from the available logical 
processors on the system bus. The BSP selection mechanism differs depending 
on the family, model, and stepping IDs of the processors, as follows: 

— Family, model, and stepping IDs of F0AH and onwards:

• The logical processors begin monitoring the BNR# signal, which is 
toggling. When the BNR# pin stops toggling, each processor attempts to 
issue a NOP special cycle on the system bus. 

• The logical processor with the highest arbitration priority succeeds in 
issuing a NOP special cycle and is nominated the BSP. This processor sets 
the BSP flag in its IA32_APIC_BASE MSR, then fetches and begins 
executing BIOS boot-strap code, beginning at the reset vector (physical 
address FFFF FFF0H).

• The remaining logical processors (that failed in issuing a NOP special 
cycle) are designated as APs. They leave their BSP flags in the clear state 
and enter a “wait-for-SIPI state.”

— Family, model, and stepping IDs up to F09H:

• Each processor broadcasts a BIPI to “all including self.” The first processor 
that broadcasts a BIPI (and thus receives its own BIPI vector), selects 
itself as the BSP and sets the BSP flag in its IA32_APIC_BASE MSR. (See 
Appendix C.1, “Overview of the MP Initialization Process For P6 Family 
Processors,” for a description of the BIPI, FIPI, and SIPI messages.)

• The remainder of the processors (which were not selected as the BSP) are 
designated as APs. They leave their BSP flags in the clear state and enter 
a “wait-for-SIPI state.”

• The newly established BSP broadcasts an FIPI message to “all including 
self,” which the BSP and APs treat as an end of MP initialization signal. 
Only the processor with its BSP flag set responds to the FIPI message. It 
responds by fetching and executing the BIOS boot-strap code, beginning 
at the reset vector (physical address FFFF FFF0H).

5. As part of the boot-strap code, the BSP creates an ACPI table and an MP table and 
adds its initial APIC ID to these tables as appropriate. 
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6. At the end of the boot-strap procedure, the BSP sets a processor counter to 1, 
then broadcasts a SIPI message to all the APs in the system. Here, the SIPI 
message contains a vector to the BIOS AP initialization code (at 000VV000H, 
where VV is the vector contained in the SIPI message).

7. The first action of the AP initialization code is to set up a race (among the APs) to 
a BIOS initialization semaphore. The first AP to the semaphore begins executing 
the initialization code. (See Section 7.5.4, “MP Initialization Example,” for 
semaphore implementation details.) As part of the AP initialization procedure, 
the AP adds its APIC ID number to the ACPI and MP tables as appropriate and 
increments the processor counter by 1. At the completion of the initialization 
procedure, the AP executes a CLI instruction and halts itself.

8. When each of the APs has gained access to the semaphore and executed the AP 
initialization code, the BSP establishes a count for the number of processors 
connected to the system bus, completes executing the BIOS boot-strap code, 
and then begins executing operating-system boot-strap and start-up code.

9. While the BSP is executing operating-system boot-strap and start-up code, the 
APs remain in the halted state. In this state they will respond only to INITs, NMIs, 
and SMIs. They will also respond to snoops and to assertions of the STPCLK# pin.

The following section gives an example (with code) of the MP initialization protocol 
for multiple Intel Xeon processors operating in an MP configuration.

Appendix B, “Model-Specific Registers (MSRs),” describes how to program the 
LINT[0:1] pins of the processor’s local APICs after an MP configuration has been 
completed.

7.5.4 MP Initialization Example
The following example illustrates the use of the MP initialization protocol used to 
initialize processors in an MP system after the BSP and APs have been established. 
The code runs on Intel 64 or IA-32 processors that use a protocol. This includes P6 
Family processors, Pentium 4 processors, Intel Core Duo, Intel Core 2 Duo and Intel 
Xeon processors.

The following constants and data definitions are used in the accompanying  
code examples. They are based on the addresses of the APIC registers defined in 
Table 9-1.

ICR_LOW EQU 0FEE00300H
SVR EQU 0FEE000F0H
APIC_ID EQU 0FEE00020H
LVT3 EQU 0FEE00370H
APIC_ENABLED EQU 0100H
BOOT_ID DD ?
COUNT EQU 00H
VACANT EQU 00H
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7.5.4.1  Typical BSP Initialization Sequence
After the BSP and APs have been selected (by means of a hardware protocol, see 
Section 7.5.3, “MP Initialization Protocol Algorithm for Intel Xeon Processors”), the 
BSP begins executing BIOS boot-strap code (POST) at the normal IA-32 architecture 
starting address (FFFF FFF0H). The boot-strap code typically performs the following 
operations:

1. Initializes memory.

2. Loads the microcode update into the processor.

3. Initializes the MTRRs.

4. Enables the caches.

5. Executes the CPUID instruction with a value of 0H in the EAX register, then reads 
the EBX, ECX, and EDX registers to determine if the BSP is “GenuineIntel.”

6. Executes the CPUID instruction with a value of 1H in the EAX register, then saves 
the values in the EAX, ECX, and EDX registers in a system configuration space in 
RAM for use later.

7. Loads start-up code for the AP to execute into a 4-KByte page in the lower 1 
MByte of memory.

8. Switches to protected mode and insures that the APIC address space is mapped 
to the strong uncacheable (UC) memory type.

9. Determine the BSP’s APIC ID from the local APIC ID register (default is 0):

MOV ESI, APIC_ID; Address of local APIC ID register
MOV EAX, [ESI];
AND EAX, 0FF000000H; Zero out all other bits except APIC ID
MOV BOOT_ID, EAX; Save in memory

Saves the APIC ID in the ACPI and MP tables and optionally in the system config-
uration space in RAM.

10. Converts the base address of the 4-KByte page for the AP’s bootup code into 8-bit 
vector. The 8-bit vector defines the address of a 4-KByte page in the real-address 
mode address space (1-MByte space). For example, a vector of 0BDH specifies a 
start-up memory address of 000BD000H. 

11. Enables the local APIC by setting bit 8 of the APIC spurious vector register (SVR).

MOV ESI, SVR; Address of SVR
MOV EAX, [ESI];
OR  EAX, APIC_ENABLED; Set bit 8 to enable (0 on reset)
MOV [ESI], EAX;

12. Sets up the LVT error handling entry by establishing an 8-bit vector for the APIC 
error handler.

MOV ESI, LVT3;
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MOV EAX, [ESI];
AND EAX, FFFFFF00H; Clear out previous vector.
OR EAX, 000000xxH; xx is the 8-bit vector the APIC error handler. 
MOV [ESI], EAX;

13. Initializes the Lock Semaphore variable VACANT to 00H. The APs use this 
semaphore to determine the order in which they execute BIOS AP initialization 
code.

14. Performs the following operation to set up the BSP to detect the presence of APs 
in the system and the number of processors:

— Sets the value of the COUNT variable to 1.

— Starts a timer (set for an approximate interval of 100 milliseconds). In the AP 
BIOS initialization code, the AP will increment the COUNT variable to indicate 
its presence. When the timer expires, the BSP checks the value of the COUNT 
variable. If the timer expires and the COUNT variable has not been incre-
mented, no APs are present or some error has occurred.

15. Broadcasts an INIT-SIPI-SIPI IPI sequence to the APs to wake them up and 
initialize them:

MOV ESI, ICR_LOW; Load address of ICR low dword into ESI.
MOV EAX, 000C4500H; Load ICR encoding for broadcast INIT IPI 
; to all APs into EAX.
MOV [ESI], EAX; Broadcast INIT IPI to all APs
; 10-millisecond delay loop.
MOV EAX, 000C46XXH; Load ICR encoding for broadcast SIPI IP
; to all APs into EAX, where xx is the vector computed in step 10.
MOV [ESI], EAX; Broadcast SIPI IPI to all APs
; 200-microsecond delay loop
MOV [ESI], EAX; Broadcast second SIPI IPI to all APs
; 200-microsecond delay loop

 
Step 15:
MOV EAX, 000C46XXH; Load ICR encoding from broadcast SIPI IP
; to all APs into EAX where xx is the vector computed in step 8.

16. Waits for the timer interrupt.

17. Reads and evaluates the COUNT variable and establishes a processor count.

18. If necessary, reconfigures the APIC and continues with the remaining system 
diagnostics as appropriate.
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7.5.4.2  Typical AP Initialization Sequence
When an AP receives the SIPI, it begins executing BIOS AP initialization code at the 
vector encoded in the SIPI. The AP initialization code typically performs the following 
operations:

1. Waits on the BIOS initialization Lock Semaphore. When control of the semaphore 
is attained, initialization continues.

2. Loads the microcode update into the processor.

3. Initializes the MTRRs (using the same mapping that was used for the BSP).

4. Enables the cache.

5. Executes the CPUID instruction with a value of 0H in the EAX register, then reads 
the EBX, ECX, and EDX registers to determine if the AP is “GenuineIntel.”

6. Executes the CPUID instruction with a value of 1H in the EAX register, then saves 
the values in the EAX, ECX, and EDX registers in a system configuration space in 
RAM for use later.

7. Switches to protected mode and insures that the APIC address space is mapped 
to the strong uncacheable (UC) memory type.

8. Determines the AP’s APIC ID from the local APIC ID register, and adds it to the MP 
and ACPI tables and optionally to the system configuration space in RAM.

9. Initializes and configures the local APIC by setting bit 8 in the SVR register and 
setting up the LVT3 (error LVT) for error handling (as described in steps 9 and 10 
in Section 7.5.4.1, “Typical BSP Initialization Sequence”).

10. Configures the APs SMI execution environment. (Each AP and the BSP must have 
a different SMBASE address.)

11. Increments the COUNT variable by 1.

12. Releases the semaphore.

13. Executes the CLI and HLT instructions.

14. Waits for an INIT IPI.

7.5.5 Identifying Logical Processors in an MP System
After the BIOS has completed the MP initialization protocol, each logical processor 
can be uniquely identified by its local APIC ID. Software can access these APIC IDs in 
either of the following ways:

• Read APIC ID for a local APIC — Code running on a logical processor can 
execute a MOV instruction to read the processor’s local APIC ID register (see 
Section 9.4.6, “Local APIC ID”). This is the ID to use for directing physical 
destination mode interrupts to the processor.

• Read ACPI or MP table — As part of the MP initialization protocol, the BIOS 
creates an ACPI table and an MP table. These tables are defined in the Multipro-
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cessor Specification Version 1.4 and provide software with a list of the processors 
in the system and their local APIC IDs. The format of the ACPI table is derived 
from the ACPI specification, which is an industry standard power management 
and platform configuration specification for MP systems.

• Read Initial APIC ID — An APIC ID is assigned to a logical processor during 
power up and is called the initial APIC ID. This is the APIC ID reported by 
CPUID.1:EBX[31:24] and may be different from the current value read from the 
local APIC. Use the initial APIC ID to determine the topological relationship 
between logical processors.

Bits in the initial APIC ID can be interpreted using several bit masks. Each bit 
mask can be used to extract an identifier to represent a hierarchical level of the 
multi-threading resource topology in an MP system (See Section 7.10.1, “Hierar-
chical Mapping of Shared Resources”). The initial APIC ID may consist of up to 
four bit-fields. In a non-clustered MP system, the field consists of up to three bit 
fields. 

Figure 7-2 shows two examples of APIC ID bit fields in earlier single-core processors. 
In single-core Intel Xeon processors, the APIC ID assigned to a logical processor 
during power-up and initialization is 8 bits. Bits 2:1 form a 2-bit physical package 
identifier (which can also be thought of as a socket identifier). In systems that 
configure physical processors in clusters, bits 4:3 form a 2-bit cluster ID. Bit 0 is used 
in the Intel Xeon processor MP to identify the two logical processors within the 
package (see Section 7.10.2, “Identifying Logical Processors in an MP System”). For 
Intel Xeon processors that do not support Intel Hyper-Threading Technology, bit 0 is 
always set to 0; for Intel Xeon processors supporting Hyper-Threading Technology, 
bit 0 performs the same function as it does for Intel Xeon processor MP. 

For more recent multi-core processors, see Section 7.10.1, “Hierarchical Mapping of 
Shared Resources” for a complete description of the topological relationships 
between logical processors and bit field locations within an initial APIC ID across Intel 
64 and IA-32 processor families.

Note the number of bit fields and the width of bit-fields are dependent on processor 
and platform hardware capabilities. Software should determine these at runtime. 
When initial APIC IDs are assigned to logical processors, the value of APIC ID 
assigned to a logical processor will respect the bit-field boundaries corresponding 
core, physical package, etc. Additional examples of the bit fields in the initial APIC ID 
of multi-threading capable systems are shown in Section 7.10.
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For P6 family processors, the APIC ID that is assigned to a processor during power-
up and initialization is 4 bits (see Figure 7-2). Here, bits 0 and 1 form a 2-bit 
processor (or socket) identifier and bits 2 and 3 form a 2-bit cluster ID. 

7.6 HYPER-THREADING AND MULTI-CORE TECHNOLOGY
Hyper-Threading Technology and multi-core technology are extensions to Intel 64 
and IA-32 architectures that enable a single physical processor to execute two or 
more separate code streams (called threads) concurrently. In Hyper-Threading Tech-
nology, a single processor core provides two logical processors that share execution 
resources (see Section 7.8, “Intel® Hyper-Threading Technology Architecture”). In 
multi-core technology, a physical processor package provides two or more processor 
cores. Both configurations require chipsets and a BIOS that support the technolo-
gies.

Software should not rely on processor names to determine whether a processor 
supports Hyper-Threading Technology or multi-core technology. Use the CPUID 
instruction to determine processor capability (see Section 7.7.2, “Initializing Multi-
Core Processors”). 

Figure 7-2.  Interpretation of APIC ID in Early MP Systems
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7.7 DETECTING HARDWARE MULTI-THREADING 
SUPPORT AND TOPOLOGY

Use the CPUID instruction to detect the presence of hardware multi-threading 
support in a physical processor. The following can be interpreted:

• Hardware Multi-Threading feature flag (CPUID.1:EDX[28] = 1) — 
Indicates when set that the physical package is capable of supporting Hyper-
Threading Technology and/or multiple cores. 

• Logical processors per Package (CPUID.1:EBX[23:16]) — Indicates the 
maximum number of logical processors in a physical package. This represents 
the hardware capability as the processor has been manufactured.2

• Cores per Package3 (CPUID.(EAX=4, ECX=04):EAX[31:26] + 1 = Y) — 
Indicates the maximum number of processor cores (Y) in the physical package

The CPUID feature flag may indicate support for hardware multi-threading when only 
one logical processor available in the package. In this case, the decimal value repre-
sented by bits 16 through 23 in the EBX register will have a value of 1.

Software should note that the number of logical processors enabled by system soft-
ware may be less than the value of “logical processors per package”. Similarly, the 
number of cores enabled by system software may be less than the value of “cores per 
package”.

7.7.1 Initializing Processors 
Supporting Hyper-Threading Technology

The initialization process for an MP system that contains processors supporting 
Hyper-Threading Technology is the same as for conventional MP systems (see 
Section 7.5, “Multiple-Processor (MP) Initialization”). One logical processor in the 
system is selected as the BSP and other processors (or logical processors) are desig-
nated as APs. The initialization process is identical to that described in Section 7.5.3, 
“MP Initialization Protocol Algorithm for Intel Xeon Processors,” and Section 7.5.4, 
“MP Initialization Example.”

During initialization, each logical processor is assigned an APIC ID that is stored in 
the local APIC ID register for each logical processor. If two or more processors 

2. Operating system and BIOS may implement features that reduce the number of logical proces-
sors available in a platform to applications at runtime to less than the number of physical pack-
ages times the number of hardware-capable logical processors per package.

3. Software must check CPUID for its support of leaf 4 when implementing support for multi-core. If 
CPUID leaf 4 is not available at runtime, software should handle the situation as if there is only 
one core per package.

4. Maximum number of cores in the physical package must be queried by executing CPUID with 
EAX=4 and a valid ECX input value. Valid ECX input values start from 0.
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supporting Hyper-Threading Technology are present, each logical processor on the 
system bus is assigned a unique ID (see Section 7.10.2, “Identifying Logical Proces-
sors in an MP System”). Once logical processors have APIC IDs, software communi-
cates with them by sending APIC IPI messages.

7.7.2 Initializing Multi-Core Processors
The initialization process for an MP system that contains multi-core Intel 64 or IA-32 
processors is the same as for conventional MP systems (see Section 7.5, “Multiple-
Processor (MP) Initialization”). A logical processor in one core is selected as the BSP; 
other logical processors are designated as APs. 

During initialization, each logical processor is assigned an APIC ID. Once logical 
processors have APIC IDs, software may communicate with them by sending APIC 
IPI messages.

7.7.3 Executing Multiple Threads on an Intel® 64 or IA-32 
Processor Supporting Hardware Multi-Threading

Upon completing the operating system boot-up procedure, the bootstrap processor 
(BSP) executes operating system code. Other logical processors are placed in the 
halt state. To execute a code stream (thread) on a halted logical processor, the oper-
ating system issues an interprocessor interrupt (IPI) addressed to the halted logical 
processor. In response to the IPI, the processor wakes up and begins executing the 
thread identified by the interrupt vector received as part of the IPI. 

To manage execution of multiple threads on logical processors, an operating system 
can use conventional symmetric multiprocessing (SMP) techniques. For example, the 
operating-system can use a time-slice or load balancing mechanism to periodically 
interrupt each of the active logical processors. Upon interrupting a logical processor, 
the operating system checks its run queue for a thread waiting to be executed and 
dispatches the thread to the interrupted logical processor.

7.7.4 Handling Interrupts on an IA-32 Processor Supporting 
Hardware Multi-Threading

Interrupts are handled on processors supporting Hyper-Threading Technology as 
they are on conventional MP systems. External interrupts are received by the I/O 
APIC, which distributes them as interrupt messages to specific logical processors 
(see Figure 7-3). 

Logical processors can also send IPIs to other logical processors by writing to the ICR 
register of its local APIC (see Section 9.6, “Issuing Interprocessor Interrupts”). This 
also applies to dual-core processors.
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7.8 INTEL® HYPER-THREADING TECHNOLOGY 
ARCHITECTURE

Figure 7-4 shows a generalized view of an Intel processor supporting Hyper-
Threading Technology, using the original Intel Xeon processor MP as an example. 
This implementation of the Hyper-Threading Technology consists of two logical 
processors (each represented by a separate architectural state) which share the 
processor’s execution engine and the bus interface. Each logical processor also has 
its own advanced programmable interrupt controller (APIC).

 

Figure 7-3.  Local APICs and I/O APIC in MP System Supporting HT Technology
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7.8.1 State of the Logical Processors
The following features are part of the architectural state of logical processors within 
Intel 64 or IA-32 processors supporting Hyper-Threading Technology. The features 
can be subdivided into three groups: 

• Duplicated for each logical processor

• Shared by logical processors in a physical processor

• Shared or duplicated, depending on the implementation

The following features are duplicated for each logical processor:

• General purpose registers (EAX, EBX, ECX, EDX, ESI, EDI, ESP, and EBP)

• Segment registers (CS, DS, SS, ES, FS, and GS)

• EFLAGS and EIP registers. Note that the CS and EIP/RIP registers for each logical 
processor point to the instruction stream for the thread being executed by the 
logical processor.

• x87 FPU registers (ST0 through ST7, status word, control word, tag word, data 
operand pointer, and instruction pointer)

• MMX registers (MM0 through MM7)

• XMM registers (XMM0 through XMM7) and the MXCSR register

• Control registers and system table pointer registers (GDTR, LDTR, IDTR, task 
register)

• Debug registers (DR0, DR1, DR2, DR3, DR6, DR7) and the debug control MSRs

Figure 7-4.  IA-32 Processor with Two Logical Processors Supporting HT Technology
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• Machine check global status (IA32_MCG_STATUS) and machine check capability 
(IA32_MCG_CAP) MSRs

• Thermal clock modulation and ACPI Power management control MSRs

• Time stamp counter MSRs

• Most of the other MSR registers, including the page attribute table (PAT). See the 
exceptions below.

• Local APIC registers.

• Additional general purpose registers (R8-R15), XMM registers (XMM8-XMM15), 
control register, IA32_EFER on Intel 64 processors.

The following features are shared by logical processors:

• IA32_MISC_ENABLE MSR (MSR address 1A0H)

• Memory type range registers (MTRRs)

Whether the following features are shared or duplicated is implementation-specific:

• Machine check architecture (MCA) MSRs (except for the IA32_MCG_STATUS and 
IA32_MCG_CAP MSRs)

• Performance monitoring control and counter MSRs

7.8.2 APIC Functionality
When a processor supporting Hyper-Threading Technology support is initialized, each 
logical processor is assigned a local APIC ID (see Table 9-1). The local APIC ID serves 
as an ID for the logical processor and is stored in the logical processor’s APIC ID 
register. If two or more IA-32 processors supporting Hyper-Threading Technology are 
present in a dual processor (DP) or MP system, each logical processor on the system 
bus is assigned a unique local APIC ID (see Section 7.10.2, “Identifying Logical 
Processors in an MP System”).

Software communicates with local processors using the APIC’s interprocessor inter-
rupt (IPI) messaging facility. Setup and programming for APICs is identical in proces-
sors that support and do not support Intel Hyper-Threading Technology. See Chapter 
9, “Advanced Programmable Interrupt Controller (APIC),” for a detailed discussion.

7.8.3 Memory Type Range Registers (MTRR)
MTRRs in a processor supporting Hyper-Threading Technology are shared by logical 
processors. When one logical processor updates the setting of the MTRRs, settings 
are automatically shared with the other logical processors in the same physical 
package. 

The architectures require that all MP systems based on Intel 64 and IA-32 processors 
(this includes logical processors) must use an identical MTRR memory map. This 
gives software a consistent view of memory, independent of the processor on which 
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it is running. See Section 10.11, “Memory Type Range Registers (MTRRs),” for infor-
mation on setting up MTRRs.

7.8.4 Page Attribute Table (PAT)
Each logical processor has its own PAT MSR (IA32_CR_PAT). However, as described 
in Section 10.12, “Page Attribute Table (PAT),” the PAT MSR settings must be the 
same for all processors in a system, including the logical processors.

7.8.5 Machine Check Architecture
In the HT Technology context, all of the machine check architecture (MCA) MSRs 
(except for the IA32_MCG_STATUS and IA32_MCG_CAP MSRs) are duplicated for 
each logical processor. This permits logical processors to initialize, configure, query, 
and handle machine-check exceptions simultaneously within the same physical 
processor. The design is compatible with machine check exception handlers that 
follow the guidelines given in Chapter 14, “Machine-Check Architecture.”

The IA32_MCG_STATUS MSR is duplicated for each logical processor so that its 
machine check in progress bit field (MCIP) can be used to detect recursion on the 
part of MCA handlers. In addition, the MSR allows each logical processor to deter-
mine that a machine-check exception is in progress independent of the actions of 
another logical processor in the same physical package.

Because the logical processors within a physical package are tightly coupled with 
respect to shared hardware resources, both logical processors are notified of 
machine check errors that occur within a given physical processor. If machine-check 
exceptions are enabled when a fatal error is reported, all the logical processors within 
a physical package are dispatched to the machine-check exception handler. If 
machine-check exceptions are disabled, the logical processors enter the shutdown 
state and assert the IERR# signal.

When enabling machine-check exceptions, the MCE flag in control register CR4 
should be set for each logical processor.

7.8.6 Debug Registers and Extensions
Each logical processor has its own set of debug registers (DR0, DR1, DR2, DR3, DR6, 
DR7) and its own debug control MSR. These can be set to control and record debug 
information for each logical processor independently. Each logical processor also has 
its own last branch records (LBR) stack.
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7.8.7 Performance Monitoring Counters
Performance counters and their companion control MSRs are shared between the 
logical processors within the physical processor. As a result, software must manage 
the use of these resources. The performance counter interrupts, events, and precise 
event monitoring support can be set up and allocated on a per thread (per logical 
processor) basis. 

See Section 18.16, “Performance Monitoring and Hyper-Threading Technology,” for a 
discussion of performance monitoring in the Intel Xeon processor MP. 

7.8.8 IA32_MISC_ENABLE MSR
The IA32_MISC_ENABLE MSR (MSR address 1A0H) is shared between the logical 
processors in an IA-32 processor supporting Hyper-Threading Technology. Thus the 
architectural features that this register controls are set the same for all the logical 
processors in the same physical package.

7.8.9 Memory Ordering
The logical processors in an Intel 64 or IA-32 processor supporting Hyper-Threading 
Technology obey the same rules for memory ordering as Intel 64 or IA-32 processors 
without HT Technology (see Section 7.2, “Memory Ordering”). Each logical processor 
uses a processor-ordered memory model that can be further defined as “write-
ordered with store buffer forwarding.” All mechanisms for strengthening or weak-
ening the memory-ordering model to handle special programming situations apply to 
each logical processor.

7.8.10 Serializing Instructions
As a general rule, when a logical processor in a processor supporting Hyper-
Threading Technology executes a serializing instruction, only that logical processor is 
affected by the operation. An exception to this rule is the execution of the WBINVD, 
INVD, and WRMSR instructions; and the MOV CR instruction when the state of the CD 
flag in control register CR0 is modified. Here, both logical processors are serialized.

7.8.11 MICROCODE UPDATE Resources
In an Intel processor supporting Hyper-Threading Technology, the microcode update 
facilities are shared between the logical processors; either logical processor can 
initiate an update. Each logical processor has its own BIOS signature MSR 
(IA32_BIOS_SIGN_ID at MSR address 8BH). When a logical processor performs an 
update for the physical processor, the IA32_BIOS_SIGN_ID MSRs for resident logical 
processors are updated with identical information. If logical processors initiate an 
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update simultaneously, the processor core provides the necessary synchronization 
needed to insure that only one update is performed at a time. 

Operating system microcode update drivers that adhere to Intel’s guidelines do not 
need to be modified to run on processors supporting Hyper-Threading Technology.

7.8.12 Self Modifying Code
Intel processors supporting Hyper-Threading Technology support self-modifying 
code, where data writes modify instructions cached or currently in flight. They also 
support cross-modifying code, where on an MP system writes generated by one 
processor modify instructions cached or currently in flight on another. See Section 
7.1.3, “Handling Self- and Cross-Modifying Code,” for a description of the require-
ments for self- and cross-modifying code in an IA-32 processor.

7.8.13 Implementation-Specific HT Technology Facilities
The following non-architectural facilities are implementation-specific in IA-32 proces-
sors supporting Hyper-Threading Technology:

• Caches

• Translation lookaside buffers (TLBs)

• Thermal monitoring facilities

The Intel Xeon processor MP implementation is described in the following sections.

7.8.13.1  Processor Caches
For processors supporting Hyper-Threading Technology, the caches are shared. Any 
cache manipulation instruction that is executed on one logical processor has a global 
effect on the cache hierarchy of the physical processor. Note the following:

• WBINVD instruction — The entire cache hierarchy is invalidated after modified 
data is written back to memory. All logical processors are stopped from executing 
until after the write-back and invalidate operation is completed. A special bus 
cycle is sent to all caching agents.

• INVD instruction — The entire cache hierarchy is invalidated without writing 
back modified data to memory. All logical processors are stopped from executing 
until after the invalidate operation is completed. A special bus cycle is sent to all 
caching agents.

• CLFLUSH instruction — The specified cache line is invalidated from the cache 
hierarchy after any modified data is written back to memory and a bus cycle is 
sent to all caching agents, regardless of which logical processor caused the cache 
line to be filled.

• CD flag in control register CR0 — Each logical processor has its own CR0 
control register, and thus its own CD flag in CR0. The CD flags for the two logical 
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processors are ORed together, such that when any logical processor sets its CD 
flag, the entire cache is nominally disabled. 

7.8.13.2  Processor Translation Lookaside Buffers (TLBs)
In processors supporting Hyper-Threading Technology, data cache TLBs are shared. 
The instruction cache TLB is duplicated in each logical processor.

Entries in the TLBs are tagged with an ID that indicates the logical processor that 
initiated the translation. This tag applies even for translations that are marked global 
using the page global feature for memory paging. 

When a logical processor performs a TLB invalidation operation, only the TLB entries 
that are tagged for that logical processor are flushed. This protocol applies to all TLB 
invalidation operations, including writes to control registers CR3 and CR4 and uses of 
the INVLPG instruction.

7.8.13.3  Thermal Monitor
In a processor that supports Hyper-Threading Technology, logical processors share 
the catastrophic shutdown detector and the automatic thermal monitoring mecha-
nism (see Section 13.5, “Thermal Monitoring and Protection”). Sharing results in the 
following behavior:

• If the processor’s core temperature rises above the preset catastrophic shutdown 
temperature, the processor core halts execution, which causes both logical 
processors to stop execution.

• When the processor’s core temperature rises above the preset automatic thermal 
monitor trip temperature, the clock speed of the processor core is automatically 
modulated, which effects the execution speed of both logical processors.

For software controlled clock modulation, each logical processor has its own 
IA32_CLOCK_MODULATION MSR, allowing clock modulation to be enabled or 
disabled on a logical processor basis. Typically, if software controlled clock modula-
tion is going to be used, the feature must be enabled for all the logical processors 
within a physical processor and the modulation duty cycle must be set to the same 
value for each logical processor. If the duty cycle values differ between the logical 
processors, the processor clock will be modulated at the highest duty cycle selected.

7.8.13.4  External Signal Compatibility
This section describes the constraints on external signals received through the pins 
of a processor supporting Hyper-Threading Technology and how these signals are 
shared between its logical processors.

• STPCLK# — A single STPCLK# pin is provided on the physical package of the 
Intel Xeon processor MP. External control logic uses this pin for power 
management within the system. When the STPCLK# signal is asserted, the 
processor core transitions to the stop-grant state, where instruction execution is 
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halted but the processor core continues to respond to snoop transactions. 
Regardless of whether the logical processors are active or halted when the 
STPCLK# signal is asserted, execution is stopped on both logical processors and 
neither will respond to interrupts. 
 
In MP systems, the STPCLK# pins on all physical processors are generally tied 
together. As a result this signal affects all the logical processors within the system 
simultaneously.

• LINT0 and LINT1 pins — A processor supporting Hyper-Threading Technology 
has only one set of LINT0 and LINT1 pins, which are shared between the logical 
processors. When one of these pins is asserted, both logical processors respond 
unless the pin has been masked in the APIC local vector tables for one or both of 
the logical processors. 
 
Typically in MP systems, the LINT0 and LINT1 pins are not used to deliver 
interrupts to the logical processors. Instead all interrupts are delivered to the 
local processors through the I/O APIC.

• A20M# pin — On an IA-32 processor, the A20M# pin is typically provided for 
compatibility with the Intel 286 processor. Asserting this pin causes bit 20 of the 
physical address to be masked (forced to zero) for all external bus memory 
accesses. Processors supporting Hyper-Threading Technology provide one 
A20M# pin, which affects the operation of both logical processors within the 
physical processor. 

7.9 MULTI-CORE ARCHITECTURE
This section describes the architecture of Intel 64 and IA-32 processors supporting 
dual-core and quad-core technology. The discussion is applicable to the Intel Pentium 
processor Extreme Edition, Pentium D, Intel Core Duo, Intel Core 2 Duo, Dual-core 
Intel Xeon processor, Intel Core 2 Quad processors, and quad-core Intel Xeon 
processors. Features vary across different microarchitectures and are detectable 
using CPUID.

In general, each processor core has dedicated microarchitectural resources identical 
to a single-processor implementation of the underlying microarchitecture without 
hardware multi-threading capability. Each logical processor in a dual-core processor 
(whether supporting Hyper-Threading Technology or not) has its own APIC function-
ality, PAT, machine check architecture, debug registers and extensions. Each logical 
processor handles serialization instructions or self-modifying code on its own. 
Memory order is handled the same way as in Hyper-Threading Technology.

The topology of the cache hierarchy (with respect to whether a given cache level is 
shared by one or more processor cores or by all logical processors in the physical 
package) depends on the processor implementation. Software must use the deter-
ministic cache parameter leaf of CPUID instruction to discover the cache-sharing 
topology between the logical processors in a multi-threading environment.
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7.9.1 Logical Processor Support
The topological composition of processor cores and logical processors in a multi-core 
processor can be discovered using CPUID. Within each processor core, one or more 
logical processors may be available. 

System software must follow the requirement MP initialization sequences (see 
Section 7.5, “Multiple-Processor (MP) Initialization”) to recognize and enable logical 
processors. At runtime, software can enumerate those logical processors enabled by 
system software to identify the topological relationships between these logical 
processors. (See Section 7.10.4, “Identifying Topological Relationships in a MP 
System”). 

7.9.2 Memory Type Range Registers (MTRR)
MTRR is shared between two logical processors sharing a processor core if the phys-
ical processor supports Hyper-Threading Technology. MTRR is not shared between 
logical processors located in different cores or different physical packages. 

The Intel 64 and IA-32 architectures require that all logical processors in an MP 
system use an identical MTRR memory map. This gives software a consistent view of 
memory, independent of the processor on which it is running. 

See Section 10.11, “Memory Type Range Registers (MTRRs).”

7.9.3 Performance Monitoring Counters
Performance counters and their companion control MSRs are shared between two 
logical processors sharing a processor core if the processor core supports Hyper-
Threading Technology. They are not shared between logical processors in different 
cores or different physical packages. As a result, software must manage the use of 
these resources, based on the topology of performance monitoring resources. Perfor-
mance counter interrupts, events, and precise event monitoring support can be set 
up and allocated on a per thread (per logical processor) basis. 

See Section 18.16, “Performance Monitoring and Hyper-Threading Technology.”

7.9.4 IA32_MISC_ENABLE MSR
The IA32_MISC_ENABLE MSR (MSR address 1A0H) is shared between two logical 
processors sharing a processor core if the processor core supports Hyper-Threading 
Technology. The MSR is not shared between logical processors in different cores or 
different physical packages. This means that the architectural features that this 
register controls are set the same for the logical processors in the same core.
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7.9.5 MICROCODE UPDATE Resources
Microcode update facilities are shared between two logical processors sharing a 
processor core if the physical package supports Hyper-Threading Technology. They 
are not shared between logical processors in different cores or different physical 
packages. Either logical processor that has access to the microcode update facility 
can initiate an update. 

Each logical processor has its own BIOS signature MSR (IA32_BIOS_SIGN_ID at MSR 
address 8BH). When a logical processor performs an update for the physical 
processor, the IA32_BIOS_SIGN_ID MSRs for resident logical processors are 
updated with identical information. If logical processors initiate an update simulta-
neously, the processor core provides the synchronization needed to ensure that only 
one update is performed at a time. 

7.10 PROGRAMMING CONSIDERATIONS FOR HARDWARE 
MULTI-THREADING CAPABLE PROCESSORS

In a multi-threading environment, there may be certain hardware resources that are 
physically shared at some level of the hardware topology. In the multi-processor 
systems, typically bus and memory sub-systems are physically shared between 
multiple sockets. Within a hardware multi-threading capable processors, certain 
resources are provided for each processor core, while other resources may be 
provided for each logical processors (see Section 7.8, “Intel® Hyper-Threading Tech-
nology Architecture,” and Section 7.9, “Multi-Core Architecture”). 

From a software programming perspective, control transfer of processor operation is 
managed at the granularity of logical processor (operating systems dispatch a 
runnable task by allocating an available logical processor on the platform). To 
manage the topology of shared resources in a multi-threading environment, it is 
useful for software to understand and manage resources that may be shared by more 
than one logical processors. This can be facilitated by mapping several levels of hier-
archical labels to the initial APIC_ID of each logical processor to identify the topology 
of shared resources.

7.10.1 Hierarchical Mapping of Shared Resources
The initial APIC_ID value associated with each logical processor in a multi-processor 
system is unique (see Section 7.7, “Detecting Hardware Multi-Threading Support and 
Topology”). This 8-bit value can be decomposed into sub-fields, where each sub-field 
corresponds a hierarchical level of the topological mapping of hardware resources. 

The decomposition of an initial APIC_ID may consist of 4 sub fields, matching 4 levels 
of hierarchy:
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• Cluster — Some multi-threading environments consists of multiple clusters of 
multi-processor systems. The CLUSTER_ID sub-field distinguishes different 
clusters. For non-clustered systems, CLUSTER_ID is usually 0.

• Package — A multi-processor system consists of two or more sockets, each 
mates with a physical processor package. The PACKAGE_ID sub-field distin-
guishes different physical packages within a cluster.

• Core — A physical processor package consists of one or more processor cores. 
The CORE_ID sub-field distinguishes processor cores in a package. For a single-
core processor, the width of this bit field is 0.

• SMT — A processor core provides one or more logical processors sharing 
execution resources. The SMT_ID sub-field distinguishes logical processors in a 
core. The width of this bit field is non-zero if a processor core provides more than 
one logical processors.

SMT and CORE sub-fields are bit-wise contiguous in the 8-bit APIC_ID field (see 
Figure 7-5). The width of each sub-field depends on hardware and software configu-
rations. Field widths can be determined at runtime using the algorithm discussed 
below (Example 7-1 through Example 7-3). Figure 7-6 depicts the relationships of 
three of the hierarchical sub-fields in a hypothetical MP system.

The value of valid APIC_IDs need not be contiguous across package boundary or core 
boundaries.

7.10.2 Identifying Logical Processors in an MP System
For Intel 64 and IA-32 processors, system hardware establishes an initial APIC ID 
that is unique for each logical processor following power-up or RESET (see Section 
7.7.1). Each logical processor on the system is allocated an initial APIC ID. BIOS may 
implement features that tell the OS to support less than the total number of logical 
processors on the system bus. Those logical processors that are not available to 
applications at runtime are halted during the OS boot process. As a result, the 
number valid local APIC_IDs that can be queried by affinitizing-current-thread-
context (See Example 7-3) is limited to the number of logical processors enabled at 
runtime by the OS boot process.

Figure 7-5.  Generalized Four level Interpretation of the initial APIC ID
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Table 7-1 shows the APIC IDs that are initially reported for logical processors in a 
system with four Intel Xeon MP processors that support Hyper-Threading Technology 
(a total of 8 logical processors, each physical package has two processor cores and 
supports Hyper-Threading Technology). Of the two logical processors within a Intel 
Xeon processor MP, logical processor 0 is designated the primary logical processor 
and logical processor 1 as the secondary logical processor.

Figure 7-6.  Topological Relationships between Hierarchical IDs in a Hypothetical MP 
Platform

Table 7-1.  Initial APIC IDs for the Logical Processors in a System that has Four Intel 
Xeon MP Processors Supporting Hyper-Threading Technology1 

Initial APIC ID of Logical 
Processor

Package ID Core ID SMT ID

0H 0H 0H 0H

1H 0H 0H 1H

2H 1H 0H 0H

3H 1H 0H 1H

4H 2H 0H 0H

5H 2H 0H 1H

6H 3H 0H 0H

7H 3H 0H 1H

NOTE:
1. Because information on the number of processor cores in a physical package was not available 

in early single-core processors supporting Hyper-Threading Technology, the core ID can be 
treated as 0.

Package 0

Core 0

T0 T1

Core1

T0 T1

Package 1

Core 0

T0 T1

Core1

T0 T1 SMT_ID

Core ID

Package ID
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Table 7-2 shows the initial APIC IDs for a hypothetical situation with a dual processor 
system. Each physical package providing two processor cores, and each processor 
core also supporting Hyper-Threading Technology.

7.10.3 Algorithm for Three-Level Mappings of APIC_ID
Software can gather the initial APIC_IDs for each logical processor supported by the 
operating system at runtime5 and extract identifiers corresponding to the three 
levels of sharing topology (package, core, and SMT). The algorithms below focus on 
a non-clustered MP system for simplicity. They do not assume initial APIC_IDs are 
contiguous or that all logical processors on the platform are enabled.

Intel supports multi-threading systems where all physical processors report identical 
values in CPUID.1:EBX[23:16]), CPUID.46:EAX[31:26], and CPUID.47:EAX[25:14]. 
The algorithms below assume the target system has symmetry across physical 
package boundaries with respect to the number of logical processors per package, 
number of cores per package, and cache topology within a package.

The extraction algorithm (for three-level mappings of an initial APIC_ID) uses the 
following support routines (Example 7-1):

1. Detect capability for hardware multi-threading support in the processor.

Table 7-2.  Initial APIC IDs for the Logical Processors in a System that has Two 
Physical Processors Supporting Dual-Core and Hyper-Threading Technology 

Initial APIC ID of a Logical 
Processor

Package ID Core ID SMT ID

0H 0H 0H 0H

1H 0H 0H 1H

2H 0H 1H 0H

3H 0H 1H 1H

4H 1H 0H 0H

5H 1H 0H 1H

6H 1H 1H 0H

7H 1H 1H 1H

5. As noted in Section 7.7 and Section 7.10.2, the number of logical processors supported by the 
OS at runtime may be less than the total number logical processors available in the platform 
hardware.

6. Maximum number of cores per physical processor is obtained by executing CPUID with EAX=4 
and a valid ECX index, The ECX index start at 0.

7. Maximum number of cores sharing the target cache level is obtained by executing CPUID with 
EAX = 4 and the ECX index corresponding to the target cache level.



Vol. 3   7-47

MULTIPLE-PROCESSOR MANAGEMENT

2. Identify the maximum number of logical processors in a physical processor 
package. This is used to determine the topological relationship between logical 
processors and the physical package.

3. Identify the maximum number of processor cores in a physical processor 
package. This is used to determine the topological relationship between 
processor cores and the physical package.

4. Extract the initial APIC ID for the logical processor where the current thread is 
executing.

5. Calculate a mask from the maximum count that the bit field can represent.

6. Use full 8-bit ID and mask to extract sub-field IDs.

Example 7-1.  Support Routines for Detecting Hardware Multi-Threading and Identifying the 
Relationships Between Package, Core and Logical Processors

1. Detect support for Hardware Multi-Threading Support in a processor.

// Returns a non-zero value if CPUID reports the presence of hardware multi-threading  
// support in the physical package where the current logical processor is located. 
// This does not guarantee BIOS or OS will enable all logical processors in the physical 
// package and make them available to applications. 
// Returns zero if hardware multi-threading is not present. 

#define HWMT_BIT 0x10000000

unsigned int HWMTSupported(void)
{

 // ensure cpuid instruction is supported
execute cpuid with eax = 0 to get vendor string
execute cpuid with eax = 1 to get feature flag and signature

// Check to see if this a Genuine Intel Processor  

if (vendor string EQ GenuineIntel) {
return (feature_flag_edx & HWMT_BIT); // bit 28

}
return 0;

}

2. Find the Max number of logical processors per physical processor package.

#define NUM_LOGICAL_BITS 0x00FF0000 
// Use the mask above and CPUID.1.EBX[23:16] to obtain the max number of logical processors 
// per package, 
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//Returns the max number of logical processors per physical processor package;
// the actual number of logical processors per package enabled by OS may be less.
// Software should not assume the value a power of 2.

unsigned char MaxLPPerPackage(void)
{

if (!HWMTSupported()) return 1;
execute cpuid with eax = 1
store returned value of ebx
return (unsigned char) ((reg_ebx & NUM_LOGICAL_BITS) >> 16);

}

3. Find the max number of processor cores per physical processor package.

// Returns the max number of processor cores per physical processor package;
// the actual number of processor cores per package that are enabled may be less.
// Software should not assume cpuid reports the value of 
// “maximum number of cores per physical processor” must be power of 2.

unsigned MaxCoresPerPackage(void)
{

if (!HWMTSupported()) return (unsigned char) 1;
if cpuid supports leaf number 4 
{ // we can retrieve multi-core topology info using leaf 4

execute cpuid with eax = 4, ecx = 0
store returned value of eax
return (unsigned ) ((reg_eax >> 26) +1);

}
else // must be a single-core processor
return 1;

}

4. Extract the initial APIC ID of a logical processor.

#define INITIAL_APIC_ID_BITS 0xFF000000 // CPUID.1.EBX[31:24] initial APIC ID

// Returns the 8-bit unique initial APIC ID for the processor running the code. 
// Software can use OS services to affinitize the current thread to each logical processor 
// available under the OS to gather the initial APIC_IDs for each logical processor.

unsigned char GetInitAPIC_ID (void)
{

unsigned int reg_ebx = 0;
execute cpuid with eax = 1
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store returned value of ebx
return (unsigned char) ((reg_ebx & INITIAL_APIC_ID_BITS) >> 24;

}

5. Find the width of a bit-field mask from the maximum count of the bit-field.

// Returns the mask bit width of a bit field from the maximum count that bit field can represent.
// This algorithm does not assume ‘Max_Count’ to have a value equal to power of 2.

unsigned FindMaskWidth(Unsigned Max_Count)
{unsigned int mask_width, cnt = Max_Count;

__asm {
mov eax, cnt
mov ecx, 0
mov mask_width, ecx
dec eax
bsr cx, ax
jz next
inc cx
mov  mask_width, ecx
next:  
mov eax, mask_width

}
return mask_width;

}

6. Extract a sub ID given a full ID, maximum sub ID value and shift count.

// Returns the value of the sub ID, this is not a zero-based value 
Unsigned char GetSubID(unsigned char Full_ID, unsigned char MaxSubIDvalue, unsigned char 
Shift_Count)
{

MaskWidth = FindMaskWidth(MaxSubIDValue);
MaskBits = ((uchar) (0xff << Shift_Count)) ^ ((uchar) (0xff << Shift_Count + MaskWidth)) ;
SubID = Full_ID & MaskBits;
Return SubID;

}

Software must not assume local APIC_ID values in an MP system are consecutive. 
Non-consecutive local APIC_IDs may be the result of hardware configurations or 
debug features implemented in the BIOS or OS.

An identifier for each hierarchical level can be extracted from an 8-bit APIC_ID using 
the support routines illustrated in Example 7-1. The appropriate bit mask and shift 
value to construct the appropriate bit mask for each level must be determined 
dynamically at runtime. 
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7.10.4 Identifying Topological Relationships in a MP System
To detect the number of physical packages, processor cores, or other topological 
relationships in a MP system, the following procedures are recommended:

• Extract the three-level identifiers from the APIC ID of each logical processor 
enabled by system software. The sequence is as follows (See the pseudo code 
shown in Example 7-2 and support routines shown in Example 7-1):

• The extraction start from the right-most bit field, corresponding to 
SMT_ID, the innermost hierarchy in a three-level topology (See Figure 
7-6). For the right-most bit field, the shift value of the working mask is 
zero. The width of the bit field is determined dynamically using the 
maximum number of logical processor per core, which can be derived 
from information provided from CPUID.

• To extract the next bit-field, the shift value of the working mask is 
determined from the width of the bit mask of the previous step. The width 
of the bit field is determined dynamically using the maximum number of 
cores per package.

• To extract the remaining bit-field, the shift value of the working mask is 
determined from the maximum number of logical processor per package. 
So the remaining bits in the APIC ID (excluding those bits already 
extracted in the two previous steps) are extracted as the third identifier. 
This applies to a non-clustered MP system, or if there is no need to 
distinguish between PACKAGE_ID and CLUSTER_ID.

If there is need to distinguish between PACKAGE_ID and CLUSTER_ID, 
PACKAGE_ID can be extracted using an algorithm similar to the 
extraction of CORE_ID, assuming the number of physical packages in 
each node of a clustered system is symmetric.

• Assemble the three-level identifiers of SMT_ID, CORE_ID, PACKAGE_IDs into 
arrays for each enabled logical processor. This is shown in Example 7-3a.

• To detect the number of physical packages: use PACKAGE_ID to identify those 
logical processors that reside in the same physical package. This is shown in 
Example 7-3b. This example also depicts a technique to construct a mask to 
represent the logical processors that reside in the same package.

• To detect the number of processor cores: use CORE_ID to identify those logical 
processors that reside in the same core. This is shown in Example 7-3. This 
example also depicts a technique to construct a mask to represent the logical 
processors that reside in the same core.

In Example 7-2, the numerical ID value can be obtained from the value extracted 
with the mask by shifting it right by shift count. Algorithms below do not shift the 
value. The assumption is that the SubID values can be compared for equivalence 
without the need to shift. 
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Example 7-2.  Pseudo Code Depicting Three-level Extraction Algorithm

For Each local_APIC_ID{
// Determine MaxLPPerCore available in hardware
// This algorithm assumes there is symmetry across core boundary, i.e. each core within a
//  package has the same number of logical processors
MaxLPPerCore = MaxLPPerPackage()/MaxCoresPerPackage();

// Extract SMT_ID first, this is the innermost of the three levels
// bit mask width is determined from MaxLPPerCore topological info.
// shift size is 0, corresponding to the right-most bit-field
SMT_ID = GetSubID(local_APIC_ID, MaxLPPerCore, 0);

// Extract CORE_ID:
// bit width is determined from maximum number of cores per package possible in hardware
// shift count is determined by maximum logical processors per core in hardware
CORE_ID = GetSubID(InitAPIC_ID, MaxCoresPerPackage(), FindMaskWidth(MaxLPPerCore));

// Extract PACKAGE_ID:
// Assume single cluster. 
// Shift out the mask width for maximum logical processors per package
PackageIDMask = ((uchar) (0xff << FindMaskWidth(MaxLPPerPackage()));
PACKAGE_ID = InitAPIC_ID & PackageIDMask;

}

Example 7-3.  Compute the Number of Packages, Cores, and Processor Relationships in a MP 
System

a) Assemble lists of PACKAGE_ID, CORE_ID, and SMT_ID of each enabled logical processors

//The BIOS and/or OS may limit the number of logical processors available to applications 
// after system boot. The below algorithm will compute topology for the processors visible 
// to the thread that is computing it.

// Extract the 3-levels of IDs on every processor
// SystemAffinity is a bitmask of all the processors started by the OS. Use OS specific APIs to
// obtain it.
// ThreadAffinityMask is used to affinitize the topology enumeration thread to each processor
using OS specific APIs.
// Allocate per processor arrays to store the Package_ID, Core_ID and SMT_ID for every started
// processor.
 

ThreadAffinityMask = 1;
     ProcessorNum = 0;
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while (ThreadAffinityMask != 0 && ThreadAffinityMask <= SystemAffinity) {
// Check to make sure we can utilize this processor first.
if (ThreadAffinityMask & SystemAffinity){

Set thread to run on the processor specified in ThreadAffinityMask
Wait if necessary and ensure thread is running on specified processor

InitAPIC_ID = GetInitAPIC_ID();
Extract the Package, Core and SMT ID as explained in three level extraction  

algorithm
PackageID[ProcessorNUM] = PACKAGE_ID;
CoreID[ProcessorNum] = CORE_ID;
SmtID[ProcessorNum] = SMT_ID;
ProcessorNum++;

}
ThreadAffinityMask <<= 1;

}
NumStartedLPs = ProcessorNum;

b) Using the list of PACKAGE_ID to count the number of physical packages in a MP system and 
construct, for each package, a multi-bit mask corresponding to those logical processors residing in 
the same package.

// Compute the number of packages by counting the number of processors  
// with unique PACKAGE_IDs in the PackageID array.  
// Compute the mask of processors in each package. 

PackageIDBucket is an array of unique PACKAGE_ID values. Allocate an array of 
NumStartedLPs count of entries in this array.
PackageProcessorMask is a corresponding array of the bit mask of processors belonging to 
the same package, these are processors with the same PACKAGE_ID 
The algorithm below assumes there is symmetry across package boundary if more than  
one socket is populated in an MP system.
// Bucket Package IDs and compute processor mask for every package.

PackageNum = 1;
PackageIDBucket[0] = PackageID[0];
ProcessorMask = 1;
PackageProcessorMask[0] = ProcessorMask;
For (ProcessorNum = 1; ProcessorNum < NumStartedLPs; ProcessorNum++) { 

ProcessorMask << = 1; 
For (i=0; i < PackageNum; i++) {

// we may be comparing bit-fields of logical processors residing in different
// packages, the code below assume package symmetry
If (PackageID[ProcessorNum] == PackageIDBucket[i]) {
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PackageProcessorMask[i] |= ProcessorMask;
Break; // found in existing bucket, skip to next iteration

}
}
if (i ==PackageNum) {

//PACKAGE_ID did not match any bucket, start new bucket
PackageIDBucket[i] = PackageID[ProcessorNum];
PackageProcessorMask[i] = ProcessorMask;
PackageNum++;

}
}
// PackageNum has the number of Packages started in OS
// PackageProcessorMask[] array has the processor set of each package

c) Using the list of CORE_ID to count the number of cores in a MP system and construct, for each 
core, a multi-bit mask corresponding to those logical processors residing in the same core. 

Processors in the same core can be determined by bucketing the processors with the same 
PACKAGE_ID and CORE_ID. Note that code below can BIT OR the values of PACKGE and CORE ID 
because they have not been shifted right.
The algorithm below assumes there is symmetry across package boundary if more than one socket 
is populated in an MP system.

//Bucketing PACKAGE and CORE IDs and computing processor mask for every core
CoreNum = 1;
CoreIDBucket[0] = PackageID[0] | CoreID[0];
ProcessorMask = 1;
CoreProcessorMask[0] = ProcessorMask;
For (ProcessorNum = 1; ProcessorNum < NumStartedLPs; ProcessorNum++) { 

ProcessorMask << = 1; 
For (i=0; i < CoreNum; i++) {

// we may be comparing bit-fields of logical processors residing in different
// packages, the code below assume package symmetry
If ((PackageID[ProcessorNum] | CoreID[ProcessorNum]) == CoreIDBucket[i]) {

CoreProcessorMask[i] |= ProcessorMask;
Break; // found in existing bucket, skip to next iteration

}
}
if (i == CoreNum) {

//Did not match any bucket, start new bucket
CoreIDBucket[i] = PackageID[ProcessorNum] | CoreID[ProcessorNum];
CoreProcessorMask[i] = ProcessorMask;
CoreNum++;

}
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}
// CoreNum has the number of cores started in the OS
// CoreProcessorMask[] array has the processor set of each core

Other processor relationships such as processor mask of sibling cores can be 
computed from set operations of the PackageProcessorMask[] and CoreProcessor-
Mask[]. 

The algorithm shown above can be applied to earlier generations of single-core IA-32 
processors that support Hyper-Threading Technology and in situations that the 
deterministic cache parameter leaf is not supported (provided CPUID supports initial 
APIC ID). This is handled by ensuring MaxCoresPerPackage() return 1 in those situa-
tions.

7.11 MANAGEMENT OF IDLE AND BLOCKED CONDITIONS
When a logical processor in an MP system (including multi-core processor or proces-
sors supporting Hyper-Threading Technology) is idle (no work to do) or blocked (on a 
lock or semaphore), additional management of the core execution engine resource 
can be accomplished by using the HLT (halt), PAUSE, or the MONITOR/MWAIT 
instructions.

7.11.1 HLT Instruction
The HLT instruction stops the execution of the logical processor on which it is 
executed and places it in a halted state until further notice (see the description of the 
HLT instruction in Chapter 3 of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 2A). When a logical processor is halted, active logical 
processors continue to have full access to the shared resources within the physical 
package. Here shared resources that were being used by the halted logical processor 
become available to active logical processors, allowing them to execute at greater 
efficiency. When the halted logical processor resumes execution, shared resources 
are again shared among all active logical processors. (See Section 7.11.6.3, “Halt 
Idle Logical Processors,” for more information about using the HLT instruction with 
processors supporting Hyper-Threading Technology.)

7.11.2 PAUSE Instruction
The PAUSE instruction can improves the performance of processors supporting 
Hyper-Threading Technology when executing “spin-wait loops” and other routines 
where one thread is accessing a shared lock or semaphore in a tight polling loop. 
When executing a spin-wait loop, the processor can suffer a severe performance 
penalty when exiting the loop because it detects a possible memory order violation 
and flushes the core processor’s pipeline. The PAUSE instruction provides a hint to 
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the processor that the code sequence is a spin-wait loop. The processor uses this hint 
to avoid the memory order violation and prevent the pipeline flush. In addition, the 
PAUSE instruction de-pipelines the spin-wait loop to prevent it from consuming 
execution resources excessively. (See Section 7.11.6.1, “Use the PAUSE Instruction 
in Spin-Wait Loops,” for more information about using the PAUSE instruction with 
IA-32 processors supporting Hyper-Threading Technology.)

7.11.3 Detecting Support MONITOR/MWAIT Instruction
Streaming SIMD Extensions 3 introduced two instructions (MONITOR and MWAIT) to 
help multithreaded software improve thread synchronization. In the initial imple-
mentation, MONITOR and MWAIT are available to software at ring 0. The instructions 
are conditionally available at levels greater than 0. Use the following steps to detect 
the availability of MONITOR and MWAIT:

• Use CPUID to query the MONITOR bit (CPUID.1.ECX[3] = 1).

• If CPUID indicates support, execute MONITOR inside a TRY/EXCEPT exception 
handler and trap for an exception. If an exception occurs, MONITOR and MWAIT 
are not supported at a privilege level greater than 0. See Example 7-4.

Example 7-4.  Verifying MONITOR/MWAIT Support

boolean MONITOR_MWAIT_works = TRUE;
try {
   _asm {

xor ecx, ecx
xor edx, edx
mov eax, MemArea
monitor 
}

        // Use monitor
} except (UNWIND) {
        // if we get here, MONITOR/MWAIT is not supported

MONITOR_MWAIT_works = FALSE;
}

7.11.4 MONITOR/MWAIT Instruction
Operating systems usually implement idle loops to handle thread synchronization. In 
a typical idle-loop scenario, there could be several “busy loops” and they would use a 
set of memory locations. An impacted processor waits in a loop and poll a memory 
location to determine if there is available work to execute. The posting of work is 
typically a write to memory (the work-queue of the waiting processor). The time for 
initiating a work request and getting it scheduled is on the order of a few bus cycles. 
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From a resource sharing perspective (logical processors sharing execution 
resources), use of the HLT instruction in an OS idle loop is desirable but has implica-
tions. Executing the HLT instruction on a idle logical processor puts the targeted 
processor in a non-execution state. This requires another processor (when posting 
work for the halted logical processor) to wake up the halted processor using an inter-
processor interrupt. The posting and servicing of such an interrupt introduces a delay 
in the servicing of new work requests. 

In a shared memory configuration, exits from busy loops usually occur because of a 
state change applicable to a specific memory location; such a change tends to be 
triggered by writes to the memory location by another agent (typically a processor). 

MONITOR/MWAIT complement the use of HLT and PAUSE to allow for efficient parti-
tioning and un-partitioning of shared resources among logical processors sharing 
physical resources. MONITOR sets up an effective address range that is monitored for 
write-to-memory activities; MWAIT places the processor in an optimized state (this 
may vary between different implementations) until a write to the monitored address 
range occurs. 

In the initial implementation of MONITOR and MWAIT, they are available at CPL = 0 
only.

Both instructions rely on the state of the processor’s monitor hardware. The monitor 
hardware can be either armed (by executing the MONITOR instruction) or triggered 
(due to a variety of events, including a store to the monitored memory region). If 
upon execution of MWAIT, monitor hardware is in a triggered state: MWAIT behaves 
as a NOP and execution continues at the next instruction in the execution stream. 
The state of monitor hardware is not architecturally visible except through the 
behavior of MWAIT.

Multiple events other than a write to the triggering address range can cause a 
processor that executed MWAIT to wake up. These include events that would lead to 
voluntary or involuntary context switches, such as:

• External interrupts, including NMI, SMI, INIT, BINIT, MCERR, A20M#

• Faults, Aborts (including Machine Check)

• Architectural TLB invalidations including writes to CR0, CR3, CR4 and certain MSR 
writes; execution of LMSW (occurring prior to issuing MWAIT but after setting the 
monitor)

• Voluntary transitions due to fast system call and far calls (occurring prior to 
issuing MWAIT but after setting the monitor)

Power management related events (such as Thermal Monitor 2 or chipset driven 
STPCLK# assertion) will not cause the monitor event pending flag to be cleared. 
Faults will not cause the monitor event pending flag to be cleared.

Software should not allow for voluntary context switches in between 
MONITOR/MWAIT in the instruction flow. Note that execution of MWAIT does not re-
arm the monitor hardware. This means that MONITOR/MWAIT need to be executed in 
a loop. Also note that exits from the MWAIT state could be due to a condition other 
than a write to the triggering address; software should explicitly check the triggering 
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data location to determine if the write occurred. Software should also check the value 
of the triggering address following the execution of the monitor instruction (and prior 
to the execution of the MWAIT instruction). This check is to identify any writes to the 
triggering address that occurred during the course of MONITOR execution. 

The address range provided to the MONITOR instruction must be of write-back 
caching type. Only write-back memory type stores to the monitored address range 
will trigger the monitor hardware. If the address range is not in memory of write-
back type, the address monitor hardware may not be set up properly or the monitor 
hardware may not be armed. Software is also responsible for ensuring that

• Writes that are not intended to cause the exit of a busy loop do not write to a 
location within the address region being monitored by the monitor hardware,

• Writes intended to cause the exit of a busy loop are written to locations within the 
monitored address region.

Not doing so will lead to more false wakeups (an exit from the MWAIT state not due 
to a write to the intended data location). These have negative performance implica-
tions. It might be necessary for software to use padding to prevent false wakeups. 
CPUID provides a mechanism for determining the size data locations for monitoring 
as well as a mechanism for determining the size of a the pad.

7.11.5 Monitor/Mwait Address Range Determination
To use the MONITOR/MWAIT instructions, software should know the length of the 
region monitored by the MONITOR/MWAIT instructions and the size of the coherence 
line size for cache-snoop traffic in a multiprocessor system. This information can be 
queried using the CPUID monitor leaf function (EAX = 05H). You will need the 
smallest and largest monitor line size:

• To avoid missed wake-ups: make sure that the data structure used to monitor 
writes fits within the smallest monitor line-size. Otherwise, the processor may 
not wake up after a write intended to trigger an exit from MWAIT. 

• To avoid false wake-ups; use the largest monitor line size to pad the data 
structure used to monitor writes. Software must make sure that beyond the data 
structure, no unrelated data variable exists in the triggering area for MWAIT. A 
pad may be needed to avoid this situation.

These above two values bear no relationship to cache line size in the system and soft-
ware should not make any assumptions to that effect. Within a single-cluster system, 
the two parameters should default to be the same (the size of the monitor triggering 
area is the same as the system coherence line size).

Based on the monitor line sizes returned by the CPUID, the OS should dynamically 
allocate structures with appropriate padding. If static data structures must be used 
by an OS, attempt to adapt the data structure and use a dynamically allocated data 
buffer for thread synchronization. When the latter technique is not possible, consider 
not using MONITOR/MWAIT when using static data structures.



7-58   Vol. 3

MULTIPLE-PROCESSOR MANAGEMENT

To set up the data structure correctly for MONITOR/MWAIT on multi-clustered 
systems: interaction between processors, chipsets, and the BIOS is required (system 
coherence line size may depend on the chipset used in the system; the size could be 
different from the processor’s monitor triggering area). The BIOS is responsible to 
set the correct value for system coherence line size using the 
IA32_MONITOR_FILTER_LINE_SIZE MSR. Depending on the relative magnitude of 
the size of the monitor triggering area versus the value written into the 
IA32_MONITOR_FILTER_LINE_SIZE MSR, the smaller of the parameters will be 
reported as the Smallest Monitor Line Size. The larger of the parameters will be 
reported as the Largest Monitor Line Size.

7.11.6 Required Operating System Support
This section describes changes that must be made to an operating system to run on 
processors supporting Hyper-Threading Technology. It also describes optimizations 
that can help an operating system make more efficient use of the logical processors 
sharing execution resources. The required changes and suggested optimizations are 
representative of the types of modifications that appear in Windows* XP and Linux* 
kernel 2.4.0 operating systems for Intel processors supporting Hyper-Threading 
Technology. Additional optimizations for processors supporting Hyper-Threading 
Technology are described in the Intel® 64 and IA-32 Architectures Optimization 
Reference Manual.

7.11.6.1  Use the PAUSE Instruction in Spin-Wait Loops
Intel recommends that a PAUSE instruction be placed in all spin-wait loops that run 
on Intel processors supporting Hyper-Threading Technology and multi-core proces-
sors. 

Software routines that use spin-wait loops include multiprocessor synchronization 
primitives (spin-locks, semaphores, and mutex variables) and idle loops. Such 
routines keep the processor core busy executing a load-compare-branch loop while a 
thread waits for a resource to become available. Including a PAUSE instruction in such 
a loop greatly improves efficiency (see Section 7.11.2, “PAUSE Instruction”). The 
following routine gives an example of a spin-wait loop that uses a PAUSE instruction: 

Spin_Lock:
CMP lockvar, 0 ;Check if lock is free
JE Get_Lock
PAUSE ;Short delay
JMP Spin_Lock

Get_Lock:
MOV EAX, 1
XCHG EAX, lockvar ;Try to get lock
CMP EAX, 0 ;Test if successful
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JNE Spin_Lock
Critical_Section:

<critical section code>
MOV lockvar, 0
...

Continue:

The spin-wait loop above uses a “test, test-and-set” technique for determining the 
availability of the synchronization variable. This technique is recommended when 
writing spin-wait loops.

In IA-32 processor generations earlier than the Pentium 4 processor, the PAUSE 
instruction is treated as a NOP instruction.

7.11.6.2  Potential Usage of MONITOR/MWAIT in C0 Idle Loops
An operating system may implement different handlers for different idle states. A 
typical OS idle loop on an ACPI-compatible OS is shown in Example 7-5: 

Example 7-5.  A Typical OS Idle Loop

// WorkQueue is a memory location indicating there is a thread 
// ready to run.  A non-zero value for WorkQueue is assumed to
// indicate the presence of work to be scheduled on the processor.
// The idle loop is entered with interrupts disabled.

WHILE (1) {
IF (WorkQueue) THEN {
// Schedule work at WorkQueue.

} ELSE {
// No work to do - wait in appropriate C-state handler depending 
// on Idle time accumulated

IF (IdleTime >= IdleTimeThreshhold) THEN {
// Call appropriate C1, C2, C3 state handler, C1 handler 
// shown below

}
}

}
// C1 handler uses a Halt instruction
VOID C1Handler() 
{ STI

HLT
} 

The MONITOR and MWAIT instructions may be considered for use in the C0 idle state loops, if 
MONITOR and MWAIT are supported. 
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Example 7-6.  An OS Idle Loop with MONITOR/MWAIT in the C0 Idle Loop

// WorkQueue is a memory location indicating there is a thread 
// ready to run.  A non-zero value for WorkQueue is assumed to
// indicate the presence of work to be scheduled on the processor.
// The following example assumes that the necessary padding has been 
// added surrounding WorkQueue to eliminate false wakeups
// The idle loop is entered with interrupts disabled.

WHILE (1) {
IF (WorkQueue) THEN {
// Schedule work at WorkQueue.

} ELSE {

// No work to do - wait in appropriate C-state handler depending  
// on Idle time accumulated. 

IF (IdleTime >= IdleTimeThreshhold) THEN {
// Call appropriate C1, C2, C3 state handler, C1 
// handler shown below
MONITOR WorkQueue // Setup of eax with WorkQueue

// LinearAddress, 
// ECX, EDX = 0

IF (WorkQueue != 0) THEN {
MWAIT

}

}
}

}
// C1 handler uses a Halt instruction. 

VOID C1Handler() 
{ STI

HLT
}

7.11.6.3  Halt Idle Logical Processors
If one of two logical processors is idle or in a spin-wait loop of long duration, explicitly 
halt that processor by means of a HLT instruction. 

In an MP system, operating systems can place idle processors into a loop that contin-
uously checks the run queue for runnable software tasks. Logical processors that 
execute idle loops consume a significant amount of core’s execution resources that 
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might otherwise be used by the other logical processors in the physical package. For 
this reason, halting idle logical processors optimizes the performance.8 If all logical 
processors within a physical package are halted, the processor will enter a power-
saving state.

7.11.6.4  Potential Usage of MONITOR/MWAIT in C1 Idle Loops
An operating system may also consider replacing HLT with MONITOR/MWAIT in its C1 
idle loop. An example is shown in Example 7-7: 

Example 7-7.  An OS Idle Loop with MONITOR/MWAIT in the C1 Idle Loop

// WorkQueue is a memory location indicating there is a thread 
// ready to run.  A non-zero value for WorkQueue is assumed to
// indicate the presence of work to be scheduled on the processor.
// The following example assumes that the necessary padding has been 
// added surrounding WorkQueue to eliminate false wakeups
// The idle loop is entered with interrupts disabled.
WHILE (1) {

IF (WorkQueue) THEN {
// Schedule work at WorkQueue

} ELSE {
// No work to do - wait in appropriate C-state handler depending 
// on Idle time accumulated

IF (IdleTime >= IdleTimeThreshhold) THEN {
// Call appropriate C1, C2, C3 state handler, C1 
// handler shown below
}

}
}
// C1 handler uses a Halt instruction
VOID C1Handler() 
{

MONITOR WorkQueue // Setup of eax with WorkQueue LinearAddress, 
// ECX, EDX = 0

IF (WorkQueue != 0) THEN {
STI
MWAIT // EAX, ECX = 0

}

}

8. Excessive transitions into and out of the HALT state could also incur performance penalties. 
Operating systems should evaluate the performance trade-offs for their operating system.
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7.11.6.5  Guidelines for Scheduling Threads on Logical Processors Sharing 
Execution Resources

Because the logical processors, the order in which threads are dispatched to logical 
processors for execution can affect the overall efficiency of a system. The following 
guidelines are recommended for scheduling threads for execution.

• Dispatch threads to one logical processor per processor core before dispatching 
threads to the other logical processor sharing execution resources in the same 
processor core. 

• In an MP system with two or more physical packages, distribute threads out over 
all the physical processors, rather than concentrate them in one or two physical 
processors.

• Use processor affinity to assign a thread to a specific processor core or package, 
depending on the cache-sharing topology. The practice increases the chance that 
the processor’s caches will contain some of the thread’s code and data when it is 
dispatched for execution after being suspended. 

7.11.6.6  Eliminate Execution-Based Timing Loops
Intel discourages the use of timing loops that depend on a processor’s execution 
speed to measure time. There are several reasons:

• Timing loops cause problems when they are calibrated on a IA-32 processor 
running at one clock speed and then executed on a processor running at another 
clock speed. 

• Routines for calibrating execution-based timing loops produce unpredictable 
results when run on an IA-32 processor supporting Hyper-Threading Technology. 
This is due to the sharing of execution resources between the logical processors 
within a physical package. 

To avoid the problems described, timing loop routines must use a timing mechanism 
for the loop that does not depend on the execution speed of the logical processors in 
the system. The following sources are generally available:

• A high resolution system timer (for example, an Intel 8254).

• A high resolution timer within the processor (such as, the local APIC timer or the 
time-stamp counter).

For additional information, see the Intel® 64 and IA-32 Architectures Optimization 
Reference Manual.

7.11.6.7  Place Locks and Semaphores in Aligned, 128-Byte Blocks of 
Memory

When software uses locks or semaphores to synchronize processes, threads, or other 
code sections; Intel recommends that only one lock or semaphore be present within 
a cache line (or 128 byte sector, if 128-byte sector is supported). In processors based 
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on Intel NetBurst microarchitecture (which support 128-byte sector consisting of two 
cache lines), following this recommendation means that each lock or semaphore 
should be contained in a 128-byte block of memory that begins on a 128-byte 
boundary. The practice minimizes the bus traffic required to service locks.
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CHAPTER 9
ADVANCED PROGRAMMABLE 

INTERRUPT CONTROLLER (APIC)

The Advanced Programmable Interrupt Controller (APIC), referred to in the following 
sections as the local APIC, was introduced into the IA-32 processors with the Pentium 
processor (see Section 17.26, “Advanced Programmable Interrupt Controller 
(APIC)”) and is included in the P6 family, Pentium 4, Intel Xeon processors, and other 
more recent Intel 64 and IA-32 processor families (see Section 9.4.2, “Presence of 
the Local APIC”). The local APIC performs two primary functions for the processor:

• It receives interrupts from the processor’s interrupt pins, from internal sources 
and from an external I/O APIC (or other external interrupt controller). It sends 
these to the processor core for handling.

• In multiple processor (MP) systems, it sends and receives interprocessor 
interrupt (IPI) messages to and from other logical processors on the system bus. 
IPI messages can be used to distribute interrupts among the processors in the 
system or to execute system wide functions (such as, booting up processors or 
distributing work among a group of processors).

The external I/O APIC is part of Intel’s system chip set. Its primary function is to 
receive external interrupt events from the system and its associated I/O devices and 
relay them to the local APIC as interrupt messages. In MP systems, the I/O APIC also 
provides a mechanism for distributing external interrupts to the local APICs of 
selected processors or groups of processors on the system bus.

This chapter provides a description of the local APIC and its programming interface. 
It also provides an overview of the interface between the local APIC and the I/O 
APIC. Contact Intel for detailed information about the I/O APIC.

When a local APIC has sent an interrupt to its processor core for handling, the 
processor uses the interrupt and exception handling mechanism described in Chapter 
5, “Interrupt and Exception Handling.” See Section 5.1, “Interrupt and Exception 
Overview,” for an introduction to interrupt and exception handling.

9.1 LOCAL AND I/O APIC OVERVIEW
Each local APIC consists of a set of APIC registers (see Table 9-1) and associated 
hardware that control the delivery of interrupts to the processor core and the gener-
ation of IPI messages. The APIC registers are memory mapped and can be read and 
written to using the MOV instruction.

Local APICs can receive interrupts from the following sources:

• Locally connected I/O devices — These interrupts originate as an edge or 
level asserted by an I/O device that is connected directly to the processor’s local 
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interrupt pins (LINT0 and LINT1). The I/O devices may also be connected to an 
8259-type interrupt controller that is in turn connected to the processor through 
one of the local interrupt pins.

• Externally connected I/O devices — These interrupts originate as an edge or 
level asserted by an I/O device that is connected to the interrupt input pins of an 
I/O APIC. Interrupts are sent as I/O interrupt messages from the I/O APIC to one 
or more of the processors in the system.

• Inter-processor interrupts (IPIs) — An Intel 64 or IA-32 processor can use 
the IPI mechanism to interrupt another processor or group of processors on the 
system bus. IPIs are used for software self-interrupts, interrupt forwarding, or 
preemptive scheduling.

• APIC timer generated interrupts — The local APIC timer can be programmed 
to send a local interrupt to its associated processor when a programmed count is 
reached (see Section 9.5.4, “APIC Timer”).

• Performance monitoring counter interrupts — P6 family, Pentium 4, and 
Intel Xeon processors provide the ability to send an interrupt to its associated 
processor when a performance-monitoring counter overflows (see Section 
18.15.6.8, “Generating an Interrupt on Overflow”).

• Thermal Sensor interrupts — Pentium 4 and Intel Xeon processors provide the 
ability to send an interrupt to themselves when the internal thermal sensor has 
been tripped (see Section 13.5.2, “Thermal Monitor”).

• APIC internal error interrupts — When an error condition is recognized within 
the local APIC (such as an attempt to access an unimplemented register), the 
APIC can be programmed to send an interrupt to its associated processor (see 
Section 9.5.3, “Error Handling”).

Of these interrupt sources: the processor’s LINT0 and LINT1 pins, the APIC timer, the 
performance-monitoring counters, the thermal sensor, and the internal APIC error 
detector are referred to as local interrupt sources. Upon receiving a signal from a 
local interrupt source, the local APIC delivers the interrupt to the processor core 
using an interrupt delivery protocol that has been set up through a group of APIC 
registers called the local vector table or LVT (see Section 9.5.1, “Local Vector 
Table”). A separate entry is provided in the local vector table for each local interrupt 
source, which allows a specific interrupt delivery protocol to be set up for each 
source. For example, if the LINT1 pin is going to be used as an NMI pin, the LINT1 
entry in the local vector table can be set up to deliver an interrupt with vector number 
2 (NMI interrupt) to the processor core.

The local APIC handles interrupts from the other two interrupt sources (externally 
connected I/O devices and IPIs) through its IPI message handling facilities. 

A processor can generate IPIs by programming the interrupt command register (ICR) 
in its local APIC (see Section 9.6.1, “Interrupt Command Register (ICR)”). The act of 
writing to the ICR causes an IPI message to be generated and issued on the system 
bus (for Pentium 4 and Intel Xeon processors) or on the APIC bus (for Pentium and 
P6 family processors). See Section 9.2, “System Bus Vs. APIC Bus.”
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IPIs can be sent to other processors in the system or to the originating processor 
(self-interrupts). When the target processor receives an IPI message, its local APIC 
handles the message automatically (using information included in the message such 
as vector number and trigger mode). See Section 9.6, “Issuing Interprocessor Inter-
rupts,” for a detailed explanation of the local APIC’s IPI message delivery and accep-
tance mechanism.

The local APIC can also receive interrupts from externally connected devices through 
the I/O APIC (see Figure 9-1). The I/O APIC is responsible for receiving interrupts 
generated by system hardware and I/O devices and forwarding them to the local 
APIC as interrupt messages.

Individual pins on the I/O APIC can be programmed to generate a specific interrupt 
vector when asserted. The I/O APIC also has a “virtual wire mode” that allows it to 
communicate with a standard 8259A-style external interrupt controller. Note that the 
local APIC can be disabled (see Section 9.4.3, “Enabling or Disabling the Local 
APIC”). This allows an associated processor core to receive interrupts directly from 
an 8259A interrupt controller.

Both the local APIC and the I/O APIC are designed to operate in MP systems (see 
Figures 9-2 and 9-3). Each local APIC handles interrupts from the I/O APIC, IPIs from 
processors on the system bus, and self-generated interrupts. Interrupts can also be 

 

Figure 9-1.  Relationship of Local APIC and I/O APIC In Single-Processor Systems

I/O APIC External
Interrupts

System Chip Set

System Bus

Processor Core

Local APIC

Pentium 4 and 

Local
Interrupts

Bridge

PCI

Intel Xeon Processors

I/O APIC External
Interrupts

System Chip Set

3-Wire APIC Bus

Processor Core

Local APIC

Pentium and P6

Local
Interrupts

Family Processors

Interrupt
Messages

Interrupt
Messages

Interrupt
Messages



9-4   Vol. 3

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

delivered to the individual processors through the local interrupt pins; however, this 
mechanism is commonly not used in MP systems.

 

Figure 9-2.  Local APICs and I/O APIC When Intel Xeon Processors Are Used in 
Multiple-Processor Systems

 

Figure 9-3.  Local APICs and I/O APIC When P6 Family Processors Are Used in 
Multiple-Processor Systems
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The IPI mechanism is typically used in MP systems to send fixed interrupts (inter-
rupts for a specific vector number) and special-purpose interrupts to processors on 
the system bus. For example, a local APIC can use an IPI to forward a fixed interrupt 
to another processor for servicing. Special-purpose IPIs (including NMI, INIT, SMI 
and SIPI IPIs) allow one or more processors on the system bus to perform system-
wide boot-up and control functions.

The following sections focus on the local APIC and its implementation in the 
Pentium 4, Intel Xeon, and P6 family processors. In these sections, the terms “local 
APIC” and “I/O APIC” refer to local and I/O APICs used with the P6 family processors 
and to local and I/O xAPICs used with the Pentium 4 and Intel Xeon processors (see 
Section 9.3, “the Intel® 82489DX External APIC, The APIC, and the xAPIC”). 

9.2 SYSTEM BUS VS. APIC BUS
For the P6 family and Pentium processors, the I/O APIC and local APICs communicate 
through the 3-wire inter-APIC bus (see Figure 9-3). Local APICs also use the APIC 
bus to send and receive IPIs. The APIC bus and its messages are invisible to software 
and are not classed as architectural.

Beginning with the Pentium 4 and Intel Xeon processors, the I/O APIC and local 
APICs (using the xAPIC architecture) communicate through the system bus (see 
Figure 9-2). The I/O APIC sends interrupt requests to the processors on the system 
bus through bridge hardware that is part of the Intel chip set. The bridge hardware 
generates the interrupt messages that go to the local APICs. IPIs between local 
APICs are transmitted directly on the system bus.

9.3 THE INTEL® 82489DX EXTERNAL APIC, 
THE APIC, AND THE XAPIC

The local APIC in the P6 family and Pentium processors is an architectural subset of 
the Intel® 82489DX external APIC. See Section 17.26.1, “Software Visible Differ-
ences Between the Local APIC and the 82489DX.”

The APIC architecture used in the Pentium 4 and Intel Xeon processors (called the 
xAPIC architecture) is an extension of the APIC architecture found in the P6 family 
processors. The primary difference between the APIC and xAPIC architectures is that 
with the xAPIC architecture, the local APICs and the I/O APIC communicate through 
the system bus. With the APIC architecture, they communication through the APIC 
bus (see Section 9.2, “System Bus Vs. APIC Bus”). Also, some APIC architectural 
features have been extended and/or modified in the xAPIC architecture. These 
extensions and modifications are noted in the following sections.



9-6   Vol. 3

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

9.4 LOCAL APIC
The following sections describe the architecture of the local APIC and how to detect 
it, identify it, and determine its status. Descriptions of how to program the local APIC 
are given in Section 9.5.1, “Local Vector Table,” and Section 9.6.1, “Interrupt 
Command Register (ICR).”

9.4.1 The Local APIC Block Diagram
Figure 9-4 gives a functional block diagram for the local APIC. Software interacts 
with the local APIC by reading and writing its registers. APIC registers are memory-
mapped to a 4-KByte region of the processor’s physical address space with an initial 
starting address of FEE00000H. For correct APIC operation, this address space must 
be mapped to an area of memory that has been designated as strong uncacheable 
(UC). See Section 10.3, “Methods of Caching Available.”

In MP system configurations, the APIC registers for Intel 64 or IA-32 processors on 
the system bus are initially mapped to the same 4-KByte region of the physical 
address space. Software has the option of changing initial mapping to a different 
4-KByte region for all the local APICs or of mapping the APIC registers for each local 
APIC to its own 4-KByte region. Section 9.4.5, “Relocating the Local APIC Registers,” 
describes how to relocate the base address for APIC registers.

NOTE
For P6 family, Pentium 4, and Intel Xeon processors, the APIC 
handles all memory accesses to addresses within the 4-KByte APIC 
register space internally and no external bus cycles are produced. For 
the Pentium processors with an on-chip APIC, bus cycles are 
produced for accesses to the APIC register space. Thus, for software 
intended to run on Pentium processors, system software should 
explicitly not map the APIC register space to regular system memory. 
Doing so can result in an invalid opcode exception (#UD) being 
generated or unpredictable execution.
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Figure 9-4.  Local APIC Structure

Current Count
Register

Initial Count
Register

Divide Configuration
Register

Version Register

Error Status
Register

In-Service Register (ISR)

Vector
Decode

Interrupt Command
Register (ICR)

Acceptance
Logic

Vec[3:0]
& TMR Bit

Register
Select

INIT
NMI
SMI

Protocol
Translation Logic

Dest. Mode
& Vector

Processor System Bus3

APIC ID
Register

Logical Destination
Register

Destination Format
Register

Timer

Local
Interrupts 0,1

Performance
Monitoring Counters1

Error

Timer

Local Vector Table

DATA/ADDR

Prioritizer

Task Priority Register

EOI Register

INTR

EXTINT

INTA

LINT0/1

1. Introduced in P6 family processors.

Thermal Sensor2

2. Introduced in the Pentium 4 and Intel Xeon processors.

Perf. Mon.

Thermal

(Internal
Interrupt)

Sensor
(Internal
Interrupt)

Spurious Vector
Register

Local
Interrupts

3. Three-wire APIC bus in P6 family and Pentium processors.

To
CPU
Core

From
CPU
Core

Interrupt Request Register (IRR)

Trigger Mode Register (TMR)

To
CPU
Core

Processor Priority
Register

4. Not implemented in Pentium 4 and Intel Xeon processors.

Arb. ID
Register4



9-8   Vol. 3

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

Table 9-1 shows how the APIC registers are mapped into the 4-KByte APIC register 
space. Registers are 32 bits, 64 bits, or 256 bits in width; all are aligned on 128-bit 
boundaries. All 32-bit registers should be accessed using 128-bit aligned 32-bit loads 
or stores. Some processors may support loads and stores of less than 32 bits to some 
of the APIC registers. This is model specific behavior and is not guaranteed to work 
on all processors. Wider registers (64-bit or 256-bit) must be accessed using multiple 
32-bit loads or stores, with each access being 128-bit aligned. 

The local APIC registers listed in Table 9-1 are not MSRs. The only MSR associated 
with the programming of the local APIC is the IA32_APIC_BASE MSR (see Section 
9.4.3, “Enabling or Disabling the Local APIC”).

Table 9-1.  Local APIC Register Address Map  

Address Register Name Software 
Read/Write

FEE0 0000H Reserved

FEE0 0010H Reserved

FEE0 0020H Local APIC ID Register Read/Write.

FEE0 0030H Local APIC Version Register Read Only.

FEE0 0040H Reserved

FEE0 0050H Reserved

FEE0 0060H Reserved

FEE0 0070H Reserved

FEE0 0080H Task Priority Register (TPR) Read/Write.

FEE0 0090H Arbitration Priority Register1 (APR) Read Only.

FEE0 00A0H Processor Priority Register (PPR) Read Only.

FEE0 00B0H EOI Register Write Only.

FEE0 00C0H Reserved

FEE0 00D0H Logical Destination Register Read/Write.

FEE0 00E0H Destination Format Register Bits 0-27 Read only; 
bits 28-31 
Read/Write.

FEE0 00F0H Spurious Interrupt Vector Register Bits 0-8 Read/Write; 
bits 9-31 Read Only.

FEE0 0100H In-Service Register (ISR); bits 0:31 Read Only.

FEE0 0110H In-Service Register (ISR); bits 32:63 Read Only.

FEE0 0120H In-Service Register (ISR); bits 64:95 Read Only.

FEE0 0130H In-Service Register (ISR); bits 96:127 Read Only.
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FEE0 0140H In-Service Register (ISR); bits 128:159 Read Only.

FEE0 0150H In-Service Register (ISR); bits 160:191 Read Only.

FEE0 0160H In-Service Register (ISR); bits 192:223 Read Only.

FEE0 0170H In-Service Register (ISR); bits 224:255 Read Only.

FEE0 0180H Trigger Mode Register (TMR); bits 0:31 Read Only.

FEE0 0180H Trigger Mode Register (TMR); bits 32:63 Read Only.

FEE0 01A0H Trigger Mode Register (TMR); bits 64:95 Read Only.

FEE0 01B0H Trigger Mode Register (TMR); bits 96:127 Read Only.

FEE0 01C0H Trigger Mode Register (TMR); bits 128:159  Read Only.

FEE0 01D0H Trigger Mode Register (TMR); bits 160:191 Read Only.

FEE0 01E0H Trigger Mode Register (TMR); bits 192:223 Read Only.

FEE0 01F0H Trigger Mode Register (TMR); bits 224:255 Read Only.

FEE0 0200H Interrupt Request Register (IRR); bits 0:31 Read Only.

FEE0 0210H Interrupt Request Register (IRR); bits32:63 Read Only.

FEE0 0220H Interrupt Request Register (IRR); bits 64:95 Read Only.

FEE0 0230H Interrupt Request Register (IRR); bits 96:127 Read Only.

FEE0 0240H Interrupt Request Register (IRR); bits 128:159 Read Only.

FEE0 0250H Interrupt Request Register (IRR); bits 160:191 Read Only.

FEE0 0260H Interrupt Request Register (IRR); bits 192:223 Read Only.

FEE0 0270H Interrupt Request Register (IRR); bits 224:255 Read Only.

FEE0 0280H Error Status Register Read Only.

FEE0 0290H through 
FEE0 02F0H

Reserved

FEE0 0300H Interrupt Command Register (ICR); bits 0-31 Read/Write.

FEE0 0310H Interrupt Command Register (ICR); bits 32-63 Read/Write.

FEE0 0320H LVT Timer Register Read/Write.

FEE0 0330H LVT Thermal Sensor Register2 Read/Write.

FEE0 0340H LVT Performance Monitoring Counters 
Register3

Read/Write.

FEE0 0350H LVT LINT0 Register Read/Write.

FEE0 0360H LVT LINT1 Register Read/Write.

Table 9-1.  Local APIC Register Address Map  (Contd.)

Address Register Name Software 
Read/Write
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9.4.2 Presence of the Local APIC
Beginning with the P6 family processors, the presence or absence of an on-chip local 
APIC can be detected using the CPUID instruction. When the CPUID instruction is 
executed with a source operand of 1 in the EAX register, bit 9 of the CPUID feature 
flags returned in the EDX register indicates the presence (set) or absence (clear) of a 
local APIC.

9.4.3 Enabling or Disabling the Local APIC
The local APIC can be enabled or disabled in either of two ways:

1. Using the APIC global enable/disable flag in the IA32_APIC_BASE MSR (MSR 
address 1BH; see Figure 9-5):

— When IA32_APIC_BASE[11] is 0, the processor is functionally equivalent to 
an IA-32 processor without an on-chip APIC. The CPUID feature flag for the 
APIC (see Section 9.4.2, “Presence of the Local APIC”) is also set to 0.

— When IA32_APIC_BASE[11] is set to 0, processor APICs based on the 3-wire 
APIC bus cannot be generally re-enabled until a system hardware reset. The 
3-wire bus loses track of arbitration that would be necessary for complete re-
enabling. Certain APIC functionality can be enabled (for example: 
performance and thermal monitoring interrupt generation).

FEE0 0370H LVT Error Register Read/Write.

FEE0 0380H Initial Count Register (for Timer) Read/Write.

FEE0 0390H Current Count Register (for Timer) Read Only.

FEE0 03A0H through  
FEE0 03D0H

Reserved

FEE0 03E0H Divide Configuration Register (for Timer) Read/Write.

FEE0 03F0H Reserved

NOTES:
1. Not supported in the Pentium 4 and Intel Xeon processors.
2. Introduced in the Pentium 4 and Intel Xeon processors. This APIC register and its associated 

function are implementation dependent and may not be present in future IA-32 or Intel 64 pro-
cessors.

3. Introduced in the Pentium Pro processor. This APIC register and its associated function are 
implementation dependent and may not be present in future IA-32 or Intel 64 processors.

Table 9-1.  Local APIC Register Address Map  (Contd.)

Address Register Name Software 
Read/Write
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— For processors that use Front Side Bus (FSB) delivery of interrupts, software 
may disable or enable the APIC by setting and resetting 
IA32_APIC_BASE[11]. A hardware reset is not required to re-start APIC 
functionality.

— When IA32_APIC_BASE[11] is set to 0, prior initialization to the APIC may be 
lost and the APIC may return to the state described in Section 9.4.7.1, “Local 
APIC State After Power-Up or Reset.”

2. Using the APIC software enable/disable flag in the spurious-interrupt vector 
register (see Figure 9-23):

— If IA32_APIC_BASE[11] is 1, software can temporarily disable a local APIC at 
any time by clearing the APIC software enable/disable flag in the spurious-
interrupt vector register (see Figure 9-23). The state of the local APIC when 
in this software-disabled state is described in Section 9.4.7.2, “Local APIC 
State After It Has Been Software Disabled.” 

— When the local APIC is in the software-disabled state, it can be re-enabled at 
any time by setting the APIC software enable/disable flag to 1.

For the Pentium processor, the APICEN pin (which is shared with the PICD1 pin) is 
used during power-up or RESET to disable the local APIC.

Note that each entry in the LVT has a mask bit that can be used to inhibit interrupts 
from being delivered to the processor from selected local interrupt sources (the 
LINT0 and LINT1 pins, the APIC timer, the performance-monitoring counters, the 
thermal sensor, and/or the internal APIC error detector).

9.4.4 Local APIC Status and Location
The status and location of the local APIC are contained in the IA32_APIC_BASE MSR 
(see Figure 9-5). MSR bit functions are described below:

• BSP flag, bit 8 ⎯ Indicates if the processor is the bootstrap processor (BSP). See 
Section 7.5, “Multiple-Processor (MP) Initialization.” Following a power-up or 
RESET, this flag is set to 1 for the processor selected as the BSP and set to 0 for 
the remaining processors (APs).

• APIC Global Enable flag, bit 11 ⎯ Enables or disables the local APIC (see 
Section 9.4.3, “Enabling or Disabling the Local APIC”). This flag is available in the 
Pentium 4, Intel Xeon, and P6 family processors. It is not guaranteed to be 
available or available at the same location in future Intel 64 or IA-32 processors.

• APIC Base field, bits 12 through 35 ⎯ Specifies the base address of the APIC 
registers. This 24-bit value is extended by 12 bits at the low end to form the base 
address. This automatically aligns the address on a 4-KByte boundary. Following 
a power-up or RESET, the field is set to FEE0 0000H.

• Bits 0 through 7, bits 9 and 10, and bits 36 through 63 in the IA32_APIC_BASE 
MSR are reserved.



9-12   Vol. 3

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

9.4.5 Relocating the Local APIC Registers
The Pentium 4, Intel Xeon, and P6 family processors permit the starting address of 
the APIC registers to be relocated from FEE00000H to another physical address by 
modifying the value in the 24-bit base address field of the IA32_APIC_BASE MSR. 
This extension of the APIC architecture is provided to help resolve conflicts with 
memory maps of existing systems and to allow individual processors in an MP system 
to map their APIC registers to different locations in physical memory.

9.4.6 Local APIC ID
At power up, system hardware assigns a unique APIC ID to each local APIC on the 
system bus (for Pentium 4 and Intel Xeon processors) or on the APIC bus (for P6 
family and Pentium processors). The hardware assigned APIC ID is based on system 
topology and includes encoding for socket position and cluster information (see 
Figure 7-2).

In MP systems, the local APIC ID is also used as a processor ID by the BIOS and the 
operating system. Some processors permit software to modify the APIC ID. However, 
the ability of software to modify the APIC ID is processor model specific. Because of 
this, operating system software should avoid writing to the local APIC ID register. The 
value returned by bits 31-24 of the EBX register (when the CPUID instruction is 
executed with a source operand value of 1 in the EAX register) is always the Initial 
APIC ID (determined by the platform initialization). This is true even if software has 
changed the value in the Local APIC ID register.

The processor receives the hardware assigned APIC ID (or Initial APIC ID) by 
sampling pins A11# and A12# and pins BR0# through BR3# (for the Pentium 4, Intel 
Xeon, and P6 family processors) and pins BE0# through BE3# (for the Pentium 
processor). The APIC ID latched from these pins is stored in the APIC ID field of the 
local APIC ID register (see Figure 9-6), and is used as the Initial APIC ID for the 
processor. 

Figure 9-5.  IA32_APIC_BASE MSR (APIC_BASE_MSR in P6 Family)
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For the P6 family and Pentium processors, the local APIC ID field in the local APIC ID 
register is 4 bits. Encodings 0H through EH can be used to uniquely identify 15 
different processors connected to the APIC bus. For the Pentium 4 and Intel Xeon 
processors, the xAPIC specification extends the local APIC ID field to 8 bits. These 
can be used to identify up to 255 processors in the system. 

9.4.7 Local APIC State
The following sections describe the state of the local APIC and its registers following 
a power-up or RESET, after the local APIC has been software disabled, following an 
INIT reset, and following an INIT-deassert message.

9.4.7.1  Local APIC State After Power-Up or Reset
Following a power-up or RESET of the processor, the state of local APIC and its regis-
ters are as follows:

• The following registers are reset to all 0s: 

• IRR, ISR, TMR, ICR, LDR, and TPR

• Timer initial count and timer current count registers

• Divide configuration register

• The DFR register is reset to all 1s.

• The LVT register is reset to 0s except for the mask bits; these are set to 1s.

• The local APIC version register is not affected.

• The local APIC ID register is set to a unique APIC ID. (Pentium and P6 family 
processors only). The Arb ID register is set to the value in the APIC ID register.

Figure 9-6.  Local APIC ID Register
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• The spurious-interrupt vector register is initialized to 000000FFH. By setting bit 8 
to 0, software disables the local APIC.

• If the processor is the only processor in the system or it is the BSP in an MP 
system (see Section 7.5.1, “BSP and AP Processors”); the local APIC will respond 
normally to INIT and NMI messages, to INIT# signals and to STPCLK# signals. If 
the processor is in an MP system and has been designated as an AP; the local 
APIC will respond the same as for the BSP. In addition, it will respond to SIPI 
messages. For P6 family processors only, an AP will not respond to a STPCLK# 
signal.

9.4.7.2  Local APIC State After It Has Been Software Disabled 
When the APIC software enable/disable flag in the spurious interrupt vector register 
has been explicitly cleared (as opposed to being cleared during a power up or 
RESET), the local APIC is temporarily disabled (see Section 9.4.3, “Enabling or 
Disabling the Local APIC”). The operation and response of a local APIC while in this 
software-disabled state is as follows:

• The local APIC will respond normally to INIT, NMI, SMI, and SIPI messages.

• Pending interrupts in the IRR and ISR registers are held and require masking or 
handling by the CPU.

• The local APIC can still issue IPIs. It is software’s responsibility to avoid issuing 
IPIs through the IPI mechanism and the ICR register if sending interrupts 
through this mechanism is not desired.

• The reception or transmission of any IPIs that are in progress when the local APIC 
is disabled are completed before the local APIC enters the software-disabled 
state.

• The mask bits for all the LVT entries are set. Attempts to reset these bits will be 
ignored.

• (For Pentium and P6 family processors) The local APIC continues to listen to all 
bus messages in order to keep its arbitration ID synchronized with the rest of the 
system.

9.4.7.3  Local APIC State After an INIT Reset (“Wait-for-SIPI” State)
An INIT reset of the processor can be initiated in either of two ways:

• By asserting the processor’s INIT# pin.

• By sending the processor an INIT IPI (an IPI with the delivery mode set to INIT).

Upon receiving an INIT through either of these mechanisms, the processor responds 
by beginning the initialization process of the processor core and the local APIC. The 
state of the local APIC following an INIT reset is the same as it is after a power-up or 
hardware RESET, except that the APIC ID and arbitration ID registers are not 
affected. This state is also referred to at the “wait-for-SIPI” state (see also: Section 
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7.5.2, “MP Initialization Protocol Requirements and Restrictions for Intel Xeon 
Processors”).

9.4.7.4  Local APIC State After It Receives an INIT-Deassert IPI
Only the Pentium and P6 family processors support the INIT-deassert IPI. An INIT-
disassert IPI has no affect on the state of the APIC, other than to reload the arbitra-
tion ID register with the value in the APIC ID register. 

9.4.8 Local APIC Version Register
The local APIC contains a hardwired version register. Software can use this register to 
identify the APIC version (see Figure 9-7). In addition, the register specifies the 
number of entries in the local vector table (LVT) for a specific implementation. 

The fields in the local APIC version register are as follows:

Version The version numbers of the local APIC:

1XH Local APIC. For Pentium 4 and Intel Xeon 
processors, 14H is returned.

0XH 82489DX external APIC.

20H - FFH Reserved.

Max LVT Entry Shows the number of LVT entries minus 1. For the Pentium 4 and 
Intel Xeon processors (which have 6 LVT entries), the value 
returned in the Max LVT field is 5; for the P6 family processors 
(which have 5 LVT entries), the value returned is 4; for the 
Pentium processor (which has 4 LVT entries), the value returned 
is 3.

9.5 HANDLING LOCAL INTERRUPTS
The following sections describe facilities that are provided in the local APIC for 
handling local interrupts. These include: the processor’s LINT0 and LINT1 pins, the 
APIC timer, the performance-monitoring counters, the thermal sensor, and the 

Figure 9-7.  Local APIC Version Register
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internal APIC error detector. Local interrupt handling facilities include: the LVT, the 
error status register (ESR), the divide configuration register (DCR), and the initial 
count and current count registers.

9.5.1 Local Vector Table
The local vector table (LVT) allows software to specify the manner in which the local 
interrupts are delivered to the processor core. It consists of the following five 32-bit 
APIC registers (see Figure 9-8), one for each local interrupt:

• LVT Timer Register (FEE0 0320H) — Specifies interrupt delivery when the 
APIC timer signals an interrupt (see Section 9.5.4, “APIC Timer”).

• LVT Thermal Monitor Register (FEE0 0330H) — Specifies interrupt delivery 
when the thermal sensor generates an interrupt (see Section 13.5.2, “Thermal 
Monitor”). This LVT entry is implementation specific, not architectural. If imple-
mented, it will always be at base address FEE0 0330H.

• LVT Performance Counter Register (FEE0 0340H) — Specifies interrupt 
delivery when a performance counter generates an interrupt on overflow (see 
Section 18.15.6.8, “Generating an Interrupt on Overflow”). This LVT entry is 
implementation specific, not architectural. If implemented, it is not guaranteed 
to be at base address FEE0 0340H.

• LVT LINT0 Register (FEE0 0350H) — Specifies interrupt delivery when an 
interrupt is signaled at the LINT0 pin.

• LVT LINT1 Register (FEE0 0360H) — Specifies interrupt delivery when an 
interrupt is signaled at the LINT1 pin.

• LVT Error Register (FEE0 0370H) — Specifies interrupt delivery when the 
APIC detects an internal error (see Section 9.5.3, “Error Handling”).

The LVT performance counter register and its associated interrupt were introduced in 
the P6 processors and are also present in the Pentium 4 and Intel Xeon processors. 
The LVT thermal monitor register and its associated interrupt were introduced in the 
Pentium 4 and Intel Xeon processors.

As shown in Figures 9-8, some of these fields and flags are not available (and 
reserved) for some entries.
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Figure 9-8.  Local Vector Table (LVT)
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The setup information that can be specified in the registers of the LVT table is as 
follows:

Vector Interrupt vector number.

Delivery Mode Specifies the type of interrupt to be sent to the processor. Some 
delivery modes will only operate as intended when used in 
conjunction with a specific trigger mode. The allowable delivery 
modes are as follows:

000 (Fixed) Delivers the interrupt specified in the vector 
field.

010 (SMI) Delivers an SMI interrupt to the processor 
core through the processor’s local SMI signal 
path. When using this delivery mode, the 
vector field should be set to 00H for future 
compatibility.

100 (NMI) Delivers an NMI interrupt to the processor. 
The vector information is ignored. 

101 (INIT) Delivers an INIT request to the processor 
core, which causes the processor to perform 
an INIT. When using this delivery mode, the 
vector field should be set to 00H for future 
compatibility.

111 (ExtINT) Causes the processor to respond to the in-
terrupt as if the interrupt originated in an 
externally connected (8259A-compatible) 
interrupt controller. A special INTA bus cycle 
corresponding to ExtINT, is routed to the ex-
ternal controller. The external controller is 
expected to supply the vector information. 
The APIC architecture supports only one Ex-
tINT source in a system, usually contained in 
the compatibility bridge.

Delivery Status (Read Only) 
Indicates the interrupt delivery status, as follows:

0 (Idle) There is currently no activity for this inter-
rupt source, or the previous interrupt from 
this source was delivered to the processor 
core and accepted.

1 (Send Pending) 
Indicates that an interrupt from this source 
has been delivered to the processor core, 
but has not yet been accepted (see Section 
9.5.5, “Local Interrupt Acceptance”).

Interrupt Input Pin Polarity 
Specifies the polarity of the corresponding interrupt pin: (0) 
active high or (1) active low. 
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Remote IRR Flag (Read Only) 
For fixed mode, level-triggered interrupts; this flag is set when 
the local APIC accepts the interrupt for servicing and is reset 
when an EOI command is received from the processor. The 
meaning of this flag is undefined for edge-triggered interrupts 
and other delivery modes. 

Trigger Mode Selects the trigger mode for the local LINT0 and LINT1 pins: (0) 
edge sensitive and (1) level sensitive. This flag is only used 
when the delivery mode is Fixed. When the delivery mode is 
NMI, SMI, or INIT, the trigger mode is always edge sensitive. 
When the delivery mode is ExtINT, the trigger mode is always 
level sensitive. The timer and error interrupts are always treated 
as edge sensitive. 

If the local APIC is not used in conjunction with an I/O APIC and 
fixed delivery mode is selected; the Pentium 4, Intel Xeon, and 
P6 family processors will always use level-sensitive triggering, 
regardless if edge-sensitive triggering is selected.

Mask Interrupt mask: (0) enables reception of the interrupt and (1) 
inhibits reception of the interrupt. When the local APIC handles 
a performance-monitoring counters interrupt, it automatically 
sets the mask flag in the corresponding LVT entry. This flag will 
remain set until software clears it.

Timer Mode Selects the timer mode: (0) one-shot and (1) periodic (see 
Section 9.5.4, “APIC Timer”).

9.5.2 Valid Interrupt Vectors
The Intel 64 and IA-32 architectures define 256 vector numbers, ranging from 0 
through 255 (see Section 5.2, “Exception and Interrupt Vectors”). Local and I/O 
APICs support 240 of these vectors (in the range of 16 to 255) as valid interrupts.

When an interrupt vector in the range of 0 to 15 is sent or received through the local 
APIC, the APIC indicates an illegal vector in its Error Status Register (see Section 
9.5.3, “Error Handling”). The Intel 64 and IA-32 architectures reserve vectors 16 
through 31 for predefined interrupts, exceptions, and Intel-reserved encodings (see 
Table 5-1). However, the local APIC does not treat vectors in this range as illegal.

When an illegal vector value (0 to 15) is written to an LVT entry and the delivery 
mode is Fixed (bits 8-11 equal 0), the APIC may signal an illegal vector error, without 
regard to whether the mask bit is set or whether an interrupt is actually seen on the 
input.

9.5.3 Error Handling
The local APIC provides an error status register (ESR) that it uses to record errors 
that it detects when handling interrupts (see Figure 9-9). An APIC error interrupt is 
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generated when the local APIC sets one of the error bits in the ESR. The LVT error 
register allows selection of the interrupt vector to be delivered to the processor core 
when APIC error is detected. The LVT error register also provides a means of masking 
an APIC error interrupt.

The functions of the ESR are listed in Table 9-2.

Table 9-2.  ESR Flags

FLAG Function

Send Checksum Error (P6 family and Pentium processors only) Set when the local APIC 
detects a checksum error for a message that it sent on the APIC bus.

Receive Checksum Error (P6 family and Pentium processors only) Set when the local APIC 
detects a checksum error for a message that it received on the APIC 
bus.

Send Accept Error (P6 family and Pentium processors only) Set when the local APIC 
detects that a message it sent was not accepted by any APIC on the 
APIC bus.

Receive Accept Error (P6 family and Pentium processors only) Set when the local APIC 
detects that the message it received was not accepted by any APIC 
on the APIC bus, including itself.

Send Illegal Vector Set when the local APIC detects an illegal vector in the message that 
it is sending.

Receive Illegal Vector Set when the local APIC detects an illegal vector in the message it 
received, including an illegal vector code in the local vector table 
interrupts or in a self-interrupt.

Illegal Reg. Address (Pentium 4, Intel Xeon, and P6 family processors only) Set when the 
processor is trying to access a register in the processor's local APIC 
register address space that is reserved (see Table 9-1). Addresses in 
one the 0x10 byte regions marked reserved are illegal register 
addresses. 

The Local APIC Register Map is the address range of the APIC 
register base address (specified in the IA32_APIC_BASE MSR) plus 
4 KBytes.
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The ESR is a write/read register. A write (of any value) to the ESR must be done just 
prior to reading the ESR to update the register. This initial write causes the ESR 
contents to be updated with the latest error status. Back-to-back writes clear the ESR 
register. 

After an error bit is set in the register, it remains set until the register is cleared. 
Setting the mask bit for the LVT error register prevents errors from being recorded in 
the ESR; however, the state of the ESR before the mask bit was set is maintained.

9.5.4 APIC Timer
The local APIC unit contains a 32-bit programmable timer that is available to soft-
ware to time events or operations. This timer is set up by programming four regis-
ters: the divide configuration register (see Figure 9-10), the initial-count and 
current-count registers (see Figure 9-11), and the LVT timer register (see 
Figure 9-8). 

NOTE
The APIC timer may temporarily stop while the processor is in deep 
C-states or during transitions caused by Enhanced Intel SpeedStep® 
Technology.

Figure 9-9.  Error Status Register (ESR)

Address: FEE0 0280H
Value after reset: 0H

31 0

Reserved
78 123456

Illegal Register Address1

Received Illegal Vector
Send Illegal Vector
Reserved
Receive Accept Error2
Send Accept Error2
Receive Checksum Error2
Send Checksum Error2

2. Only used in the P6 family and Pentium processors;
reserved in the Pentium 4 and Intel Xeon processors.

1. Only used in the Pentium 4, Intel Xeon, and P6 family
processors; reserved in the Pentium processor.

NOTES:
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The time base for the timer is derived from the processor’s bus clock, divided by the 
value specified in the divide configuration register.

The timer can be configured through the timer LVT entry for one-shot or periodic 
operation. In one-shot mode, the timer is started by programming its initial-count 
register. The initial count value is then copied into the current-count register and 
count-down begins. After the timer reaches zero, an timer interrupt is generated and 
the timer remains at its 0 value until reprogrammed. 

In periodic mode, the current-count register is automatically reloaded from the 
initial-count register when the count reaches 0 and a timer interrupt is generated, 
and the count-down is repeated. If during the count-down process the initial-count 
register is set, counting will restart, using the new initial-count value. The initial-
count register is a read-write register; the current-count register is read only.

The LVT timer register determines the vector number that is delivered to the 
processor with the timer interrupt that is generated when the timer count reaches 
zero. The mask flag in the LVT timer register can be used to mask the timer interrupt.

Figure 9-10.  Divide Configuration Register

 

Figure 9-11.  Initial Count and Current Count Registers

Address: FEE0 03E0H
Value after reset: 0H

0

Divide Value (bits 0, 1 and 3)
000: Divide by 2
001: Divide by 4
010: Divide by 8
011: Divide by 16
100: Divide by 32
101: Divide by 64
110: Divide by 128
111: Divide by 1

31 0

Reserved
1234

31 0

Initial Count

Address: Initial Count

Value after reset: 0H

Current Count

Current Count FEE0 0390H
FEE0 0380H
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9.5.5 Local Interrupt Acceptance
When a local interrupt is sent to the processor core, it is subject to the acceptance 
criteria specified in the interrupt acceptance flow chart in Figure 9-17. If the interrupt 
is accepted, it is logged into the IRR register and handled by the processor according 
to its priority (see Section 9.8.4, “Interrupt Acceptance for Fixed Interrupts”). If the 
interrupt is not accepted, it is sent back to the local APIC and retried.

9.6 ISSUING INTERPROCESSOR INTERRUPTS
The following sections describe the local APIC facilities that are provided for issuing 
interprocessor interrupts (IPIs) from software. The primary local APIC facility for 
issuing IPIs is the interrupt command register (ICR). The ICR can be used for the 
following functions:

• To send an interrupt to another processor.

• To allow a processor to forward an interrupt that it received but did not service to 
another processor for servicing.

• To direct the processor to interrupt itself (perform a self interrupt).

• To deliver special IPIs, such as the start-up IPI (SIPI) message, to other 
processors. 

Interrupts generated with this facility are delivered to the other processors in the 
system through the system bus (for Pentium 4 and Intel Xeon processors) or the 
APIC bus (for P6 family and Pentium processors). The ability for a processor to send 
a lowest priority IPI is model specific and should be avoided by BIOS and operating 
system software.

9.6.1 Interrupt Command Register (ICR)
The interrupt command register (ICR) is a 64-bit local APIC register (see 
Figure 9-12) that allows software running on the processor to specify and send inter-
processor interrupts (IPIs) to other processors in the system.

To send an IPI, software must set up the ICR to indicate the type of IPI message to 
be sent and the destination processor or processors. (All fields of the ICR are read-
write by software with the exception of the delivery status field, which is read-only.) 
The act of writing to the low doubleword of the ICR causes the IPI to be sent. 
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The ICR consists of the following fields. 

Vector The vector number of the interrupt being sent.

Delivery Mode Specifies the type of IPI to be sent. This field is also know as the 
IPI message type field.

000 (Fixed) Delivers the interrupt specified in the vector 
field to the target processor or processors.

001 (Lowest Priority) 
Same as fixed mode, except that the inter-
rupt is delivered to the processor executing 
at the lowest priority among the set of pro-
cessors specified in the destination field. The 

Figure 9-12.  Interrupt Command Register (ICR)

31 0

Reserved
7

Vector

Destination Shorthand

810

Delivery Mode
000: Fixed
001: Lowest Priority1

00: No Shorthand
01: Self

111213141516171819

10: All Including Self
11: All Excluding Self

010: SMI
011: Reserved
100: NMI
101: INIT
110: Start Up
111: Reserved

Destination Mode
0: Physical
1: Logical

Delivery Status
0: Idle
1: Send Pending

Level
0 = De-assert
1 = Assert

Trigger Mode
0: Edge
1: Level

63 32

ReservedDestination Field
56

Address: FEE0 0300H (0 - 31)

Value after Reset: 0H

Reserved

20

55

FEE0 0310H (32 - 63)

 NOTE:
1. The ability of a processor to send Lowest Priority IPI is model specific.
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ability for a processor to send a lowest prior-
ity IPI is model specific and should be avoid-
ed by BIOS and operating system software.

010 (SMI) Delivers an SMI interrupt to the target pro-
cessor or processors. The vector field must 
be programmed to 00H for future compati-
bility.

011 (Reserved)

100 (NMI) Delivers an NMI interrupt to the target pro-
cessor or processors. The vector information 
is ignored. 

101 (INIT) Delivers an INIT request to the target pro-
cessor or processors, which causes them to 
perform an INIT. As a result of this IPI mes-
sage, all the target processors perform an 
INIT. The vector field must be programmed 
to 00H for future compatibility.

101 (INIT Level De-assert) 
(Not supported in the Pentium 4 and Intel 
Xeon processors.) Sends a synchronization 
message to all the local APICs in the system 
to set their arbitration IDs (stored in their 
Arb ID registers) to the values of their APIC 
IDs (see Section 9.7, “System and APIC Bus 
Arbitration”). For this delivery mode, the 
level flag must be set to 0 and trigger mode 
flag to 1. This IPI is sent to all processors, 
regardless of the value in the destination 
field or the destination shorthand field; how-
ever, software should specify the “all includ-
ing self” shorthand. 

110 (Start-Up) 
Sends a special “start-up” IPI (called a SIPI) 
to the target processor or processors. The 
vector typically points to a start-up routine 
that is part of the BIOS boot-strap code (see 
Section 7.5, “Multiple-Processor (MP) Initial-
ization”). IPIs sent with this delivery mode 
are not automatically retried if the source 
APIC is unable to deliver it. It is up to the 
software to determine if the SIPI was not 
successfully delivered and to reissue the 
SIPI if necessary.
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Destination Mode Selects either physical (0) or logical (1) destination mode (see 
Section 9.6.2, “Determining IPI Destination”).

Delivery Status (Read Only) 
Indicates the IPI delivery status, as follows:

0 (Idle) There is currently no IPI activity for this local 
APIC, or the previous IPI sent from this local 
APIC was delivered and accepted by the tar-
get processor or processors.

1 (Send Pending) 
Indicates that the last IPI sent from this lo-
cal APIC has not yet been accepted by the 
target processor or processors.

Level For the INIT level de-assert delivery mode this flag must be set 
to 0; for all other delivery modes it must be set to 1. (This flag 
has no meaning in Pentium 4 and Intel Xeon processors, and will 
always be issued as a 1.)

Trigger Mode Selects the trigger mode when using the INIT level de-assert 
delivery mode: edge (0) or level (1). It is ignored for all other 
delivery modes. (This flag has no meaning in Pentium 4 and 
Intel Xeon processors, and will always be issued as a 0.) 

Destination Shorthand 
Indicates whether a shorthand notation is used to specify the 
destination of the interrupt and, if so, which shorthand is used. 
Destination shorthands are used in place of the 8-bit destination 
field, and can be sent by software using a single write to the low 
doubleword of the ICR. Shorthands are defined for the following 
cases: software self interrupt, IPIs to all processors in the 
system including the sender, IPIs to all processors in the system 
excluding the sender.

00: (No Shorthand) 
The destination is specified in the destination 
field.

01: (Self) The issuing APIC is the one and only destina-
tion of the IPI. This destination shorthand al-
lows software to interrupt the processor on 
which it is executing. An APIC implementa-
tion is free to deliver the self-interrupt mes-
sage internally or to issue the message to 
the bus and “snoop” it as with any other IPI 
message.

10: (All Including Self) 
The IPI is sent to all processors in the system 
including the processor sending the IPI. The 
APIC will broadcast an IPI message with the 
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destination field set to FH for Pentium and P6 
family processors and to FFH for Pentium 4 
and Intel Xeon processors.

11: (All Excluding Self) 
The IPI is sent to all processors in a system 
with the exception of the processor sending 
the IPI. The APIC broadcasts a message with 
the physical destination mode and destina-
tion field set to 0xFH for Pentium and P6 
family processors and to 0xFFH for Pentium 
4 and Intel Xeon processors. Support for this 
destination shorthand in conjunction with 
the lowest-priority delivery mode is model 
specific. For Pentium 4 and Intel Xeon pro-
cessors, when this shorthand is used togeth-
er with lowest priority delivery mode, the IPI 
may be redirected back to the issuing pro-
cessor.

Destination Specifies the target processor or processors. This field is only 
used when the destination shorthand field is set to 00B. If the 
destination mode is set to physical, then bits 56 through 59 
contain the APIC ID of the target processor for Pentium and P6 
family processors and bits 56 through 63 contain the APIC ID of 
the target processor the for Pentium 4 and Intel Xeon proces-
sors. If the destination mode is set to logical, the interpretation 
of the 8-bit destination field depends on the settings of the DFR 
and LDR registers of the local APICs in all the processors in the 
system (see Section 9.6.2, “Determining IPI Destination”).

Not all combinations of options for the ICR are valid. Table 9-3 shows the valid combi-
nations for the fields in the ICR for the Pentium 4 and Intel Xeon processors; Table 
9-4 shows the valid combinations for the fields in the ICR for the P6 family proces-
sors. Also note that the lower half of the ICR may not be preserved over transitions 
to the deepest C-States.

Table 9-3.  Valid Combinations for the Pentium 4 and Intel Xeon Processors’ 
Local xAPIC Interrupt Command Register 

Destination  
Shorthand

Valid/ 
Invalid

Trigger 
Mode

 
Delivery Mode

Destination 
Mode

No Shorthand Valid Edge All Modes1 Physical or Logical

No Shorthand Invalid2 Level All Modes Physical or Logical

Self Valid Edge Fixed X3

Self Invalid2 Level Fixed X
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Self Invalid X Lowest Priority, NMI, INIT, SMI, Start-
Up

X

All Including Self Valid Edge Fixed X

All Including Self Invalid2 Level Fixed X

All Including Self Invalid X Lowest Priority, NMI, INIT, SMI, Start-
Up

X

All Excluding 
Self

Valid Edge Fixed, Lowest Priority1,4, NMI, INIT, 
SMI, Start-Up

X

All Excluding 
Self

Invalid2 Level FIxed, Lowest Priority4, NMI, INIT, 
SMI, Start-Up

X

NOTES:
1. The ability of a processor to send a lowest priority IPI is model specific.
2. For these interrupts, if the trigger mode bit is 1 (Level), the local xAPIC will override the bit set-

ting and issue the interrupt as an edge triggered interrupt.
3. X means the setting is ignored.
4. When using the “lowest priority” delivery mode and the “all excluding self” destination, the IPI 

can be redirected back to the issuing APIC, which is essentially the same as the “all including 
self” destination mode.

Table 9-4.  Valid Combinations for the P6 Family Processors’
Local APIC Interrupt Command Register 

Destination  
Shorthand

Valid/ 
Invalid

Trigger 
Mode

 
Delivery Mode

 
Destination Mode

No Shorthand Valid Edge All Modes1 Physical or Logical

No Shorthand Valid2 Level Fixed, Lowest Priority1, NMI Physical or Logical

No Shorthand Valid3 Level INIT Physical or Logical

Self Valid Edge Fixed X4

Self 1 Level Fixed X

Self Invalid5 X Lowest Priority, NMI, INIT, 
SMI, Start-Up

X

All including Self Valid Edge Fixed X

All including Self Valid2 Level Fixed X

All including Self Invalid5 X Lowest Priority, NMI, INIT, 
SMI, Start-Up

X

Table 9-3.  Valid Combinations for the Pentium 4 and Intel Xeon Processors’ 
Local xAPIC Interrupt Command Register (Contd.)

Destination  
Shorthand

Valid/ 
Invalid

Trigger 
Mode

 
Delivery Mode

Destination 
Mode
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9.6.2 Determining IPI Destination
The destination of an IPI can be one, all, or a subset (group) of the processors on the 
system bus. The sender of the IPI specifies the destination of an IPI with the 
following APIC registers and fields within the registers:

• ICR Register — The following fields in the ICR register are used to specify the 
destination of an IPI:

— Destination Mode — Selects one of two destination modes (physical or 
logical).

— Destination Field — In physical destination mode, used to specify the APIC 
ID of the destination processor; in logical destination mode, used to specify a 
message destination address (MDA) that can be used to select specific 
processors in clusters.

— Destination Shorthand — A quick method of specifying all processors, all 
excluding self, or self as the destination.

— Delivery mode, Lowest Priority — Architecturally specifies that a lowest-
priority arbitration mechanism be used to select a destination processor from 
a specified group of processors. The ability of a processor to send a lowest 
priority IPI is model specific and should be avoided by BIOS and operating 
system software.

• Local destination register (LDR) — Used in conjunction with the logical 
destination mode and MDAs to select the destination processors.

All excluding Self Valid Edge All Modes1 X

All excluding Self Valid2 Level Fixed, Lowest Priority1, NMI X

All excluding Self Invalid5 Level SMI, Start-Up X

All excluding Self Valid3 Level INIT X

X Invalid5 Level SMI, Start-Up X

NOTES:
1. The ability of a processor to send a lowest priority IPI is model specific.
2. Treated as edge triggered if level bit is set to 1, otherwise ignored.
3. Treated as edge triggered when Level bit is set to 1; treated as “INIT Level Deassert” message 

when level bit is set to 0 (deassert). Only INIT level deassert messages are allowed to have the 
level bit set to 0. For all other messages the level bit must be set to 1.

4. X means the setting is ignored.
5. The behavior of the APIC is undefined.

Table 9-4.  Valid Combinations for the P6 Family Processors’
Local APIC Interrupt Command Register (Contd.)

Destination  
Shorthand

Valid/ 
Invalid

Trigger 
Mode

 
Delivery Mode

 
Destination Mode
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• Destination format register (DFR) — Used in conjunction with the logical 
destination mode and MDAs to select the destination processors.

How the ICR, LDR, and DFR are used to select an IPI destination depends on the 
destination mode used: physical, logical, broadcast/self, or lowest-priority delivery 
mode. These destination modes are described in the following sections.

9.6.2.1  Physical Destination Mode
In physical destination mode, the destination processor is specified by its local APIC 
ID (see Section 9.4.6, “Local APIC ID”). For Pentium 4 and Intel Xeon processors, 
either a single destination (local APIC IDs 00H through FEH) or a broadcast to all 
APICs (the APIC ID is FFH) may be specified in physical destination mode. 

A broadcast IPI (bits 28-31 of the MDA are 1's) or I/O subsystem initiated interrupt 
with lowest priority delivery mode is not supported in physical destination mode and 
must not be configured by software. Also, for any non-broadcast IPI or I/O 
subsystem initiated interrupt with lowest priority delivery mode, software must 
ensure that APICs defined in the interrupt address are present and enabled to receive 
interrupts. 

For the P6 family and Pentium processors, a single destination is specified in physical 
destination mode with a local APIC ID of 0H through 0EH, allowing up to 15 local 
APICs to be addressed on the APIC bus. A broadcast to all local APICs is specified with 
0FH.

NOTE
The number of local APICs that can be addressed on the system bus 
may be restricted by hardware.

9.6.2.2  Logical Destination Mode
In logical destination mode, IPI destination is specified using an 8-bit message desti-
nation address (MDA), which is entered in the destination field of the ICR. Upon 
receiving an IPI message that was sent using logical destination mode, a local APIC 
compares the MDA in the message with the values in its LDR and DFR to determine if 
it should accept and handle the IPI. For both configurations of logical destination 
mode, when combined with lowest priority delivery mode, software is responsible for 
ensuring that all of the local APICs included in or addressed by the IPI or I/O 
subsystem interrupt are present and enabled to receive the interrupt.

Figure 9-13 shows the layout of the logical destination register (LDR). The 8-bit 
logical APIC ID field in this register is used to create an identifier that can be 
compared with the MDA.
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NOTE
The logical APIC ID should not be confused with the local APIC ID that 
is contained in the local APIC ID register.

Figure 9-14 shows the layout of the destination format register (DFR). The 4-bit 
model field in this register selects one of two models (flat or cluster) that can be used 
to interpret the MDA when using logical destination mode.

The interpretation of MDA for the two models is described in the following para-
graphs.

1. Flat Model — This model is selected by programming DFR bits 28 through 31 to 
1111. Here, a unique logical APIC ID can be established for up to 8 local APICs by 
setting a different bit in the logical APIC ID field of the LDR for each local APIC. A 
group of local APICs can then be selected by setting one or more bits in the MDA. 

Each local APIC performs a bit-wise AND of the MDA and its logical APIC ID. If a 
true condition is detected, the local APIC accepts the IPI message. A broadcast to 
all APICs is achieved by setting the MDA to 1s.

2. Cluster Model — This model is selected by programming DFR bits 28 through 31 
to 0000. This model supports two basic destination schemes: flat cluster and 
hierarchical cluster.

The flat cluster destination model is only supported for P6 family and Pentium 
processors. Using this model, all APICs are assumed to be connected through the 

Figure 9-13.  Logical Destination Register (LDR)

Figure 9-14.  Destination Format Register (DFR)

31 02324

ReservedLogical APIC ID

Address: 0FEE0 00D0H
Value after reset: 0000 0000H

31 0

Model

28

Reserved (All 1s)

Address: 0FEE0 00E0H
Value after reset: FFFF FFFFH

Flat model: 1111B
Cluster model: 0000B
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APIC bus. Bits 28 through 31 of the MDA contains the encoded address of the 
destination cluster and bits 24 through 27 identify up to four local APICs within 
the cluster (each bit is assigned to one local APIC in the cluster, as in the flat 
connection model). To identify one or more local APICs, bits 28 through 31 of the 
MDA are compared with bits 28 through 31 of the LDR to determine if a local APIC 
is part of the cluster. Bits 24 through 27 of the MDA are compared with Bits 24 
through 27 of the LDR to identify a local APICs within the cluster. 

Sets of processors within a cluster can be specified by writing the target cluster 
address in bits 28 through 31 of the MDA and setting selected bits in bits 24 
through 27 of the MDA, corresponding to the chosen members of the cluster. In 
this mode, 15 clusters (with cluster addresses of 0 through 14) each having 4 
local APICs can be specified in the message. For the P6 and Pentium processor’s 
local APICs, however, the APIC arbitration ID supports only 15 APIC agents. 
Therefore, the total number of processors and their local APICs supported in 
this mode is limited to 15. Broadcast to all local APICs is achieved by setting all 
destination bits to one. This guarantees a match on all clusters and selects all 
APICs in each cluster. A broadcast IPI or I/O subsystem broadcast interrupt with 
lowest priority delivery mode is not supported in cluster mode and must not be 
configured by software.

The hierarchical cluster destination model can be used with Pentium 4, Intel 
Xeon, P6 family, or Pentium processors. With this model, a hierarchical network 
can be created by connecting different flat clusters via independent system or 
APIC buses. This scheme requires a cluster manager within each cluster, which is 
responsible for handling message passing between system or APIC buses. One 
cluster contains up to 4 agents. Thus 15 cluster managers, each with 4 agents, 
can form a network of up to 60 APIC agents. Note that hierarchical APIC networks 
requires a special cluster manager device, which is not part of the local or the I/O 
APIC units.

NOTES
All processors that have their APIC software enabled (using the 
spurious vector enable/disable bit) must have their DFRs (Desti-
nation Format Registers) programmed identically.

The default mode for DFR is flat mode. If you are using cluster mode, 
DFRs must be programmed before the APIC is software enabled.   
Since some chipsets do not accurately track a system view of the 
logical mode, program DFRs as soon as possible after starting the 
processor.

9.6.2.3  Broadcast/Self Delivery Mode
The destination shorthand field of the ICR allows the delivery mode to be by-passed 
in favor of broadcasting the IPI to all the processors on the system bus and/or back 
to itself (see Section 9.6.1, “Interrupt Command Register (ICR)”). Three destination 



Vol. 3   9-33

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

shorthands are supported: self, all excluding self, and all including self. The destina-
tion mode is ignored when a destination shorthand is used.

9.6.2.4  Lowest Priority Delivery Mode
With lowest priority delivery mode, the ICR is programmed to send an IPI to several 
processors on the system bus, using the logical or shorthand destination mechanism 
for selecting the processor. The selected processors then arbitrate with one another 
over the system bus or the APIC bus, with the lowest-priority processor accepting the 
IPI. 

For systems based on the Intel Xeon processor, the chipset bus controller accepts 
messages from the I/O APIC agents in the system and directs interrupts to the 
processors on the system bus. When using the lowest priority delivery mode, the 
chipset chooses a target processor to receive the interrupt out of the set of possible 
targets. The Pentium 4 processor provides a special bus cycle on the system bus that 
informs the chipset of the current task priority for each logical processor in the 
system. The chipset saves this information and uses it to choose the lowest priority 
processor when an interrupt is received.

For systems based on P6 family processors, the processor priority used in lowest-
priority arbitration is contained in the arbitration priority register (APR) in each local 
APIC. Figure 9-15 shows the layout of the APR. 

The APR value is computed as follows:

IF (TPR[7:4] ≥ IRRV[7:4]) AND (TPR[7:4] > ISRV[7:4]) 
THEN 

APR[7:0] ← TPR[7:0]
ELSE 

APR[7:4] ← max(TPR[7:4] AND ISRV[7:4], IRRV[7:4])
APR[3:0] ← 0.

Here, the TPR value is the task priority value in the TPR (see Figure 9-18), the IRRV 
value is the vector number for the highest priority bit that is set in the IRR (see 
Figure 9-20) or 00H (if no IRR bit is set), and the ISRV value is the vector number for 
the highest priority bit that is set in the ISR (see Figure 9-20). Following arbitration 

 

Figure 9-15.  Arbitration Priority Register (APR)

31 078

Reserved

Address: FEE0 0090H
Value after reset: 0H

Arbitration Priority Sub-Class
Arbitration Priority

4 3
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among the destination processors, the processor with the lowest value in its APR 
handles the IPI and the other processors ignore it.

(P6 family and Pentium processors.) For these processors, if a focus processor 
exists, it may accept the interrupt, regardless of its priority. A processor is said to be 
the focus of an interrupt if it is currently servicing that interrupt or if it has a pending 
request for that interrupt. For Intel Xeon processors, the concept of a focus processor 
is not supported.

In operating systems that use the lowest priority delivery mode but do not update 
the TPR, the TPR information saved in the chipset will potentially cause the interrupt 
to be always delivered to the same processor from the logical set. This behavior is 
functionally backward compatible with the P6 family processor but may result in 
unexpected performance implications.

9.6.3 IPI Delivery and Acceptance
When the low double-word of the ICR is written to, the local APIC creates an IPI 
message from the information contained in the ICR and sends the message out on 
the system bus (Pentium 4 and Intel Xeon processors) or the APIC bus (P6 family and 
Pentium processors). The manner in which these IPIs are handled after being issues 
in described in Section 9.8, “Handling Interrupts.”

9.7 SYSTEM AND APIC BUS ARBITRATION
When several local APICs and the I/O APIC are sending IPI and interrupt messages 
on the system bus (or APIC bus), the order in which the messages are sent and 
handled is determined through bus arbitration. 

For the Pentium 4 and Intel Xeon processors, the local and I/O APICs use the arbitra-
tion mechanism defined for the system bus to determine the order in which IPIs are 
handled. This mechanism is non-architectural and cannot be controlled by software.

For the P6 family and Pentium processors, the local and I/O APICs use an APIC-based 
arbitration mechanism to determine the order in which IPIs are handled. Here, each 
local APIC is given an arbitration priority of from 0 to 15, which the I/O APIC uses 
during arbitration to determine which local APIC should be given access to the APIC 
bus. The local APIC with the highest arbitration priority always wins bus access. Upon 
completion of an arbitration round, the winning local APIC lowers its arbitration 
priority to 0 and the losing local APICs each raise theirs by 1.

The current arbitration priority for a local APIC is stored in a 4-bit, software-trans-
parent arbitration ID (Arb ID) register. During reset, this register is initialized to the 
APIC ID number (stored in the local APIC ID register). The INIT level-deassert IPI, 
which is issued with and ICR command, can be used to resynchronize the arbitration 
priorities of the local APICs by resetting Arb ID register of each agent to its current 
APIC ID value. (The Pentium 4 and Intel Xeon processors do not implement the Arb 
ID register.)
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Section 9.10, “APIC Bus Message Passing Mechanism and Protocol (P6 Family, 
Pentium Processors),” describes the APIC bus arbitration protocols and bus message 
formats, while Section 9.6.1, “Interrupt Command Register (ICR),” describes the 
INIT level de-assert IPI message. 

Note that except for the SIPI IPI (see Section 9.6.1, “Interrupt Command Register 
(ICR)”), all bus messages that fail to be delivered to their specified destination or 
destinations are automatically retried. Software should avoid situations in which IPIs 
are sent to disabled or nonexistent local APICs, causing the messages to be resent 
repeatedly.

9.8 HANDLING INTERRUPTS
When a local APIC receives an interrupt from a local source, an interrupt message 
from an I/O APIC, or and IPI, the manner in which it handles the message depends 
on processor implementation, as described in the following sections.

9.8.1 Interrupt Handling with the Pentium 4 and Intel Xeon 
Processors

With the Pentium 4 and Intel Xeon processors, the local APIC handles the local inter-
rupts, interrupt messages, and IPIs it receives as follows: 

1. It determines if it is the specified destination or not (see Figure 9-16). If it is the 
specified destination, it accepts the message; if it is not, it discards the message.

2. If the local APIC determines that it is the designated destination for the interrupt 
and if the interrupt request is an NMI, SMI, INIT, ExtINT, or SIPI, the interrupt is 
sent directly to the processor core for handling.

3. If the local APIC determines that it is the designated destination for the interrupt 
but the interrupt request is not one of the interrupts given in step 2, the local 
APIC sets the appropriate bit in the IRR. 

Figure 9-16.  Interrupt Acceptance Flow Chart for the Local APIC (Pentium 4 and Intel 
Xeon Processors)
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4. When interrupts are pending in the IRR and ISR register, the local APIC 
dispatches them to the processor one at a time, based on their priority and the 
current task and processor priorities in the TPR and PPR (see Section 9.8.3.1, 
“Task and Processor Priorities”).

5. When a fixed interrupt has been dispatched to the processor core for handling, 
the completion of the handler routine is indicated with an instruction in the 
instruction handler code that writes to the end-of-interrupt (EOI) register in the 
local APIC (see Section 9.8.5, “Signaling Interrupt Servicing Completion”). The 
act of writing to the EOI register causes the local APIC to delete the interrupt 
from its ISR queue and (for level-triggered interrupts) send a message on the 
bus indicating that the interrupt handling has been completed. (A write to the EOI 
register must not be included in the handler routine for an NMI, SMI, INIT, 
ExtINT, or SIPI.)

9.8.2 Interrupt Handling with the P6 Family and Pentium 
Processors

With the P6 family and Pentium processors, the local APIC handles the local inter-
rupts, interrupt messages, and IPIs it receives as follows (see Figure 9-17).
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1. (IPIs only) It examines the IPI message to determines if it is the specified 
destination for the IPI as described in Section 9.6.2, “Determining IPI Desti-
nation.” If it is the specified destination, it continues its acceptance procedure; if 
it is not the destination, it discards the IPI message. When the message specifies 
lowest-priority delivery mode, the local APIC will arbitrate with the other 
processors that were designated on recipients of the IPI message (see Section 
9.6.2.4, “Lowest Priority Delivery Mode”).

2. If the local APIC determines that it is the designated destination for the interrupt 
and if the interrupt request is an NMI, SMI, INIT, ExtINT, or INIT-deassert 

Figure 9-17.  Interrupt Acceptance Flow Chart for the Local APIC (P6 Family and 
Pentium Processors)
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interrupt, or one of the MP protocol IPI messages (BIPI, FIPI, and SIPI), the 
interrupt is sent directly to the processor core for handling.

3. If the local APIC determines that it is the designated destination for the interrupt 
but the interrupt request is not one of the interrupts given in step 2, the local 
APIC looks for an open slot in one of its two pending interrupt queues contained 
in the IRR and ISR registers (see Figure 9-20). If a slot is available (see Section 
9.8.4, “Interrupt Acceptance for Fixed Interrupts”), places the interrupt in the 
slot. If a slot is not available, it rejects the interrupt request and sends it back to 
the sender with a retry message.

4. When interrupts are pending in the IRR and ISR register, the local APIC 
dispatches them to the processor one at a time, based on their priority and the 
current task and processor priorities in the TPR and PPR (see Section 9.8.3.1, 
“Task and Processor Priorities”).

5. When a fixed interrupt has been dispatched to the processor core for handling, 
the completion of the handler routine is indicated with an instruction in the 
instruction handler code that writes to the end-of-interrupt (EOI) register in the 
local APIC (see Section 9.8.5, “Signaling Interrupt Servicing Completion”). The 
act of writing to the EOI register causes the local APIC to delete the interrupt 
from its queue and (for level-triggered interrupts) send a message on the bus 
indicating that the interrupt handling has been completed. (A write to the EOI 
register must not be included in the handler routine for an NMI, SMI, INIT, 
ExtINT, or SIPI.)

The following sections describe the acceptance of interrupts and their handling by the 
local APIC and processor in greater detail. 

9.8.3 Interrupt, Task, and Processor Priority
For interrupts that are delivered to the processor through the local APIC, each inter-
rupt has an implied priority based on its vector number. The local APIC uses this 
priority to determine when to service the interrupt relative to the other activities of 
the processor, including the servicing of other interrupts. 

For interrupt vectors in the range of 16 to 255, the interrupt priority is determined 
using the following relationship:

priority =  vector / 16

Here the quotient is rounded down to the nearest integer value to determine the 
priority, with 1 being the lowest priority and 15 is the highest. Because vectors 0 
through 31 are reserved for dedicated uses by the Intel 64 and IA-32 architectures, 
the priorities of user defined interrupts range from 2 to 15.

Each interrupt priority level (sometimes interpreted by software as an interrupt 
priority class) encompasses 16 vectors. Prioritizing interrupts within a priority level is 
determined by the vector number. The higher the vector number, the higher the 
priority within that priority level. In determining the priority of a vector and ranking 
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of vectors within a priority group, the vector number is often divided into two parts, 
with the high 4 bits of the vector indicating its priority and the low 4 bit indicating its 
ranking within the priority group.

9.8.3.1  Task and Processor Priorities
The local APIC also defines a task priority and a processor priority that it uses in 
determining the order in which interrupts should be handled. The task priority is a 
software selected value between 0 and 15 (see Figure 9-18) that is written into the 
task priority register (TPR). The TPR is a read/write register. 

NOTE
In this discussion, the term “task” refers to a software defined task, 
process, thread, program, or routine that is dispatched to run on the 
processor by the operating system. It does not refer an IA-32 archi-
tecture defined task as described in Chapter 6, “Task Management.”

The task priority allows software to set a priority threshold for interrupting the 
processor. The processor will service only those interrupts that have a priority higher 
than that specified in the TPR. If software sets the task priority in the TPR to 0, the 
processor will handle all interrupts; it is it set to 15, all interrupts are inhibited from 
being handled, except those delivered with the NMI, SMI, INIT, ExtINT, INIT-deas-
sert, and start-up delivery mode. This mechanism enables the operating system to 
temporarily block specific interrupts (generally low priority interrupts) from 
disturbing high-priority work that the processor is doing.

Note that the task priority is also used to determine the arbitration priority of the 
local processor (see Section 9.6.2.4, “Lowest Priority Delivery Mode”).

The processor priority is set by the processor, also to value between 0 and 15 (see 
Figure 9-19) that is written into the processor priority register (PPR). The PPR is a 
read only register. The processor priority represents the current priority at which the 
processor is executing. It is used to determine whether a pending interrupt can be 
dispensed to the processor.

 

Figure 9-18.  Task Priority Register (TPR)
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Its value in the PPR is computed as follows: 

IF TPR[7:4] ≥ ISRV[7:4]
THEN  

PPR[7:0] ← TPR[7:0]
ELSE  

PPR[7:4] ← ISRV[7:4]
PPR[3:0] ← 0

Here, the ISRV value is the vector number of the highest priority ISR bit that is set, 
or 00H if no ISR bit is set. Essentially, the processor priority is set to either to the 
highest priority pending interrupt in the ISR or to the current task priority, whichever 
is higher.

9.8.4 Interrupt Acceptance for Fixed Interrupts
The local APIC queues the fixed interrupts that it accepts in one of two interrupt 
pending registers: the interrupt request register (IRR) or in-service register (ISR). 
These two 256-bit read-only registers are shown in Figure 9-20. The 256 bits in 
these registers represent the 256 possible vectors; vectors 0 through 15 are 
reserved by the APIC (see also: Section 9.5.2, “Valid Interrupt Vectors”).

NOTE
All interrupts with an NMI, SMI, INIT, ExtINT, start-up, or INIT-
deassert delivery mode bypass the IRR and ISR registers and are 
sent directly to the processor core for servicing.

 

Figure 9-19.  Processor Priority Register (PPR)
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The IRR contains the active interrupt requests that have been accepted, but not yet 
dispatched to the processor for servicing. When the local APIC accepts an interrupt, 
it sets the bit in the IRR that corresponds the vector of the accepted interrupt. When 
the processor core is ready to handle the next interrupt, the local APIC clears the 
highest priority IRR bit that is set and sets the corresponding ISR bit. The vector for 
the highest priority bit set in the ISR is then dispatched to the processor core for 
servicing. 

While the processor is servicing the highest priority interrupt, the local APIC can send 
additional fixed interrupts by setting bits in the IRR. When the interrupt service 
routine issues a write to the EOI register (see Section 9.8.5, “Signaling Interrupt 
Servicing Completion”), the local APIC responds by clearing the highest priority ISR 
bit that is set. It then repeats the process of clearing the highest priority bit in the IRR 
and setting the corresponding bit in the ISR. The processor core then begins 
executing the service routing for the highest priority bit set in the ISR.

If more than one interrupt is generated with the same vector number, the local APIC 
can set the bit for the vector both in the IRR and the ISR. This means that for the 
Pentium 4 and Intel Xeon processors, the IRR and ISR can queue two interrupts for 
each interrupt vector: one in the IRR and one in the ISR. Any additional interrupts 
issued for the same interrupt vector are collapsed into the single bit in the IRR.

For the P6 family and Pentium processors, the IRR and ISR registers can queue no 
more than two interrupts per priority level, and will reject other interrupts that are 
received within the same priority level. 

If the local APIC receives an interrupt with a priority higher than that of the interrupt 
currently in serviced, and interrupts are enabled in the processor core, the local APIC 
dispatches the higher priority interrupt to the processor immediately (without 
waiting for a write to the EOI register). The currently executing interrupt handler is 
then interrupted so the higher-priority interrupt can be handled. When the handling 
of the higher-priority interrupt has been completed, the servicing of the interrupted 
interrupt is resumed.

The trigger mode register (TMR) indicates the trigger mode of the interrupt (see 
Figure 9-20). Upon acceptance of an interrupt into the IRR, the corresponding TMR 

 

Figure 9-20.  IRR, ISR and TMR Registers
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bit is cleared for edge-triggered interrupts and set for level-triggered interrupts. If a 
TMR bit is set when an EOI cycle for its corresponding interrupt vector is generated, 
an EOI message is sent to all I/O APICs.

9.8.5 Signaling Interrupt Servicing Completion
For all interrupts except those delivered with the NMI, SMI, INIT, ExtINT, the start-
up, or INIT-Deassert delivery mode, the interrupt handler must include a write to the 
end-of-interrupt (EOI) register (see Figure 9-21). This write must occur at the end of 
the handler routine, sometime before the IRET instruction. This action indicates that 
the servicing of the current interrupt is complete and the local APIC can issue the 
next interrupt from the ISR. 

Upon receiving and EOI, the APIC clears the highest priority bit in the ISR and 
dispatches the next highest priority interrupt to the processor. If the terminated 
interrupt was a level-triggered interrupt, the local APIC also sends an end-of-inter-
rupt message to all I/O APICs. 

For future compatibility, the software is requested to issue the end-of-interrupt 
command by writing a value of 0H into the EOI register.

9.8.6 Task Priority in IA-32e Mode
In IA-32e mode, operating systems can manage the 16 priority classes of external 
interrupts (see Section 9.8.3, “Interrupt, Task, and Processor Priority”) explicitly 
using the task priority register (TPR). Operating systems can use the TPR to tempo-
rarily block specific (low-priority) interrupts from interrupting a high-priority task. 
This is done by loading TPR with a value corresponding to the highest-priority inter-
rupt that is to be blocked. For example: 

• Loading the TPR with a value of 8 (01000B) blocks all interrupts with a priority of 
8 or less while allowing all interrupts with a priority of nine or more to be 
recognized.

• Loading the TPR with zero enables all external interrupts. 

• Loading the TPR with 0F (01111B) disables all external interrupts. 

Figure 9-21.  EOI Register
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The TPR (shown in Figure 9-18) is cleared to 0 on reset. In 64-bit mode, software can 
read and write the TPR using an alternate interface, MOV CR8 instruction. The new 
priority level is established when the MOV CR8 instruction completes execution. Soft-
ware does not need to force serialization after loading the TPR using MOV CR8. 

Use of the MOV CRn instruction requires a privilege level of 0. Programs running at 
privilege level greater than 0 cannot read or write the TPR. An attempt to do so 
results in a general-protection exception, #GP(0). The TPR is abstracted from the 
interrupt controller (IC), which prioritizes and manages external interrupt delivery to 
the processor. The IC can be an external device, such as an APIC or 8259. Typically, 
the IC provides a priority mechanism similar or identical to the TPR. The IC, however, 
is considered implementation-dependent with the under-lying priority mechanisms 
subject to change. CR8, by contrast, is part of the Intel 64 architecture. Software can 
depend on this definition remaining unchanged. 

Figure 9-22 shows the layout of CR8; only the low four bits are used. The remaining 
60 bits are reserved and must be written with zeros. Failure to do this results in a 
general-protection exception, #GP(0).

9.8.6.1  Interaction of Task Priorities between CR8 and APIC
The first implementation of Intel 64 architecture includes a local advanced program-
mable interrupt controller (APIC) that is similar to the APIC used with previous IA-32 
processors. Some aspects of the local APIC affect the operation of the architecturally 
defined task priority register and the programming interface using CR8.

Notable CR8 and APIC interactions are:

• The processor powers up with the local APIC enabled.

• The APIC must be enabled for CR8 to function as the TPR. Writes to CR8 are 
reflected into the APIC Task Priority Register.

• APIC.TPR[bits 7:4] = CR8[bits 3:0], APIC.TPR[bits 3:0] = 0. A read of CR8 
returns a 64-bit value which is the value of TPR[bits 7:4], zero extended to 64 
bits.

There are no ordering mechanisms between direct updates of the APIC.TPR and CR8. 
Operating software should implement either direct APIC TPR updates or CR8 style 
TPR updates but not mix them. Software can use a serializing instruction (for 
example, CPUID) to serialize updates between MOV CR8 and stores to the APIC.

Figure 9-22.  CR8 Register
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9.9 SPURIOUS INTERRUPT
A special situation may occur when a processor raises its task priority to be greater 
than or equal to the level of the interrupt for which the processor INTR signal is 
currently being asserted. If at the time the INTA cycle is issued, the interrupt that 
was to be dispensed has become masked (programmed by software), the local APIC 
will deliver a spurious-interrupt vector. Dispensing the spurious-interrupt vector does 
not affect the ISR, so the handler for this vector should return without an EOI.

The vector number for the spurious-interrupt vector is specified in the spurious-inter-
rupt vector register (see Figure 9-23). The functions of the fields in this register are 
as follows:

Spurious Vector Determines the vector number to be delivered to the processor 
when the local APIC generates a spurious vector. 

(Pentium 4 and Intel Xeon processors.) Bits 0 through 7 of the 
this field are programmable by software. 

(P6 family and Pentium processors). Bits 4 through 7 of the this 
field are programmable by software, and bits 0 through 3 are 
hardwired to logical ones. Software writes to bits 0 through 3 
have no effect.

APIC Software Allows software to temporarily enable (1) or disable (0) the local 

Enable/Disable APIC (see Section 9.4.3, “Enabling or Disabling the Local APIC”).

Focus Processor Determines if focus processor checking is enabled (0) or 
disabled (1) 

Checking when using the lowest-priority delivery mode. In Pentium 4 and 
Intel Xeon processors, this bit is reserved and should be cleared 
to 0.

NOTE
Do not program an LVT or IOAPIC RTE with a spurious vector even if 
you set the mask bit. A spurious vector ISR does not do an EOI. If for 
some reason an interrupt is generated by an LVT or RTE entry, the bit 
in the in-service register will be left set for the spurious vector. This 
will mask all interrupts at the same or lower priority
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9.10 APIC BUS MESSAGE PASSING MECHANISM AND 
PROTOCOL (P6 FAMILY, PENTIUM PROCESSORS)

The Pentium 4 and Intel Xeon processors pass messages among the local and I/O 
APICs on the system bus, using the system bus message passing mechanism and 
protocol.

The P6 family and Pentium processors, pass messages among the local and I/O 
APICs on the serial APIC bus, as follows. Because only one message can be sent at a 
time on the APIC bus, the I/O APIC and local APICs employ a “rotating priority” arbi-
tration protocol to gain permission to send a message on the APIC bus. One or more 
APICs may start sending their messages simultaneously. At the beginning of every 
message, each APIC presents the type of the message it is sending and its current 
arbitration priority on the APIC bus. This information is used for arbitration. After 
each arbitration cycle (within an arbitration round), only the potential winners keep 
driving the bus. By the time all arbitration cycles are completed, there will be only 
one APIC left driving the bus. Once a winner is selected, it is granted exclusive use of 
the bus, and will continue driving the bus to send its actual message.

After each successfully transmitted message, all APICs increase their arbitration 
priority by 1. The previous winner (that is, the one that has just successfully trans-
mitted its message) assumes a priority of 0 (lowest). An agent whose arbitration 
priority was 15 (highest) during arbitration, but did not send a message, adopts the 
previous winner’s arbitration priority, increments by 1. 

Note that the arbitration protocol described above is slightly different if one of the 
APICs issues a special End-Of-Interrupt (EOI). This high-priority message is granted 

Figure 9-23.  Spurious-Interrupt Vector Register (SVR)

31 0

Reserved

7

Focus Processor Checking1

APIC Software Enable/Disable

8910

0: APIC Disabled
1: APIC Enabled
Spurious Vector2

Address: FEE0 00F0H
Value after reset: 0000 00FFH

0: Enabled
1: Disabled

2. For the P6 family and Pentium processors, bits 0 through 3
of the spurious vector are hardwired to 1.

1. Not supported in Pentium 4 and Intel Xeon processors.



9-46   Vol. 3

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

the bus regardless of its sender’s arbitration priority, unless more than one APIC 
issues an EOI message simultaneously. In the latter case, the APICs sending the EOI 
messages arbitrate using their arbitration priorities.

If the APICs are set up to use “lowest priority” arbitration (see Section 9.6.2.4, 
“Lowest Priority Delivery Mode”) and multiple APICs are currently executing at the 
lowest priority (the value in the APR register), the arbitration priorities (unique 
values in the Arb ID register) are used to break ties. All 8 bits of the APR are used for 
the lowest priority arbitration.

9.10.1 Bus Message Formats
See Appendix F, “APIC Bus Message Formats,” for a description of bus message 
formats used to transmit messages on the serial APIC bus.

9.11 MESSAGE SIGNALLED INTERRUPTS
The PCI Local Bus Specification, Rev 2.2 (www.pcisig.com) introduces the concept of 
message signalled interrupts. Intel processors and chipsets with this capability 
currently include the Pentium 4 and Intel Xeon processors. As the specification indi-
cates:

“Message signalled interrupts (MSI) is an optional feature that 
enables PCI devices to request service by writing a system-specified 
message to a system-specified address (PCI DWORD memory write 
transaction). The transaction address specifies the message 
destination while the transaction data specifies the message. System 
software is expected to initialize the message destination and 
message during device configuration, allocating one or more non-
shared messages to each MSI capable function.” 

The capabilities mechanism provided by the PCI Local Bus Specification is used to 
identify and configure MSI capable PCI devices. Among other fields, this structure 
contains a Message Data Register and a Message Address Register. To request 
service, the PCI device function writes the contents of the Message Data Register to 
the address contained in the Message Address Register (and the Message Upper 
Address register for 64-bit message addresses). 

Section 9.11.1 and Section 9.11.2 provide layout details for the Message Address 
Register and the Message Data Register. The operation issued by the device is a PCI 
write command to the Message Address Register with the Message Data Register 
contents. The operation follows semantic rules as defined for PCI write operations 
and is a DWORD operation.
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9.11.1 Message Address Register Format
The format of the Message Address Register (lower 32-bits) is shown in Figure 9-24.

Fields in the Message Address Register are as follows:

1. Bits 31-20 — These bits contain a fixed value for interrupt messages (0FEEH). 
This value locates interrupts at the 1-MByte area with a base address of 4G – 
18M. All accesses to this region are directed as interrupt messages. Care must to 
be taken to ensure that no other device claims the region as I/O space.

2. Destination ID — This field contains an 8-bit destination ID. It identifies the 
message’s target processor(s). The destination ID corresponds to bits 63:56 of 
the I/O APIC Redirection Table Entry if the IOAPIC is used to dispatch the 
interrupt to the processor(s).

3. Redirection hint indication (RH) — This bit indicates whether the message 
should be directed to the processor with the lowest interrupt priority among 
processors that can receive the interrupt. 

• When RH is 0, the interrupt is directed to the processor listed in the 
Destination ID field. 

• When RH is 1 and the physical destination mode is used, the Destination 
ID field must not be set to 0xFF; it must point to a processor that is 
present and enabled to receive the interrupt.

• When RH is 1 and the logical destination mode is active in a system using 
a flat addressing model, the Destination ID field must be set so that bits 
set to 1 identify processors that are present and enabled to receive the 
interrupt.

• If RH is set to 1 and the logical destination mode is active in a system 
using cluster addressing model, then Destination ID field must not be set 
to 0xFF; the processors identified with this field must be present and 
enabled to receive the interrupt.

4. Destination mode (DM) — This bit indicates whether the Destination ID field 
should be interpreted as logical or physical APIC ID for delivery of the lowest 
priority interrupt. If RH is 1 and DM is 0, the Destination ID field is in physical 
destination mode and only the processor in the system that has the matching 

Figure 9-24.  Layout of the MSI Message Address Register

31 20 19 12 11 4 3 2 1 0

0FEEH Destination ID Reserved RH DM XX
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APIC ID is considered for delivery of that interrupt (this means no re-direction). 
If RH is 1 and DM is 1, the Destination ID Field is interpreted as in logical 
destination mode and the redirection is limited to only those processors that are 
part of the logical group of processors based on the processor’s logical APIC ID 
and the Destination ID field in the message. The logical group of processors 
consists of those identified by matching the 8-bit Destination ID with the logical 
destination identified by the Destination Format Register and the Logical 
Destination Register in each local APIC. The details are similar to those described 
in Section 9.6.2, “Determining IPI Destination.” If RH is 0, then the DM bit is 
ignored and the message is sent ahead independent of whether the physical or 
logical destination mode is used.

9.11.2 Message Data Register Format
The layout of the Message Data Register is shown in Figure 9-25.

Reserved fields are not assumed to be any value. Software must preserve their 
contents on writes. Other fields in the Message Data Register are described below.

Figure 9-25.  Layout of the MSI Message Data Register

Reserved

Reserved Reserved Vector

Delivery Mode

001 - Lowest Priority
010 - SMI
011 - Reserved

101 - INIT
110 - Reserved
111 - ExtINT

Trigger Mode
0 - Edge
1 - Level

Level for Trigger Mode = 0
X - Don’t care

Level for Trigger Mode = 1
0 - Deassert
1 - Assert

000 - Fixed

100 - NMI

31 16  15 14 13 11 10 8 7 0

63 32
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1. Vector — This 8-bit field contains the interrupt vector associated with the 
message. Values range from 010H to 0FEH. Software must guarantee that the 
field is not programmed with vector 00H to 0FH.

2. Delivery Mode — This 3-bit field specifies how the interrupt receipt is handled. 
Delivery Modes operate only in conjunction with specified Trigger Modes. Correct 
Trigger Modes must be guaranteed by software. Restrictions are indicated below:

a. 000B (Fixed Mode) — Deliver the signal to all the agents listed in the 
destination. The Trigger Mode for fixed delivery mode can be edge or level.

b. 001B (Lowest Priority) — Deliver the signal to the agent that is executing 
at the lowest priority of all agents listed in the destination field. The trigger 
mode can be edge or level.

c. 010B (System Management Interrupt or SMI) — The delivery mode is 
edge only. For systems that rely on SMI semantics, the vector field is ignored 
but must be programmed to all zeroes for future compatibility. 

d. 100B (NMI) — Deliver the signal to all the agents listed in the destination 
field. The vector information is ignored. NMI is an edge triggered interrupt 
regardless of the Trigger Mode Setting.

e. 101B (INIT) — Deliver this signal to all the agents listed in the destination 
field. The vector information is ignored. INIT is an edge triggered interrupt 
regardless of the Trigger Mode Setting.

f. 111B (ExtINT) — Deliver the signal to the INTR signal of all agents in the 
destination field (as an interrupt that originated from an 8259A compatible 
interrupt controller). The vector is supplied by the INTA cycle issued by the 
activation of the ExtINT. ExtINT is an edge triggered interrupt.

3. Level — Edge triggered interrupt messages are always interpreted as assert 
messages. For edge triggered interrupts this field is not used. For level triggered 
interrupts, this bit reflects the state of the interrupt input.

4. Trigger Mode — This field indicates the signal type that will trigger a message. 

a. 0 — Indicates edge sensitive.

b. 1 — Indicates level sensitive.
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CHAPTER 8
PROCESSOR MANAGEMENT AND INITIALIZATION

This chapter describes the facilities provided for managing processor wide functions 
and for initializing the processor. The subjects covered include: processor initializa-
tion, x87 FPU initialization, processor configuration, feature determination, mode 
switching, the MSRs (in the Pentium, P6 family, Pentium 4, and Intel Xeon proces-
sors), and the MTRRs (in the P6 family, Pentium 4, and Intel Xeon processors).

8.1 INITIALIZATION OVERVIEW
Following power-up or an assertion of the RESET# pin, each processor on the system 
bus performs a hardware initialization of the processor (known as a hardware reset) 
and an optional built-in self-test (BIST). A hardware reset sets each processor’s 
registers to a known state and places the processor in real-address mode. It also 
invalidates the internal caches, translation lookaside buffers (TLBs) and the branch 
target buffer (BTB). At this point, the action taken depends on the processor family:

• Pentium 4 and Intel Xeon processors — All the processors on the system bus 
(including a single processor in a uniprocessor system) execute the multiple 
processor (MP) initialization protocol. The processor that is selected through this 
protocol as the bootstrap processor (BSP) then immediately starts executing 
software-initialization code in the current code segment beginning at the offset in 
the EIP register. The application (non-BSP) processors (APs) go into a Wait For 
Startup IPI (SIPI) state while the BSP is executing initialization code. See Section 
7.5, “Multiple-Processor (MP) Initialization,” for more details. Note that in a 
uniprocessor system, the single Pentium 4 or Intel Xeon processor automatically 
becomes the BSP.

• P6 family processors — The action taken is the same as for the Pentium 4 and 
Intel Xeon processors (as described in the previous paragraph).

• Pentium processors — In either a single- or dual- processor system, a single 
Pentium processor is always pre-designated as the primary processor. Following 
a reset, the primary processor behaves as follows in both single- and dual-
processor systems. Using the dual-processor (DP) ready initialization protocol, 
the primary processor immediately starts executing software-initialization code 
in the current code segment beginning at the offset in the EIP register. The 
secondary processor (if there is one) goes into a halt state.

• Intel486 processor — The primary processor (or single processor in a unipro-
cessor system) immediately starts executing software-initialization code in the 
current code segment beginning at the offset in the EIP register. (The Intel486 
does not automatically execute a DP or MP initialization protocol to determine 
which processor is the primary processor.)
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The software-initialization code performs all system-specific initialization of the BSP 
or primary processor and the system logic.

At this point, for MP (or DP) systems, the BSP (or primary) processor wakes up each 
AP (or secondary) processor to enable those processors to execute self-configuration 
code.

When all processors are initialized, configured, and synchronized, the BSP or primary 
processor begins executing an initial operating-system or executive task.

The x87 FPU is also initialized to a known state during hardware reset. x87 FPU soft-
ware initialization code can then be executed to perform operations such as setting 
the precision of the x87 FPU and the exception masks. No special initialization of the 
x87 FPU is required to switch operating modes. 

Asserting the INIT# pin on the processor invokes a similar response to a hardware 
reset. The major difference is that during an INIT, the internal caches, MSRs, MTRRs, 
and x87 FPU state are left unchanged (although, the TLBs and BTB are invalidated as 
with a hardware reset). An INIT provides a method for switching from protected to 
real-address mode while maintaining the contents of the internal caches.

8.1.1 Processor State After Reset
Table 8-1 shows the state of the flags and other registers following power-up for the 
Pentium 4, Intel Xeon, P6 family, and Pentium processors. The state of control 
register CR0 is 60000010H (see Figure 8-1). This places the processor is in real-
address mode with paging disabled. 

8.1.2 Processor Built-In Self-Test (BIST)
Hardware may request that the BIST be performed at power-up. The EAX register is 
cleared (0H) if the processor passes the BIST. A nonzero value in the EAX register 
after the BIST indicates that a processor fault was detected. If the BIST is not 
requested, the contents of the EAX register after a hardware reset is 0H. 

The overhead for performing a BIST varies between processor families. For example, 
the BIST takes approximately 30 million processor clock periods to execute on the 
Pentium 4 processor. This clock count is model-specific; Intel reserves the right to 
change the number of periods for any Intel 64 or IA-32 processor, without notification.

Table 8-1.  IA-32 Processor States Following Power-up, Reset, or INIT  

Register Pentium 4 and Intel 
Xeon Processor

P6 Family Processor Pentium Processor

EFLAGS1 00000002H 00000002H 00000002H

EIP 0000FFF0H 0000FFF0H 0000FFF0H

CR0 60000010H2 60000010H2 60000010H2
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CR2, CR3, CR4 00000000H 00000000H 00000000H

CS Selector = F000H 
Base = FFFF0000H 
Limit = FFFFH 
AR = Present, R/W, 
Accessed

Selector = F000H 
Base = FFFF0000H 
Limit = FFFFH 
AR = Present, R/W, 
Accessed

Selector = F000H 
Base = FFFF0000H 
Limit = FFFFH 
AR = Present, R/W, 
Accessed

SS, DS, ES, FS, GS Selector = 0000H 
Base = 00000000H 
Limit = FFFFH 
AR = Present, R/W, 
Accessed

Selector = 0000H 
Base = 00000000H 
Limit = FFFFH 
AR = Present, R/W, 
Accessed

Selector = 0000H 
Base = 00000000H 
Limit = FFFFH 
AR = Present, R/W, 
Accessed

EDX 00000FxxH  000n06xxH3 000005xxH 

EAX 04 04 04

EBX, ECX, ESI, EDI, 
EBP, ESP

00000000H 00000000H 00000000H

ST0 through ST75 Pwr up or Reset: +0.0 
FINIT/FNINIT: Unchanged

Pwr up or Reset: +0.0 
FINIT/FNINIT: Unchanged

Pwr up or Reset: +0.0 
FINIT/FNINIT: Unchanged

x87 FPU Control 
Word5

Pwr up or Reset: 0040H 
FINIT/FNINIT: 037FH

Pwr up or Reset: 0040H 
FINIT/FNINIT: 037FH

Pwr up or Reset: 0040H 
FINIT/FNINIT: 037FH

x87 FPU Status 
Word5

Pwr up or Reset: 0000H 
FINIT/FNINIT: 0000H

Pwr up or Reset: 0000H 
FINIT/FNINIT: 0000H

Pwr up or Reset: 0000H 
FINIT/FNINIT: 0000H

x87 FPU Tag 
Word5

Pwr up or Reset: 5555H 
FINIT/FNINIT: FFFFH

Pwr up or Reset: 5555H 
FINIT/FNINIT: FFFFH

Pwr up or Reset: 5555H 
FINIT/FNINIT: FFFFH

x87 FPU Data 
Operand and CS 
Seg. Selectors5

Pwr up or Reset: 0000H 
FINIT/FNINIT: 0000H

Pwr up or Reset: 0000H 
FINIT/FNINIT: 0000H

Pwr up or Reset: 0000H 
FINIT/FNINIT: 0000H

x87 FPU Data 
Operand and Inst. 
Pointers5

Pwr up or Reset:  
   00000000H 
FINIT/FNINIT: 00000000H

Pwr up or Reset:  
   00000000H 
FINIT/FNINIT: 00000000H

Pwr up or Reset:  
   00000000H 
FINIT/FNINIT: 00000000H

MM0 through 
MM75

Pwr up or Reset: 
   0000000000000000H 
INIT or FINIT/FNINIT: 
   Unchanged

Pentium II and Pentium III 
Processors Only—
Pwr up or Reset: 
   0000000000000000H 
INIT or FINIT/FNINIT: 
   Unchanged

Pentium with MMX 
Technology Only—
Pwr up or Reset: 
   0000000000000000H 
INIT or FINIT/FNINIT: 
   Unchanged

XMM0 through 
XMM7

Pwr up or Reset: 
   0000000000000000H 
INIT: Unchanged

Pentium III processor Only—
Pwr up or Reset: 
   0000000000000000H 
INIT: Unchanged

NA

MXCSR Pwr up or Reset: 1F80H 
INIT: Unchanged

Pentium III processor only-
Pwr up or Reset: 1F80H 
INIT: Unchanged

NA

GDTR, IDTR Base = 00000000H 
Limit = FFFFH 
AR = Present, R/W

Base = 00000000H 
Limit = FFFFH 
AR = Present, R/W

Base = 00000000H 
Limit = FFFFH 
AR = Present, R/W

Table 8-1.  IA-32 Processor States Following Power-up, Reset, or INIT  (Contd.)

Register Pentium 4 and Intel 
Xeon Processor

P6 Family Processor Pentium Processor
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LDTR, Task 
Register

Selector = 0000H 
Base = 00000000H 
Limit = FFFFH 
AR = Present, R/W

Selector = 0000H 
Base = 00000000H 
Limit = FFFFH 
AR = Present, R/W

Selector = 0000H 
Base = 00000000H 
Limit = FFFFH 
AR = Present, R/W

DR0, DR1, DR2, 
DR3

00000000H 00000000H 00000000H

DR6 FFFF0FF0H FFFF0FF0H FFFF0FF0H

DR7 00000400H 00000400H 00000400H

Time-Stamp 
Counter

Power up or Reset: 0H 
INIT: Unchanged

Power up or Reset: 0H 
INIT: Unchanged

Power up or Reset: 0H 
INIT: Unchanged

Perf. Counters and 
Event Select

Power up or Reset: 0H 
INIT: Unchanged

Power up or Reset: 0H 
INIT: Unchanged

Power up or Reset: 0H 
INIT: Unchanged

All Other MSRs Pwr up or Reset: 
   Undefined 
INIT: Unchanged

Pwr up or Reset: 
   Undefined 
INIT: Unchanged

Pwr up or Reset: 
   Undefined 
INIT: Unchanged

Data and Code 
Cache, TLBs

Invalid Invalid Invalid

Fixed MTRRs Pwr up or Reset: Disabled 
INIT: Unchanged

Pwr up or Reset: Disabled 
INIT: Unchanged

Not Implemented

Variable MTRRs Pwr up or Reset: Disabled 
INIT: Unchanged

Pwr up or Reset: Disabled 
INIT: Unchanged

Not Implemented

Machine-Check 
Architecture

Pwr up or Reset: 
    Undefined 
INIT: Unchanged

Pwr up or Reset: 
    Undefined 
INIT: Unchanged

Not Implemented

APIC Pwr up or Reset: Enabled 
INIT: Unchanged

Pwr up or Reset: Enabled 
INIT: Unchanged

Pwr up or Reset: Enabled 
INIT: Unchanged

NOTES: 
1. The 10 most-significant bits of the EFLAGS register are undefined following a reset. Software 

should not depend on the states of any of these bits.
2. The CD and NW flags are unchanged, bit 4 is set to 1, all other bits are cleared.
3. Where “n” is the Extended Model Value for the respective processor.
4. If Built-In Self-Test (BIST) is invoked on power up or reset, EAX is 0 only if all tests passed. (BIST 

cannot be invoked during an INIT.)
5. The state of the x87 FPU and MMX registers is not changed by the execution of an INIT.

Table 8-1.  IA-32 Processor States Following Power-up, Reset, or INIT  (Contd.)

Register Pentium 4 and Intel 
Xeon Processor

P6 Family Processor Pentium Processor
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8.1.3 Model and Stepping Information
Following a hardware reset, the EDX register contains component identification and 
revision information (see Figure 8-2). For example, the model, family, and processor 
type returned for the first processor in the Intel Pentium 4 family is as follows: model 
(0000B), family (1111B), and processor type (00B). 

The stepping ID field contains a unique identifier for the processor’s stepping ID or 
revision level. The extended family and extended model fields were added to the 
IA-32 architecture in the Pentium 4 processors.

Figure 8-1.  Contents of CR0 Register after Reset

Figure 8-2.  Version Information in the EDX Register after Reset

External x87 FPU error reporting: 0
(Not used): 1
No task switch: 0
x87 FPU instructions not trapped: 0
WAIT/FWAIT instructions not trapped: 0
Real-address mode: 0
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Write-protect disabled: 0
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8.1.4 First Instruction Executed
The first instruction that is fetched and executed following a hardware reset is 
located at physical address FFFFFFF0H. This address is 16 bytes below the 
processor’s uppermost physical address. The EPROM containing the software- 
initialization code must be located at this address. 

The address FFFFFFF0H is beyond the 1-MByte addressable range of the processor 
while in real-address mode. The processor is initialized to this starting address as 
follows. The CS register has two parts: the visible segment selector part and the 
hidden base address part. In real-address mode, the base address is normally 
formed by shifting the 16-bit segment selector value 4 bits to the left to produce a 
20-bit base address. However, during a hardware reset, the segment selector in the 
CS register is loaded with F000H and the base address is loaded with FFFF0000H. The 
starting address is thus formed by adding the base address to the value in the EIP 
register (that is, FFFF0000 + FFF0H = FFFFFFF0H).

The first time the CS register is loaded with a new value after a hardware reset, the 
processor will follow the normal rule for address translation in real-address mode 
(that is, [CS base address = CS segment selector * 16]). To insure that the base 
address in the CS register remains unchanged until the EPROM based software-
initialization code is completed, the code must not contain a far jump or far call or 
allow an interrupt to occur (which would cause the CS selector value to be changed).

8.2 X87 FPU INITIALIZATION
Software-initialization code can determine the whether the processor contains an 
x87 FPU by using the CPUID instruction. The code must then initialize the x87 FPU 
and set flags in control register CR0 to reflect the state of the x87 FPU environment.

A hardware reset places the x87 FPU in the state shown in Table 8-1. This state is 
different from the state the x87 FPU is placed in following the execution of an FINIT 
or FNINIT instruction (also shown in Table 8-1). If the x87 FPU is to be used, the soft-
ware-initialization code should execute an FINIT/FNINIT instruction following a hard-
ware reset. These instructions, tag all data registers as empty, clear all the exception 
masks, set the TOP-of-stack value to 0, and select the default rounding and precision 
controls setting (round to nearest and 64-bit precision).

If the processor is reset by asserting the INIT# pin, the x87 FPU state is not changed.

8.2.1 Configuring the x87 FPU Environment
Initialization code must load the appropriate values into the MP, EM, and NE flags of 
control register CR0. These bits are cleared on hardware reset of the processor. 
Figure 8-2 shows the suggested settings for these flags, depending on the IA-32 
processor being initialized. Initialization code can test for the type of processor 
present before setting or clearing these flags.
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The EM flag determines whether floating-point instructions are executed by the x87 
FPU (EM is cleared) or a device-not-available exception (#NM) is generated for all 
floating-point instructions so that an exception handler can emulate the floating-
point operation (EM = 1). Ordinarily, the EM flag is cleared when an x87 FPU or math 
coprocessor is present and set if they are not present. If the EM flag is set and no x87 
FPU, math coprocessor, or floating-point emulator is present, the processor will hang 
when a floating-point instruction is executed.

The MP flag determines whether WAIT/FWAIT instructions react to the setting of the 
TS flag. If the MP flag is clear, WAIT/FWAIT instructions ignore the setting of the TS 
flag; if the MP flag is set, they will generate a device-not-available exception (#NM) 
if the TS flag is set. Generally, the MP flag should be set for processors with an inte-
grated x87 FPU and clear for processors without an integrated x87 FPU and without a 
math coprocessor present. However, an operating system can choose to save the 
floating-point context at every context switch, in which case there would be no need 
to set the MP bit. 

Table 2-1 shows the actions taken for floating-point and WAIT/FWAIT instructions 
based on the settings of the EM, MP, and TS flags.

The NE flag determines whether unmasked floating-point exceptions are handled by 
generating a floating-point error exception internally (NE is set, native mode) or 
through an external interrupt (NE is cleared). In systems where an external interrupt 
controller is used to invoke numeric exception handlers (such as MS-DOS-based 
systems), the NE bit should be cleared.

8.2.2 Setting the Processor for x87 FPU Software Emulation
Setting the EM flag causes the processor to generate a device-not-available excep-
tion (#NM) and trap to a software exception handler whenever it encounters a 
floating-point instruction. (Table 8-2 shows when it is appropriate to use this flag.) 
Setting this flag has two functions:

Table 8-2.  Recommended Settings of EM and MP Flags on IA-32 Processors

EM MP NE IA-32 processor

1 0 1 Intel486™ SX, Intel386™ DX, and Intel386™ SX processors 
only, without the presence of a math coprocessor.

0 1 1 or 0* Pentium 4, Intel Xeon, P6 family, Pentium, Intel486™ DX, and 
Intel 487 SX processors, and Intel386 DX and Intel386 SX 
processors when a companion math coprocessor is present.

0 1 1 or 0* More recent Intel 64 or IA-32 processors

NOTE:
* The setting of the NE flag depends on the operating system being used.
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• It allows x87 FPU code to run on an IA-32 processor that has neither an 
integrated x87 FPU nor is connected to an external math coprocessor, by using a 
floating-point emulator. 

• It allows floating-point code to be executed using a special or nonstandard 
floating-point emulator, selected for a particular application, regardless of 
whether an x87 FPU or math coprocessor is present. 

To emulate floating-point instructions, the EM, MP, and NE flag in control register CR0 
should be set as shown in Table 8-3.

 
Regardless of the value of the EM bit, the Intel486 SX processor generates a device-
not-available exception (#NM) upon encountering any floating-point instruction.

8.3 CACHE ENABLING
IA-32 processors (beginning with the Intel486 processor) and Intel 64 processors 
contain internal instruction and data caches. These caches are enabled by clearing 
the CD and NW flags in control register CR0. (They are set during a hardware reset.) 
Because all internal cache lines are invalid following reset initialization, it is not 
necessary to invalidate the cache before enabling caching. Any external caches may 
require initialization and invalidation using a system-specific initialization and invali-
dation code sequence.

Depending on the hardware and operating system or executive requirements, addi-
tional configuration of the processor’s caching facilities will probably be required. 
Beginning with the Intel486 processor, page-level caching can be controlled with the 
PCD and PWT flags in page-directory and page-table entries. Beginning with the P6 
family processors, the memory type range registers (MTRRs) control the caching 
characteristics of the regions of physical memory. (For the Intel486 and Pentium 
processors, external hardware can be used to control the caching characteristics of 
regions of physical memory.) See Chapter 10, “Memory Cache Control,” for detailed 
information on configuration of the caching facilities in the Pentium 4, Intel Xeon, and 
P6 family processors and system memory.

Table 8-3.  Software Emulation Settings of EM, MP, and NE Flags

CR0 Bit Value

EM 1

MP 0

NE 1
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8.4 MODEL-SPECIFIC REGISTERS (MSRS)
Most IA-32 processors (starting from Pentium processors) and Intel 64 processors 
contain a model-specific registers (MSRs). A given MSR may not be supported across 
all families and models for Intel 64 and IA-32 processors. Some MSRs are designated 
as architectural to simplify software programming; a feature introduced by an archi-
tectural MSR is expected to be supported in future processors. Non-architectural 
MSRs are not guaranteed to be supported or to have the same functions on future 
processors.   

MSRs that provide control for a number of hardware and software-related features, 
include:

• Performance-monitoring counters (see Section 18, “Debugging and Performance 
Monitoring”).

• Debug extensions (see Section 18, “Debugging and Performance Monitoring”).

• Machine-check exception capability and its accompanying machine-check archi-
tecture (see Chapter 14, “Machine-Check Architecture”).

• MTRRs (see Section 10.11, “Memory Type Range Registers (MTRRs)”).

• Thermal and power management.

• Instruction-specific support (for example: SYSENTER, SYSEXIT, SWAPGS, etc.).

• Processor feature/mode support (for example: IA32_EFER, 
IA32_FEATURE_CONTROL).

The MSRs can be read and written to using the RDMSR and WRMSR instructions, 
respectively.

When performing software initialization of an IA-32 or Intel 64 processor, many of 
the MSRs will need to be initialized to set up things like performance-monitoring 
events, run-time machine checks, and memory types for physical memory.

Lists of available performance-monitoring events are given in Appendix A, “Perfor-
mance Monitoring Events”, and lists of available MSRs are given in Appendix B, 
“Model-Specific Registers (MSRs)” The references earlier in this section show where 
the functions of the various groups of MSRs are described in this manual.

8.5 MEMORY TYPE RANGE REGISTERS (MTRRS)
Memory type range registers (MTRRs) were introduced into the IA-32 architecture 
with the Pentium Pro processor. They allow the type of caching (or no caching) to be 
specified in system memory for selected physical address ranges. They allow 
memory accesses to be optimized for various types of memory such as RAM, ROM, 
frame buffer memory, and memory-mapped I/O devices.

In general, initializing the MTRRs is normally handled by the software initialization 
code or BIOS and is not an operating system or executive function. At the very least, 
all the MTRRs must be cleared to 0, which selects the uncached (UC) memory type. 
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See Section 10.11, “Memory Type Range Registers (MTRRs),” for detailed informa-
tion on the MTRRs.

8.6 INITIALIZING SSE/SSE2/SSE3/SSSE3 EXTENSIONS
For processors that contain SSE/SSE2/SSE3/SSSE3 extensions, steps must be taken 
when initializing the processor to allow execution of these instructions.

1. Check the CPUID feature flags for the presence of the SSE/SSE2/SSE3/SSSE3 
extensions (respectively: EDX bits 25 and 26, ECX bit 0 and 9) and support for 
the FXSAVE and FXRSTOR instructions (EDX bit 24). Also check for support for 
the CLFLUSH instruction (EDX bit 19). The CPUID feature flags are loaded in the 
EDX and ECX registers when the CPUID instruction is executed with a 1 in the 
EAX register.

2. Set the OSFXSR flag (bit 9 in control register CR4) to indicate that the operating 
system supports saving and restoring the SSE/SSE2/SSE3/SSSE3 execution 
environment (XXM and MXCSR registers) with the FXSAVE and FXRSTOR instruc-
tions, respectively. See Section 2.5, “Control Registers,” for a description of the 
OSFXSR flag.

3. Set the OSXMMEXCPT flag (bit 10 in control register CR4) to indicate that the 
operating system supports the handling of SSE/SSE2/SSE3 SIMD floating-point 
exceptions (#XF). See Section 2.5, “Control Registers,” for a description of the 
OSXMMEXCPT flag.

4. Set the mask bits and flags in the MXCSR register according to the mode of 
operation desired for SSE/SSE2/SSE3 SIMD floating-point instructions. See 
“MXCSR Control and Status Register” in Chapter 10, “Programming with 
Streaming SIMD Extensions (SSE),” of the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 1, for a detailed description of the bits and 
flags in the MXCSR register.

8.7 SOFTWARE INITIALIZATION FOR REAL-ADDRESS 
MODE OPERATION

Following a hardware reset (either through a power-up or the assertion of the 
RESET# pin) the processor is placed in real-address mode and begins executing soft-
ware initialization code from physical address FFFFFFF0H. Software initialization code 
must first set up the necessary data structures for handling basic system functions, 
such as a real-mode IDT for handling interrupts and exceptions. If the processor is to 
remain in real-address mode, software must then load additional operating-system 
or executive code modules and data structures to allow reliable execution of applica-
tion programs in real-address mode.

If the processor is going to operate in protected mode, software must load the neces-
sary data structures to operate in protected mode and then switch to protected 
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mode. The protected-mode data structures that must be loaded are described in 
Section 8.8, “Software Initialization for Protected-Mode Operation.”

8.7.1 Real-Address Mode IDT
In real-address mode, the only system data structure that must be loaded into 
memory is the IDT (also called the “interrupt vector table”). By default, the address 
of the base of the IDT is physical address 0H. This address can be changed by using 
the LIDT instruction to change the base address value in the IDTR. Software initial-
ization code needs to load interrupt- and exception-handler pointers into the IDT 
before interrupts can be enabled. 

The actual interrupt- and exception-handler code can be contained either in EPROM 
or RAM; however, the code must be located within the 1-MByte addressable range of 
the processor in real-address mode. If the handler code is to be stored in RAM, it 
must be loaded along with the IDT.

8.7.2 NMI Interrupt Handling
The NMI interrupt is always enabled (except when multiple NMIs are nested). If the 
IDT and the NMI interrupt handler need to be loaded into RAM, there will be a period 
of time following hardware reset when an NMI interrupt cannot be handled. During 
this time, hardware must provide a mechanism to prevent an NMI interrupt from 
halting code execution until the IDT and the necessary NMI handler software is 
loaded. Here are two examples of how NMIs can be handled during the initial states 
of processor initialization:

• A simple IDT and NMI interrupt handler can be provided in EPROM. This allows an 
NMI interrupt to be handled immediately after reset initialization.

• The system hardware can provide a mechanism to enable and disable NMIs by 
passing the NMI# signal through an AND gate controlled by a flag in an I/O port. 
Hardware can clear the flag when the processor is reset, and software can set the 
flag when it is ready to handle NMI interrupts.

8.8 SOFTWARE INITIALIZATION FOR PROTECTED-MODE 
OPERATION

The processor is placed in real-address mode following a hardware reset. At this 
point in the initialization process, some basic data structures and code modules must 
be loaded into physical memory to support further initialization of the processor, as 
described in Section 8.7, “Software Initialization for Real-Address Mode Operation.” 
Before the processor can be switched to protected mode, the software initialization 
code must load a minimum number of protected mode data structures and code 



8-12   Vol. 3

PROCESSOR MANAGEMENT AND INITIALIZATION

modules into memory to support reliable operation of the processor in protected 
mode. These data structures include the following:

• A IDT.

• A GDT.

• A TSS.

• (Optional) An LDT.

• If paging is to be used, at least one page directory and one page table.

• A code segment that contains the code to be executed when the processor 
switches to protected mode.

• One or more code modules that contain the necessary interrupt and exception 
handlers.

Software initialization code must also initialize the following system registers before 
the processor can be switched to protected mode:

• The GDTR.

• (Optional.) The IDTR. This register can also be initialized immediately after 
switching to protected mode, prior to enabling interrupts.

• Control registers CR1 through CR4.

• (Pentium 4, Intel Xeon, and P6 family processors only.) The memory type range 
registers (MTRRs).

With these data structures, code modules, and system registers initialized, the 
processor can be switched to protected mode by loading control register CR0 with a 
value that sets the PE flag (bit 0).

8.8.1 Protected-Mode System Data Structures
The contents of the protected-mode system data structures loaded into memory 
during software initialization, depend largely on the type of memory management 
the protected-mode operating-system or executive is going to support: flat, flat with 
paging, segmented, or segmented with paging.

To implement a flat memory model without paging, software initialization code must 
at a minimum load a GDT with one code and one data-segment descriptor. A null 
descriptor in the first GDT entry is also required. The stack can be placed in a normal 
read/write data segment, so no dedicated descriptor for the stack is required. A flat 
memory model with paging also requires a page directory and at least one page table 
(unless all pages are 4 MBytes in which case only a page directory is required). See 
Section 8.8.3, “Initializing Paging.”

Before the GDT can be used, the base address and limit for the GDT must be loaded 
into the GDTR register using an LGDT instruction.

A multi-segmented model may require additional segments for the operating system, 
as well as segments and LDTs for each application program. LDTs require segment 
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descriptors in the GDT. Some operating systems allocate new segments and LDTs as 
they are needed. This provides maximum flexibility for handling a dynamic program-
ming environment. However, many operating systems use a single LDT for all tasks, 
allocating GDT entries in advance. An embedded system, such as a process 
controller, might pre-allocate a fixed number of segments and LDTs for a fixed 
number of application programs. This would be a simple and efficient way to struc-
ture the software environment of a real-time system.

8.8.2 Initializing Protected-Mode Exceptions and Interrupts
Software initialization code must at a minimum load a protected-mode IDT with gate 
descriptor for each exception vector that the processor can generate. If interrupt or 
trap gates are used, the gate descriptors can all point to the same code segment, 
which contains the necessary exception handlers. If task gates are used, one TSS 
and accompanying code, data, and task segments are required for each exception 
handler called with a task gate.

If hardware allows interrupts to be generated, gate descriptors must be provided in 
the IDT for one or more interrupt handlers.

Before the IDT can be used, the base address and limit for the IDT must be loaded 
into the IDTR register using an LIDT instruction. This operation is typically carried out 
immediately after switching to protected mode.

8.8.3 Initializing Paging
Paging is controlled by the PG flag in control register CR0. When this flag is clear (its 
state following a hardware reset), the paging mechanism is turned off; when it is set, 
paging is enabled. Before setting the PG flag, the following data structures and regis-
ters must be initialized:

• Software must load at least one page directory and one page table into physical 
memory. The page table can be eliminated if the page directory contains a 
directory entry pointing to itself (here, the page directory and page table reside 
in the same page), or if only 4-MByte pages are used.

• Control register CR3 (also called the PDBR register) is loaded with the physical 
base address of the page directory.

• (Optional) Software may provide one set of code and data descriptors in the GDT 
or in an LDT for supervisor mode and another set for user mode.

With this paging initialization complete, paging is enabled and the processor is 
switched to protected mode at the same time by loading control register CR0 with an 
image in which the PG and PE flags are set. (Paging cannot be enabled before the 
processor is switched to protected mode.)
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8.8.4 Initializing Multitasking
If the multitasking mechanism is not going to be used and changes between privilege 
levels are not allowed, it is not necessary load a TSS into memory or to initialize the 
task register.

If the multitasking mechanism is going to be used and/or changes between privilege 
levels are allowed, software initialization code must load at least one TSS and an 
accompanying TSS descriptor. (A TSS is required to change privilege levels because 
pointers to the privileged-level 0, 1, and 2 stack segments and the stack pointers for 
these stacks are obtained from the TSS.) TSS descriptors must not be marked as 
busy when they are created; they should be marked busy by the processor only as a 
side-effect of performing a task switch. As with descriptors for LDTs, TSS descriptors 
reside in the GDT.

After the processor has switched to protected mode, the LTR instruction can be used 
to load a segment selector for a TSS descriptor into the task register. This instruction 
marks the TSS descriptor as busy, but does not perform a task switch. The processor 
can, however, use the TSS to locate pointers to privilege-level 0, 1, and 2 stacks. The 
segment selector for the TSS must be loaded before software performs its first task 
switch in protected mode, because a task switch copies the current task state into 
the TSS.

After the LTR instruction has been executed, further operations on the task register 
are performed by task switching. As with other segments and LDTs, TSSs and TSS 
descriptors can be either pre-allocated or allocated as needed.

8.8.5 Initializing IA-32e Mode
On Intel 64 processors, the IA32_EFER MSR is cleared on system reset. The oper-
ating system must be in protected mode with paging enabled before attempting to 
initialize IA-32e mode. IA-32e mode operation also requires physical-address exten-
sions with four levels of enhanced paging structures (see Section 3.10, “PAE-Enabled 
Paging in IA-32e Mode”).

Operating systems should follow this sequence to initialize IA-32e mode:

1. Starting from protected mode, disable paging by setting CR0.PG = 0. Use the 
MOV CR0 instruction to disable paging (the instruction must be located in an 
identity-mapped page).

2. Enable physical-address extensions (PAE) by setting CR4.PAE = 1. Failure to 
enable PAE will result in a #GP fault when an attempt is made to initialize IA-32e 
mode.

3. Load CR3 with the physical base address of the Level 4 page map table (PML4).

4. Enable IA-32e mode by setting IA32_EFER.LME = 1.

5. Enable paging by setting CR0.PG = 1. This causes the processor to set the 
IA32_EFER.LMA bit to 1. The MOV CR0 instruction that enables paging and the 
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following instructions must be located in an identity-mapped page (until such 
time that a branch to non-identity mapped pages can be effected).

64-bit mode paging tables must be located in the first 4 GBytes of physical-address 
space prior to activating IA-32e mode. This is necessary because the MOV CR3 
instruction used to initialize the page-directory base must be executed in legacy 
mode prior to activating IA-32e mode (setting CR0.PG = 1 to enable paging). 
Because MOV CR3 is executed in protected mode, only the lower 32 bits of the 
register are written, limiting the table location to the low 4 GBytes of memory. Soft-
ware can relocate the page tables anywhere in physical memory after IA-32e mode 
is activated.

The processor performs 64-bit mode consistency checks whenever software 
attempts to modify any of the enable bits directly involved in activating IA-32e mode 
(IA32_EFER.LME, CR0.PG, and CR4.PAE). It will generate a general protection fault 
(#GP) if consistency checks fail. 64-bit mode consistency checks ensure that the 
processor does not enter an undefined mode or state with unpredictable behavior.

64-bit mode consistency checks fail in the following circumstances:

• An attempt is made to enable or disable IA-32e mode while paging is enabled.

• IA-32e mode is enabled and an attempt is made to enable paging prior to 
enabling physical-address extensions (PAE).

• IA-32e mode is active and an attempt is made to disable physical-address 
extensions (PAE).

• If the current CS has the L-bit set on an attempt to activate IA-32e mode.

• If the TR contains a 16-bit TSS.

8.8.5.1  IA-32e Mode System Data Structures
After activating IA-32e mode, the system-descriptor-table registers (GDTR, LDTR, 
IDTR, TR) continue to reference legacy protected-mode descriptor tables. Tables 
referenced by the descriptors all reside in the lower 4 GBytes of linear-address space. 
After activating IA-32e mode, 64-bit operating-systems should use the LGDT, LLDT, 
LIDT, and LTR instructions to load the system-descriptor-table registers with refer-
ences to 64-bit descriptor tables.

8.8.5.2  IA-32e Mode Interrupts and Exceptions
Software must not allow exceptions or interrupts to occur between the time IA-32e 
mode is activated and the update of the interrupt-descriptor-table register (IDTR) 
that establishes references to a 64-bit interrupt-descriptor table (IDT). This is 
because the IDT remains in legacy form immediately after IA-32e mode is activated.

If an interrupt or exception occurs prior to updating the IDTR, a legacy 32-bit inter-
rupt gate will be referenced and interpreted as a 64-bit interrupt gate with unpredict-
able results. External interrupts can be disabled by using the CLI instruction.

Non-maskable interrupts (NMI) must be disabled using external hardware.
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8.8.5.3  64-bit Mode and Compatibility Mode Operation
IA-32e mode uses two code segment-descriptor bits (CS.L and CS.D, see Figure 3-8) 
to control the operating modes after IA-32e mode is initialized. If CS.L = 1 and CS.D = 
0, the processor is running in 64-bit mode. With this encoding, the default operand 
size is 32 bits and default address size is 64 bits. Using instruction prefixes, operand 
size can be changed to 64 bits or 16 bits; address size can be changed to 32 bits. 

When IA-32e mode is active and CS.L = 0, the processor operates in compatibility 
mode. In this mode, CS.D controls default operand and address sizes exactly as it 
does in the IA-32 architecture. Setting CS.D = 1 specifies default operand and 
address size as 32 bits. Clearing CS.D to 0 specifies default operand and address size 
as 16 bits (the CS.L = 1, CS.D = 1 bit combination is reserved).

Compatibility mode execution is selected on a code-segment basis. This mode allows 
legacy applications to coexist with 64-bit applications running in 64-bit mode. An 
operating system running in IA-32e mode can execute existing 16-bit and 32-bit 
applications by clearing their code-segment descriptor’s CS.L bit to 0.

In compatibility mode, the following system-level mechanisms continue to operate 
using the IA-32e-mode architectural semantics:

• Linear-to-physical address translation uses the 64-bit mode extended page-
translation mechanism.

• Interrupts and exceptions are handled using the 64-bit mode mechanisms.

• System calls (calls through call gates and SYSENTER/SYSEXIT) are handled using 
the IA-32e mode mechanisms.

8.8.5.4  Switching Out of IA-32e Mode Operation
To return from IA-32e mode to paged-protected mode operation. Operating systems 
must use the following sequence:

1. Switch to compatibility mode.

2. Deactivate IA-32e mode by clearing CR0.PG = 0. This causes the processor to set 
IA32_EFER.LMA = 0. The MOV CR0 instruction used to disable paging and 
subsequent instructions must be located in an identity-mapped page.

3. Load CR3 with the physical base address of the legacy page-table-directory base 
address.

4. Disable IA-32e mode by setting IA32_EFER.LME = 0.

5. Enable legacy paged-protected mode by setting CR0.PG = 1

6. A branch instruction must follow the MOV CR0 that enables paging. Both the MOV 
CR0 and the branch instruction must be located in an identity-mapped page.

Registers only available in 64-bit mode (R8-R15 and XMM8-XMM15) are preserved 
across transitions from 64-bit mode into compatibility mode then back into 64-bit 
mode. However, values of R8-R15 and XMM8-XMM15 are undefined after transitions 
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from 64-bit mode through compatibility mode to legacy or real mode and then back 
through compatibility mode to 64-bit mode.

8.9 MODE SWITCHING
To use the processor in protected mode after hardware or software reset, a mode 
switch must be performed from real-address mode. Once in protected mode, soft-
ware generally does not need to return to real-address mode. To run software written 
to run in real-address mode (8086 mode), it is generally more convenient to run the 
software in virtual-8086 mode, than to switch back to real-address mode.

8.9.1 Switching to Protected Mode
Before switching to protected mode from real mode, a minimum set of system data 
structures and code modules must be loaded into memory, as described in Section 
8.8, “Software Initialization for Protected-Mode Operation.” Once these tables are 
created, software initialization code can switch into protected mode.

Protected mode is entered by executing a MOV CR0 instruction that sets the PE flag 
in the CR0 register. (In the same instruction, the PG flag in register CR0 can be set to 
enable paging.) Execution in protected mode begins with a CPL of 0.

Intel 64 and IA-32 processors have slightly different requirements for switching to 
protected mode. To insure upwards and downwards code compatibility with Intel 64 
and IA-32 processors, we recommend that you follow these steps:

1. Disable interrupts. A CLI instruction disables maskable hardware interrupts. NMI 
interrupts can be disabled with external circuitry. (Software must guarantee that 
no exceptions or interrupts are generated during the mode switching operation.)

2. Execute the LGDT instruction to load the GDTR register with the base address of 
the GDT.

3. Execute a MOV CR0 instruction that sets the PE flag (and optionally the PG flag) 
in control register CR0.

4. Immediately following the MOV CR0 instruction, execute a far JMP or far CALL 
instruction. (This operation is typically a far jump or call to the next instruction in 
the instruction stream.)

5. The JMP or CALL instruction immediately after the MOV CR0 instruction changes 
the flow of execution and serializes the processor.

6. If paging is enabled, the code for the MOV CR0 instruction and the JMP or CALL 
instruction must come from a page that is identity mapped (that is, the linear 
address before the jump is the same as the physical address after paging and 
protected mode is enabled). The target instruction for the JMP or CALL instruction 
does not need to be identity mapped.
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7. If a local descriptor table is going to be used, execute the LLDT instruction to load 
the segment selector for the LDT in the LDTR register.

8. Execute the LTR instruction to load the task register with a segment selector to 
the initial protected-mode task or to a writable area of memory that can be used 
to store TSS information on a task switch.

9. After entering protected mode, the segment registers continue to hold the 
contents they had in real-address mode. The JMP or CALL instruction in step 4 
resets the CS register. Perform one of the following operations to update the 
contents of the remaining segment registers.

— Reload segment registers DS, SS, ES, FS, and GS. If the ES, FS, and/or GS 
registers are not going to be used, load them with a null selector.

— Perform a JMP or CALL instruction to a new task, which automatically resets 
the values of the segment registers and branches to a new code segment.

10. Execute the LIDT instruction to load the IDTR register with the address and limit 
of the protected-mode IDT.

11. Execute the STI instruction to enable maskable hardware interrupts and perform 
the necessary hardware operation to enable NMI interrupts.

Random failures can occur if other instructions exist between steps 3 and 4 above. 
Failures will be readily seen in some situations, such as when instructions that refer-
ence memory are inserted between steps 3 and 4 while in system management 
mode.

8.9.2 Switching Back to Real-Address Mode
The processor switches from protected mode back to real-address mode if software 
clears the PE bit in the CR0 register with a MOV CR0 instruction. A procedure that re-
enters real-address mode should perform the following steps:

1. Disable interrupts. A CLI instruction disables maskable hardware interrupts. NMI 
interrupts can be disabled with external circuitry.

2. If paging is enabled, perform the following operations:

— Transfer program control to linear addresses that are identity mapped to 
physical addresses (that is, linear addresses equal physical addresses).

— Insure that the GDT and IDT are in identity mapped pages.

— Clear the PG bit in the CR0 register.

— Move 0H into the CR3 register to flush the TLB.

3. Transfer program control to a readable segment that has a limit of 64 KBytes 
(FFFFH). This operation loads the CS register with the segment limit required in 
real-address mode.
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4. Load segment registers SS, DS, ES, FS, and GS with a selector for a descriptor 
containing the following values, which are appropriate for real-address mode:

— Limit = 64 KBytes (0FFFFH)

— Byte granular (G = 0)

— Expand up (E = 0)

— Writable (W = 1)

— Present (P = 1)

— Base = any value

5. The segment registers must be loaded with non-null segment selectors or the 
segment registers will be unusable in real-address mode. Note that if the 
segment registers are not reloaded, execution continues using the descriptor 
attributes loaded during protected mode.

6. Execute an LIDT instruction to point to a real-address mode interrupt table that is 
within the 1-MByte real-address mode address range.

7. Clear the PE flag in the CR0 register to switch to real-address mode.

8. Execute a far JMP instruction to jump to a real-address mode program. This 
operation flushes the instruction queue and loads the appropriate base and 
access rights values in the CS register.

9. Load the SS, DS, ES, FS, and GS registers as needed by the real-address mode 
code. If any of the registers are not going to be used in real-address mode, write 
0s to them.

10. Execute the STI instruction to enable maskable hardware interrupts and perform 
the necessary hardware operation to enable NMI interrupts.

NOTE
All the code that is executed in steps 1 through 9 must be in a single 
page and the linear addresses in that page must be identity mapped 
to physical addresses.

8.10 INITIALIZATION AND MODE SWITCHING EXAMPLE
This section provides an initialization and mode switching example that can be incor-
porated into an application. This code was originally written to initialize the Intel386 
processor, but it will execute successfully on the Pentium 4, Intel Xeon, P6 family, 
Pentium, and Intel486 processors. The code in this example is intended to reside in 
EPROM and to run following a hardware reset of the processor. The function of the 
code is to do the following:

• Establish a basic real-address mode operating environment.

• Load the necessary protected-mode system data structures into RAM.
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• Load the system registers with the necessary pointers to the data structures and 
the appropriate flag settings for protected-mode operation.

• Switch the processor to protected mode.

Figure 8-3 shows the physical memory layout for the processor following a hardware 
reset and the starting point of this example. The EPROM that contains the initializa-
tion code resides at the upper end of the processor’s physical memory address range, 
starting at address FFFFFFFFH and going down from there. The address of the first 
instruction to be executed is at FFFFFFF0H, the default starting address for the 
processor following a hardware reset.

The main steps carried out in this example are summarized in Table 8-4. The source 
listing for the example (with the filename STARTUP.ASM) is given in Example 8-1. 
The line numbers given in Table 8-4 refer to the source listing.

The following are some additional notes concerning this example:

• When the processor is switched into protected mode, the original code segment 
base-address value of FFFF0000H (located in the hidden part of the CS register) 
is retained and execution continues from the current offset in the EIP register. 
The processor will thus continue to execute code in the EPROM until a far jump or 
call is made to a new code segment, at which time, the base address in the CS 
register will be changed.

• Maskable hardware interrupts are disabled after a hardware reset and should 
remain disabled until the necessary interrupt handlers have been installed. The 
NMI interrupt is not disabled following a reset. The NMI# pin must thus be 
inhibited from being asserted until an NMI handler has been loaded and made 
available to the processor.

• The use of a temporary GDT allows simple transfer of tables from the EPROM to 
anywhere in the RAM area. A GDT entry is constructed with its base pointing to 
address 0 and a limit of 4 GBytes. When the DS and ES registers are loaded with 
this descriptor, the temporary GDT is no longer needed and can be replaced by 
the application GDT.

• This code loads one TSS and no LDTs. If more TSSs exist in the application, they 
must be loaded into RAM. If there are LDTs they may be loaded as well.
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Figure 8-3.  Processor State After Reset

Table 8-4.  Main Initialization Steps in STARTUP.ASM Source Listing 

STARTUP.ASM Line 
Numbers

Description

From To

157 157 Jump (short) to the entry code in the EPROM

162 169 Construct a temporary GDT in RAM with one entry: 
0 - null 
1 - R/W data segment, base = 0, limit = 4 GBytes

171 172 Load the GDTR to point to the temporary GDT

174 177 Load CR0 with PE flag set to switch to protected mode

179 181 Jump near to clear real mode instruction queue

184 186 Load DS, ES registers with GDT[1] descriptor, so both point to the 
entire physical memory space

0

FFFF FFFFH
After Reset

[CS.BASE+EIP] FFFF FFF0H

EIP = 0000 FFF0H

[SP, DS, SS, ES]

FFFF 0000H

64K EPROM

CS.BASE = FFFF 0000H
DS.BASE = 0H
ES.BASE = 0H
SS.BASE = 0H
ESP = 0H
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8.10.1 Assembler Usage
In this example, the Intel assembler ASM386 and build tools BLD386 are used to 
assemble and build the initialization code module. The following assumptions are 
used when using the Intel ASM386 and BLD386 tools.

• The ASM386 will generate the right operand size opcodes according to the code-
segment attribute. The attribute is assigned either by the ASM386 invocation 
controls or in the code-segment definition.

• If a code segment that is going to run in real-address mode is defined, it must be 
set to a USE 16 attribute. If a 32-bit operand is used in an instruction in this code 
segment (for example, MOV EAX, EBX), the assembler automatically generates 
an operand prefix for the instruction that forces the processor to execute a 32-bit 
operation, even though its default code-segment attribute is 16-bit.

• Intel's ASM386 assembler allows specific use of the 16- or 32-bit instructions, for 
example, LGDTW, LGDTD, IRETD. If the generic instruction LGDT is used, the 
default- segment attribute will be used to generate the right opcode.

188 195 Perform specific board initialization that is imposed by the new 
protected mode

196 218 Copy the application's GDT from ROM into RAM

220 238 Copy the application's IDT from ROM into RAM

241 243 Load application's GDTR

244 245 Load application's IDTR

247 261 Copy the application's TSS from ROM into RAM

263 267 Update TSS descriptor and other aliases in GDT (GDT alias or IDT 
alias) 

277 277 Load the task register (without task switch) using LTR instruction

282 286 Load SS, ESP with the value found in the application's TSS

287 287 Push EFLAGS value found in the application's TSS

288 288 Push CS value found in the application's TSS

289 289 Push EIP value found in the application's TSS

290 293 Load DS, ES with the value found in the application's TSS

296 296 Perform IRET; pop the above values and enter the application code

Table 8-4.  Main Initialization Steps in STARTUP.ASM Source Listing (Contd.)

STARTUP.ASM Line 
Numbers

Description

From To
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8.10.2 STARTUP.ASM Listing
Example 8-1 provides high-level sample code designed to move the processor into 
protected mode. This listing does not include any opcode and offset information.

Example 8-1.  STARTUP.ASM

MS-DOS* 5.0(045-N) 386(TM) MACRO ASSEMBLER STARTUP  09:44:51 08/19/92 
PAGE 1

MS-DOS 5.0(045-N) 386(TM) MACRO ASSEMBLER V4.0, ASSEMBLY OF MODULE 
STARTUP
OBJECT MODULE PLACED IN startup.obj
ASSEMBLER INVOKED BY: f:\386tools\ASM386.EXE startup.a58 pw (132 )

LINE     SOURCE

   1      NAME    STARTUP
   2  
   3  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
   4  ;
   5  ;   ASSUMPTIONS:
   6  ;
   7  ;     1.  The bottom 64K of memory is ram, and can be used for
   8  ;         scratch space by this module.
   9  ;
  10  ;     2.  The system has sufficient free usable ram to copy the
  11  ;         initial GDT, IDT, and TSS
  12  ;
  13  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
  14  
  15  ; configuration data - must match with build definition
  16  
  17  CS_BASE       EQU     0FFFF0000H
  18  
  19   ; CS_BASE is the linear address of the segment STARTUP_CODE
  20   ; - this is specified in the build language file
  21  
  22  RAM_START     EQU     400H
  23  
  24  ; RAM_START  is the start of free, usable ram in the linear
  25  ; memory  space.   The GDT,  IDT, and  initial TSS  will be
  26  ; copied above this space, and a small data segment will be
  27  ; discarded at  this linear  address.   The 32-bit  word at
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  28  ; RAM_START will contain  the linear  address of  the first
  29  ; free byte above the copied tables - this may be useful if
  30  ; a memory manager is used.
  31  
  32  TSS_INDEX    EQU     10
  33  
  34  ; TSS_INDEX is the  index of the  TSS of the  first task to
  35  ; run after startup
  36  
  37  
  38   ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
  39  
  40  ; ------------------------- STRUCTURES and EQU ---------------
  41  ; structures for system data
  42  
  43  ; TSS structure
  44  TASK_STATE  STRUC
  45      link DW ?
  46      link_h DW ?
  47      ESP0 DD ?
  48      SS0 DW ?
  49      SS0_h DW ?
  50      ESP1 DD ?
  51      SS1 DW ?
  52      SS1_h DW ?
  53      ESP2 DD ?
  54      SS2 DW ?
  55      SS2_h DW ?
  56      CR3_reg DD ?
  57      EIP_reg DD ?
  58      EFLAGS_regDD ?
  59      EAX_reg DD ?
  60      ECX_reg DD ?
  61      EDX_reg DD ?
  62      EBX_reg DD ?
  63      ESP_reg DD ?
  64      EBP_reg DD ?
  65      ESI_reg DD ?
  66      EDI_reg DD ?
  67      ES_reg DW ?
  68      ES_h DW ?
  69      CS_reg DW ?
  70      CS_h DW ?
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  71      SS_reg DW ?
  72      SS_h   DW ?
  73      DS_reg DW ?
  74      DS_h DW ?
  75      FS_reg DW ?
  76      FS_h DW ?
  77      GS_reg DW ?
  78      GS_h DW ?
  79      LDT_reg DW ?
  80      LDT_h DW ?
  81      TRAP_reg DW ?
  82      IO_map_baseDW ?
  83  TASK_STATE  ENDS
  84  
  85  ; basic structure of a descriptor
  86  DESC    STRUC
  87      lim_0_15 DW ?
  88      bas_0_15 DW ?
  89      bas_16_23DB ?
  90      access DB ?
  91      gran DB ?
  92      bas_24_31DB ?
  93  DESC    ENDS
  94  
  95  ; structure for use with LGDT and LIDT instructions
  96  TABLE_REG   STRUC
  97      table_limDW ?
  98      table_linearDD ?
  99  TABLE_REG   ENDS
 100  
 101  ; offset of GDT and IDT descriptors in builder generated GDT
 102  GDT_DESC_OFF    EQU 1*SIZE(DESC)
 103  IDT_DESC_OFF    EQU 2*SIZE(DESC)
 104  
 105  ; equates for building temporary GDT in RAM
 106  LINEAR_SEL          EQU     1*SIZE (DESC)
 107  LINEAR_PROTO_LO     EQU     00000FFFFH  ; LINEAR_ALIAS
 108  LINEAR_PROTO_HI     EQU     000CF9200H
 109  
 110  ; Protection Enable Bit in CR0
 111  PE_BIT  EQU 1B
 112  
 113  ; ------------------------------------------------------------
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 114  
 115  ; ------------------------- DATA SEGMENT----------------------
 116  
 117  ; Initially, this  data segment starts at linear 0, according
 118  ; to the processor’s power-up state.
 119  
 120  STARTUP_DATA    SEGMENT RW
 121  
 122  free_mem_linear_base    LABEL   DWORD
 123  TEMP_GDT                LABEL   BYTE  ; must be first in segment
 124  TEMP_GDT_NULL_DESC   DESC    <>
 125  TEMP_GDT_LINEAR_DESC DESC    <>
 126  
 127  ; scratch areas for LGDT and LIDT instructions
 128  TEMP_GDT_SCRATCH TABLE_REG   <>
 129  APP_GDT_RAM     TABLE_REG    <>
 130  APP_IDT_RAM     TABLE_REG    <>
 131          ; align end_data
 132  fill    DW      ?
 133   
 134  ; last thing in this segment - should be on a dword boundary
 135  end_data    LABEL   BYTE
 136  
 137  STARTUP_DATA    ENDS
 138  ; ------------------------------------------------------------
 139  
 140  
 141  ; ------------------------- CODE SEGMENT----------------------
 142  STARTUP_CODE SEGMENT ER PUBLIC USE16
 143  
 144  ; filled in by builder
 145      PUBLIC  GDT_EPROM
 146  GDT_EPROM   TABLE_REG   <>
 147  
 148  ; filled in by builder
 149      PUBLIC  IDT_EPROM
 150  IDT_EPROM   TABLE_REG   <>
 151  
 152  ; entry point into startup code - the bootstrap will vector
 153  ; here  with a  near JMP  generated by  the builder.   This
 154  ; label must be in the top 64K of linear memory.
 155  
 156      PUBLIC  STARTUP
 157  STARTUP:
 158  
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 159  ; DS,ES address the bottom 64K of flat linear memory
 160      ASSUME  DS:STARTUP_DATA, ES:STARTUP_DATA
 161  ; See Figure 8-4
 162  ; load GDTR with temporary GDT
 163          LEA     EBX,TEMP_GDT  ; build the TEMP_GDT in low ram,
 164          MOV     DWORD PTR [EBX],0   ; where we can address
 165          MOV     DWORD PTR [EBX]+4,0
 166          MOV     DWORD PTR [EBX]+8, LINEAR_PROTO_LO
 167          MOV     DWORD PTR [EBX]+12, LINEAR_PROTO_HI
 168          MOV     TEMP_GDT_scratch.table_linear,EBX
 169          MOV     TEMP_GDT_scratch.table_lim,15
 170  
 171          DB 66H; execute a 32 bit LGDT
 172          LGDT    TEMP_GDT_scratch
 173  
 174  ; enter protected mode
 175          MOV     EBX,CR0
 176          OR      EBX,PE_BIT
 177          MOV     CR0,EBX
 178  

 179   ; clear prefetch queue
 180          JMP     CLEAR_LABEL
 181  CLEAR_LABEL:
 182  
 183   ; make DS and ES address 4G of linear memory
 184          MOV     CX,LINEAR_SEL
 185          MOV     DS,CX
 186          MOV     ES,CX
 187  
 188    ; do board specific initialization 
 189    ;
 190                  ; 
 191                  ; ......
 192                  ; 
 193  
 194  
 195          ; See Figure 8-5
 196          ; copy EPROM GDT to ram at:
 197          ;                RAM_START + size (STARTUP_DATA)
 198          MOV     EAX,RAM_START
 199          ADD     EAX,OFFSET (end_data)   
 200          MOV     EBX,RAM_START
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 201          MOV     ECX, CS_BASE
 202          ADD     ECX, OFFSET (GDT_EPROM) 
 203          MOV     ESI, [ECX].table_linear
 204          MOV     EDI,EAX
 205          MOVZX   ECX, [ECX].table_lim
 206          MOV     APP_GDT_ram[EBX].table_lim,CX
 207          INC     ECX
 208          MOV     EDX,EAX
 209          MOV     APP_GDT_ram[EBX].table_linear,EAX
 210          ADD     EAX,ECX
 211      REP MOVS    BYTE PTR ES:[EDI],BYTE PTR DS:[ESI]
 212  
 213          ; fixup GDT base in descriptor
 214          MOV     ECX,EDX
 215          MOV     [EDX].bas_0_15+GDT_DESC_OFF,CX
 216          ROR     ECX,16
 217          MOV     [EDX].bas_16_23+GDT_DESC_OFF,CL
 218          MOV     [EDX].bas_24_31+GDT_DESC_OFF,CH
 219  
 220          ; copy EPROM IDT to ram at:
 221          ; RAM_START+size(STARTUP_DATA)+SIZE (EPROM GDT)
 222          MOV     ECX, CS_BASE
 223          ADD     ECX, OFFSET (IDT_EPROM)     
 224          MOV     ESI, [ECX].table_linear
 225          MOV     EDI,EAX
 226          MOVZX   ECX, [ECX].table_lim
 227          MOV     APP_IDT_ram[EBX].table_lim,CX
 228          INC     ECX
 229          MOV     APP_IDT_ram[EBX].table_linear,EAX
 230          MOV     EBX,EAX
 231          ADD     EAX,ECX
 232      REP MOVS    BYTE PTR ES:[EDI],BYTE PTR DS:[ESI]
 233  
 234                  ; fixup IDT pointer in GDT
 235          MOV     [EDX].bas_0_15+IDT_DESC_OFF,BX
 236          ROR     EBX,16
 237          MOV     [EDX].bas_16_23+IDT_DESC_OFF,BL
 238          MOV     [EDX].bas_24_31+IDT_DESC_OFF,BH
 239  
 240                  ; load GDTR and IDTR
 241          MOV     EBX,RAM_START
 242                  DB      66H         ; execute a 32 bit LGDT
 243          LGDT    APP_GDT_ram[EBX]    
 244                  DB      66H         ; execute a 32 bit LIDT
 245          LIDT    APP_IDT_ram[EBX]    
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 246  
 247                  ; move the TSS
 248          MOV     EDI,EAX
 249          MOV     EBX,TSS_INDEX*SIZE(DESC)
 250          MOV     ECX,GDT_DESC_OFF ;build linear address for TSS
 251          MOV     GS,CX
 252          MOV     DH,GS:[EBX].bas_24_31
 253          MOV     DL,GS:[EBX].bas_16_23
 254          ROL     EDX,16
 255          MOV     DX,GS:[EBX].bas_0_15
 256          MOV     ESI,EDX
 257          LSL     ECX,EBX
 258          INC     ECX
 259          MOV     EDX,EAX
 260          ADD     EAX,ECX
 261      REP MOVS    BYTE PTR ES:[EDI],BYTE PTR DS:[ESI]
 262
 263                  ; fixup TSS pointer
 264          MOV     GS:[EBX].bas_0_15,DX
 265          ROL     EDX,16
 266          MOV     GS:[EBX].bas_24_31,DH
 267          MOV     GS:[EBX].bas_16_23,DL
 268          ROL     EDX,16
 269      ;save start of free ram at linear location RAMSTART
 270          MOV     free_mem_linear_base+RAM_START,EAX
 271
 272      ;assume no  LDT used in  the initial task  - if necessary,
 273      ;code  to move the LDT could be added, and should resemble
 274      ;that used to move the TSS
 275
 276      ; load task register
 277          LTR     BX   ; No task switch, only descriptor loading
 278      ; See Figure 8-6
 279      ; load minimal set of registers necessary to simulate task
 280      ; switch
 281  
 282
 283          MOV     AX,[EDX].SS_reg     ; start loading registers
 284          MOV     EDI,[EDX].ESP_reg
 285          MOV     SS,AX
 286          MOV     ESP,EDI             ; stack now valid
 287          PUSH    DWORD PTR [EDX].EFLAGS_reg
 288          PUSH    DWORD PTR [EDX].CS_reg
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 289          PUSH    DWORD PTR [EDX].EIP_reg
 290          MOV     AX,[EDX].DS_reg
 291          MOV     BX,[EDX].ES_reg
 292          MOV     DS,AX     ; DS and ES no longer linear memory
 293          MOV     ES,BX
 294
 295          ; simulate far jump to initial task
 296          IRETD
 297
 298  STARTUP_CODE  ENDS
*** WARNING #377 IN 298, (PASS 2) SEGMENT CONTAINS PRIVILEGED 
INSTRUCTION(S)
 299
 300  END STARTUP, DS:STARTUP_DATA, SS:STARTUP_DATA
 301
 302

ASSEMBLY COMPLETE,   1 WARNING,   NO ERRORS.
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Figure 8-4.  Constructing Temporary GDT and Switching to Protected Mode (Lines 
162-172 of List File)
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Figure 8-5.  Moving the GDT, IDT, and TSS from ROM to RAM (Lines 196-261 of List 
File)
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8.10.3 MAIN.ASM Source Code
The file MAIN.ASM shown in Example 8-2 defines the data and stack segments for 
this application and can be substituted with the main module task written in a high-
level language that is invoked by the IRET instruction executed by STARTUP.ASM. 

Example 8-2.  MAIN.ASM

NAME    main_module 
data    SEGMENT RW 

dw 1000 dup(?) 
DATA    ENDS
stack stackseg 800

Figure 8-6.  Task Switching (Lines 282-296 of List File)
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CODE SEGMENT ER  use32 PUBLIC 
main_start: 

nop 
nop 
nop

CODE  ENDS
END main_start, ds:data, ss:stack

8.10.4 Supporting Files
The batch file shown in Example 8-3 can be used to assemble the source code files 
STARTUP.ASM and MAIN.ASM and build the final application.

Example 8-3.  Batch File to Assemble and Build the Application

ASM386 STARTUP.ASM
ASM386 MAIN.ASM
BLD386 STARTUP.OBJ, MAIN.OBJ buildfile(EPROM.BLD) bootstrap(STARTUP) 
Bootload

BLD386 performs several operations in this example:
It allocates physical memory location to segments and tables.
It generates tables using the build file and the input files.
It links object files and resolves references.
It generates a boot-loadable file to be programmed into the EPROM.

 
Example 8-4 shows the build file used as an input to BLD386 to perform the above 
functions.

Example 8-4.  Build File

INIT_BLD_EXAMPLE;

SEGMENT
        *SEGMENTS(DPL = 0)
    ,   startup.startup_code(BASE = 0FFFF0000H)
    ;

TASK
        BOOT_TASK(OBJECT = startup, INITIAL,DPL = 0, 

NOT INTENABLED)
,       PROTECTED_MODE_TASK(OBJECT = main_module,DPL = 0, 

NOT INTENABLED)
    ;
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TABLE
    GDT (
        LOCATION = GDT_EPROM
    ,   ENTRY = (
            10:   PROTECTED_MODE_TASK
    , startup.startup_code
    ,       startup.startup_data
    ,       main_module.data
    ,       main_module.code
    ,       main_module.stack

          )
        ),

    IDT (
        LOCATION = IDT_EPROM
        );

MEMORY
    (
        RESERVE = (0..3FFFH 

-- Area for the GDT, IDT, TSS copied from ROM
    ,              60000H..0FFFEFFFFH)
    ,   RANGE = (ROM_AREA = ROM (0FFFF0000H..0FFFFFFFFH)) 

-- Eprom size 64K
    ,   RANGE = (RAM_AREA = RAM (4000H..05FFFFH))
    );

END

Table 8-5 shows the relationship of each build item with an ASM source file.

Table 8-5.  Relationship Between BLD Item and ASM Source File  

Item ASM386 and 
Startup.A58

BLD386 Controls  
and BLD file

Effect

Bootstrap public startup 
startup:

bootstrap 
start(startup)

Near jump at 0FFFFFFF0H 
to start.

GDT location public GDT_EPROM 
GDT_EPROM TABLE_REG  <>

TABLE 
GDT(location = GDT_EPROM)

The location of the GDT 
will be programmed into 
the GDT_EPROM location.

IDT location public IDT_EPROM 
IDT_EPROM TABLE_REG  <>

TABLE 
IDT(location = IDT_EPROM

The location of the IDT 
will be programmed into 
the IDT_EPROM location.
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8.11 MICROCODE UPDATE FACILITIES
The Pentium 4, Intel Xeon, and P6 family processors have the capability to correct 
errata by loading an Intel-supplied data block into the processor. The data block is 
called a microcode update. This section describes the mechanisms the BIOS needs to 
provide in order to use this feature during system initialization. It also describes a 
specification that permits the incorporation of future updates into a system BIOS.

Intel considers the release of a microcode update for a silicon revision to be the 
equivalent of a processor stepping and completes a full-stepping level validation for 
releases of microcode updates.

A microcode update is used to correct errata in the processor. The BIOS, which has 
an update loader, is responsible for loading the update on processors during system 
initialization (Figure 8-7). There are two steps to this process: the first is to incorpo-
rate the necessary update data blocks into the BIOS; the second is to load update 
data blocks into the processor.

RAM start RAM_START equ 400H memory (reserve = (0..3FFFH)) RAM_START is used as 
the ram destination for 
moving the tables. It must 
be excluded from the 
application's segment 
area.

Location of the 
application TSS 
in the GDT

TSS_INDEX EQU 10 TABLE GDT( 
ENTRY = (10: 
PROTECTED_MODE_ 
TASK))

Put the descriptor of the 
application TSS in GDT 
entry 10.

EPROM size 
and location

size and location of the 
initialization code

SEGMENT startup.code (base = 
0FFFF0000H) ...memory 
(RANGE( 
ROM_AREA = ROM(x..y)) 

Initialization code size 
must be less than 64K 
and resides at upper most 
64K of the 4-GByte 
memory space.

Table 8-5.  Relationship Between BLD Item and ASM Source File  (Contd.)

Item ASM386 and 
Startup.A58

BLD386 Controls  
and BLD file

Effect
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8.11.1 Microcode Update
A microcode update consists of an Intel-supplied binary that contains a descriptive 
header and data. No executable code resides within the update. Each microcode 
update is tailored for a specific list of processor signatures. A mismatch of the 
processor’s signature with the signature contained in the update will result in a 
failure to load. A processor signature includes the extended family, extended model, 
type, family, model, and stepping of the processor (starting with processor family 
0fH, model 03H, a given microcode update may be associated with one of multiple 
processor signatures; see Section 8.11.2 for detail).

Microcode updates are composed of a multi-byte header, followed by encrypted data 
and then by an optional extended signature table. Table 8-6 provides a definition of 
the fields; Table 8-7 shows the format of an update. 

The header is 48 bytes. The first 4 bytes of the header contain the header version. 
The update header and its reserved fields are interpreted by software based upon the 
header version. An encoding scheme guards against tampering and provides a 
means for determining the authenticity of any given update. For microcode updates 
with a data size field equal to 00000000H, the size of the microcode update is 2048 
bytes. The first 48 bytes contain the microcode update header. The remaining 2000 
bytes contain encrypted data. 

For microcode updates with a data size not equal to 00000000H, the total size field 
specifies the size of the microcode update. The first 48 bytes contain the microcode 
update header. The second part of the microcode update is the encrypted data.  The 
data size field of the microcode update header specifies the encrypted data size, its 
value must be a multiple of the size of DWORD. The total size field of the microcode 
update header specifies the encrypted data size plus the header size; its value must 
be in multiples of 1024 bytes (1 KBytes). The optional extended signature table if 
implemented follows the encrypted data, and its size is calculated by (Total Size – 
(Data Size + 48)). 

Figure 8-7.  Applying Microcode Updates

CPU

BIOS

Update
BlocksNew Update

Update
Loader
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NOTE
The optional extended signature table is supported starting with 
processor family 0FH, model 03H.

. 
Table 8-6.  Microcode Update Field Definitions 

Field Name Offset 
(bytes)

Length 
(bytes)

Description

Header Version 0 4 Version number of the update header.

Update Revision 4 4 Unique version number for the update, the basis for the 
update signature provided by the processor to indicate 
the current update functioning within the processor.  
Used by the BIOS to authenticate the update and verify 
that the processor loads successfully.  The value in this 
field cannot be used for processor stepping identification 
alone.  This is a signed 32-bit number.

Date 8 4 Date of the update creation in binary format: mmddyyyy 
(e.g. 07/18/98 is 07181998H).

Processor 
Signature

12 4 Extended family, extended model, type, family, model, 
and stepping of processor that requires this particular 
update revision (e.g., 00000650H). Each microcode 
update is designed specifically for a given extended 
family, extended model, type, family, model, and stepping 
of the processor.  

The BIOS uses the processor signature field in 
conjunction with the CPUID instruction to determine 
whether or not an update is appropriate to load on a 
processor. The information encoded within this field 
exactly corresponds to the bit representations returned 
by the CPUID instruction.

Checksum 16 4 Checksum of Update Data and Header. Used to verify the 
integrity of the update header and data. Checksum is 
correct when the summation of all the DWORDs (including 
the extended Processor Signature Table) that comprise 
the microcode update result in 00000000H.

Loader Revision 20 4 Version number of the loader program needed to 
correctly load this update. The initial version is 
00000001H.

Processor Flags 24 4 Platform type information is encoded in the lower 8 bits 
of this 4-byte field.  Each bit represents a particular 
platform type for a given CPUID.  The BIOS uses the 
processor flags field in conjunction with the platform Id 
bits in MSR (17H) to determine whether or not an update 
is appropriate to load on a processor.  Multiple bits may be 
set representing support for multiple platform IDs.

Data Size 28 4 Specifies the size of the encrypted data in bytes, and 
must be a multiple of DWORDs.  If this value is 
00000000H, then the microcode update encrypted data 
is 2000 bytes (or 500 DWORDs).

Total Size 32 4 Specifies the total size of the microcode update in bytes.  
It is the summation of the header size, the encrypted 
data size and the size of the optional extended signature 
table. This value is always a multiple of 1024.
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Reserved 36 12 Reserved fields for future expansion

Update Data 48 Data Size or 
2000

Update data

Extended Signature 
Count

Data Size + 
48 

4 Specifies the number of extended signature structures 
(Processor Signature[n], processor flags[n] and 
checksum[n]) that exist in this microcode update.

Extended 
Checksum

Data Size + 
52

4 Checksum of update extended processor signature table.  
Used to verify the integrity of the extended processor 
signature table.  Checksum is correct when the 
summation of the DWORDs that comprise the extended 
processor signature table results in 00000000H.

Reserved Data Size + 
56

12 Reserved fields

Processor 
Signature[n]

Data Size + 
68 + (n * 12)

4 Extended family, extended model, type, family, model, 
and stepping of processor that requires this particular 
update revision (e.g., 00000650H). Each microcode 
update is designed specifically for a given extended 
family, extended model, type, family, model, and stepping 
of the processor.  

The BIOS uses the processor signature field in 
conjunction with the CPUID instruction to determine 
whether or not an update is appropriate to load on a 
processor. The information encoded within this field 
exactly corresponds to the bit representations returned 
by the CPUID instruction.

Processor Flags[n] Data Size + 
72 + (n * 12)

4 Platform type information is encoded in the lower 8 bits 
of this 4-byte field.  Each bit represents a particular 
platform type for a given CPUID.  The BIOS uses the 
processor flags field in conjunction with the platform Id 
bits in MSR (17H) to determine whether or not an update 
is appropriate to load on a processor.  Multiple bits may be 
set representing support for multiple platform IDs.

Checksum[n] Data Size + 
76 + (n * 12)

4 Used by utility software to decompose a microcode 
update into multiple microcode updates where each of 
the new updates is constructed without the optional 
Extended Processor Signature Table. 

To calculate the Checksum, substitute the Primary 
Processor Signature entry and the Processor Flags entry 
with the corresponding Extended Patch entry. Delete the 
Extended Processor Signature Table entries. The 
Checksum is correct when the summation of all DWORDs 
that comprise the created Extended Processor Patch 
results in 00000000H.

Table 8-6.  Microcode Update Field Definitions (Contd.)

Field Name Offset 
(bytes)

Length 
(bytes)

Description
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Table 8-7.  Microcode Update Format 
31 24 16 8 0 Bytes

Header Version 0

Update Revision 4

Month: 8 Day: 8 Year: 16 8

Processor Signature (CPUID) 12

Res: 4

Extended

Fam
ily: 8

Extended  
M

ode: 4

Reserved: 2

Type: 2

Fam
ily: 4

M
odel: 4

Stepping: 4

Checksum 16

Loader Revision 20

Processor Flags 24

Reserved (24 bits)

P7 P6 P5 P4 P3 P2 P1 P0

Data Size 28

Total Size 32

Reserved (12 Bytes) 36

Update Data (Data Size bytes, or 2000 Bytes if Data Size = 00000000H) 48

Extended Signature Count ‘n’ Data Size 
+ 48

Extended Processor Signature Table Checksum Data Size 
+ 52

Reserved (12 Bytes) 
 

Data Size 
+ 56

Processor Signature[n] Data Size 
+ 68 +  
(n * 12)

Processor Flags[n] Data Size 
+ 72 +  
(n * 12)

Checksum[n] Data Size 
+ 76 +  
(n * 12)
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8.11.2 Optional Extended Signature Table
The extended signature table is a structure that may be appended to the end of the 
encrypted data when the encrypted data only supports a single processor signature 
(optional case). The extended signature table will always be present when the 
encrypted data supports multiple processor steppings and/or models (required 
case). 

The extended signature table consists of a 20-byte extended signature header struc-
ture, which contains the extended signature count, the extended processor signature 
table checksum, and 12 reserved bytes (Table 8-8). Following the extended signa-
ture header structure, the extended signature table contains 0-to-n extended 
processor signature structures.

Each processor signature structure consist of the processor signature, processor 
flags, and a checksum (Table 8-9). 

The extended signature count in the extended signature header structure indicates 
the number of processor signature structures that exist in the extended signature 
table.  

The extended processor signature table checksum is a checksum of all DWORDs that 
comprise the extended signature table. That includes the extended signature count, 
extended processor signature table checksum, 12 reserved bytes and the n 
processor signature structures. A valid extended signature table exists when the 
result of a DWORD checksum is 00000000H.

8.11.3 Processor Identification
Each microcode update is designed to for a specific processor or set of processors. To 
determine the correct microcode update to load, software must ensure that one of 
the processor signatures embedded in the microcode update matches the 32-bit 
processor signature returned by the CPUID instruction when executed by the target 
processor with EAX = 1.  Attempting to load a microcode update that does not match 

Table 8-8.  Extended Processor Signature Table Header Structure

Extended Signature Count ‘n’ Data Size + 48
Extended Processor Signature Table Checksum Data Size + 52
Reserved (12 Bytes) Data Size + 56

Table 8-9.  Processor Signature Structure 

Processor Signature[n] Data Size + 68 + (n * 12)
Processor Flags[n] Data Size + 72 + (n * 12)
Checksum[n] Data Size + 76 + (n * 12)
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a processor signature embedded in the microcode update with the processor signa-
ture returned by CPUID will cause the BIOS to reject the update.

Example 8-5 shows how to check for a valid processor signature match between the 
processor and microcode update.

Example 8-5.  Pseudo Code to Validate the Processor Signature

ProcessorSignature ← CPUID(1):EAX

If (Update.HeaderVersion == 00000001h)
{

// first check the ProcessorSignature field
If (ProcessorSignature == Update.ProcessorSignature)

Success

// if extended signature is present
Else If (Update.TotalSize > (Update.DataSize + 48))
{

//
// Assume the Data Size has been used to calculate the 
// location of Update.ProcessorSignature[0].
//

For (N ← 0; ((N < Update.ExtendedSignatureCount) AND 
 (ProcessorSignature != Update.ProcessorSignature[N])); N++);

// if the loops ended when the iteration count is
// less than the number of processor signatures in
// the table, we have a match

If (N < Update.ExtendedSignatureCount)
Success

Else
Fail

}
Else

Fail
Else

Fail 

8.11.4 Platform Identification
In addition to verifying the processor signature, the intended processor platform type 
must be determined to properly target the microcode update. The intended 
processor platform type is determined by reading the IA32_PLATFORM_ID register, 
(MSR 17H).  This 64-bit register must be read using the RDMSR instruction. 
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The three platform ID bits, when read as a binary coded decimal (BCD) number, indi-
cate the bit position in the microcode update header’s processor flags field associated 
with the installed processor.  The processor flags in the 48-byte header and the 
processor flags field associated with the extended processor signature structures 
may have multiple bits set. Each set bit represents a different platform ID that the 
update supports.

Register Name: IA32_PLATFORM_ID
MSR Address: 017H
Access: Read Only

 
IA32_PLATFORM_ID is a 64-bit register accessed only when referenced as a Qword through a 
RDMSR instruction. 

 
To validate the platform information, software may implement an algorithm similar to 
the algorithms in Example 8-6.

Example 8-6.  Pseudo Code Example of Processor Flags Test

Flag ← 1 << IA32_PLATFORM_ID[52:50]

If (Update.HeaderVersion == 00000001h)
{

If (Update.ProcessorFlags & Flag)
{

Load Update

Table 8-10.  Processor Flags 

Bit Descriptions
63:53 Reserved
52:50 Platform Id Bits (RO). The field gives information concerning the intended platform for 

the processor. See also Table 8-7. 

52 51 50
0 0 0 Processor Flag 0
0 0 1 Processor Flag 1
0 1 0 Processor Flag 2
0 1 1 Processor Flag 3
1 0 0 Processor Flag 4
1 0 1 Processor Flag 5
1 1 0 Processor Flag 6
1 1 1 Processor Flag 7

49:0 Reserved
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}
Else
{

//
// Assume the Data Size has been used to calculate the 
// location of Update.ProcessorSignature[N] and a match
// on Update.ProcessorSignature[N] has already succeeded
//

If (Update.ProcessorFlags[n] & Flag)
{

Load Update
}

}
}

8.11.5 Microcode Update Checksum
Each microcode update contains a DWORD checksum located in the update header. It 
is software’s responsibility to ensure that a microcode update is not corrupt. To check 
for a corrupt microcode update, software must perform a unsigned DWORD (32-bit) 
checksum of the microcode update. Even though some fields are signed, the 
checksum procedure treats all DWORDs as unsigned. Microcode updates with a 
header version equal to 00000001H must sum all DWORDs that comprise the micro-
code update. A valid checksum check will yield a value of 00000000H. Any other 
value indicates the microcode update is corrupt and should not be loaded.

The checksum algorithm shown by the pseudo code in Example 8-7 treats the micro-
code update as an array of unsigned DWORDs. If the data size DWORD field at byte 
offset 32 equals 00000000H, the size of the encrypted data is 2000 bytes, resulting 
in 500 DWORDs. Otherwise the microcode update size in DWORDs = (Total Size / 4), 
where the total size is a multiple of 1024 bytes (1 KBytes).

Example 8-7.  Pseudo Code Example of Checksum Test

N ← 512

If (Update.DataSize != 00000000H)
N ← Update.TotalSize / 4

ChkSum ← 0 
For (I ← 0; I < N; I++)
{

ChkSum ← ChkSum + MicrocodeUpdate[I]
}
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If (ChkSum == 00000000H)
Success

Else
Fail

8.11.6 Microcode Update Loader
This section describes an update loader used to load an update into a Pentium 4, Intel 
Xeon, or P6 family processor. It also discusses the requirements placed on the BIOS 
to ensure proper loading. The update loader described contains the minimal instruc-
tions needed to load an update. The specific instruction sequence that is required to 
load an update is dependent upon the loader revision field contained within the 
update header. This revision is expected to change infrequently (potentially, only 
when new processor models are introduced).

Example 8-8 below represents the update loader with a loader revision of 
00000001H. Note that the microcode update must be aligned on a 16-byte boundary 
and the size of the microcode update must be 1-KByte granular.

Example 8-8.  Assembly Code Example of Simple Microcode Update Loader

mov  ecx,79h             ; MSR to read in ECX
xor  eax,eax             ; clear EAX
xor  ebx,ebx             ; clear EBX
mov  ax,cs               ; Segment of microcode update
shl  eax,4
mov  bx,offset Update    ; Offset of microcode update
add  eax,ebx             ; Linear Address of Update in EAX
add  eax,48d             ; Offset of the Update Data within the Update
xor  edx,edx             ; Zero in EDX
WRMSR                   ; microcode update trigger 

The loader shown in Example 8-8 assumes that update is the address of a microcode 
update (header and data) embedded within the code segment of the BIOS. It also 
assumes that the processor is operating in real mode. The data may reside anywhere 
in memory, aligned on a 16-byte boundary, that is accessible by the processor within 
its current operating mode.

Before the BIOS executes the microcode update trigger (WRMSR) instruction, the 
following must be true:

• In 64-bit mode, EAX contains the lower 32-bits of the microcode update linear 
address. In protected mode, EAX contains the full 32-bit linear address of the 
microcode update.

• In 64-bit mode, EDX contains the upper 32-bits of the microcode update linear 
address. In protected mode, EDX equals zero.
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• ECX contains 79H (address of IA32_BIOS_UPDT_TRIG).

Other requirements are:

• If the update is loaded while the processor is in real mode, then the update data 
may not cross a segment boundary.

• If the update is loaded while the processor is in real mode, then the update data 
may not exceed a segment limit.

• If paging is enabled, pages that are currently present must map the update data.

• The microcode update data requires a 16-byte boundary alignment.

8.11.6.1  Hard Resets in Update Loading
The effects of a loaded update are cleared from the processor upon a hard reset. 
Therefore, each time a hard reset is asserted during the BIOS POST, the update must 
be reloaded on all processors that observed the reset. The effects of a loaded update 
are, however, maintained across a processor INIT. There are no side effects caused 
by loading an update into a processor multiple times.

8.11.6.2  Update in a Multiprocessor System
A multiprocessor (MP) system requires loading each processor with update data 
appropriate for its CPUID and platform ID bits. The BIOS is responsible for ensuring 
that this requirement is met and that the loader is located in a module executed by 
all processors in the system. If a system design permits multiple steppings of 
Pentium 4, Intel Xeon, and P6 family processors to exist concurrently; then the BIOS 
must verify individual processors against the update header information to ensure 
appropriate loading. Given these considerations, it is most practical to load the 
update during MP initialization.

8.11.6.3  Update in a System Supporting Intel Hyper-Threading Technology 
Intel Hyper-Threading Technology has implications on the loading of the microcode 
update. The update must be loaded for each core in a physical processor. Thus, for a 
processor supporting Hyper-Threading Technology, only one logical processor per 
core is required to load the microcode update. Each individual logical processor can 
independently load the update. However, MP initialization must provide some mech-
anism (e.g. a software semaphore) to force serialization of microcode update loads 
and to prevent simultaneous load attempts to the same core.

8.11.6.4  Update in a System Supporting Dual-Core Technology 
Dual-core technology has implications on the loading of the microcode update. The 
microcode update facility is not shared between processor cores in the same physical 
package. The update must be loaded for each core in a physical processor. 
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If processor core supports Hyper-Threading Technology, the guideline described in 
Section 8.11.6.3 also applies.

8.11.6.5  Update Loader Enhancements
The update loader presented in Section 8.11.6, “Microcode Update Loader,” is a 
minimal implementation that can be enhanced to provide additional functionality. 
Potential enhancements are described below:

• BIOS can incorporate multiple updates to support multiple steppings of the 
Pentium 4, Intel Xeon, and P6 family processors. This feature provides for 
operating in a mixed stepping environment on an MP system and enables a user 
to upgrade to a later version of the processor. In this case, modify the loader to 
check the CPUID and platform ID bits of the processor that it is running on 
against the available headers before loading a particular update. The number of 
updates is only limited by available BIOS space.

• A loader can load the update and test the processor to determine if the update 
was loaded correctly. See Section 8.11.7, “Update Signature and Verification.”

• A loader can verify the integrity of the update data by performing a checksum on 
the double words of the update summing to zero. See Section 8.11.5, “Microcode 
Update Checksum.”

• A loader can provide power-on messages indicating successful loading of an 
update.

8.11.7 Update Signature and Verification
The Pentium 4, Intel Xeon, and P6 family processors provide capabilities to verify the 
authenticity of a particular update and to identify the current update revision. This 
section describes the model-specific extensions of processors that support this 
feature. The update verification method below assumes that the BIOS will only verify 
an update that is more recent than the revision currently loaded in the processor.

CPUID returns a value in a model specific register in addition to its usual register 
return values. The semantics of CPUID cause it to deposit an update ID value in the 
64-bit model-specific register at address 08BH (IA32_BIOS_SIGN_ID). If no update 
is present in the processor, the value in the MSR remains unmodified. The BIOS must 
pre-load a zero into the MSR before executing CPUID. If a read of the MSR at 8BH still 
returns zero after executing CPUID, this indicates that no update is present.

The update ID value returned in the EDX register after RDMSR executes indicates the 
revision of the update loaded in the processor. This value, in combination with the 
CPUID value returned in the EAX register, uniquely identifies a particular update. The 
signature ID can be directly compared with the update revision field in a microcode 
update header for verification of a correct load. No consecutive updates released for 
a given stepping of a processor may share the same signature. The processor signa-
ture returned by CPUID differentiates updates for different steppings.
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8.11.7.1  Determining the Signature
An update that is successfully loaded into the processor provides a signature that 
matches the update revision of the currently functioning revision. This signature is 
available any time after the actual update has been loaded. Requesting the signature 
does not have a negative impact upon a loaded update.  

The procedure for determining this signature shown in Example 8-9.

Example 8-9.  Assembly Code to Retrieve the Update Revision

MOV ECX, 08BH          ;IA32_BIOS_SIGN_ID
XOR EAX, EAX           ;clear EAX
XOR EDX, EDX           ;clear EDX
WRMSR                    ;Load 0 to MSR at 8BH
MOV EAX, 1
cpuid
MOV ECX, 08BH           ;IA32_BIOS_SIGN_ID
rdmsr                     ;Read Model Specific Register 

If there is an update active in the processor, its revision is returned in the EDX 
register after the RDMSR instruction executes.

IA32_BIOS_SIGN_ID Microcode Update Signature Register  
MSR Address: 08BH Accessed as a Qword
Default Value: XXXX XXXX XXXX XXXXh
Access: Read/Write 

The IA32_BIOS_SIGN_ID register is used to report the microcode update signature 
when CPUID executes. The signature is returned in the upper DWORD (Table 8-11).

8.11.7.2  Authenticating the Update
An update may be authenticated by the BIOS using the signature primitive, 
described above, and the algorithm in Example 8-10.

Table 8-11.  Microcode Update Signature 
Bit Description

63:32 Microcode update signature. This field contains the signature of the currently loaded 
microcode update when read following the execution of the CPUID instruction, function 
1. It is required that this register field be pre-loaded with zero prior to executing the 
CPUID, function 1. If the field remains equal to zero, then there is no microcode update 
loaded. Another non-zero value will be the signature.

31:0 Reserved.
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Example 8-10.  Pseudo Code to Authenticate the Update

Z ← Obtain Update Revision from the Update Header to be authenticated;
X ← Obtain Current Update Signature from MSR 8BH;

If (Z > X)
{

Load Update that is to be authenticated;
Y ← Obtain New Signature from MSR 8BH;

If (Z == Y)
Success

Else
Fail

}
Else

Fail

Example 8-10 requires that the BIOS only authenticate updates that contain a 
numerically larger revision than the currently loaded revision, where Current Signa-
ture (X) < New Update Revision (Z). A processor with no loaded update is considered 
to have a revision equal to zero.

This authentication procedure relies upon the decoding provided by the processor to 
verify an update from a potentially hostile source.  As an example, this mechanism in 
conjunction with other safeguards provides security for dynamically incorporating 
field updates into the BIOS.

8.11.8 Pentium 4, Intel Xeon, and P6 Family Processor 
Microcode Update Specifications

This section describes the interface that an application can use to dynamically inte-
grate processor-specific updates into the system BIOS. In this discussion, the appli-
cation is referred to as the calling program or caller.

The real mode INT15 call specification described here is an Intel extension to an OEM 
BIOS. This extension allows an application to read and modify the contents of the 
microcode update data in NVRAM. The update loader, which is part of the system 
BIOS, cannot be updated by the interface. All of the functions defined in the specifi-
cation must be implemented for a system to be considered compliant with the speci-
fication. The INT15 functions are accessible only from real mode.

8.11.8.1  Responsibilities of the BIOS
If a BIOS passes the presence test (INT 15H, AX = 0D042H, BL = 0H), it must imple-
ment all of the sub-functions defined in the INT 15H, AX = 0D042H specification. 
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There are no optional functions. BIOS must load the appropriate update for each 
processor during system initialization.

A Header Version of an update block containing the value 0FFFFFFFFH indicates that 
the update block is unused and available for storing a new update.

The BIOS is responsible for providing a region of non-volatile storage (NVRAM) for 
each potential processor stepping within a system. This storage unit consists of one 
or more update blocks. An update block is a contiguous 2048-byte block of memory. 
The BIOS for a single processor system need only provide update blocks to store one 
microcode update. If the BIOS for a multiple processor system is intended to support 
mixed processor steppings, then the BIOS needs to provide enough update blocks to 
store each unique microcode update or for each processor socket on the OEM’s 
system board. 

The BIOS is responsible for managing the NVRAM update blocks. This includes 
garbage collection, such as removing microcode updates that exist in NVRAM for 
which a corresponding processor does not exist in the system. This specification only 
provides the mechanism for ensuring security, the uniqueness of an entry, and that 
stale entries are not loaded. The actual update block management is implementation 
specific on a per-BIOS basis. 

As an example, the BIOS may use update blocks sequentially in ascending order with 
CPU signatures sorted versus the first available block. In addition, garbage collection 
may be implemented as a setup option to clear all NVRAM slots or as BIOS code that 
searches and eliminates unused entries during boot.

NOTES
For IA-32 processors starting with family 0FH and model 03H and 
Intel 64 processors, the microcode update may be as large as 16 
KBytes. Thus, BIOS must allocate 8 update blocks for each microcode 
update. In a MP system, a common microcode update may be 
sufficient for each socket in the system. 

For IA-32 processors earlier than family 0FH and model 03H, the 
microcode update is 2 KBytes. An MP-capable BIOS that supports 
multiple steppings must allocate a block for each socket in the system.

A single-processor BIOS that supports variable-sized microcode 
update and fixed-sized microcode update must allocate one 16-KByte 
region and a second region of at least 2 KBytes.

The following algorithm (Example 8-11) describes the steps performed during BIOS 
initialization used to load the updates into the processor(s). The algorithm assumes:

• The BIOS ensures that no update contained within NVRAM has a header version 
or loader version that does not match one currently supported by the BIOS.

• The update contains a correct checksum.

• The BIOS ensures that (at most) one update exists for each processor stepping.

• Older update revisions are not allowed to overwrite more recent ones.
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These requirements are checked by the BIOS during the execution of the write 
update function of this interface. The BIOS sequentially scans through all of the 
update blocks in NVRAM starting with index 0. The BIOS scans until it finds an update 
where the processor fields in the header match the processor signature (extended 
family, extended model, type, family, model, and stepping) as well as the platform 
bits of the current processor.

Example 8-11.  Pseudo Code, Checks Required Prior to Loading an Update

For each processor in the system
{

Determine the Processor Signature via CPUID function 1;
Determine the Platform Bits ← 1 << IA32_PLATFORM_ID[52:50];

For (I ← UpdateBlock 0, I < NumOfBlocks; I++)
{

If (Update.Header_Version == 0x00000001)
{

If ((Update.ProcessorSignature == Processor Signature) &&
 (Update.ProcessorFlags & Platform Bits))

{
Load Update.UpdateData into the Processor;
Verify update was correctly loaded into the processor 
Go on to next processor

Break;
}
Else If (Update.TotalSize > (Update.DataSize + 48))
{

N ← 0
While (N < Update.ExtendedSignatureCount)
{

If ((Update.ProcessorSignature[N] == 
 Processor Signature) &&
 (Update.ProcessorFlags[N] & Platform Bits))

{
Load Update.UpdateData into the Processor;
Verify update correctly loaded into the processor
Go on to next processor

Break;
}
N ← N + 1

}
I ← I + (Update.TotalSize / 2048)
If ((Update.TotalSize MOD 2048) == 0)

I ← I + 1
}

}
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}
}

NOTES
The platform Id bits in IA32_PLATFORM_ID are encoded as a three-
bit binary coded decimal field. The platform bits in the microcode 
update header are individually bit encoded. The algorithm must do a 
translation from one format to the other prior to doing a check. 

When performing the INT 15H, 0D042H functions, the BIOS must assume that the 
caller has no knowledge of platform specific requirements. It is the responsibility of 
BIOS calls to manage all chipset and platform specific prerequisites for managing the 
NVRAM device. When writing the update data using the Write Update sub-function, 
the BIOS must maintain implementation specific data requirements (such as the 
update of NVRAM checksum). The BIOS should also attempt to verify the success of 
write operations on the storage device used to record the update.

8.11.8.2  Responsibilities of the Calling Program
This section of the document lists the responsibilities of a calling program using the 
interface specifications to load microcode update(s) into BIOS NVRAM.

• The calling program should call the INT 15H, 0D042H functions from a pure real 
mode program and should be executing on a system that is running in pure real 
mode. 

• The caller should issue the presence test function (sub function 0) and verify the 
signature and return codes of that function. 

• It is important that the calling program provides the required scratch RAM buffers 
for the BIOS and the proper stack size as specified in the interface definition.

• The calling program should read any update data that already exists in the BIOS 
in order to make decisions about the appropriateness of loading the update. The 
BIOS must refuse to overwrite a newer update with an older version. The update 
header contains information about version and processor specifics for the calling 
program to make an intelligent decision about loading.

• There can be no ambiguous updates. The BIOS must refuse to allow multiple 
updates for the same CPU to exist at the same time; it also must refuse to load 
updates for processors that don’t exist on the system.

• The calling application should implement a verify function that is run after the 
update write function successfully completes. This function reads back the 
update and verifies that the BIOS returned an image identical to the one that was 
written. 

Example 8-12 represents a calling program.
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Example 8-12.  INT 15 DO42 Calling Program Pseudo-code

//
// We must be in real mode
//
If the system is not in Real mode exit
//
// Detect presence of Genuine Intel processor(s) that can be updated 
// using(CPUID)
//
If no Intel processors exist that can be updated exit
//
// Detect the presence of the Intel microcode update extensions
//
If the BIOS fails the PresenceTestexit
//
// If the APIC is enabled, see if any other processors are out there
//
Read IA32_APICBASE
If APIC enabled
{

Send Broadcast Message to all processors except self via APIC
Have all processors execute CPUID, record the Processor Signature 
(i.e.,Extended Family, Extended Model, Type, Family, Model, 

Stepping)
Have all processors read IA32_PLATFORM_ID[52:50], record Platform 
 Id Bits

If current processor cannot be updated
exit

}
//
// Determine the number of unique update blocks needed for this system
//
NumBlocks = 0
For each processor
{

If ((this is a unique processor stepping) AND
(we have a unique update in the database for this processor))

{
Checksum the update from the database;
If Checksum fails

exit
NumBlocks ← NumBlocks + size of microcode update / 2048

}
}

//
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// Do we have enough update slots for all CPUs?
//
If there are more blocks required to support the unique processor 
steppings than update blocks provided by the BIOS exit
//
// Do we need any update blocks at all?  If not, we are done
//
If (NumBlocks == 0)

exit
//
// Record updates for processors in NVRAM.
//
For (I=0; I<NumBlocks; I++)
{

//
// Load each Update
//
Issue the WriteUpdate function

If (STORAGE_FULL) returned
{

Display Error -- BIOS is not managing NVRAM appropriately
exit

}

If (INVALID_REVISION) returned
{

Display Message: More recent update already loaded in NVRAM for 
 this stepping
continue

}

If any other error returned
{

Display Diagnostic
exit

}

//
// Verify the update was loaded correctly
//
Issue the ReadUpdate function

If an error occurred
{

Display Diagnostic
exit
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}
//
// Compare the Update read to that written
//
If (Update read != Update written)
{

Display Diagnostic
exit

}

I ← I + (size of microcode update / 2048)
}
//
// Enable Update Loading, and inform user
//
Issue the Update Control function with Task = Enable.

8.11.8.3  Microcode Update Functions
Table 8-12 defines current Pentium 4, Intel Xeon, and P6 family processor microcode 
update functions.

8.11.8.4  INT 15H-based Interface
Intel recommends that a BIOS interface be provided that allows additional microcode 
updates to be added to system flash. The INT15H interface is the Intel-defined 
method for doing this.

The program that calls this interface is responsible for providing three 64-kilobyte 
RAM areas for BIOS use during calls to the read and write functions. These RAM 
scratch pads can be used by the BIOS for any purpose, but only for the duration of 
the function call. The calling routine places real mode segments pointing to the RAM 
blocks in the CX, DX and SI registers. Calls to functions in this interface must be 
made with a minimum of 32 kilobytes of stack available to the BIOS.

Table 8-12.  Microcode Update Functions  
Microcode Update 
Function

Function 
Number

Description Required/Optional

Presence test 00H Returns information about the 
supported functions.

Required

Write update data 01H Writes one of the update data areas 
(slots).

Required

Update control 02H Globally controls the loading of updates. Required

Read update data 03H Reads one of the update data areas 
(slots).

Required
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In general, each function returns with CF cleared and AH contains the returned 
status. The general return codes and other constant definitions are listed in Section 
8.11.8.9, “Return Codes.”

The OEM error field (AL) is provided for the OEM to return additional error informa-
tion specific to the platform. If the BIOS provides no additional information about the 
error, OEM error must be set to SUCCESS. The OEM error field is undefined if AH 
contains either SUCCESS (00H) or NOT_IMPLEMENTED (86H). In all other cases, it 
must be set with either SUCCESS or a value meaningful to the OEM.

The following sections describe functions provided by the INT15H-based interface.

8.11.8.5  Function 00H—Presence Test
This function verifies that the BIOS has implemented required microcode update 
functions. Table 8-13 lists the parameters and return codes for the function.

 
In order to assure that the BIOS function is present, the caller must verify the carry 
flag, the return code, and the 64-bit signature. The update count reflects the number 
of 2048-byte blocks available for storage within one non-volatile RAM.

The loader version number refers to the revision of the update loader program that is 
included in the system BIOS image.

Table 8-13.  Parameters for the Presence Test  

Input

AX Function Code 0D042H

BL Sub-function 00H - Presence test

Output

CF Carry Flag Carry Set - Failure - AH contains status

Carry Clear - All return values valid

AH Return Code  

AL OEM Error Additional OEM information.

EBX Signature Part 1 'INTE' - Part one of the signature 

ECX Signature Part 2 'LPEP'- Part two of the signature

EDX Loader Version Version number of the microcode update loader

SI Update Count Number of 2048 update blocks in NVRAM the BIOS 
allocated to storing microcode updates 

Return Codes (see Table 8-18 for code definitions

SUCCESS The function completed successfully.

NOT_IMPLEMENTED The function is not implemented. 
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8.11.8.6  Function 01H—Write Microcode Update Data
This function integrates a new microcode update into the BIOS storage device. Table 
8-14 lists the parameters and return codes for the function.

Table 8-14.  Parameters for the Write Update Data Function 

Input

AX Function Code 0D042H

BL Sub-function 01H - Write update

ES:DI Update Address Real Mode pointer to the Intel Update structure. This 
buffer is 2048 bytes in length if the processor supports 
only fixed-size microcode update or... 
 
Real Mode pointer to the Intel Update structure. This 
buffer is 64 KBytes in length if the processor supports a 
variable-size microcode update.

CX Scratch Pad1 Real mode segment address of 64 KBytes of RAM block

DX Scratch Pad2 Real mode segment address of 64 KBytes of RAM block

SI Scratch Pad3 Real mode segment address of 64 KBytes of RAM block

SS:SP Stack pointer 32 KBytes of stack minimum

Output

CF Carry Flag Carry Set - Failure - AH Contains status

Carry Clear - All return values valid

AH Return Code Status of the call

AL OEM Error Additional OEM information

Return Codes (see Table 8-18 for code definitions

SUCCESS The function completed successfully.

NOT_IMPLEMENTED The function is not implemented. 

WRITE_FAILURE A failure occurred because of the inability to write the 
storage device.

ERASE_FAILURE A failure occurred because of the inability to erase the 
storage device.

READ_FAILURE A failure occurred because of the inability to read the 
storage device.

STORAGE_FULL The BIOS non-volatile storage area is unable to 
accommodate the update because all available update 
blocks are filled with updates that are needed for 
processors in the system.
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Description

The BIOS is responsible for selecting an appropriate update block in the non-volatile 
storage for storing the new update. This BIOS is also responsible for ensuring the 
integrity of the information provided by the caller, including authenticating the 
proposed update before incorporating it into storage.

Before writing the update block into NVRAM, the BIOS should ensure that the update 
structure meets the following criteria in the following order:

1. The update header version should be equal to an update header version 
recognized by the BIOS.

2. The update loader version in the update header should be equal to the update 
loader version contained within the BIOS image.

3. The update block must checksum. This checksum is computed as a 32-bit 
summation of all double words in the structure, including the header, data, and 
processor signature table.

The BIOS selects update block(s) in non-volatile storage for storing the candidate 
update. The BIOS can select any available update block as long as it guarantees that 
only a single update exists for any given processor stepping in non-volatile storage. 
If the update block selected already contains an update, the following additional 
criteria apply to overwrite it:

• The processor signature in the proposed update must be equal to the processor 
signature in the header of the current update in NVRAM (Processor Signature + 
platform ID bits).

• The update revision in the proposed update should be greater than the update 
revision in the header of the current update in NVRAM.

If no unused update blocks are available and the above criteria are not met, the BIOS 
can overwrite update block(s) for a processor stepping that is no longer present in 
the system. This can be done by scanning the update blocks and comparing the 
processor steppings, identified in the MP Specification table, to the processor step-
pings that currently exist in the system.

CPU_NOT_PRESENT The processor stepping does not currently exist in the 
system.

INVALID_HEADER The update header contains a header or loader version 
that is not recognized by the BIOS.

INVALID_HEADER_CS The update does not checksum correctly.

SECURITY_FAILURE The processor rejected the update.

INVALID_REVISION The same or more recent revision of the update exists in 
the storage device. 

Table 8-14.  Parameters for the Write Update Data Function (Contd.)

Input
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Finally, before storing the proposed update in NVRAM, the BIOS must verify the 
authenticity of the update via the mechanism described in Section 8.11.6, “Micro-
code Update Loader.” This includes loading the update into the current processor, 
executing the CPUID instruction, reading MSR 08Bh, and comparing a calculated 
value with the update revision in the proposed update header for equality.

When performing the write update function, the BIOS must record the entire update, 
including the header, the update data, and the extended processor signature table (if 
applicable). When writing an update, the original contents may be overwritten, 
assuming the above criteria have been met. It is the responsibility of the BIOS to 
ensure that more recent updates are not overwritten through the use of this BIOS 
call, and that only a single update exists within the NVRAM for any processor step-
ping and platform ID.

Figure 8-8 and Figure 8-9 show the process the BIOS follows to choose an update 
block and ensure the integrity of the data when it stores the new microcode update. 
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Figure 8-8.  Microcode Update Write Operation Flow [1]
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Figure 8-9.  Microcode Update Write Operation Flow [2]
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8.11.8.7  Function 02H—Microcode Update Control
This function enables loading of binary updates into the processor. Table 8-15 lists 
the parameters and return codes for the function.

 
This control is provided on a global basis for all updates and processors. The caller 
can determine the current status of update loading (enabled or disabled) without 
changing the state. The function does not allow the caller to disable loading of binary 
updates, as this poses a security risk.

The caller specifies the requested operation by placing one of the values from Table 
8-16 in the BH register. After successfully completing this function, the BL register 
contains either the enable or the disable designator. Note that if the function fails, the 
update status return value is undefined.

Table 8-15.  Parameters for the Control Update Sub-function 

Input

AX Function Code 0D042H

BL Sub-function 02H - Control update

BH Task See the description below.

CX Scratch Pad1 Real mode segment of 64 KBytes of RAM block

DX Scratch Pad2 Real mode segment of 64 KBytes of RAM block

SI Scratch Pad3 Real mode segment of 64 KBytes of RAM block

SS:SP Stack pointer 32 kilobytes of stack minimum

Output

CF Carry Flag Carry Set - Failure - AH contains status

Carry Clear - All return values valid.

AH Return Code Status of the call

AL OEM Error Additional OEM Information. 

BL Update Status Either enable or disable indicator

Return Codes (see Table 8-18 for code definitions)

SUCCESS Function completed successfully.

READ_FAILURE A failure occurred because of the inability to read the 
storage device. 
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The READ_FAILURE error code returned by this function has meaning only if the 
control function is implemented in the BIOS NVRAM. The state of this feature 
(enabled/disabled) can also be implemented using CMOS RAM bits where READ 
failure errors cannot occur. 

8.11.8.8  Function 03H—Read Microcode Update Data
This function reads a currently installed microcode update from the BIOS storage into 
a caller-provided RAM buffer. Table 8-17 lists the parameters and return codes. 

Table 8-16.  Mnemonic Values
Mnemonic Value Meaning

Enable 1 Enable the Update loading at initialization time.

Query 2 Determine the current state of the update control without 
changing its status.

Table 8-17.  Parameters for the Read Microcode Update Data Function 
Input

AX Function Code 0D042H

BL Sub-function 03H - Read Update

ES:DI Buffer Address Real Mode pointer to the Intel Update 
structure that will be written with the 
binary data

ECX Scratch Pad1 Real Mode Segment address of 64 
KBytes of RAM Block (lower 16 bits)

ECX Scratch Pad2 Real Mode Segment address of 64 
KBytes of RAM Block (upper 16 bits)

DX Scratch Pad3 Real Mode Segment address of 64 
KBytes of RAM Block

SS:SP Stack pointer 32 KBytes of Stack Minimum

SI Update Number This is the index number of the update 
block to be read. This value is zero based 
and must be less than the update count 
returned from the presence test 
function.

Output

CF Carry Flag Carry Set     - Failure - AH contains Status

Carry Clear - All return 
values are valid.

AH Return Code Status of the Call
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The read function enables the caller to read any microcode update data that already 
exists in a BIOS and make decisions about the addition of new updates.  As a result 
of a successful call, the BIOS copies the microcode update into the location pointed 
to by ES:DI, with the contents of all Update block(s) that are used to store the spec-
ified microcode update.

If the specified block is not a header block, but does contain valid data from a micro-
code update that spans multiple update blocks, then the BIOS must return Failure 
with the NOT_EMPTY error code in AH.

An update block is considered unused and available for storing a new update if its 
Header Version contains the value 0FFFFFFFFH after return from this function call.  
The actual implementation of NVRAM storage management is not specified here and 
is BIOS dependent.  As an example, the actual data value used to represent an 
empty block by the BIOS may be zero, rather than 0FFFFFFFFH. The BIOS is respon-
sible for translating this information into the header provided by this function.

8.11.8.9  Return Codes
After the call has been made, the return codes listed in Table 8-18 are available in the 
AH register.

AL OEM Error Additional OEM Information

Return Codes (see Table 8-18 for code definitions)

SUCCESS The function completed successfully.

READ_FAILURE There was a failure because of the 
inability to read the storage device.

UPDATE_NUM_INVALID Update number exceeds the maximum 
number of update blocks implemented 
by the BIOS.

NOT_EMPTY The specified update block is a 
subsequent block in use to store a valid 
microcode update that spans multiple 
blocks. 

The specified block is not a header block 
and is not empty. 

Table 8-17.  Parameters for the Read Microcode Update Data Function (Contd.)
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Table 8-18.  Return Code Definitions 

Return Code Value Description

SUCCESS 00H The function completed successfully.

NOT_IMPLEMENTED 86H The function is not implemented.

ERASE_FAILURE 90H A failure because of the inability to erase the storage 
device.

WRITE_FAILURE 91H A failure because of the inability to write the storage 
device.

READ_FAILURE 92H A failure because of the inability to read the storage 
device.

STORAGE_FULL 93H The BIOS non-volatile storage area is unable to 
accommodate the update because all available update 
blocks are filled with updates that are needed for 
processors in the system.

CPU_NOT_PRESENT 94H The processor stepping does not currently exist in the 
system.

INVALID_HEADER 95H The update header contains a header or loader version 
that is not recognized by the BIOS.

INVALID_HEADER_CS 96H The update does not checksum correctly.

SECURITY_FAILURE 97H The update was rejected by the processor.

INVALID_REVISION 98H The same or more recent revision of the update exists 
in the storage device.

UPDATE_NUM_INVALID 99H The update number exceeds the maximum number of 
update blocks implemented by the BIOS.

NOT_EMPTY 9AH The specified update block is a subsequent block in use 
to store a valid microcode update that spans multiple 
blocks. 

The specified block is not a header block and is not 
empty.
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CHAPTER 10
MEMORY CACHE CONTROL

This chapter describes the memory cache and cache control mechanisms, the TLBs, 
and the store buffer in Intel 64 and IA-32 processors. It also describes the memory 
type range registers (MTRRs) introduced in the P6 family processors and how they 
are used to control caching of physical memory locations.

10.1 INTERNAL CACHES, TLBS, AND BUFFERS
The Intel 64 and IA-32 architectures support cache, translation look aside buffers 
(TLBs), and a store buffer for temporary on-chip (and external) storage of instruc-
tions and data. (Figure 10-1 shows the arrangement of caches, TLBs, and the store 
buffer for the Pentium 4 and Intel Xeon processors.) Table 10-1 shows the character-
istics of these caches and buffers for the Pentium 4, Intel Xeon, P6 family, and 
Pentium processors. The sizes and characteristics of these units are machine 
specific and may change in future versions of the processor. The CPUID 
instruction returns the sizes and characteristics of the caches and buffers for the 
processor on which the instruction is executed. See “CPUID—CPU Identification” in 
Chapter 3, “Instruction Set Reference, A-M,” of the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 2A.

Figure 10-1.  Cache Structure of the Pentium 4 and Intel Xeon Processors
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Table 10-1.  Characteristics of the Caches, TLBs, Store Buffer, and 
Write Combining Buffer in Intel 64 and IA-32 Processors 

Cache or Buffer Characteristics

Trace Cache1 • Pentium 4 and Intel Xeon processors: 12 Kμops, 8-way set associative.
• Intel Core 2 Duo, Intel Core Duo, Intel Core Solo, Pentium M processor: not 

implemented.
• P6 family and Pentium processors: not implemented.

L1 Instruction Cache • Pentium 4 and Intel Xeon processors: not implemented.
• Intel Core 2 Duo, Intel Core Duo, Intel Core Solo, Pentium M processor: 

32-KByte, 8-way set associative.
• P6 family and Pentium processors: 8- or 16-KByte, 4-way set associative, 

32-byte cache line size; 2-way set associative for earlier Pentium 
processors.

L1 Data Cache • Pentium 4 and Intel Xeon processors: 8-KByte, 4-way set associative, 
64-byte cache line size.

• Pentium 4 and Intel Xeon processors: 16-KByte, 8-way set associative, 
64-byte cache line size.

• Intel Core 2 Duo, Intel Core Duo, Intel Core Solo, Pentium M processor: 32-
KByte, 8-way set associative, 64-byte cache line size.

• P6 family processors: 16-KByte, 4-way set associative, 32-byte cache 
line size; 8-KBytes, 2-way set associative for earlier P6 family 
processors.

• Pentium processors: 16-KByte, 4-way set associative, 32-byte cache line 
size; 8-KByte, 2-way set associative for earlier Pentium processors.

L2 Unified Cache • Intel Core 2 Duo processor: up to 4-MByte, 16-way set associative, 
64-byte cache line size.

• Intel Core Duo, Intel Core Solo processors: 2-MByte, 8-way set 
associative, 64-byte cache line size 

• Pentium 4 and Intel Xeon processors: 256, 512, 1024, or 2048-KByte, 8-
way set associative, 64-byte cache line size, 128-byte sector size.

• Pentium M processor: 1 or 2-MByte, 8-way set associative, 64-byte 
cache line size.

• P6 family processors: 128-KByte, 256-KByte, 512-KByte, 1-MByte, or 2-
MByte, 4-way set associative, 32-byte cache line size.

• Pentium processor (external optional): System specific, typically 256- or 
512-KByte, 4-way set associative, 32-byte cache line size.

L3 Unified Cache • Intel Xeon processors: 512-KByte, 1-MByte, 2-MByte, or 4-MByte, 8-way 
set associative, 64-byte cache line size, 128-byte sector size.

Instruction TLB 
(4-KByte Pages)

• Pentium 4 and Intel Xeon processors: 128 entries, 4-way set associative.
• Intel Core 2 Duo, Intel Core Duo, Intel Core Solo processors, Pentium M 

processor: 128 entries, 4-way set associative.
• P6 family processors: 32 entries, 4-way set associative.
• Pentium processor: 32 entries, 4-way set associative; fully set 

associative for Pentium processors with MMX technology.
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Intel 64 and IA-32 processors may implement four types of caches: the trace cache, 
the level 1 (L1) cache, the level 2 (L2) cache, and the level 3 (L3) cache. See 
Figure 10-1. Cache availability is described below:

• Intel Core 2 processor and Intel Xeon processor 5100 Series— The L1 
cache is divided into two sections: one section is dedicated to caching instruc-
tions (pre-decoded instructions) and the other caches data. The L2 cache is a 
unified data and instruction cache is located on the processor chip; it is shared 

Data TLB (4-KByte 
Pages)

• Intel Core 2 Duo processors: DTLB0, 16 entries, DTLB1, 256 entries, 4 
ways.

• Pentium 4 and Intel Xeon processors: 64 entries, fully set associative; 
shared with large page data TLBs.

• Intel Core Duo, Intel Core Solo processors, Pentium M processor: 128 
entries, 4-way set associative.

• Pentium and P6 family processors: 64 entries, 4-way set associative; 
fully set, associative for Pentium processors with MMX technology.

Instruction TLB 
(Large Pages)

• Intel Core 2 Duo processors: 4 entries, 4 ways.
• Pentium 4 and Intel Xeon processors: large pages are fragmented.
• Intel Core Duo, Intel Core Solo, Pentium M processor: 2 entries, fully 

associative.
• P6 family processors: 2 entries, fully associative.
• Pentium processor: Uses same TLB as used for 4-KByte pages.

Data TLB (Large 
Pages)

• Intel Core 2 Duo processors: DTLB0, 16 entries, DTLB1, 32 entries, 4 
ways.

• Pentium 4 and Intel Xeon processors: 64 entries, fully set associative; 
shared with small page data TLBs.

• Intel Core Duo, Intel Core Solo, Pentium M processor: 8 entries, fully 
associative.

• P6 family processors: 8 entries, 4-way set associative.
• Pentium processor: 8 entries, 4-way set associative; uses same TLB as 

used for 4-KByte pages in Pentium processors with MMX technology.

Store Buffer • Intel Core 2 Duo processors: 20 entries.
• Pentium 4 and Intel Xeon processors: 24 entries.
• Pentium M processor: 16 entries.
• P6 family processors: 12 entries.
• Pentium processor: 2 buffers, 1 entry each (Pentium processors with 

MMX technology have 4 buffers for 4 entries).

Write Combining 
(WC) Buffer

• Intel Core 2 Duo processors: 8 entries.
• Pentium 4 and Intel Xeon processors: 6 or 8 entries.
• Intel Core Duo, Intel Core Solo, Pentium M processors: 6 entries.
• P6 family processors: 4 entries.

NOTES:
1 Introduced to the IA-32 architecture in the Pentium 4 and Intel Xeon processors.

Table 10-1.  Characteristics of the Caches, TLBs, Store Buffer, and 
Write Combining Buffer in Intel 64 and IA-32 Processors (Contd.)

Cache or Buffer Characteristics
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between two processor cores in a dual-core processor implementation. No trace 
cache is implemented.

• Intel Core Solo and Intel Core Duo processors — The L1 cache is divided into 
two sections: one section is dedicated to caching instructions (pre-decoded 
instructions) and the other caches data. The L2 cache is a unified data and 
instruction cache located on the processor chip. It is shared between two 
processor cores in a dual-core processor implementation. No trace cache is 
implemented.

• Pentium 4 and Intel Xeon processors — The trace cache caches decoded 
instructions (μops) from the instruction decoder and the L1 cache contains data. 
The L2 and L3 caches are unified data and instruction caches located on the 
processor chip. Note that the L3 cache is only implemented on some Intel Xeon 
processors.

• P6 family processors — The L1 cache is divided into two sections: one 
dedicated to caching instructions (pre-decoded instructions) and the other to 
caching data. The L2 cache is a unified data and instruction cache located on the 
processor chip. P6 family processors do not implement a trace cache.

• Pentium processors — The L1 cache has the same structure as on P6 family 
processors. There is no trace cache. The L2 cache is a unified data and instruction 
cache external to the processor chip on earlier Pentium processors and 
implemented on the processor chip in later Pentium processors. For Pentium 
processors where the L2 cache is external to the processor, access to the cache is 
through the system bus.

For processors based on Intel Core and Intel NetBurst microarchitectures, Intel Core 
Duo, Intel Core Solo and Pentium M processors, the cache lines for the L1 and L2 
caches (and L3 caches if supported) are 64 bytes wide. The processor always reads a 
cache line from system memory beginning on a 64-byte boundary. (A 64-byte 
aligned cache line begins at an address with its 6 least-significant bits clear.) A cache 
line can be filled from memory with a 8-transfer burst transaction. The caches do not 
support partially-filled cache lines, so caching even a single doubleword requires 
caching an entire line.

The L1 and L2 cache lines in the P6 family and Pentium processors are 32 bytes wide, 
with cache line reads from system memory beginning on a 32-byte boundary (5 
least-significant bits of a memory address clear.) A cache line can be filled from 
memory with a 4-transfer burst transaction. Partially-filled cache lines are not 
supported.

The trace cache in processors based on Intel NetBurst microarchitecture is available 
in all execution modes: protected mode, system management mode (SMM), and 
real-address mode. The L1,L2, and L3 caches are also available in all execution 
modes; however, use of them must be handled carefully in SMM (see Section 24.4.2, 
“SMRAM Caching”).

The TLBs store the most recently used page-directory and page-table entries. They 
speed up memory accesses when paging is enabled by reducing the number of 
memory accesses that are required to read the page tables stored in system 
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memory. The TLBs are divided into four groups: instruction TLBs for 4-KByte pages, 
data TLBs for 4-KByte pages; instruction TLBs for large pages (2-MByte or 4-MByte 
pages), and data TLBs for large pages. The TLBs are normally active only in protected 
mode with paging enabled. When paging is disabled or the processor is in real-
address mode, the TLBs maintain their contents until explicitly or implicitly flushed 
(see Section 10.9, “Invalidating the Translation Lookaside Buffers (TLBs)”).

The store buffer is associated with the processors instruction execution units. It 
allows writes to system memory and/or the internal caches to be saved and in some 
cases combined to optimize the processor’s bus accesses. The store buffer is always 
enabled in all execution modes.

The processor’s caches are for the most part transparent to software. When enabled, 
instructions and data flow through these caches without the need for explicit soft-
ware control. However, knowledge of the behavior of these caches may be useful in 
optimizing software performance. For example, knowledge of cache dimensions and 
replacement algorithms gives an indication of how large of a data structure can be 
operated on at once without causing cache thrashing.

In multiprocessor systems, maintenance of cache consistency may, in rare circum-
stances, require intervention by system software. For these rare cases, the processor 
provides privileged cache control instructions for use in flushing caches and forcing 
memory ordering.

The Pentium III, Pentium 4, and Intel Xeon processors introduced several instructions 
that software can use to improve the performance of the L1, L2, and L3 caches, 
including the PREFETCHh and CLFLUSH instructions and the non-temporal move 
instructions (MOVNTI, MOVNTQ, MOVNTDQ, MOVNTPS, and MOVNTPD). The use of 
these instructions are discussed in Section 10.5.5, “Cache Management Instruc-
tions.”

10.2 CACHING TERMINOLOGY
IA-32 processors (beginning with the Pentium processor) and Intel 64 processors use 
the MESI (modified, exclusive, shared, invalid) cache protocol to maintain consis-
tency with internal caches and caches in other processors (see Section 10.4, “Cache 
Control Protocol”).

When the processor recognizes that an operand being read from memory is cache-
able, the processor reads an entire cache line into the appropriate cache (L1, L2, L3, 
or all). This operation is called a cache line fill. If the memory location containing 
that operand is still cached the next time the processor attempts to access the 
operand, the processor can read the operand from the cache instead of going back to 
memory. This operation is called a cache hit. 

When the processor attempts to write an operand to a cacheable area of memory, it 
first checks if a cache line for that memory location exists in the cache. If a valid 
cache line does exist, the processor (depending on the write policy currently in force) 
can write the operand into the cache instead of writing it out to system memory. This 
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operation is called a write hit. If a write misses the cache (that is, a valid cache line 
is not present for area of memory being written to), the processor performs a cache 
line fill, write allocation. Then it writes the operand into the cache line and 
(depending on the write policy currently in force) can also write it out to memory. If 
the operand is to be written out to memory, it is written first into the store buffer, and 
then written from the store buffer to memory when the system bus is available. 
(Note that for the Pentium processor, write misses do not result in a cache line fill; 
they always result in a write to memory. For this processor, only read misses result in 
cache line fills.)

When operating in an MP system, IA-32 processors (beginning with the Intel486 
processor) and Intel 64 processors have the ability to snoop other processor’s 
accesses to system memory and to their internal caches. They use this snooping 
ability to keep their internal caches consistent both with system memory and with 
the caches in other processors on the bus. For example, in the Pentium and P6 family 
processors, if through snooping one processor detects that another processor 
intends to write to a memory location that it currently has cached in shared state, 
the snooping processor will invalidate its cache line forcing it to perform a cache line 
fill the next time it accesses the same memory location. 

Beginning with the P6 family processors, if a processor detects (through snooping) 
that another processor is trying to access a memory location that it has modified in 
its cache, but has not yet written back to system memory, the snooping processor 
will signal the other processor (by means of the HITM# signal) that the cache line is 
held in modified state and will preform an implicit write-back of the modified data. 
The implicit write-back is transferred directly to the initial requesting processor and 
snooped by the memory controller to assure that system memory has been updated. 
Here, the processor with the valid data may pass the data to the other processors 
without actually writing it to system memory; however, it is the responsibility of the 
memory controller to snoop this operation and update memory.

10.3 METHODS OF CACHING AVAILABLE
The processor allows any area of system memory to be cached in the L1, L2, and L3 
caches. In individual pages or regions of system memory, it allows the type of 
caching (also called memory type) to be specified (see Section 10.5). Memory types 
currently defined for the Intel 64 and IA-32 architectures are (see Table 10-2):

• Strong Uncacheable (UC) —System memory locations are not cached. All 
reads and writes appear on the system bus and are executed in program order 
without reordering. No speculative memory accesses, page-table walks, or 
prefetches of speculated branch targets are made. This type of cache-control is 
useful for memory-mapped I/O devices. When used with normal RAM, it greatly 
reduces processor performance.
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NOTE
The behavior of FP and SSE/SSE2 operations on operands in UC 
memory is implementation dependent. In some implementations, 
accesses to UC memory may occur more than once. To ensure 
predictable behavior, use loads and stores of general purpose 
registers to access UC memory that may have read or write side 
effects.

• Uncacheable (UC-) — Has same characteristics as the strong uncacheable (UC) 
memory type, except that this memory type can be overridden by programming 
the MTRRs for the WC memory type. This memory type is available in processor 
families starting from the Pentium III processors and can only be selected through 
the PAT.

• Write Combining (WC) — System memory locations are not cached (as with 
uncacheable memory) and coherency is not enforced by the processor’s bus 
coherency protocol. Speculative reads are allowed. Writes may be delayed and 
combined in the write combining buffer (WC buffer) to reduce memory accesses. 
If the WC buffer is partially filled, the writes may be delayed until the next 
occurrence of a serializing event; such as, an SFENCE or MFENCE instruction, 
CPUID execution, a read or write to uncached memory, an interrupt occurrence, 
or a LOCK instruction execution. This type of cache-control is appropriate for 
video frame buffers, where the order of writes is unimportant as long as the 
writes update memory so they can be seen on the graphics display. See Section 
10.3.1, “Buffering of Write Combining Memory Locations,” for more information 
about caching the WC memory type. This memory type is available in the 
Pentium Pro and Pentium II processors by programming the MTRRs; or in 

Table 10-2.  Memory Types and Their Properties

Memory Type and 
Mnemonic

Cacheable Writeback 
Cacheable

Allows 
Speculative 
Reads

Memory Ordering Model

Strong Uncacheable 
(UC)

No No No Strong Ordering

Uncacheable (UC-) No No No Strong Ordering. Can only be 
selected through the PAT. Can 
be overridden by WC in MTRRs.

Write Combining (WC) No No Yes Weak Ordering. Available by 
programming MTRRs or by 
selecting it through the PAT.

Write Through (WT) Yes No Yes Speculative Processor Ordering.

Write Back (WB) Yes Yes Yes Speculative Processor Ordering.

Write Protected (WP) Yes for 
reads; no for 
writes

No Yes Speculative Processor Ordering. 
Available by programming 
MTRRs.
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processor families starting from the Pentium III processors by programming the 
MTRRs or by selecting it through the PAT.

• Write-through (WT) — Writes and reads to and from system memory are 
cached. Reads come from cache lines on cache hits; read misses cause cache 
fills. Speculative reads are allowed. All writes are written to a cache line (when 
possible) and through to system memory. When writing through to memory, 
invalid cache lines are never filled, and valid cache lines are either filled or inval-
idated. Write combining is allowed. This type of cache-control is appropriate for 
frame buffers or when there are devices on the system bus that access system 
memory, but do not perform snooping of memory accesses. It enforces 
coherency between caches in the processors and system memory.

• Write-back (WB) — Writes and reads to and from system memory are cached. 
Reads come from cache lines on cache hits; read misses cause cache fills. 
Speculative reads are allowed. Write misses cause cache line fills (in processor 
families starting with the P6 family processors), and writes are performed 
entirely in the cache, when possible. Write combining is allowed. The write-back 
memory type reduces bus traffic by eliminating many unnecessary writes to 
system memory. Writes to a cache line are not immediately forwarded to system 
memory; instead, they are accumulated in the cache. The modified cache lines 
are written to system memory later, when a write-back operation is performed. 
Write-back operations are triggered when cache lines need to be deallocated, 
such as when new cache lines are being allocated in a cache that is already full. 
They also are triggered by the mechanisms used to maintain cache consistency. 
This type of cache-control provides the best performance, but it requires that all 
devices that access system memory on the system bus be able to snoop memory 
accesses to insure system memory and cache coherency.

• Write protected (WP) — Reads come from cache lines when possible, and read 
misses cause cache fills. Writes are propagated to the system bus and cause 
corresponding cache lines on all processors on the bus to be invalidated. 
Speculative reads are allowed. This memory type is available in processor 
families starting from the P6 family processors by programming the MTRRs (see 
Table 10-6).

Table 10-3 shows which of these caching methods are available in the Pentium, P6 
Family, Pentium 4, and Intel Xeon processors.

Table 10-3.  Methods of Caching Available in Intel Core 2 Duo, Intel Core Duo, Pentium 
M, Pentium 4, Intel Xeon, P6 Family, and Pentium Processors 

Memory Type Intel Core 2 Duo, Intel Core Duo, 
Pentium M, Pentium 4 and Intel 
Xeon Processors

P6 Family 
Processors

Pentium 
Processor

Strong Uncacheable (UC) Yes Yes Yes

Uncacheable (UC-) Yes Yes* No

Write Combining (WC) Yes Yes No
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10.3.1 Buffering of Write Combining Memory Locations
Writes to the WC memory type are not cached in the typical sense of the word 
cached. They are retained in an internal write combining buffer (WC buffer) that is 
separate from the internal L1, L2, and L3 caches and the store buffer. The WC buffer 
is not snooped and thus does not provide data coherency. Buffering of writes to WC 
memory is done to allow software a small window of time to supply more modified 
data to the WC buffer while remaining as non-intrusive to software as possible. The 
buffering of writes to WC memory also causes data to be collapsed; that is, multiple 
writes to the same memory location will leave the last data written in the location and 
the other writes will be lost.

The size and structure of the WC buffer is not architecturally defined. For the Intel 
Core 2 Duo, Intel Core Duo, Pentium M, Pentium 4 and Intel Xeon processors; the WC 
buffer is made up of several 64-byte WC buffers. For the P6 family processors, the 
WC buffer is made up of several 32-byte WC buffers. 

When software begins writing to WC memory, the processor begins filling the WC 
buffers one at a time. When one or more WC buffers has been filled, the processor 
has the option of evicting the buffers to system memory. The protocol for evicting the 
WC buffers is implementation dependent and should not be relied on by software for 
system memory coherency. When using the WC memory type, software must be 
sensitive to the fact that the writing of data to system memory is being delayed and 
must deliberately empty the WC buffers when system memory coherency is 
required.

Once the processor has started to evict data from the WC buffer into system 
memory, it will make a bus-transaction style decision based on how much of the 
buffer contains valid data. If the buffer is full (for example, all bytes are valid), the 
processor will execute a burst-write transaction on the bus. This results in all 32 
bytes (P6 family processors) or 64 bytes (Pentium 4 and more recent processor) 
being transmitted on the data bus in a single burst transaction. If one or more of the 
WC buffer’s bytes are invalid (for example, have not been written by software), the 
processor will transmit the data to memory using “partial write” transactions (one 
chunk at a time, where a “chunk” is 8 bytes). 

Write Through (WT) Yes Yes Yes

Write Back (WB) Yes Yes Yes

Write Protected (WP) Yes Yes No

NOTE:
* Introduced in the Pentium III processor; not available in the Pentium Pro or Pentium II processors

Table 10-3.  Methods of Caching Available in Intel Core 2 Duo, Intel Core Duo, Pentium 
M, Pentium 4, Intel Xeon, P6 Family, and Pentium Processors (Contd.)

Memory Type Intel Core 2 Duo, Intel Core Duo, 
Pentium M, Pentium 4 and Intel 
Xeon Processors

P6 Family 
Processors

Pentium 
Processor
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This will result in a maximum of 4 partial write transactions (for P6 family processors) 
or 8 partial write transactions (for the Pentium 4 and more recent processors) for one 
WC buffer of data sent to memory. 

The WC memory type is weakly ordered by definition. Once the eviction of a WC 
buffer has started, the data is subject to the weak ordering semantics of its defini-
tion. Ordering is not maintained between the successive allocation/deallocation of 
WC buffers (for example, writes to WC buffer 1 followed by writes to WC buffer 2 may 
appear as buffer 2 followed by buffer 1 on the system bus). When a WC buffer is 
evicted to memory as partial writes there is no guaranteed ordering between succes-
sive partial writes (for example, a partial write for chunk 2 may appear on the bus 
before the partial write for chunk 1 or vice versa). 

The only elements of WC propagation to the system bus that are guaranteed are 
those provided by transaction atomicity. For example, with a P6 family processor, a 
completely full WC buffer will always be propagated as a single 32-bit burst transac-
tion using any chunk order. In a WC buffer eviction where data will be evicted as 
partials, all data contained in the same chunk (0 mod 8 aligned) will be propagated 
simultaneously. Likewise, for more recent processors starting with those based on 
Intel NetBurst microarchitectures, a full WC buffer will always be propagated as a 
single burst transactions, using any chunk order within a transaction. For partial 
buffer propagations, all data contained in the same chunk will be propagated simul-
taneously.

10.3.2 Choosing a Memory Type
The simplest system memory model does not use memory-mapped I/O with read or 
write side effects, does not include a frame buffer, and uses the write-back memory 
type for all memory. An I/O agent can perform direct memory access (DMA) to write-
back memory and the cache protocol maintains cache coherency.

A system can use strong uncacheable memory for other memory-mapped I/O, and 
should always use strong uncacheable memory for memory-mapped I/O with read 
side effects.

Dual-ported memory can be considered a write side effect, making relatively prompt 
writes desirable, because those writes cannot be observed at the other port until they 
reach the memory agent. A system can use strong uncacheable, uncacheable, write-
through, or write-combining memory for frame buffers or dual-ported memory that 
contains pixel values displayed on a screen. Frame buffer memory is typically large (a 
few megabytes) and is usually written more than it is read by the processor. Using 
strong uncacheable memory for a frame buffer generates very large amounts of bus 
traffic, because operations on the entire buffer are implemented using partial writes 
rather than line writes. Using write-through memory for a frame buffer can displace 
almost all other useful cached lines in the processor's L2 and L3 caches and L1 data 
cache. Therefore, systems should use write-combining memory for frame buffers 
whenever possible.
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Software can use page-level cache control, to assign appropriate effective memory 
types when software will not access data structures in ways that benefit from write-
back caching. For example, software may read a large data structure once and not 
access the structure again until the structure is rewritten by another agent. Such a 
large data structure should be marked as uncacheable, or reading it will evict cached 
lines that the processor will be referencing again. 

A similar example would be a write-only data structure that is written to (to export 
the data to another agent), but never read by software. Such a structure can be 
marked as uncacheable, because software never reads the values that it writes 
(though as uncacheable memory, it will be written using partial writes, while as 
write-back memory, it will be written using line writes, which may not occur until the 
other agent reads the structure and triggers implicit write-backs).

On the Pentium III, Pentium 4, and more recent processors, new instructions are 
provided that give software greater control over the caching, prefetching, and the 
write-back characteristics of data. These instructions allow software to use weakly 
ordered or processor ordered memory types to improve processor performance, but 
when necessary to force strong ordering on memory reads and/or writes. They also 
allow software greater control over the caching of data. For a description of these 
instructions and there intended use, see Section 10.5.5, “Cache Management 
Instructions.”

10.3.3 Code Fetches in Uncacheable Memory
Programs may execute code from uncacheable (UC) memory, but the implications 
are different from accessing data in UC memory. When doing code fetches, the 
processor never transitions from cacheable code to UC code speculatively. It also 
never speculatively fetches branch targets that result in UC code.

The processor may fetch the same UC cache line multiple times in order to decode an 
instruction once. It may decode consecutive UC instructions in a cacheline without 
fetching between each instruction. It may also fetch additional cachelines from the 
same or a consecutive 4-KByte page in order to decode one non-speculative UC 
instruction (this can be true even when the instruction is contained fully in one line).  

Because of the above and because cacheline sizes may change in future processors, 
software should avoid placing memory-mapped I/O with read side effects in the 
same page or in a subsequent page used to execute UC code.

10.4 CACHE CONTROL PROTOCOL
The following section describes the cache control protocol currently defined for the 
Intel 64 and IA-32 architectures. 

In the L1 data cache and in the L2/L3 unified caches, the MESI (modified, exclusive, 
shared, invalid) cache protocol maintains consistency with caches of other proces-
sors. The L1 data cache and the L2/L3 unified caches have two MESI status flags per 
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cache line. Each line can be marked as being in one of the states defined in Table 
10-4. In general, the operation of the MESI protocol is transparent to programs.

 
The L1 instruction cache in P6 family processors implements only the “SI” part of the 
MESI protocol, because the instruction cache is not writable. The instruction cache 
monitors changes in the data cache to maintain consistency between the caches 
when instructions are modified. See Section 10.6, “Self-Modifying Code,” for more 
information on the implications of caching instructions.

10.5 CACHE CONTROL
The Intel 64 and IA-32 architectures provide a variety of mechanisms for controlling 
the caching of data and instructions and for controlling the ordering of reads and 
writes between the processor, the caches, and memory. These mechanisms can be 
divided into two groups:

• Cache control registers and bits — The Intel 64 and IA-32 architectures 
define several dedicated registers and various bits within control registers and 
page- and directory-table entries that control the caching system memory 
locations in the L1, L2, and L3 caches. These mechanisms control the caching of 
virtual memory pages and of regions of physical memory.

• Cache control and memory ordering instructions — The Intel 64 and IA-32 
architectures provide several instructions that control the caching of data, the 
ordering of memory reads and writes, and the prefetching of data. These instruc-
tions allow software to control the caching of specific data structures, to control 
memory coherency for specific locations in memory, and to force strong memory 
ordering at specific locations in a program.

The following sections describe these two groups of cache control mechanisms.

Table 10-4.  MESI Cache Line States

Cache Line State M (Modified) E (Exclusive) S (Shared) I (Invalid)

This cache line is valid? Yes Yes Yes No

The memory copy is… Out of date Valid Valid —

Copies exist in caches 
of other processors?

No No Maybe Maybe

A write to this line … Does not go to 
the system bus.

Does not go to 
the system bus.

Causes the 
processor to gain 
exclusive 
ownership of the 
line.

Goes directly to 
the system bus.
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10.5.1 Cache Control Registers and Bits
Figure 10-2 depicts cache-control mechanisms in IA-32 processors. Other than for 
the matter of memory address space, these work the same in Intel 64 processors.

The Intel 64 and IA-32 architectures provide the following cache-control registers 
and bits for use in enabling or restricting caching to various pages or regions in 
memory:

• CD flag, bit 30 of control register CR0 — Controls caching of system memory 
locations (see Section 2.5, “Control Registers”). If the CD flag is clear, caching is 
enabled for the whole of system memory, but may be restricted for individual 
pages or regions of memory by other cache-control mechanisms. When the CD 
flag is set, caching is restricted in the processor’s caches (cache hierarchy) for 
the P6 and more recent processor families and prevented for the Pentium 
processor (see note below). With the CD flag set, however, the caches will still 
respond to snoop traffic. Caches should be explicitly flushed to insure memory 
coherency. For highest processor performance, both the CD and the NW flags in 
control register CR0 should be cleared. Table 10-5 shows the interaction of the 
CD and NW flags.

The effect of setting the CD flag is somewhat different for processor families 
starting with P6 family than the Pentium processor (see Table 10-5). To insure 
memory coherency after the CD flag is set, the caches should be explicitly 
flushed (see Section 10.5.3, “Preventing Caching”). Setting the CD flag for the 
P6 and more recent processor families modify cache line fill and update 
behaviour. Also, setting the CD flag on these processors do not force strict 
ordering of memory accesses unless the MTRRs are disabled and/or all memory 
is referenced as uncached (see Section 7.2.5, “Strengthening or Weakening the 
Memory-Ordering Model”).
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Figure 10-2.  Cache-Control Registers and Bits Available in IA-32 Processors
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Table 10-5.  Cache Operating Modes 

CD NW Caching and Read/Write Policy L1 L2/L31

0 0 Normal Cache Mode. Highest performance cache operation.

• Read hits access the cache; read misses may cause replacement.
• Write hits update the cache.
• Only writes to shared lines and write misses update system 

memory.

Yes
Yes
Yes

Yes
Yes
Yes

• Write misses cause cache line fills.
• Write hits can change shared lines to modified under control of 

the MTRRs and with associated read invalidation cycle.
• (Pentium processor only.) Write misses do not cause cache line 

fills.

Yes
Yes

Yes

Yes

• (Pentium processor only.) Write hits can change shared lines to 
exclusive under control of WB/WT#.

• Invalidation is allowed.
• External snoop traffic is supported.

Yes

Yes
Yes

Yes
Yes

0 1 Invalid setting.

Generates a general-protection exception (#GP) with an error code 
of 0.

NA NA

1 0 No-fill Cache Mode. Memory coherency is maintained.

• (Pentium 4 and later processor families.) State of processor after 
a power up or reset.

• Read hits access the cache; read misses do not cause 
replacement (see Pentium 4 and Intel Xeon processors reference 
below).

• Write hits update the cache. 
• Only writes to shared lines and write misses update system 

memory.

Yes

Yes

Yes
Yes

Yes

Yes

Yes
Yes

• Write misses access memory.
• Write hits can change shared lines to exclusive under control of 

the MTRRs and with associated read invalidation cycle.
• (Pentium processor only.) Write hits can change shared lines to 

exclusive under control of the WB/WT#.

Yes
Yes

Yes

Yes
Yes

1 0 • (P6 and later processor families only.) Strict memory ordering is 
not enforced unless the MTRRs are disabled and/or all memory is 
referenced as uncached (see Section 7.2.4., “Strengthening or 
Weakening the Memory Ordering Model”).

• Invalidation is allowed.
• External snoop traffic is supported.

Yes

Yes
Yes

Yes

Yes
Yes
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• NW flag, bit 29 of control register CR0 — Controls the write policy for system 
memory locations (see Section 2.5, “Control Registers”). If the NW and CD flags 
are clear, write-back is enabled for the whole of system memory, but may be 
restricted for individual pages or regions of memory by other cache-control 
mechanisms. Table 10-5 shows how the other combinations of CD and NW flags 
affects caching.

NOTES
For the Pentium 4 and Intel Xeon processors, the NW flag is a don’t 
care flag; that is, when the CD flag is set, the processor uses the no-
fill cache mode, regardless of the setting of the NW flag.

For the Pentium processor, when the L1 cache is disabled (the CD and 
NW flags in control register CR0 are set), external snoops are 
accepted in DP (dual-processor) systems and inhibited in unipro-
cessor systems. 

When snoops are inhibited, address parity is not checked and 
APCHK# is not asserted for a corrupt address; however, when snoops 
are accepted, address parity is checked and APCHK# is asserted for 
corrupt addresses. 

• PCD flag in the page-directory and page-table entries — Controls caching 
for individual page tables and pages, respectively (see Section 3.7.6, “Page-
Directory and Page-Table Entries”). This flag only has effect when paging is 

1 1 Memory coherency is not maintained.2 

• (P6 family and Pentium processors.) State of the processor after 
a power up or reset.

• Read hits access the cache; read misses do not cause 
replacement.

• Write hits update the cache and change exclusive lines to 
modified.

Yes

Yes

Yes

Yes

Yes

Yes

• Shared lines remain shared after write hit.
• Write misses access memory.
• Invalidation is inhibited when snooping; but is allowed with INVD 

and WBINVD instructions.
• External snoop traffic is supported.

Yes
Yes
Yes

No

Yes
Yes
Yes

Yes

NOTES:
1. The L2/L3 column in this table is definitive for the Pentium 4, Intel Xeon, and P6 family proces-

sors. It is intended to represent what could be implemented in a system based on a Pentium pro-
cessor with an external, platform specific, write-back L2 cache.

2. The Pentium 4 and more recent processor families do not support this mode; setting the CD and 
NW bits to 1 selects the no-fill cache mode.

Table 10-5.  Cache Operating Modes 

CD NW Caching and Read/Write Policy L1 L2/L31
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enabled and the CD flag in control register CR0 is clear. The PCD flag enables 
caching of the page table or page when clear and prevents caching when set.

• PWT flag in the page-directory and page-table entries — Controls the write 
policy for individual page tables and pages, respectively (see Section 3.7.6, 
“Page-Directory and Page-Table Entries”). This flag only has effect when paging is 
enabled and the NW flag in control register CR0 is clear. The PWT flag enables 
write-back caching of the page table or page when clear and write-through 
caching when set.

• PCD and PWT flags in control register CR3 — Control the global caching and 
write policy for the page directory (see Section 2.5, “Control Registers”). The PCD 
flag enables caching of the page directory when clear and prevents caching when 
set. The PWT flag enables write-back caching of the page directory when clear 
and write-through caching when set. These flags do not affect the caching and 
write policy for individual page tables. These flags only have effect when paging 
is enabled and the CD flag in control register CR0 is clear.

• G (global) flag in the page-directory and page-table entries (introduced 
to the IA-32 architecture in the P6 family processors) — Controls the 
flushing of TLB entries for individual pages. See Section 3.12, “Translation 
Lookaside Buffers (TLBs),” for more information about this flag.

• PGE (page global enable) flag in control register CR4 — Enables the estab-
lishment of global pages with the G flag. See Section 3.12, “Translation Lookaside 
Buffers (TLBs),” for more information about this flag.

• Memory type range registers (MTRRs) (introduced in P6 family 
processors) — Control the type of caching used in specific regions of physical 
memory. Any of the caching types described in Section 10.3, “Methods of Caching 
Available,” can be selected. See Section 10.11, “Memory Type Range Registers 
(MTRRs),” for a detailed description of the MTRRs.

• Page Attribute Table (PAT) MSR (introduced in the Pentium III processor) 
— Extends the memory typing capabilities of the processor to permit memory 
types to be assigned on a page-by-page basis (see Section 10.12, “Page Attribute 
Table (PAT)”).

• Third-Level Cache Disable flag, bit 6 of the IA32_MISC_ENABLE MSR 
(introduced in the Intel Xeon processors) — Allows the L3 cache to be 
disabled and enabled, independently of the L1 and L2 caches.

• KEN# and WB/WT# pins (Pentium processor) — Allow external hardware to 
control the caching method used for specific areas of memory. They perform 
similar (but not identical) functions to the MTRRs in the P6 family processors.

• PCD and PWT pins (Pentium processor) — These pins (which are associated 
with the PCD and PWT flags in control register CR3 and in the page-directory and 
page-table entries) permit caching in an external L2 cache to be controlled on a 
page-by-page basis, consistent with the control exercised on the L1 cache of 
these processors. The P6 and more recent processor families do not provide 
these pins because the L2 cache in internal to the chip package.
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10.5.2 Precedence of Cache Controls
The cache control flags and MTRRs operate hierarchically for restricting caching. That 
is, if the CD flag is set, caching is prevented globally (see Table 10-5). If the CD flag 
is clear, the page-level cache control flags and/or the MTRRs can be used to restrict 
caching. If there is an overlap of page-level and MTRR caching controls, the mecha-
nism that prevents caching has precedence. For example, if an MTRR makes a region 
of system memory uncachable, a page-level caching control cannot be used to 
enable caching for a page in that region. The converse is also true; that is, if a page-
level caching control designates a page as uncachable, an MTRR cannot be used to 
make the page cacheable.

In cases where there is a overlap in the assignment of the write-back and write-
through caching policies to a page and a region of memory, the write-through policy 
takes precedence. The write-combining policy (which can only be assigned through 
an MTRR or the PAT) takes precedence over either write-through or write-back.

The selection of memory types at the page level varies depending on whether PAT is 
being used to select memory types for pages, as described in the following sections.

Third-level cache disable flag (bit 6 of the IA32_MISC_ENABLE MSR) takes prece-
dence over the CD flag, MTRRs, and PAT for the L3 cache. That is, when the third-
level cache disable flag is set (cache disabled), the other cache controls have no 
affect on the L3 cache; when the flag is clear (enabled), the cache controls have the 
same affect on the L3 cache as they have on the L1 and L2 caches.

10.5.2.1  Selecting Memory Types for Pentium Pro and Pentium II 
Processors

The Pentium Pro and Pentium II processors do not support the PAT. Here, the effec-
tive memory type for a page is selected with the MTRRs and the PCD and PWT bits in 
the page-table or page-directory entry for the page. Table 10-6 describes the 
mapping of MTRR memory types and page-level caching attributes to effective 
memory types, when normal caching is in effect (the CD and NW flags in control 
register CR0 are clear). Combinations that appear in gray are implementation-
defined for the Pentium Pro and Pentium II processors. System designers are encour-
aged to avoid these implementation-defined combinations.
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When normal caching is in effect, the effective memory type shown in Table 10-6 is 
determined using the following rules:

1. If the PCD and PWT attributes for the page are both 0, then the effective 
memory type is identical to the MTRR-defined memory type.

2. If the PCD flag is set, then the effective memory type is UC.

3. If the PCD flag is clear and the PWT flag is set, the effective memory type is WT 
for the WB memory type and the MTRR-defined memory type for all other 
memory types. 

4. Setting the PCD and PWT flags to opposite values is considered model-specific for 
the WP and WC memory types and architecturally-defined for the WB, WT, and 
UC memory types.

Table 10-6.  Effective Page-Level Memory Type for Pentium Pro and 
Pentium II Processors  

MTRR Memory Type1 PCD Value PWT Value Effective Memory Type

UC X X UC

WC 0 0 WC

0 1 WC

1 0 WC

1 1 UC

WT 0 X WT

1 X UC

WP 0 0 WP

0 1 WP

1 0 WC

1 1 UC

WB 0 0 WB

0 1 WT

1 X UC

NOTE:

1. These effective memory types also apply to the Pentium 4, Intel Xeon, and Pentium III proces-
sors when the PAT bit is not used (set to 0) in page-table and page-directory entries.
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10.5.2.2  Selecting Memory Types for Pentium III and More Recent 
Processor Families

The Intel Core 2 Duo, Intel Core Duo, Intel Core Solo, Pentium M, Pentium 4, Intel 
Xeon, and Pentium III processors use the PAT to select effective page-level memory 
types. Here, a memory type for a page is selected by the MTRRs and the value in a 
PAT entry that is selected with the PAT, PCD and PWT bits in a page-table or page-
directory entry (see Section 10.12.3, “Selecting a Memory Type from the PAT”). Table 
10-7 describes the mapping of MTRR memory types and PAT entry types to effective 
memory types, when normal caching is in effect (the CD and NW flags in control 
register CR0 are clear). The combinations shown in gray are implementation-defined 
for the Pentium 4, Intel Xeon, and Pentium III processors. System designers are 
encouraged to avoid the implementation-defined combinations. 

Table 10-7.  Effective Page-Level Memory Types for Pentium III and More Recent 
Processor Families  

MTRR Memory Type PAT Entry Value Effective Memory Type

UC UC UC1

UC- UC1

WC WC

WT UC1

WB UC1

WP UC1

WC UC UC2

UC- WC

WC WC

WT UC2,3

WB WC

WP UC2,3

WT UC UC2

UC- UC2

WC WC

WT WT

WB WT

WP WP3
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10.5.2.3  Writing Values Across Pages with Different Memory Types
If two adjoining pages in memory have different memory types, and a word or longer 
operand is written to a memory location that crosses the page boundary between 
those two pages, the operand might be written to memory twice. This action does not 
present a problem for writes to actual memory; however, if a device is mapped the 
memory space assigned to the pages, the device might malfunction.

WB UC UC2

UC- UC2

WC WC

WT WT

WB WB

WP WP

WP UC UC2

UC- WC3

WC WC

WT WT3

WB WP

WP WP

NOTES: 
1. The UC attribute comes from the MTRRs and the processors are not required to snoop their 

caches since the data could never have been cached. This attribute is preferred for performance 
reasons.

2. The UC attribute came from the page-table or page-directory entry and processors are required 
to check their caches because the data may be cached due to page aliasing, which is not recom-
mended.

3. These combinations were specified as “undefined” in previous editions of the Intel® 64 and IA-32 
Architectures Software Developer’s Manual. However, all processors that support both the PAT 
and the MTRRs determine the effective page-level memory types for these combinations as 
given.

Table 10-7.  Effective Page-Level Memory Types for Pentium III and More Recent 
Processor Families  (Contd.)

MTRR Memory Type PAT Entry Value Effective Memory Type



10-22   Vol. 3

MEMORY CACHE CONTROL

10.5.3 Preventing Caching
To disable the L1, L2, and L3 caches after they have been enabled and have received 
cache fills, perform the following steps:

1. Enter the no-fill cache mode. (Set the CD flag in control register CR0 to 1 and 
the NW flag to 0.

2. Flush all caches using the WBINVD instruction.

3. Disable the MTRRs and set the default memory type to uncached or set all MTRRs 
for the uncached memory type (see the discussion of the discussion of the TYPE 
field and the E flag in Section 10.11.2.1, “IA32_MTRR_DEF_TYPE MSR”).

The caches must be flushed (step 2) after the CD flag is set to insure system memory 
coherency. If the caches are not flushed, cache hits on reads will still occur and data 
will be read from valid cache lines.

NOTES
Setting the CD flag in control register CR0 modifies the processor’s 
caching behaviour as indicated in Table 10-5, but it does not force the 
effective memory type for all physical memory to be UC nor does it 
force strict memory ordering. To force the UC memory type and strict 
memory ordering on all of physical memory, either the MTRRs must 
all be programmed for the UC memory type or they must be disabled.

For the Pentium 4 and Intel Xeon processors, after the sequence of 
steps given above has been executed, the cache lines containing the 
code between the end of the WBINVD instruction and before the 
MTRRS have actually been disabled may be retained in the cache 
hierarchy. Here, to remove code from the cache completely, a second 
WBINVD instruction must be executed after the MTRRs have been 
disabled.

10.5.4 Disabling and Enabling the L3 Cache
Third-level cache disable flag (bit 6 of the IA32_MISC_ENABLE MSR) allows the L3 
cache to be disabled and enabled, independently of the L1 and L2 caches. Prior to 
using this control to disable or enable the L3 cache, software should disable and flush 
all the processor caches, as described earlier in Section 10.5.3, “Preventing Caching,” 
to prevent of loss of information stored in the L3 cache. After the L3 cache has been 
disabled or enabled, caching for the whole processor can be restored.

10.5.5 Cache Management Instructions
The Intel 64 and IA-32 architectures provide several instructions for managing the 
L1, L2, and L3 caches. The INVD, WBINVD, and WBINVD instructions are system 
instructions that operate on the L1, L2, and L3 caches as a whole. The PREFETCHh 
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and CLFLUSH instructions and the non-temporal move instructions (MOVNTI, 
MOVNTQ, MOVNTDQ, MOVNTPS, and MOVNTPD), which were introduced in 
SSE/SSE2 extensions, offer more granular control over caching.

The INVD and WBINVD instructions are used to invalidate the contents of the L1, L2, 
and L3 caches. The INVD instruction invalidates all internal cache entries, then 
generates a special-function bus cycle that indicates that external caches also should 
be invalidated. The INVD instruction should be used with care. It does not force a 
write-back of modified cache lines; therefore, data stored in the caches and not 
written back to system memory will be lost. Unless there is a specific requirement or 
benefit to invalidating the caches without writing back the modified lines (such as, 
during testing or fault recovery where cache coherency with main memory is not a 
concern), software should use the WBINVD instruction. 

The WBINVD instruction first writes back any modified lines in all the internal caches, 
then invalidates the contents of both the L1, L2, and L3 caches. It ensures that cache 
coherency with main memory is maintained regardless of the write policy in effect 
(that is, write-through or write-back). Following this operation, the WBINVD instruc-
tion generates one (P6 family processors) or two (Pentium and Intel486 processors) 
special-function bus cycles to indicate to external cache controllers that write-back of 
modified data followed by invalidation of external caches should occur.

The PREFETCHh instructions allow a program to suggest to the processor that a 
cache line from a specified location in system memory be prefetched into the cache 
hierarchy (see Section 10.8, “Explicit Caching”).

The CLFLUSH instruction allow selected cache lines to be flushed from memory. This 
instruction give a program the ability to explicitly free up cache space, when it is 
known that cached section of system memory will not be accessed in the near future.

The non-temporal move instructions (MOVNTI, MOVNTQ, MOVNTDQ, MOVNTPS, and 
MOVNTPD) allow data to be moved from the processor’s registers directly into 
system memory without being also written into the L1, L2, and/or L3 caches. These 
instructions can be used to prevent cache pollution when operating on data that is 
going to be modified only once before being stored back into system memory. These 
instructions operate on data in the general-purpose, MMX, and XMM registers.

10.5.6 L1 Data Cache Context Mode
L1 data cache context mode is a feature of Intel 64 and IA-32 processors that 
support Hyper-Threading Technology. When CPUID.1:ECX[bit 10] = 1, the processor 
supports setting L1 data cache context mode using the L1 data cache context mode 
flag ( IA32_MISC_ENABLE[bit 24] ). Selectable modes are adaptive mode (default) 
and shared mode.

The BIOS is responsible for configuring the L1 data cache context mode.
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10.5.6.1  Adaptive Mode
Adaptive mode facilitates L1 data cache sharing between logical processors. When 
running in adaptive mode, the L1 data cache is shared across logical processors in 
the same core if:

• CR3 control registers for logical processors sharing the cache are identical.

• The same paging mode is used by logical processors sharing the cache.

In this situation, the entire L1 data cache is available to each logical processor 
(instead of being competitively shared).

If CR3 values are different for the logical processors sharing an L1 data cache or the 
logical processors use different paging modes, processors compete for cache 
resources. This reduces the effective size of the cache for each logical processor. 
Aliasing of the cache is not allowed (which prevents data thrashing).

10.5.6.2  Shared Mode
In shared mode, the L1 data cache is competitively shared between logical proces-
sors. This is true even if the logical processors use identical CR3 registers and paging 
modes.

In shared mode, linear addresses in the L1 data cache can be aliased, meaning that 
one linear address in the cache can point to different physical locations. The mecha-
nism for resolving aliasing can lead to thrashing. For this reason, 
IA32_MISC_ENABLE[bit 24] = 0 is the preferred configuration for Intel 64 and IA-32 
processors that support Hyper-Threading Technology.

10.6 SELF-MODIFYING CODE
A write to a memory location in a code segment that is currently cached in the 
processor causes the associated cache line (or lines) to be invalidated. This check is 
based on the physical address of the instruction. In addition, the P6 family and 
Pentium processors check whether a write to a code segment may modify an instruc-
tion that has been prefetched for execution. If the write affects a prefetched instruc-
tion, the prefetch queue is invalidated. This latter check is based on the linear 
address of the instruction. For the Pentium 4 and Intel Xeon processors, a write or a 
snoop of an instruction in a code segment, where the target instruction is already 
decoded and resident in the trace cache, invalidates the entire trace cache. The latter 
behavior means that programs that self-modify code can cause severe degradation 
of performance when run on the Pentium 4 and Intel Xeon processors.

In practice, the check on linear addresses should not create compatibility problems 
among IA-32 processors. Applications that include self-modifying code use the same 
linear address for modifying and fetching the instruction. Systems software, such as 
a debugger, that might possibly modify an instruction using a different linear address 
than that used to fetch the instruction, will execute a serializing operation, such as a 
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CPUID instruction, before the modified instruction is executed, which will automati-
cally resynchronize the instruction cache and prefetch queue. (See Section 7.1.3, 
“Handling Self- and Cross-Modifying Code,” for more information about the use of 
self-modifying code.)

For Intel486 processors, a write to an instruction in the cache will modify it in both 
the cache and memory, but if the instruction was prefetched before the write, the old 
version of the instruction could be the one executed. To prevent the old instruction 
from being executed, flush the instruction prefetch unit by coding a jump instruction 
immediately after any write that modifies an instruction.

10.7 IMPLICIT CACHING (PENTIUM 4, INTEL XEON,  
AND P6 FAMILY PROCESSORS)

Implicit caching occurs when a memory element is made potentially cacheable, 
although the element may never have been accessed in the normal von Neumann 
sequence. Implicit caching occurs on the P6 and more recent processor families due 
to aggressive prefetching, branch prediction, and TLB miss handling. Implicit caching 
is an extension of the behavior of existing Intel386, Intel486, and Pentium processor 
systems, since software running on these processor families also has not been able 
to deterministically predict the behavior of instruction prefetch.

To avoid problems related to implicit caching, the operating system must explicitly 
invalidate the cache when changes are made to cacheable data that the cache coher-
ency mechanism does not automatically handle. This includes writes to dual-ported 
or physically aliased memory boards that are not detected by the snooping mecha-
nisms of the processor, and changes to page- table entries in memory.

The code in Example 10-1 shows the effect of implicit caching on page-table entries. 
The linear address F000H points to physical location B000H (the page-table entry for 
F000H contains the value B000H), and the page-table entry for linear address F000 
is PTE_F000.

Example 10-1.  Effect of Implicit Caching on Page-Table Entries

mov EAX, CR3; Invalidate the TLB
mov CR3, EAX; by copying CR3 to itself
mov PTE_F000, A000H; Change F000H to point to A000H
mov EBX, [F000H];

 
Because of speculative execution in the P6 and more recent processor families, the 
last MOV instruction performed would place the value at physical location B000H into 
EBX, rather than the value at the new physical address A000H. This situation is 
remedied by placing a TLB invalidation between the load and the store.
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10.8 EXPLICIT CACHING
The Pentium III processor introduced four new instructions, the PREFETCHh instruc-
tions, that provide software with explicit control over the caching of data. These 
instructions provide “hints” to the processor that the data requested by a PREFETCHh 
instruction should be read into cache hierarchy now or as soon as possible, in antici-
pation of its use. The instructions provide different variations of the hint that allow 
selection of the cache level into which data will be read.

The PREFETCHh instructions can help reduce the long latency typically associated 
with reading data from memory and thus help prevent processor “stalls.” However, 
these instructions should be used judiciously. Overuse can lead to resource conflicts 
and hence reduce the performance of an application. Also, these instructions should 
only be used to prefetch data from memory; they should not be used to prefetch 
instructions. For more detailed information on the proper use of the prefetch instruc-
tion, refer to Chapter 7, “Optimizing Cache Usage,” in the Intel® 64 and IA-32 Archi-
tectures Optimization Reference Manual.

10.9 INVALIDATING THE TRANSLATION LOOKASIDE 
BUFFERS (TLBS)

The processor updates its address translation caches (TLBs) transparently to soft-
ware. Several mechanisms are available, however, that allow software and hardware 
to invalidate the TLBs either explicitly or as a side effect of another operation. 

The INVLPG instruction invalidates the TLB for a specific page. This instruction is the 
most efficient in cases where software only needs to invalidate a specific page, 
because it improves performance over invalidating the whole TLB. This instruction is 
not affected by the state of the G flag in a page-directory or page-table entry.

The following operations invalidate all TLB entries except global entries. (A global 
entry is one for which the G (global) flag is set in its corresponding page-directory or 
page-table entry. The global flag was introduced into the IA-32 architecture in the P6 
family processors, see Section 10.5, “Cache Control”.)

• Writing to control register CR3.

• A task switch that changes control register CR3.

The following operations invalidate all TLB entries, irrespective of the setting of the 
G flag:

• Asserting or de-asserting the FLUSH# pin.

• (Pentium 4, Intel Xeon, and P6 family processors only.) Writing to an MTRR (with 
a WRMSR instruction).

• Writing to control register CR0 to modify the PG or PE flag.

• (Pentium 4, Intel Xeon, and P6 family processors only.) Writing to control register 
CR4 to modify the PSE, PGE, or PAE flag.



Vol. 3   10-27

MEMORY CACHE CONTROL

See Section 3.12, “Translation Lookaside Buffers (TLBs),” for additional information 
about the TLBs.

10.10 STORE BUFFER
Intel 64 and IA-32 processors temporarily store each write (store) to memory in a 
store buffer. The store buffer improves processor performance by allowing the 
processor to continue executing instructions without having to wait until a write to 
memory and/or to a cache is complete. It also allows writes to be delayed for more 
efficient use of memory-access bus cycles.

In general, the existence of the store buffer is transparent to software, even in 
systems that use multiple processors. The processor ensures that write operations 
are always carried out in program order. It also insures that the contents of the store 
buffer are always drained to memory in the following situations:

• When an exception or interrupt is generated.

• (P6 and more recent processor families only) When a serializing instruction is 
executed.

• When an I/O instruction is executed.

• When a LOCK operation is performed.

• (P6 and more recent processor families only) When a BINIT operation is 
performed.

• (Pentium III, and more recent processor families only) When using an SFENCE 
instruction to order stores.

• (Pentium 4 and more recent processor families only) When using an MFENCE 
instruction to order stores.

The discussion of write ordering in Section 7.2, “Memory Ordering,” gives a detailed 
description of the operation of the store buffer.

10.11 MEMORY TYPE RANGE REGISTERS (MTRRS)
The following section pertains only to the P6 and more recent processor families.

The memory type range registers (MTRRs) provide a mechanism for associating the 
memory types (see Section 10.3, “Methods of Caching Available”) with physical-
address ranges in system memory. They allow the processor to optimize operations 
for different types of memory such as RAM, ROM, frame-buffer memory, and 
memory-mapped I/O devices. They also simplify system hardware design by elimi-
nating the memory control pins used for this function on earlier IA-32 processors and 
the external logic needed to drive them.

The MTRR mechanism allows up to 96 memory ranges to be defined in physical 
memory, and it defines a set of model-specific registers (MSRs) for specifying the 
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type of memory that is contained in each range. Table 10-8 shows the memory types 
that can be specified and their properties; Figure 10-3 shows the mapping of physical 
memory with MTRRs. See Section 10.3, “Methods of Caching Available,” for a more 
detailed description of each memory type.

Following a hardware reset, the P6 and more recent processor families disable all the 
fixed and variable MTRRs, which in effect makes all of physical memory uncachable. 
Initialization software should then set the MTRRs to a specific, system-defined 
memory map. Typically, the BIOS (basic input/output system) software configures 
the MTRRs. The operating system or executive is then free to modify the memory 
map using the normal page-level cacheability attributes.

In a multiprocessor system using a processor in the P6 family or a more recent 
family, each processor MUST use the identical MTRR memory map so that software 
will have a consistent view of memory.

NOTE
In multiple processor systems, the operating system must maintain 
MTRR consistency between all the processors in the system (that is, 
all processors must use the same MTRR values). The P6 and more 
recent processor families provide no hardware support for 
maintaining this consistency.

Table 10-8.  Memory Types That Can Be Encoded in MTRRs  

Memory Type and Mnemonic Encoding in MTRR

Uncacheable (UC) 00H

Write Combining (WC) 01H

Reserved* 02H

Reserved* 03H

Write-through (WT) 04H

Write-protected (WP) 05H

Writeback (WB) 06H

Reserved* 7H through FFH

NOTE:

* Use of these encodings results in a general-protection exception (#GP).
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10.11.1 MTRR Feature Identification
The availability of the MTRR feature is model-specific. Software can determine if 
MTRRs are supported on a processor by executing the CPUID instruction and reading 
the state of the MTRR flag (bit 12) in the feature information register (EDX).

If the MTRR flag is set (indicating that the processor implements MTRRs), additional 
information about MTRRs can be obtained from the 64-bit IA32_MTRRCAP MSR 
(named MTRRcap MSR for the P6 family processors). The IA32_MTRRCAP MSR is a 
read-only MSR that can be read with the RDMSR instruction. Figure 10-4 shows the 
contents of the IA32_MTRRCAP MSR. The functions of the flags and field in this 
register are as follows:

• VCNT (variable range registers count) field, bits 0 through 7 — Indicates 
the number of variable ranges implemented on the processor. The Pentium 4, 
Intel Xeon, and P6 family processors have eight pairs of MTRRs for setting up 
eight variable ranges.

Figure 10-3.  Mapping Physical Memory With MTRRs

0

FFFFFFFFH

80000H
BFFFFH
C0000H
FFFFFH
100000H

7FFFFH

512 KBytes

256 KBytes

256 KBytes

8 fixed ranges

16 fixed ranges

64 fixed ranges
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(64-KBytes each)

(16 KBytes each)

(4 KBytes each)

(from 4 KBytes to
maximum size of

Address ranges not

Physical Memory

mapped by an MTRR
are set to a default type

physical memory)



10-30   Vol. 3

MEMORY CACHE CONTROL

• FIX (fixed range registers supported) flag, bit 8 — Fixed range MTRRs 
(IA32_MTRR_FIX64K_00000 through IA32_MTRR_FIX4K_0F8000) are 
supported when set; no fixed range registers are supported when clear.

• WC (write combining) flag, bit 10 — The write-combining (WC) memory type 
is supported when set; the WC type is not supported when clear.

Bit 9 and bits 11 through 63 in the IA32_MTRRCAP MSR are reserved. If software 
attempts to write to the IA32_MTRRCAP MSR, a general-protection exception (#GP) 
is generated. 

For the Pentium 4, Intel Xeon, and P6 family processors, the IA32_MTRRCAP MSR 
always contains the value 508H.

10.11.2 Setting Memory Ranges with MTRRs
The memory ranges and the types of memory specified in each range are set by three 
groups of registers: the IA32_MTRR_DEF_TYPE MSR, the fixed-range MTRRs, and 
the variable range MTRRs. These registers can be read and written to using the 
RDMSR and WRMSR instructions, respectively. The IA32_MTRRCAP MSR indicates 
the availability of these registers on the processor (see Section 10.11.1, “MTRR 
Feature Identification”).

10.11.2.1  IA32_MTRR_DEF_TYPE MSR
The IA32_MTRR_DEF_TYPE MSR (named MTRRdefType MSR for the P6 family 
processors) sets the default properties of the regions of physical memory that are not 
encompassed by MTRRs. The functions of the flags and field in this register are as 
follows:

• Type field, bits 0 through 7 — Indicates the default memory type used for 
those physical memory address ranges that do not have a memory type specified 
for them by an MTRR (see Table 10-8 for the encoding of this field). The legal 
values for this field are 0, 1, 4, 5, and 6. All other values result in a general-
protection exception (#GP) being generated. 

Intel recommends the use of the UC (uncached) memory type for all physical 
memory addresses where memory does not exist. To assign the UC type to 

Figure 10-4.  IA32_MTRRCAP Register

VCNT — Number of variable range registers
FIX — Fixed range registers supported
WC — Write-combining memory type supported
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nonexistent memory locations, it can either be specified as the default type in the 
Type field or be explicitly assigned with the fixed and variable MTRRs.

• FE (fixed MTRRs enabled) flag, bit 10 — Fixed-range MTRRs are enabled 
when set; fixed-range MTRRs are disabled when clear. When the fixed-range 
MTRRs are enabled, they take priority over the variable-range MTRRs when 
overlaps in ranges occur. If the fixed-range MTRRs are disabled, the variable-
range MTRRs can still be used and can map the range ordinarily covered by the 
fixed-range MTRRs.

• E (MTRRs enabled) flag, bit 11 — MTRRs are enabled when set; all MTRRs are 
disabled when clear, and the UC memory type is applied to all of physical 
memory. When this flag is set, the FE flag can disable the fixed-range MTRRs; 
when the flag is clear, the FE flag has no affect. When the E flag is set, the type 
specified in the default memory type field is used for areas of memory not 
already mapped by either a fixed or variable MTRR.

Bits 8 and 9, and bits 12 through 63, in the IA32_MTRR_DEF_TYPE MSR are 
reserved; the processor generates a general-protection exception (#GP) if software 
attempts to write nonzero values to them.

10.11.2.2  Fixed Range MTRRs
The fixed memory ranges are mapped with 11 fixed-range registers of 64 bits each. 
Each of these registers is divided into 8-bit fields that are used to specify the memory 
type for each of the sub-ranges the register controls:

• Register IA32_MTRR_FIX64K_00000 — Maps the 512-KByte address range 
from 0H to 7FFFFH. This range is divided into eight 64-KByte sub-ranges.

• Registers IA32_MTRR_FIX16K_80000 and IA32_MTRR_FIX16K_A0000 
— Maps the two 128-KByte address ranges from 80000H to BFFFFH. This range 
is divided into sixteen 16-KByte sub-ranges, 8 ranges per register.

• Registers IA32_MTRR_FIX4K_C0000 through 
IA32_MTRR_FIX4K_F8000 — Maps eight 32-KByte address ranges from 

Figure 10-5.  IA32_MTRR_DEF_TYPE MSR

Type — Default memory type
FE — Fixed-range MTRRs enable/disable
E — MTRR enable/disable
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C0000H to FFFFFH. This range is divided into sixty-four 4-KByte sub-ranges, 8 
ranges per register.

Table 10-9 shows the relationship between the fixed physical-address ranges and the 
corresponding fields of the fixed-range MTRRs; Table 10-8 shows memory type 
encoding for MTRRs.

For the P6 family processors, the prefix for the fixed range MTRRs is MTRRfix.

10.11.2.3  Variable Range MTRRs
The Pentium 4, Intel Xeon, and P6 family processors permit software to specify the 
memory type for eight variable-size address ranges, using a pair of MTRRs for each 
range. The first entry in each pair (IA32_MTRR_PHYSBASEn) defines the base 
address and memory type for the range; the second entry 
(IA32_MTRR_PHYSMASKn) contains a mask used to determine the address range. 
The “n” suffix indicates register pairs 0 through 7. 

For P6 family processors, the prefixes for these variable range MTRRs are MTRRphys-
Base and MTRRphysMask.

Table 10-9.  Address Mapping for Fixed-Range MTRRs 
Address Range (hexadecimal) MTRR

63   56 55    48 47    40 39    32 31     24 23     16 15     8 7      0

70000- 
7FFFF

60000- 
6FFFF

50000- 
5FFFF

40000- 
4FFFF

30000- 
3FFFF

20000- 
2FFFF

10000- 
1FFFF

00000- 
0FFFF

IA32_MTRR_ 
FIX64K_00000

9C000 
9FFFF

98000- 
98FFF

94000- 
97FFF

90000- 
93FFF

8C000- 
8FFFF

88000- 
8BFFF

84000- 
87FFF

80000- 
83FFF

IA32_MTRR_ 
FIX16K_80000

BC000 
BFFFF

B8000- 
BBFFF

B4000- 
B7FFF

B0000- 
B3FFF

AC000- 
AFFFF

A8000- 
ABFFF

A4000- 
A7FFF

A0000- 
A3FFF

IA32_MTRR_ 
FIX16K_A0000

C7000 
C7FFF

C6000- 
C6FFF

C5000- 
C5FFF

C4000- 
C4FFF

C3000- 
C3FFF

C2000- 
C2FFF

C1000- 
C1FFF

C0000- 
C0FFF

IA32_MTRR_ 
FIX4K_C0000

CF000 
CFFFF

CE000- 
CEFFF

CD000- 
CDFFF

CC000- 
CCFFF

CB000- 
CBFFF

CA000- 
CAFFF

C9000- 
C9FFF

C8000- 
C8FFF

IA32_MTRR_ 
FIX4K_C8000

D7000 
D7FFF

D6000- 
D6FFF

D5000- 
D5FFF

D4000- 
D4FFF

D3000- 
D3FFF

D2000- 
D2FFF

D1000- 
D1FFF

D0000- 
D0FFF

IA32_MTRR_ 
FIX4K_D0000

DF000 
DFFFF

DE000- 
DEFFF

DD000- 
DDFFF

DC000- 
DCFFF

DB000- 
DBFFF

DA000- 
DAFFF

D9000- 
D9FFF

D8000- 
D8FFF

IA32_MTRR_ 
FIX4K_D8000

E7000 
E7FFF

E6000- 
E6FFF

E5000- 
E5FFF

E4000- 
E4FFF

E3000- 
E3FFF

E2000- 
E2FFF

E1000- 
E1FFF

E0000- 
E0FFF

IA32_MTRR_ 
FIX4K_E0000

EF000 
EFFFF

EE000- 
EEFFF

ED000- 
EDFFF

EC000- 
ECFFF

EB000- 
EBFFF

EA000- 
EAFFF

E9000- 
E9FFF

E8000- 
E8FFF

IA32_MTRR_ 
FIX4K_E8000

F7000 
F7FFF

F6000- 
F6FFF

F5000- 
F5FFF

F4000- 
F4FFF

F3000- 
F3FFF

F2000- 
F2FFF

F1000- 
F1FFF

F0000- 
F0FFF

IA32_MTRR_ 
FIX4K_F0000

FF000 
FFFFF

FE000- 
FEFFF

FD000- 
FDFFF

FC000- 
FCFFF

FB000- 
FBFFF

FA000- 
FAFFF

F9000- 
F9FFF

F8000- 
F8FFF

IA32_MTRR_ 
FIX4K_F8000
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Figure 10-6 shows flags and fields in these registers. The functions of these flags and 
fields are:

• Type field, bits 0 through 7 — Specifies the memory type for the range (see 
Table 10-8 for the encoding of this field).

• PhysBase field, bits 12 through (MAXPHYADDR-1) — Specifies the base 
address of the address range. This 24-bit value, in the case where MAXPHYADDR 
is 36 bits, is extended by 12 bits at the low end to form the base address (this 
automatically aligns the address on a 4-KByte boundary).

• PhysMask field, bits 12 through (MAXPHYADDR-1) — Specifies a mask (24 
bits if the maximum physical address size is 36 bits, 28 bits if the maximum 
physical address size is 40 bits). The mask determines the range of the region 
being mapped, according to the following relationships:

— Address_Within_Range AND PhysMask = PhysBase AND PhysMask

— This value is extended by 12 bits at the low end to form the mask value. For 
more information: see Section 10.11.3, “Example Base and Mask Calcula-
tions.”

— The width of the PhysMask field depends on the maximum physical address 
size supported by the processor.  
 
CPUID.80000008H reports the maximum physical address size supported by 
the processor. If CPUID.80000008H is not available, software may assume 
that the processor supports a 36-bit physical address size (then PhysMask is 
24 bits wide and the upper 28 bits of IA32_MTRR_PHYSMASKn are reserved). 
See the Note below.

• V (valid) flag, bit 11 — Enables the register pair when set; disables register 
pair when clear.
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All other bits in the IA32_MTRR_PHYSBASEn and IA32_MTRR_PHYSMASKn registers 
are reserved; the processor generates a general-protection exception (#GP) if soft-
ware attempts to write to them.

Some mask values can result in ranges that are not continuous. In such ranges, the 
area not mapped by the mask value is set to the default memory type. Intel does not 
encourage the use of “discontinuous” ranges because they could require physical 
memory to be present throughout the entire 4-GByte physical memory map. If 
memory is not provided, the behaviour is undefined.

NOTE
It is possible for software to parse the memory descriptions that 
BIOS provides by using the ACPI/INT15 e820 interface mechanism. 
This information then can be used to determine how MTRRs are 
initialized (for example: allowing the BIOS to define valid memory 
ranges and the maximum memory range supported by the platform, 
including the processor).

See Section 10.11.4.1, “MTRR Precedences,” for information on overlapping variable 
MTRR ranges.

Figure 10-6.  IA32_MTRR_PHYSBASEn and IA32_MTRR_PHYSMASKn Variable-Range 
Register Pair

V — Valid
PhysMask — Sets range mask

IA32_MTRR_PHYSMASKn Register
63 0

Reserved

101112

V Reserved

MAXPHYADDR

PhysMask

Type — Memory type for range
PhysBase — Base address of range

IA32_MTRR_PHYSBASEn Register
63 0

Reserved

1112

Type

MAXPHYADDR

PhysBase

78

Reserved

MAXPHYADDR: The bit position indicated by MAXPHYADDR depends on the maximum
physical address range supported by the processor. It is reported by CPUID leaf
function 80000008H. If CPUID does not support leaf 80000008H, the processor
supports 36-bit physical address size, then bit PhysMask consists of bits 35:12, and
bits 63:36 are reserved.
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10.11.3 Example Base and Mask Calculations
The examples in this section apply to processors that support a maximum physical 
address size of 36 bits. The base and mask values entered in variable-range MTRR 
pairs are 24-bit values that the processor extends to 36-bits. 

For example, to enter a base address of 2 MBytes (200000H) in the 
IA32_MTRR_PHYSBASE3 register, the 12 least-significant bits are truncated and the 
value 000200H is entered in the PhysBase field. The same operation must be 
performed on mask values. For example, to map the address range from 200000H to 
3FFFFFH (2 MBytes to 4 MBytes), a mask value of FFFE00000H is required. Again, the 
12 least-significant bits of this mask value are truncated, so that the value entered in 
the PhysMask field of IA32_MTRR_PHYSMASK3 is FFFE00H. This mask is chosen so 
that when any address in the 200000H to 3FFFFFH range is AND’d with the mask 
value, it will return the same value as when the base address is AND’d with the mask 
value (which is 200000H).

To map the address range from 400000H to 7FFFFFH (4 MBytes to 8 MBytes), a base 
value of 000400H is entered in the PhysBase field and a mask value of FFFC00H is 
entered in the PhysMask field.

Example 10-2.  Setting-Up Memory for a System

Here is an example of setting up the MTRRs for an system. Assume that the system 
has the following characteristics:

• 96 MBytes of system memory is mapped as write-back memory (WB) for highest 
system performance.

• A custom 4-MByte I/O card is mapped to uncached memory (UC) at a base 
address of 64 MBytes. This restriction forces the 96 MBytes of system memory to 
be addressed from 0 to 64 MBytes and from 68 MBytes to 100 MBytes, leaving a 
4-MByte hole for the I/O card. 

• An 8-MByte graphics card is mapped to write-combining memory (WC) beginning 
at address A0000000H. 

• The BIOS area from 15 MBytes to 16 MBytes is mapped to UC memory.

The following settings for the MTRRs will yield the proper mapping of the physical 
address space for this system configuration.

IA32_MTRR_PHYSBASE0 =  0000 0000 0000 0006H
IA32_MTRR_PHYSMASK0 =  0000 000F FC00 0800H  
Caches 0-64 MByte as WB cache type.

IA32_MTRR_PHYSBASE1 =  0000 0000 0400 0006H
IA32_MTRR_PHYSMASK1 =  0000 000F FE00 0800H  
Caches 64-96 MByte as WB cache type.

IA32_MTRR_PHYSBASE2 =  0000 0000 0600 0006H
IA32_MTRR_PHYSMASK2 =  0000 000F FFC0 0800H  
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Caches 96-100 MByte as WB cache type.

IA32_MTRR_PHYSBASE3 =  0000 0000 0400 0000H
IA32_MTRR_PHYSMASK3 =  0000 000F FFC0 0800H  
Caches 64-68 MByte as UC cache type.

IA32_MTRR_PHYSBASE4 =  0000 0000 00F0 0000H
IA32_MTRR_PHYSMASK4 =  0000 000F FFF0 0800H  
Caches 15-16 MByte as UC cache type.

IA32_MTRR_PHYSBASE5 =  0000 0000 A000 0001H
IA32_MTRR_PHYSMASK5 =  0000 000F FF80 0800H  
Caches A0000000-A0800000 as WC type.

This MTRR setup uses the ability to overlap any two memory ranges (as long as the 
ranges are mapped to WB and UC memory types) to minimize the number of MTRR 
registers that are required to configure the memory environment. This setup also 
fulfills the requirement that two register pairs are left for operating system usage.

10.11.3.1  Base and Mask Calculations for Greater-Than 36-bit Physical 
Address Support

For Intel 64 and IA-32 processors that support greater than 36 bits of physical 
address size, software should query CPUID.80000008H to determine the maximum 
physical address. See the example.

Example 10-3.  Setting-Up Memory for a System with a 40-Bit Address Size

If a processor supports 40-bits of physical address size, then the PhysMask field (in 
IA32_MTRR_PHYSMASKn registers) is 28 bits instead of 24 bits. For this situation, 
Example 10-2 should be modified as follows:

IA32_MTRR_PHYSBASE0 =  0000 0000 0000 0006H
IA32_MTRR_PHYSMASK0 =  0000 00FF FC00 0800H  
Caches 0-64 MByte as WB cache type.

IA32_MTRR_PHYSBASE1 =  0000 0000 0400 0006H
IA32_MTRR_PHYSMASK1 =  0000 00FF FE00 0800H  
Caches 64-96 MByte as WB cache type.

IA32_MTRR_PHYSBASE2 =  0000 0000 0600 0006H
IA32_MTRR_PHYSMASK2 =  0000 00FF FFC0 0800H  
Caches 96-100 MByte as WB cache type.

IA32_MTRR_PHYSBASE3 =  0000 0000 0400 0000H
IA32_MTRR_PHYSMASK3 =  0000 00FF FFC0 0800H  
Caches 64-68 MByte as UC cache type.
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IA32_MTRR_PHYSBASE4 =  0000 0000 00F0 0000H
IA32_MTRR_PHYSMASK4 =  0000 00FF FFF0 0800H  
Caches 15-16 MByte as UC cache type.

IA32_MTRR_PHYSBASE5 =  0000 0000 A000 0001H
IA32_MTRR_PHYSMASK5 =  0000 00FF FF80 0800H  
Caches A0000000-A0800000 as WC type.

10.11.4 Range Size and Alignment Requirement
A range that is to be mapped to a variable-range MTRR must meet the following 
“power of 2” size and alignment rules:

1. The minimum range size is 4 KBytes and the base address of the range must be 
on at least a 4-KByte boundary.

2. For ranges greater than 4 KBytes, each range must be of length 2n and its base 
address must be aligned on a 2n boundary, where n is a value equal to or greater 
than 12. The base-address alignment value cannot be less than its length. For 
example, an 8-KByte range cannot be aligned on a 4-KByte boundary. It must be 
aligned on at least an 8-KByte boundary.

10.11.4.1  MTRR Precedences
If the MTRRs are not enabled (by setting the E flag in the IA32_MTRR_DEF_TYPE 
MSR), then all memory accesses are of the UC memory type. If the MTRRs are 
enabled, then the memory type used for a memory access is determined as follows:

1. If the physical address falls within the first 1 MByte of physical memory and 
fixed MTRRs are enabled, the processor uses the memory type stored for the 
appropriate fixed-range MTRR.

2. Otherwise, the processor attempts to match the physical address with a memory 
type set by the variable-range MTRRs:

— If one variable memory range matches, the processor uses the memory type 
stored in the IA32_MTRR_PHYSBASEn register for that range.

— If two or more variable memory ranges match and the memory types are 
identical, then that memory type is used.

— If two or more variable memory ranges match and one of the memory types 
is UC, the UC memory type used.

— If two or more variable memory ranges match and the memory types are WT 
and WB, the WT memory type is used.

— For overlaps not defined by the above rules, processor behavior is undefined.

3. If no fixed or variable memory range matches, the processor uses the default 
memory type.
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10.11.5 MTRR Initialization
On a hardware reset, the P6 and more recent processors clear the valid flags in vari-
able-range MTRRs and clear the E flag in the IA32_MTRR_DEF_TYPE MSR to disable 
all MTRRs. All other bits in the MTRRs are undefined. 

Prior to initializing the MTRRs, software (normally the system BIOS) must initialize all 
fixed-range and variable-range MTRR register fields to 0. Software can then initialize 
the MTRRs according to known types of memory, including memory on devices that it 
auto-configures. Initialization is expected to occur prior to booting the operating 
system.

See Section 10.11.8, “MTRR Considerations in MP Systems,” for information on 
initializing MTRRs in MP (multiple-processor) systems.

10.11.6 Remapping Memory Types
A system designer may re-map memory types to tune performance or because a 
future processor may not implement all memory types supported by the Pentium 4, 
Intel Xeon, and P6 family processors. The following rules support coherent memory-
type re-mappings:

1. A memory type should not be mapped into another memory type that has a 
weaker memory ordering model. For example, the uncacheable type cannot be 
mapped into any other type, and the write-back, write-through, and write-
protected types cannot be mapped into the weakly ordered write-combining 
type.

2. A memory type that does not delay writes should not be mapped into a memory 
type that does delay writes, because applications of such a memory type may 
rely on its write-through behavior. Accordingly, the write-back type cannot be 
mapped into the write-through type.

3. A memory type that views write data as not necessarily stored and read back by 
a subsequent read, such as the write-protected type, can only be mapped to 
another type with the same behaviour (and there are no others for the 
Pentium 4, Intel Xeon, and P6 family processors) or to the uncacheable type.

In many specific cases, a system designer can have additional information about how 
a memory type is used, allowing additional mappings. For example, write-through 
memory with no associated write side effects can be mapped into write-back 
memory.

10.11.7 MTRR Maintenance Programming Interface
The operating system maintains the MTRRs after booting and sets up or changes the 
memory types for memory-mapped devices. The operating system should provide a 
driver and application programming interface (API) to access and set the MTRRs. The 
function calls MemTypeGet() and MemTypeSet() define this interface.
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10.11.7.1  MemTypeGet() Function
The MemTypeGet() function returns the memory type of the physical memory range 
specified by the parameters base and size. The base address is the starting physical 
address and the size is the number of bytes for the memory range. The function 
automatically aligns the base address and size to 4-KByte boundaries. Pseudocode 
for the MemTypeGet() function is given in Example 10-4.

Example 10-4.  MemTypeGet() Pseudocode

#define MIXED_TYPES -1     /* 0 < MIXED_TYPES || MIXED_TYPES > 256 */

IF CPU_FEATURES.MTRR /* processor supports MTRRs */
THEN

Align BASE and SIZE to 4-KByte boundary;
IF (BASE + SIZE) wrap 4-GByte address space 

THEN return INVALID;
FI;
IF MTRRdefType.E = 0

THEN return UC;
FI;
FirstType ¨ Get4KMemType (BASE);
/* Obtains memory type for first 4-KByte range. */
/* See Get4KMemType (4KByteRange) in Example 10-5. */
FOR each additional 4-KByte range specified in SIZE

NextType ¨ Get4KMemType (4KByteRange);
IF NextType ¼ FirstType

THEN return MixedTypes;
FI;

ROF; 
return FirstType;

ELSE return UNSUPPORTED;
FI;

If the processor does not support MTRRs, the function returns UNSUPPORTED. If the 
MTRRs are not enabled, then the UC memory type is returned. If more than one 
memory type corresponds to the specified range, a status of MIXED_TYPES is 
returned. Otherwise, the memory type defined for the range (UC, WC, WT, WB, or 
WP) is returned.

The pseudocode for the Get4KMemType() function in Example 10-5 obtains the 
memory type for a single 4-KByte range at a given physical address. The sample 
code determines whether an PHY_ADDRESS falls within a fixed range by comparing 
the address with the known fixed ranges: 0 to 7FFFFH (64-KByte regions), 80000H to 
BFFFFH (16-KByte regions), and C0000H to FFFFFH (4-KByte regions). If an address 
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falls within one of these ranges, the appropriate bits within one of its MTRRs deter-
mine the memory type.

Example 10-5.  Get4KMemType() Pseudocode

IF IA32_MTRRCAP.FIX AND MTRRdefType.FE /* fixed registers enabled */
THEN IF PHY_ADDRESS is within a fixed range

return IA32_MTRR_FIX.Type;
FI;
FOR each variable-range MTRR in IA32_MTRRCAP.VCNT

IF IA32_MTRR_PHYSMASK.V = 0
THEN continue;

FI;
IF (PHY_ADDRESS AND IA32_MTRR_PHYSMASK.Mask) =

(IA32_MTRR_PHYSBASE.Base 
AND IA32_MTRR_PHYSMASK.Mask)

THEN
return IA32_MTRR_PHYSBASE.Type;

FI;
ROF;
return MTRRdefType.Type;

10.11.7.2  MemTypeSet() Function
The MemTypeSet() function in Example 10-6 sets a MTRR for the physical memory 
range specified by the parameters base and size to the type specified by type. The 
base address and size are multiples of 4 KBytes and the size is not 0.

Example 10-6.  MemTypeSet Pseudocode

IF CPU_FEATURES.MTRR (* processor supports MTRRs *)
THEN

IF BASE and SIZE are not 4-KByte aligned or size is 0
THEN return INVALID; 

FI;
IF (BASE + SIZE) wrap 4-GByte address space

THEN return INVALID; 
FI;
IF TYPE is invalid for Pentium 4, Intel Xeon, and P6 family 
processors

THEN return UNSUPPORTED; 
FI;
IF TYPE is WC and not supported
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THEN return UNSUPPORTED; 
FI;
IF IA32_MTRRCAP.FIX is set AND range can be mapped using a
fixed-range MTRR

THEN
pre_mtrr_change();
update affected MTRR;
post_mtrr_change();

FI;

ELSE (* try to map using a variable MTRR pair *)
IF IA32_MTRRCAP.VCNT = 0

THEN return UNSUPPORTED; 
FI;
IF conflicts with current variable ranges 

THEN return RANGE_OVERLAP;
FI;
IF no MTRRs available

THEN return VAR_NOT_AVAILABLE; 
FI;
IF BASE and SIZE do not meet the power of 2 requirements for
variable MTRRs

THEN return INVALID_VAR_REQUEST; 
FI;
pre_mtrr_change();
Update affected MTRRs;
post_mtrr_change();

FI;

pre_mtrr_change()
BEGIN

disable interrupts;
Save current value of CR4;
disable and flush caches;
flush TLBs;
disable MTRRs;
IF multiprocessing

THEN maintain consistency through IPIs;
FI;

END
post_mtrr_change()

BEGIN
flush caches and TLBs;
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enable MTRRs;
enable caches;
restore value of CR4;
enable interrupts;

END

The physical address to variable range mapping algorithm in the MemTypeSet func-
tion detects conflicts with current variable range registers by cycling through them 
and determining whether the physical address in question matches any of the current 
ranges. During this scan, the algorithm can detect whether any current variable 
ranges overlap and can be concatenated into a single range.

The pre_mtrr_change() function disables interrupts prior to changing the MTRRs, to 
avoid executing code with a partially valid MTRR setup. The algorithm disables 
caching by setting the CD flag and clearing the NW flag in control register CR0. The 
caches are invalidated using the WBINVD instruction. The algorithm flushes all TLB 
entries either by clearing the page-global enable (PGE) flag in control register CR4 (if 
PGE was already set) or by updating control register CR3 (if PGE was already clear). 
Finally, it disables MTRRs by clearing the E flag in the IA32_MTRR_DEF_TYPE MSR.

After the memory type is updated, the post_mtrr_change() function re-enables the 
MTRRs and again invalidates the caches and TLBs. This second invalidation is 
required because of the processor's aggressive prefetch of both instructions and 
data. The algorithm restores interrupts and re-enables caching by setting the CD 
flag.

An operating system can batch multiple MTRR updates so that only a single pair of 
cache invalidations occur.

10.11.8 MTRR Considerations in MP Systems
In MP (multiple-processor) systems, the operating systems must maintain MTRR 
consistency between all the processors in the system. The Pentium 4, Intel Xeon, and 
P6 family processors provide no hardware support to maintain this consistency. In 
general, all processors must have the same MTRR values.

This requirement implies that when the operating system initializes an MP system, it 
must load the MTRRs of the boot processor while the E flag in register MTRRdefType 
is 0. The operating system then directs other processors to load their MTRRs with the 
same memory map. After all the processors have loaded their MTRRs, the operating 
system signals them to enable their MTRRs. Barrier synchronization is used to 
prevent further memory accesses until all processors indicate that the MTRRs are 
enabled. This synchronization is likely to be a shoot-down style algorithm, with 
shared variables and interprocessor interrupts.



Vol. 3   10-43

MEMORY CACHE CONTROL

Any change to the value of the MTRRs in an MP system requires the operating system 
to repeat the loading and enabling process to maintain consistency, using the 
following procedure:

1. Broadcast to all processors to execute the following code sequence.

2. Disable interrupts.

3. Wait for all processors to reach this point.

4. Enter the no-fill cache mode. (Set the CD flag in control register CR0 to 1 and the 
NW flag to 0.)

5. Flush all caches using the WBINVD instructions. Note on a processor that 
supports self-snooping, CPUID feature flag bit 27, this step is unnecessary.

6. If the PGE flag is set in control register CR4, flush all TLBs by clearing that flag.

7. If the PGE flag is clear in control register CR4, flush all TLBs by executing a MOV 
from control register CR3 to another register and then a MOV from that register 
back to CR3.

8. Disable all range registers (by clearing the E flag in register MTRRdefType). If 
only variable ranges are being modified, software may clear the valid bits for the 
affected register pairs instead.

9. Update the MTRRs.

10. Enable all range registers (by setting the E flag in register MTRRdefType). If only 
variable-range registers were modified and their individual valid bits were 
cleared, then set the valid bits for the affected ranges instead.

11. Flush all caches and all TLBs a second time. (The TLB flush is required for 
Pentium 4, Intel Xeon, and P6 family processors. Executing the WBINVD 
instruction is not needed when using Pentium 4, Intel Xeon, and P6 family 
processors, but it may be needed in future systems.)

12. Enter the normal cache mode to re-enable caching. (Set the CD and NW flags in 
control register CR0 to 0.)

13. Set PGE flag in control register CR4, if cleared in Step 6 (above).

14. Wait for all processors to reach this point.

15. Enable interrupts.

10.11.9 Large Page Size Considerations
The MTRRs provide memory typing for a limited number of regions that have a 
4 KByte granularity (the same granularity as 4-KByte pages). The memory type for a 
given page is cached in the processor’s TLBs. When using large pages (2 or 
4 MBytes), a single page-table entry covers multiple 4-KByte granules, each with a 
single memory type. Because the memory type for a large page is cached in the TLB, 
the processor can behave in an undefined manner if a large page is mapped to a 
region of memory that MTRRs have mapped with multiple memory types. 
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Undefined behavior can be avoided by insuring that all MTRR memory-type ranges 
within a large page are of the same type. If a large page maps to a region of memory 
containing different MTRR-defined memory types, the PCD and PWT flags in the 
page-table entry should be set for the most conservative memory type for that 
range. For example, a large page used for memory mapped I/O and regular memory 
is mapped as UC memory. Alternatively, the operating system can map the region 
using multiple 4-KByte pages each with its own memory type. 

The requirement that all 4-KByte ranges in a large page are of the same memory 
type implies that large pages with different memory types may suffer a performance 
penalty, since they must be marked with the lowest common denominator memory 
type.

The Pentium 4, Intel Xeon, and P6 family processors provide special support for the 
physical memory range from 0 to 4 MBytes, which is potentially mapped by both the 
fixed and variable MTRRs. This support is invoked when a Pentium 4, Intel Xeon, or 
P6 family processor detects a large page overlapping the first 1 MByte of this 
memory range with a memory type that conflicts with the fixed MTRRs. Here, the 
processor maps the memory range as multiple 4-KByte pages within the TLB. This 
operation insures correct behavior at the cost of performance. To avoid this perfor-
mance penalty, operating-system software should reserve the large page option for 
regions of memory at addresses greater than or equal to 4 MBytes.

10.12 PAGE ATTRIBUTE TABLE (PAT)
The Page Attribute Table (PAT) extends the IA-32 architecture’s page-table format to 
allow memory types to be assigned to regions of physical memory based on linear 
address mappings. The PAT is a companion feature to the MTRRs; that is, the MTRRs 
allow mapping of memory types to regions of the physical address space, where the 
PAT allows mapping of memory types to pages within the linear address space. The 
MTRRs are useful for statically describing memory types for physical ranges, and are 
typically set up by the system BIOS. The PAT extends the functions of the PCD and 
PWT bits in page tables to allow all five of the memory types that can be assigned 
with the MTRRs (plus one additional memory type) to also be assigned dynamically 
to pages of the linear address space.

The PAT was introduced to IA-32 architecture on the Pentium III processor. It is also 
available in the Pentium 4 and Intel Xeon processors.

10.12.1 Detecting Support for the PAT Feature
An operating system or executive can detect the availability of the PAT by executing 
the CPUID instruction with a value of 1 in the EAX register. Support for the PAT is indi-
cated by the PAT flag (bit 16 of the values returned to EDX register). If the PAT is 
supported, the operating system or executive can use the IA32_CR_PAT MSR to 
program the PAT. When memory types have been assigned to entries in the PAT, soft-
ware can then use of the PAT-index bit (PAT) in the page-table and page-directory 
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entries along with the PCD and PWT bits to assign memory types from the PAT to 
individual pages.

Note that there is no separate flag or control bit in any of the control registers that 
enables the PAT. The PAT is always enabled on all processors that support it, and the 
table lookup always occurs whenever paging is enabled, in all paging modes.

10.12.2 IA32_CR_PAT MSR
The IA32_CR_PAT MSR is located at MSR address 277H (see to Appendix B, “Model-
Specific Registers (MSRs),” and this address will remain at the same address on 
future IA-32 processors that support the PAT feature. Figure 10-7. shows the format 
of the 64-bit IA32_CR_PAT MSR.

The IA32_CR_PAT MSR contains eight page attribute fields: PA0 through PA7. The 
three low-order bits of each field are used to specify a memory type. The five high-
order bits of each field are reserved, and must be set to all 0s. Each of the eight page 
attribute fields can contain any of the memory type encodings specified in Table 
10-10.

Note that for the P6 family processors, the IA32_CR_PAT MSR is named the PAT MSR.

31 27 26 24 23 19 18 16 15 11 10 8 7 3 2 0

Reserved PA3 Reserved PA2 Reserved PA1 Reserved PA0

63 59 58 56 55 51 50 48 47 43 42 40 39 35 34 32

Reserved PA7 Reserved PA6 Reserved PA5 Reserved PA4

Figure 10-7.  IA32_CR_PAT MSR
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10.12.3 Selecting a Memory Type from the PAT
To select a memory type for a page from the PAT, a 3-bit index made up of the PAT, 
PCD, and PWT bits must be encoded in the page-table or page-directory entry for the 
page. Table 10-11 shows the possible encodings of the PAT, PCD, and PWT bits and 
the PAT entry selected with each encoding. The PAT bit is bit 7 in page-table entries 
that point to 4-KByte pages (see Figures 3-14 and 3-20) and bit 12 in page-directory 
entries that point to 2-MByte or 4-MByte pages (see Figures 3-15, 3-21, and 3-23). 
The PCD and PWT bits are always bits 4 and 3, respectively, in page-table and page-
directory entries.

The PAT entry selected for a page is used in conjunction with the MTRR setting for the 
region of physical memory in which the page is mapped to determine the effective 
memory type for the page, as shown in Table 10-7.

Table 10-10.  Memory Types That Can Be Encoded With PAT

Encoding Mnemonic

00H Uncacheable (UC)

01H Write Combining (WC)

02H Reserved*

03H Reserved*

04H Write Through (WT)

05H Write Protected (WP)

06H Write Back (WB)

07H Uncached (UC-)

08H - FFH Reserved*

NOTE:
* Using these encodings will result in a general-protection exception (#GP).

Table 10-11.  Selection of PAT Entries with PAT, PCD, and PWT Flags 
PAT PCD PWT PAT Entry

0 0 0 PAT0

0 0 1 PAT1

0 1 0 PAT2

0 1 1 PAT3

1 0 0 PAT4

1 0 1 PAT5

1 1 0 PAT6

1 1 1 PAT7
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10.12.4 Programming the PAT
Table 10-12 shows the default setting for each PAT entry following a power up or 
reset of the processor. The setting remain unchanged following a soft reset (INIT 
reset). 

The values in all the entries of the PAT can be changed by writing to the IA32_CR_PAT 
MSR using the WRMSR instruction. The IA32_CR_PAT MSR is read and write acces-
sible (use of the RDMSR and WRMSR instructions, respectively) to software operating 
at a CPL of 0. Table 10-10 shows the allowable encoding of the entries in the PAT. 
Attempting to write an undefined memory type encoding into the PAT causes a 
general-protection (#GP) exception to be generated.

The operating system is responsible for insuring that changes to a PAT entry occur in 
a manner that maintains the consistency of the processor caches and translation 
lookaside buffers (TLB). This is accomplished by following the procedure as specified 
in Section 10.11.8, “MTRR Considerations in MP Systems,” for changing the value of 
an MTRR in a multiple processor system. It requires a specific sequence of operations 
that includes flushing the processors caches and TLBs.

The PAT allows any memory type to be specified in the page tables, and therefore it 
is possible to have a single physical page mapped to two or more different linear 
addresses, each with different memory types. Intel does not support this practice 
because it may lead to undefined operations that can result in a system failure. In 
particular, a WC page must never be aliased to a cacheable page because WC writes 
may not check the processor caches.

When remapping a page that was previously mapped as a cacheable memory type to 
a WC page, an operating system can avoid this type of aliasing by doing the 
following:

1. Remove the previous mapping to a cacheable memory type in the page tables; 
that is, make them not present.

Table 10-12.  Memory Type Setting of PAT Entries Following a Power-up or Reset 

PAT Entry Memory Type Following Power-up or Reset

PAT0 WB

PAT1 WT

PAT2 UC-

PAT3 UC

PAT4 WB

PAT5 WT

PAT6 UC-

PAT7 UC
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2. Flush the TLBs of processors that may have used the mapping, even specula-
tively.

3. Create a new mapping to the same physical address with a new memory type, for 
instance, WC.

4. Flush the caches on all processors that may have used the mapping previously. 
Note on processors that support self-snooping, CPUID feature flag bit 27, this 
step is unnecessary.

Operating systems that use a page directory as a page table (to map large pages) 
and enable page size extensions must carefully scrutinize the use of the PAT index bit 
for the 4-KByte page-table entries. The PAT index bit for a page-table entry (bit 7) 
corresponds to the page size bit in a page-directory entry. Therefore, the operating 
system can only use PAT entries PA0 through PA3 when setting the caching type for 
a page table that is also used as a page directory. If the operating system attempts 
to use PAT entries PA4 through PA7 when using this memory as a page table, it effec-
tively sets the PS bit for the access to this memory as a page directory.

For compatibility with earlier IA-32 processors that do not support the PAT, care 
should be taken in selecting the encodings for entries in the PAT (see Section 
10.12.5, “PAT Compatibility with Earlier IA-32 Processors”).

10.12.5 PAT Compatibility with Earlier IA-32 Processors
For IA-32 processors that support the PAT, the IA32_CR_PAT MSR is always active. 
That is, the PCD and PWT bits in page-table entries and in page-directory entries 
(that point to pages) are always select a memory type for a page indirectly by 
selecting an entry in the PAT. They never select the memory type for a page directly 
as they do in earlier IA-32 processors that do not implement the PAT (see Table 
10-6).

To allow compatibility for code written to run on earlier IA-32 processor that do not 
support the PAT, the PAT mechanism has been designed to allow backward compati-
bility to earlier processors. This compatibility is provided through the ordering of the 
PAT, PCD, and PWT bits in the 3-bit PAT entry index. For processors that do not imple-
ment the PAT, the PAT index bit (bit 7 in the page-table entries and bit 12 in the page-
directory entries) is reserved and set to 0. With the PAT bit reserved, only the first 
four entries of the PAT can be selected with the PCD and PWT bits. At power-up or 
reset (see Table 10-12), these first four entries are encoded to select the same 
memory types as the PCD and PWT bits would normally select directly in an IA-32 
processor that does not implement the PAT. So, if encodings of the first four entries 
in the PAT are left unchanged following a power-up or reset, code written to run on 
earlier IA-32 processors that do not implement the PAT will run correctly on IA-32 
processors that do implement the PAT.



Vol. 3   11-1

CHAPTER 11
INTEL® MMX™ TECHNOLOGY SYSTEM 

PROGRAMMING

This chapter describes those features of the Intel® MMX™ technology that must be 
considered when designing or enhancing an operating system to support MMX tech-
nology. It covers MMX instruction set emulation, the MMX state, aliasing of MMX 
registers, saving MMX state, task and context switching considerations, exception 
handling, and debugging.

11.1 EMULATION OF THE MMX INSTRUCTION SET
The IA-32 or Intel 64 architecture does not support emulation of the MMX instruc-
tions, as it does for x87 FPU instructions. The EM flag in control register CR0 
(provided to invoke emulation of x87 FPU instructions) cannot be used for MMX 
instruction emulation. If an MMX instruction is executed when the EM flag is set, an 
invalid opcode exception (UD#) is generated. Table 11-1 shows the interaction of the 
EM, MP, and TS flags in control register CR0 when executing MMX instructions.

11.2 THE MMX STATE AND MMX REGISTER ALIASING
The MMX state consists of eight 64-bit registers (MM0 through MM7). These registers 
are aliased to the low 64-bits (bits 0 through 63) of floating-point registers R0 
through R7 (see Figure 11-1). Note that the MMX registers are mapped to the phys-
ical locations of the floating-point registers (R0 through R7), not to the relative loca-
tions of the registers in the floating-point register stack (ST0 through ST7). As a 

Table 11-1.  Action Taken By MMX Instructions 
for Different Combinations of EM, MP and TS

CR0 Flags

EM MP* TS Action

0 1 0 Execute.

0 1 1 #NM exception.

1 1 0 #UD exception.

1 1 1 #UD exception.

NOTE:
* For processors that support the MMX instructions, the MP flag should be set.
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result, the MMX register mapping is fixed and is not affected by value in the Top Of 
Stack (TOS) field in the floating-point status word (bits 11 through 13).

When a value is written into an MMX register using an MMX instruction, the value also 
appears in the corresponding floating-point register in bits 0 through 63. Likewise, 
when a floating-point value written into a floating-point register by a x87 FPU, the 
low 64 bits of that value also appears in a the corresponding MMX register.

The execution of MMX instructions have several side effects on the x87 FPU state 
contained in the floating-point registers, the x87 FPU tag word, and the x87 FPU 
status word. These side effects are as follows:

• When an MMX instruction writes a value into an MMX register, at the same time, 
bits 64 through 79 of the corresponding floating-point register are set to all 1s.

• When an MMX instruction (other than the EMMS instruction) is executed, each of 
the tag fields in the x87 FPU tag word is set to 00B (valid). (See also Section 
11.2.1, “Effect of MMX, x87 FPU, FXSAVE, and FXRSTOR Instructions on the x87 
FPU Tag Word.”)

Figure 11-1.  Mapping of MMX Registers to Floating-Point Registers
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• When the EMMS instruction is executed, each tag field in the x87 FPU tag word is 
set to 11B (empty).

• Each time an MMX instruction is executed, the TOS value is set to 000B.

Execution of MMX instructions does not affect the other bits in the x87 FPU status 
word (bits 0 through 10 and bits 14 and 15) or the contents of the other x87 FPU 
registers that comprise the x87 FPU state (the x87 FPU control word, instruction 
pointer, data pointer, or opcode registers). 

Table 11-2 summarizes the effects of the MMX instructions on the x87 FPU state.

11.2.1 Effect of MMX, x87 FPU, FXSAVE, and FXRSTOR 
Instructions on the x87 FPU Tag Word

Table 11-3 summarizes the effect of MMX and x87 FPU instructions and the FXSAVE 
and FXRSTOR instructions on the tags in the x87 FPU tag word and the corresponding 
tags in an image of the tag word stored in memory.

The values in the fields of the x87 FPU tag word do not affect the contents of the MMX 
registers or the execution of MMX instructions. However, the MMX instructions do 
modify the contents of the x87 FPU tag word, as is described in Section 11.2, “The 
MMX State and MMX Register Aliasing.” These modifications may affect the operation 
of the x87 FPU when executing x87 FPU instructions, if the x87 FPU state is not 
initialized or restored prior to beginning x87 FPU instruction execution.

Note that the FSAVE, FXSAVE, and FSTENV instructions (which save x87 FPU state 
information) read the x87 FPU tag register and contents of each of the floating-point 
registers, determine the actual tag values for each register (empty, nonzero, zero, or 
special), and store the updated tag word in memory. After executing these instruc-
tions, all the tags in the x87 FPU tag word are set to empty (11B). Likewise, the 
EMMS instruction clears MMX state from the MMX/floating-point registers by setting 
all the tags in the x87 FPU tag word to 11B.

Table 11-2.  Effects of MMX Instructions on x87 FPU State

MMX 
Instruction 
Type

x87 FPU Tag 
Word

TOS Field of 
x87 FPU 
Status 
Word

Other x87 
FPU Registers

Bits 64 
Through 79 of 
x87 FPU Data 
Registers

Bits 0 
Through 63 of 
x87 FPU Data 
Registers

Read from 
MMX register

All tags set 
to 00B (Valid)

000B Unchanged Unchanged Unchanged

Write to MMX 
register

All tags set 
to 00B (Valid)

000B Unchanged Set to all 1s Overwritten 
with MMX data

EMMS All fields set 
to 11B 
(Empty)

000B Unchanged Unchanged Unchanged
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11.3 SAVING AND RESTORING THE MMX STATE AND 
REGISTERS

Because the MMX registers are aliased to the x87 FPU data registers, the MMX state 
can be saved to memory and restored from memory as follows:

• Execute an FSAVE, FNSAVE, or FXSAVE instruction to save the MMX state to 
memory. (The FXSAVE instruction also saves the state of the XMM and MXCSR 
registers.)

• Execute an FRSTOR or FXRSTOR instruction to restore the MMX state from 
memory. (The FXRSTOR instruction also restores the state of the XMM and 
MXCSR registers.)

The save and restore methods described above are required for operating systems 
(see Section 11.4, “Saving MMX State on Task or Context Switches”). Applications 
can in some cases save and restore only the MMX registers in the following way:

Table 11-3.  Effect of the MMX, x87 FPU, and FXSAVE/FXRSTOR Instructions on the
x87 FPU Tag Word 

Instruction 
Type

Instruction x87 FPU Tag Word Image of x87 FPU Tag Word 
Stored in Memory

MMX All (except EMMS) All tags are set to 00B (valid). Not affected.

MMX EMMS All tags are set to 11B 
(empty).

Not affected.

x87 FPU All (except FSAVE, 
FSTENV, FRSTOR, 
FLDENV)

Tag for modified floating-
point register is set to 00B or 
11B.

Not affected.

x87 FPU and 
FXSAVE

FSAVE, FSTENV, 
FXSAVE

Tags and register values are 
read and interpreted; then all 
tags are set to 11B.

Tags are set according to the 
actual values in the floating-
point registers; that is, empty 
registers are marked 11B and 
valid registers are marked 
00B (nonzero), 01B (zero), or 
10B (special).

x87 FPU and 
FXRSTOR

FRSTOR, FLDENV, 
FXRSTOR

All tags marked 11B in 
memory are set to 11B; all 
other tags are set according 
to the value in the 
corresponding floating-point 
register: 00B (nonzero), 01B 
(zero), or 10B (special).

Tags are read and 
interpreted, but not modified.
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• Execute eight MOVQ instructions to save the contents of the MMX0 through 
MMX7 registers to memory. An EMMS instruction may then (optionally) be 
executed to clear the MMX state in the x87 FPU.

• Execute eight MOVQ instructions to read the saved contents of MMX registers 
from memory into the MMX0 through MMX7 registers.

NOTE
The IA-32 architecture does not support scanning the x87 FPU tag 
word and then only saving valid entries.

11.4 SAVING MMX STATE ON TASK OR CONTEXT 
SWITCHES

When switching from one task or context to another, it is often necessary to save the 
MMX state. As a general rule, if the existing task switching code for an operating 
system includes facilities for saving the state of the x87 FPU, these facilities can also 
be relied upon to save the MMX state, without rewriting the task switch code. This 
reliance is possible because the MMX state is aliased to the x87 FPU state (see 
Section 11.2, “The MMX State and MMX Register Aliasing”).

With the introduction of the FXSAVE and FXRSTOR instructions and of 
SSE/SSE2/SSE3/SSSE3 extensions, it is possible (and more efficient) to create state 
saving facilities in the operating system or executive that save the x87 
FPU/MMX/SSE/SSE2/SSE3/SSSE3 state in one operation. Section 12.5, “Designing 
OS Facilities for AUTOMATICALLY Saving x87 FPU, MMX, and 
SSE/SSE2/SSE3/SSSE3/SSE4 state on Task or Context Switches,” describes how to 
design such facilities. The techniques describes in this section can be adapted to 
saving only the MMX and x87 FPU state if needed.

11.5 EXCEPTIONS THAT CAN OCCUR WHEN EXECUTING 
MMX INSTRUCTIONS

MMX instructions do not generate x87 FPU floating-point exceptions, nor do they 
affect the processor’s status flags in the EFLAGS register or the x87 FPU status word. 
The following exceptions can be generated during the execution of an MMX instruc-
tion:

• Exceptions during memory accesses:

— Stack-segment fault (#SS).

— General protection (#GP).

— Page fault (#PF).

— Alignment check (#AC), if alignment checking is enabled.
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• System exceptions:

— Invalid Opcode (#UD), if the EM flag in control register CR0 is set when an 
MMX instruction is executed (see Section 11.1, “Emulation of the MMX 
Instruction Set”).

— Device not available (#NM), if an MMX instruction is executed when the TS 
flag in control register CR0 is set. (See Section 12.5.1, “Using the TS Flag to 
Control the Saving of the x87 FPU, MMX, SSE, SSE2, SSE3 SSSE3 and SSE4 
State.”)

• Floating-point error (#MF). (See Section 11.5.1, “Effect of MMX Instructions on 
Pending x87 Floating-Point Exceptions.”)

• Other exceptions can occur indirectly due to the faulty execution of the exception 
handlers for the above exceptions.

11.5.1 Effect of MMX Instructions on Pending x87 Floating-Point 
Exceptions

If an x87 FPU floating-point exception is pending and the processor encounters an 
MMX instruction, the processor generates a x87 FPU floating-point error (#MF) prior 
to executing the MMX instruction, to allow the pending exception to be handled by 
the x87 FPU floating-point error exception handler. While this exception handler is 
executing, the x87 FPU state is maintained and is visible to the handler. Upon 
returning from the exception handler, the MMX instruction is executed, which will 
alter the x87 FPU state, as described in Section 11.2, “The MMX State and MMX 
Register Aliasing.” 

11.6 DEBUGGING MMX CODE
The debug facilities operate in the same manner when executing MMX instructions as 
when executing other IA-32 or Intel 64 architecture instructions.

To correctly interpret the contents of the MMX or x87 FPU registers from the 
FSAVE/FNSAVE or FXSAVE image in memory, a debugger needs to take account of 
the relationship between the x87 FPU register’s logical locations relative to TOS and 
the MMX register’s physical locations.

In the x87 FPU context, STn refers to an x87 FPU register at location n relative to the 
TOS. However, the tags in the x87 FPU tag word are associated with the physical 
locations of the x87 FPU registers (R0 through R7). The MMX registers always refer 
to the physical locations of the registers (with MM0 through MM7 being mapped to R0 
through R7). Figure 11-2 shows this relationship. Here, the inner circle refers to the 
physical location of the x87 FPU and MMX registers. The outer circle refers to the x87 
FPU registers’s relative location to the current TOS.

When the TOS equals 0 (case A in Figure 11-2), ST0 points to the physical location 
R0 on the floating-point stack. MM0 maps to ST0, MM1 maps to ST1, and so on.
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When the TOS equals 2 (case B in Figure 11-2), ST0 points to the physical location 
R2. MM0 maps to ST6, MM1 maps to ST7, MM2 maps to ST0, and so on.

Figure 11-2.  Mapping of MMX Registers to x87 FPU Data Register Stack
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CHAPTER 12
SYSTEM PROGRAMMING FOR INSTRUCTION SET 

EXTENSIONS AND PROCESSOR EXTENDED STATES

This chapter describes system programming features for instruction set extensions 
operating on the processor state extension known as the SSE state (XMM registers, 
MXCSR) and for processor extended states. Instruction set extensions operating on 
the SSE state include the streaming SIMD extensions (SSE), streaming SIMD exten-
sions 2 (SSE2), streaming SIMD extensions 3 (SSE3), Supplemental SSE3 (SSSE3), 
and SSE4. 

Sections 12.1 through 12.5 cover system programming requirements to enable 
SSE/SSE2/SSE3/SSSE3/SSE4 extensions, providing operating system or executive 
support for the SSE/SSE2/SSE3/SSSE3/SSE4 extensions, SIMD floating-point 
exceptions, exception handling, and task (context) switching.

Operating system support for SSE state, once implemented using FXSAVE/FXRSTOR, 
provides a limited degree of forward support for subsequent instruction set exten-
sions operating on the same known set of processor state. Processor extended states 
refer to an extension in Intel 64 architecture that will allow system executives to 
implement support for multiple processor state extensions that may be introduced 
over time without requiring the system executive to be modified each time a new 
processor state extension is introduced. 

Managing processor extended states requires the following aspects:

• using instructions like XSAVE, XRSTOR, to save/restore state information to a 
memory region consistent with the processor state extensions supported in 
hardware, 

• using CPUID enumeration features to query the set of extended processor states 
supported by the processor, 

• using XSETBV instruction to enable individual processor state extensions, 

• maintaining various system programming resources.

System programming for managing processor extended states is described in the 
sections starting 12.6.

12.1 PROVIDING OPERATING SYSTEM SUPPORT FOR 
SSE/SSE2/SSE3/SSSE3/SSE4 EXTENSIONS

To use SSE/SSE2/SSE3/SSSE3/SSE4 extensions, the operating system or executive 
must provide support for initializing the processor to use these extensions, for 
handling the FXSAVE and FXRSTOR state saving instructions, and for handling SIMD 
floating-point exceptions. The following sections provide system programming 
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guidelines for this support. Because SSE/SSE2/SSE3/SSSE3/SSE4 extensions share 
the same state, experience the same sets of non-numerical and numerical exception 
behavior, these guidelines that apply to SSE also apply to other sets of SIMD exten-
sions that operate on the same processor state and subject to the same sets of of 
non-numerical and numerical exception behavior. 

Chapter 11, “Programming with Streaming SIMD Extensions 2 (SSE2),” and Chapter 
12, “Programming with SSE3, SSSE3 and SSE4,” in the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1, discuss support for 
SSE/SSE2/SSE3/SSSE3/SSE4 from an applications point of view program.

12.1.1 Adding Support to an Operating System for 
SSE/SSE2/SSE3/SSSE3/SSE4 Extensions

The following guidelines describe functions that an operating system or executive 
must perform to support SSE/SSE2/SSE3/SSSE3/SSE4 extensions:

1. Check that the processor supports the SSE/SSE2/SSE3/SSSE3/SSE4 extensions.

2. Check that the processor supports the FXSAVE and FXRESTOR instructions.

3. Provide an initialization for the SSE, SSE2 SSE3, SSSE3 and SSE4 states.

4. Provide support for the FXSAVE and FXRSTOR instructions.

5. Provide support (if necessary) in non-numeric exception handlers for exceptions 
generated by the SSE, SSE2, SSE3 and SSE4 instructions.

6. Provide an exception handler for the SIMD floating-point exception (#XM).

The following sections describe how to implement each of these guidelines.

12.1.2 Checking for SSE/SSE2/SSE3/SSSE3/SSE4 Extension 
Support

If the processor attempts to execute an unsupported SSE/SSE2/SSE3/SSSE3/SSE4 
instruction, the processor generates an invalid-opcode exception (#UD).

Before an operating system or executive attempts to use 
SSE/SSE2/SSE3/SSSE3/SSE4 extensions, it should check that support is present. 
Make sure:

• CPUID.1:EDX.SSE[bit 25] = 1

• CPUID.1:EDX.SSE2[bit 26] = 1

• CPUID.1:ECX.SSE3[bit 0] = 1

• CPUID.1:ECX.SSSE3[bit 9] = 1

• CPUID.1:ECX.SSE4_1[bit 19] = 1

• CPUID.1:ECX.SSE4_2[bit 20] = 1
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To use POPCNT instruction, software must check CPUID.1:ECX.POPCNT[bit 23] = 1

12.1.3 Checking for Support for the FXSAVE and FXRSTOR 
Instructions

A separate check must be made to insure that the processor supports FXSAVE and 
FXRSTOR. Make sure:

• CPUID.1:EDX.FXSR[bit 24] = 1 

12.1.4 Initialization of the SSE/SSE2/SSE3/SSSE3/SSE4 Extensions
The operating system or executive should carry out the following steps to set up 
SSE/SSE2/SSE3/SSSE3/SSE4 extensions for use by application programs:

1. Set CR4.OSFXSR[bit 9] = 1. Setting this flag assumes that the operating system 
provides facilities for saving and restoring SSE/SSE2/SSE3/SSSE3/SSE4 states 
using FXSAVE and FXRSTOR instructions. These instructions are commonly used 
to save the SSE/SSE2/SSE3/SSSE3/SSE4 state during task switches and when 
invoking the SIMD floating-point exception (#XM) handler (see Section 12.4, 
“Saving the SSE/SSE2/SSE3/SSSE3/SSE4 State on Task or Context Switches,” 
and Section 12.1.6, “Providing an Handler for the SIMD Floating-Point Exception 
(#XM),” respectively).  
 
If the processor does not support the FXSAVE and FXRSTOR instructions, 
attempting to set the OSFXSR flag will cause an exception (#GP) to be 
generated.

2. Set CR4.OSXMMEXCPT[bit 10] = 1. Setting this flag assumes that the operating 
system provides an SIMD floating-point exception (#XM) handler (see Section 
12.1.6, “Providing an Handler for the SIMD Floating-Point Exception (#XM)”). 

NOTE
The OSFXSR and OSXMMEXCPT bits in control register CR4 must be 
set by the operating system. The processor has no other way of 
detecting operating-system support for the FXSAVE and FXRSTOR 
instructions or for handling SIMD floating-point exceptions.

3. Clear CR0.EM[bit 2] = 0. This action disables emulation of the x87 FPU, which is 
required when executing SSE/SSE2/SSE3/SSSE3/SSE4 instructions (see Section 
2.5, “Control Registers”).

4. Set CR0.MP[bit 1] = 1. This setting is the required setting for Intel 64 and IA-32 
processors that support the SSE/SSE2/SSE3/SSSE3/SSE4 extensions (see 
Section 8.2.1, “Configuring the x87 FPU Environment”).

Table 12-1 and Table 12-2 show the actions of the processor when an 
SSE/SSE2/SSE3/SSSE3/SSE4 instruction is executed, depending on the: 
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• OSFXSR and OSXMMEXCPT flags in control register CR4

• SSE/SSE2/SSE3/SSSE3/SSE4 feature flags returned by CPUID

• EM, MP, and TS flags in control register CR0

Table 12-1.  Action Taken for Combinations of OSFXSR, OSXMMEXCPT, SSE, SSE2, 
SSE3, EM, MP, and TS1

CR4 CPUID CR0 Flags

OSFXSR OSXMMEXCPT SSE, 
SSE2, 
SSE32

SSE4_13

EM MP 4 TS Action

0 X5 X X 1 X #UD exception.

1 X 0 X 1 X #UD exception.

1 X 1 1 1 X #UD exception.

1 0 1 0 1 0 Execute instruction; #UD exception 
if unmasked SIMD floating-point 
exception is detected.

1 1 1 0 1 0 Execute instruction; #XM exception 
if unmasked SIMD floating-point 
exception is detected.

1 X 1 0 1 1 #NM exception.

NOTES:
1. For execution of any SSE/SSE2/SSE3 instruction except the PAUSE, PREFETCHh, SFENCE, 

LFENCE, MFENCE, MOVNTI, and CLFLUSH instructions.
2. Exception conditions due to CR4.OSFXSR or CR4.OSXMMEXCPT do not apply to FISTTP.
3. Only applies to DPPS, DPPD, ROUNDPS, ROUNDPD, ROUNDSS, ROUNDSD.
4. For processors that support the MMX instructions, the MP flag should be set.
5. X — Don’t care.
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The SIMD floating-point exception mask bits (bits 7 through 12), the flush-to-zero 
flag (bit 15), the denormals-are-zero flag (bit 6), and the rounding control field (bits 
13 and 14) in the MXCSR register should be left in their default values of 0. This 
permits the application to determine how these features are to be used.

12.1.5 Providing Non-Numeric Exception Handlers for Exceptions 
Generated by the SSE/SSE2/SSE3/SSSE3/SSE4 Instructions

SSE/SSE2/SSE3/SSSE3/SSE4 instructions can generate the same type of memory 
access exceptions (such as, page fault, segment not present, and limit violations) 
and other non-numeric exceptions as other Intel 64 and IA-32 architecture instruc-
tions generate. 

Ordinarily, existing exception handlers can handle these and other non-numeric 
exceptions without code modification. However, depending on the mechanisms used 
in existing exception handlers, some modifications might need to be made.

The SSE/SSE2/SSE3/SSSE3/SSE4 extensions can generate the non-numeric excep-
tions listed below:

• Memory Access Exceptions:

— Invalid opcode (#UD).

— Stack-segment fault (#SS).

— General protection (#GP). Executing most SSE/SSE2/SSE3 instructions with 
an unaligned 128-bit memory reference generates a general-protection 
exception. (The MOVUPS and MOVUPD instructions allow unaligned a loads or 
stores of 128-bit memory locations, without generating a general-protection 
exception.) A 128-bit reference within the stack segment that is not aligned 

Table 12-2.  Action Taken for Combinations of OSFXSR, SSSE3, SSE4, EM, and TS  

CR4 CPUID CR0 Flags

OSFXSR SSSE3
SSE4_1*
SSE4_2**

EM TS Action

0 X*** X X #UD exception.

1 0 X X #UD exception.

1 1 1 X #UD exception.

1 1 0 1 #NM exception.

NOTES:
* Applies to SSE4_1 instructions except DPPS, DPPD, ROUNDPS, ROUNDPD, ROUNDSS, ROUNDSD.
** Applies to SSE4_2 instructions except CRC32 and POPCNT.
***X — Don’t care.
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to a 16-byte boundary will also generate a general-protection exception, 
instead a stack-segment fault exception (#SS).

— Page fault (#PF).

— Alignment check (#AC). When enabled, this type of alignment check 
operates on operands that are less than 128-bits in size: 16-bit, 32-bit, and 
64-bit. To enable the generation of alignment check exceptions, do the 
following:

• Set the AM flag (bit 18 of control register CR0)

• Set the AC flag (bit 18 of the EFLAGS register)

• CPL must be 3

If alignment check exceptions are enabled, 16-bit, 32-bit, and 64-bit 
misalignment will be detected for the MOVUPD and MOVUPS instructions; 
detection of 128-bit misalignment is not guaranteed and may vary with 
implementation.

• System Exceptions:

— Invalid-opcode exception (#UD). This exception is generated when executing 
SSE/SSE2/SSE3/SSSE3 instructions under the following conditions:

• SSE/SSE2/SSE3/SSSE3/SSE4_1/SSE4_2 feature flags returned by 
CPUID are set to 0. This condition does not affect the CLFLUSH 
instruction, nor POPCNT.

• The CLFSH feature flag returned by the CPUID instruction is set to 0. This 
exception condition only pertains to the execution of the CLFLUSH 
instruction. 

• The POPCNT feature flag returned by the CPUID instruction is set to 0. 
This exception condition only pertains to the execution of the POPCNT 
instruction. 

• The EM flag (bit 2) in control register CR0 is set to 1, regardless of the 
value of TS flag (bit 3) of CR0. This condition does not affect the PAUSE, 
PREFETCHh, MOVNTI, SFENCE, LFENCE, MFENSE, CLFLUSH, CRC32 and 
POPCNT instructions.

• The OSFXSR flag (bit 9) in control register CR4 is set to 0. This condition 
does not affect the PAVGB, PAVGW, PEXTRW, PINSRW, PMAXSW, PMAXUB, 
PMINSW, PMINUB, PMOVMSKB, PMULHUW, PSADBW, PSHUFW, 
MASKMOVQ, MOVNTQ, MOVNTI, PAUSE, PREFETCHh, SFENCE, LFENCE, 
MFENCE, CLFLUSH, CRC32 and POPCNT instructions.

• Executing a instruction that causes a SIMD floating-point exception when 
the OSXMMEXCPT flag (bit 10) in control register CR4 is set to 0. See 
Section 12.5.1, “Using the TS Flag to Control the Saving of the x87 FPU, 
MMX, SSE, SSE2, SSE3 SSSE3 and SSE4 State.”
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— Device not available (#NM). This exception is generated by executing a 
SSE/SSE2/SSE3/SSSE3/SSE4 instruction when the TS flag (bit 3) of CR0 is 
set to 1.

Other exceptions can occur indirectly due to faulty execution of the above 
exceptions.

12.1.6 Providing an Handler for the SIMD Floating-Point Exception 
(#XM)

SSE/SSE2/SSE3/SSSE3/SSE4 instructions do not generate numeric exceptions on 
packed integer operations. They can generate the following numeric (SIMD floating-
point) exceptions on packed and scalar single-precision and double-precision 
floating-point operations. 

• Invalid operation (#I)

• Divide-by-zero (#Z)

• Denormal operand (#D)

• Numeric overflow (#O)

• Numeric underflow (#U)

• Inexact result (Precision) (#P)

These SIMD floating-point exceptions (with the exception of the denormal operand 
exception) are defined in the IEEE Standard 754 for Binary Floating-Point Arithmetic 
and represent the same conditions that cause x87 FPU floating-point error excep-
tions (#MF) to be generated for x87 FPU instructions.

Each of these exceptions can be masked, in which case the processor returns a 
reasonable result to the destination operand without invoking an exception handler. 
However, if any of these exceptions are left unmasked, detection of the exception 
condition results in a SIMD floating-point exception (#XM) being generated. See 
Chapter 5, “Interrupt 19—SIMD Floating-Point Exception (#XM).”

To handle unmasked SIMD floating-point exceptions, the operating system or execu-
tive must provide an exception handler. The section titled “SSE and SSE2 SIMD 
Floating-Point Exceptions” in Chapter 11, “Programming with Streaming SIMD 
Extensions 2 (SSE2),” of the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 1, describes the SIMD floating-point exception classes and gives 
suggestions for writing an exception handler to handle them.

To indicate that the operating system provides a handler for SIMD floating-point 
exceptions (#XM), the OSXMMEXCPT flag (bit 10) must be set in control register 
CR0.
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12.1.6.1  Numeric Error flag and IGNNE#
SSE/SSE2/SSE3/SSE4 extensions ignore the NE flag in control register CR0 (that is, 
treats it as if it were always set) and the IGNNE# pin. When an unmasked SIMD 
floating-point exception is detected, it is always reported by generating a SIMD 
floating-point exception (#XM).

12.2 EMULATION OF SSE/SSE2/SSE3/SSSE3/SSE4 
EXTENSIONS 

The Intel 64 and IA-32 architecture does not support emulation of the 
SSE/SSE2/SSE3/SSSE3/SSE4 instructions, as they do for x87 FPU instructions.

The EM flag in control register CR0 (provided to invoke emulation of x87 FPU instruc-
tions) cannot be used to invoke emulation of SSE/SSE2/SSE3/SSSE3/SSE4 instruc-
tions. If an SSE/SSE2/SSE3/SSSE3/SSE4 instruction is executed when CR0.EM = 1, 
an invalid opcode exception (#UD) is generated. See Table 12-1.

12.3 SAVING AND RESTORING THE 
SSE/SSE2/SSE3/SSSE3/SSE4 STATE

The SSE/SSE2/SSE3/SSSE3/SSE4 state consists of the state of the XMM and MXCSR 
registers. The recommended method for saving and restoring this state follows:

• Execute an FXSAVE instruction to save the state of the XMM and MXCSR registers 
to memory.

• Execute an FXRSTOR instruction to restore the state of the XMM and MXCSR 
registers from the image saved in memory by the FXSAVE instruction.

This save and restore method is required for all operating systems. See Section 12.5, 
“Designing OS Facilities for AUTOMATICALLY Saving x87 FPU, MMX, and 
SSE/SSE2/SSE3/SSSE3/SSE4 state on Task or Context Switches.”

In some cases, applications can only save the XMM and MXCSR registers in the 
following way:

• Execute MOVDQ instructions to save the contents of each XMM registers to 
memory. 

• Execute a STMXCSR instruction to save the state of the MXCSR register to 
memory.

In some cases, applications can only restore the XMM and MXCSR registers in the 
following way:

• Execute MOVDQ instructions to read the saved contents of each XMM registers 
from memory to XMM registers.
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• Execute a LDMXCSR instruction to restore the state of the MXCSR register from 
memory.

12.4 SAVING THE SSE/SSE2/SSE3/SSSE3/SSE4 STATE ON 
TASK OR CONTEXT SWITCHES

When switching from one task or context to another, it is often necessary to save the 
SSE/SSE2/SSE3/SSSE3/SSE4 state. FXSAVE and FXRSTOR instructions provide a 
simple method for saving and restoring this state. See Section 12.3, “Saving and 
Restoring the SSE/SSE2/SSE3/SSSE3/SSE4 State.” These instructions offer the 
added benefit of saving x87 FPU and MMX state as well. 

Guidelines for writing such procedures are in Section 12.5, “Designing OS Facilities 
for AUTOMATICALLY Saving x87 FPU, MMX, and SSE/SSE2/SSE3/SSSE3/SSE4 state 
on Task or Context Switches.”

12.5 DESIGNING OS FACILITIES FOR AUTOMATICALLY 
SAVING X87 FPU, MMX, AND 
SSE/SSE2/SSE3/SSSE3/SSE4 STATE ON TASK OR 
CONTEXT SWITCHES

The x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 state consist of the state of the x87 
FPU, MMX, XMM, and MXCSR registers. The FXSAVE and FXRSTOR instructions 
provide a fast method for saving ad restoring this state. If task or context switching 
facilities are already implemented in an operating system or executive and they use 
FSAVE/FNSAVE and FRSTOR to save the x87 FPU and MMX state, these facilities can 
be extended to save and restore SSE/SSE2/SSE3/SSSE3/SSE4 state by substituting 
FXSAVE/FXRSTOR for FSAVE/FNSAVE and FRSTOR. 

Where task or content switching facilities must be written from scratch, several 
approaches can be taken for using the FXSAVE and FXRSTOR instructions to save and 
restore x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 state:

• The operating system can require applications that are intended be run as tasks 
take responsibility for saving the state of the x87 FPU, MMX, XMM, and MXCSR 
registers prior to a task suspension during a task switch and for restoring the 
registers when the task is resumed. This approach is appropriate for cooperative 
multitasking operating systems, where the application has control over (or is able 
to determine) when a task switch is about to occur and can save state prior to the 
task switch.

• The operating system can take the responsibility for automatically saving the x87 
FPU, MMX, XMM, and MXCSR registers as part of the task switch process (using 
an FXSAVE instruction) and automatically restoring the state of the registers 
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when a suspended task is resumed (using an FXRSTOR instruction). Here, the 
x87 FPU/MMX/SSE/SSE2/SSE3/SSE4 state must be saved as part of the task 
state. This approach is appropriate for preemptive multitasking operating 
systems, where the application cannot know when it is going to be preempted 
and cannot prepare in advance for task switching. Here, the operating system is 
responsible for saving and restoring the task and the x87 
FPU/MMX/SSE/SSE2/SSE3 state when necessary.

• The operating system can take the responsibility for saving the x87 FPU, MMX, 
XMM, and MXCSR registers as part of the task switch process, but delay the 
saving of the MMX and x87 FPU state until an x87 FPU, MMX, or 
SSE/SSE2/SSE3/SSSE3/SSE4 instruction is actually executed by the new task. 
Using this approach, the x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 state is 
saved only if an x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction needs 
to be executed in the new task. (See Section 12.5.1, “Using the TS Flag to 
Control the Saving of the x87 FPU, MMX, SSE, SSE2, SSE3 SSSE3 and SSE4 
State,” for more information.)

12.5.1 Using the TS Flag to Control the Saving of the 
x87 FPU, MMX, SSE, SSE2, SSE3 SSSE3 and SSE4 State

Saving the x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 state using FXSAVE requires 
processor overhead. If the new task does not access x87 FPU, MMX, XMM, and 
MXCSR registers, avoid overhead by not automatically saving the state on a task 
switch.

The TS flag in control register CR0 is provided to allow the operating system to delay 
saving the x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 state until an instruction 
that actually accesses this state is encountered in a new task. When the TS flag is 
set, the processor monitors the instruction stream for an x87 
FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction. When the processor detects 
one of these instructions, it raises a device-not-available exception (#NM) prior to 
executing the instruction. The device-not-available exception handler can then be 
used to save the x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 state for the previous 
task (using an FXSAVE instruction) and load the x87 
FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 state for the current task (using an 
FXRSTOR instruction). If the task never encounters an x87 
FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction, the device-not-available excep-
tion will not be raised and a task state will not be saved unnecessarily.

NOTE
The CRC32 and POPCNT instructions do not operate on the x87 
FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 state. They operate on the 
general-purpose registers and are not involved in the OS’s lazy 
FXSAVE/FXRSTOR technique. 
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The TS flag can be set either explicitly (by executing a MOV instruction to control 
register CR0) or implicitly (using the IA-32 architecture’s native task switching mech-
anism). When the native task switching mechanism is used, the processor automati-
cally sets the TS flag on a task switch. After the device-not-available handler has 
saved the x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 state, it should execute the 
CLTS instruction to clear the TS flag.

Figure 12-1 gives an example of an operating system that implements x87 
FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 state saving using the TS flag. In this 
example, task A is the currently running task and task B is the new task. The oper-
ating system maintains a save area for the x87 
FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 state for each task and defines a variable 
(x87_MMX_SSE_SSE2_SSE3_StateOwner) that indicates the task that “owns” the 
state. In this example, task A is the current owner.

On a task switch, the operating system task switching code must execute the 
following pseudo-code to set the TS flag according to the current owner of the x87 
FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 state. If the new task (task B in this 
example) is not the current owner of this state, the TS flag is set to 1; otherwise, it is 
set to 0.

IF Task_Being_Switched_To ≠ x87FPU_MMX_XMM_MXCSR_StateOwner
    THEN 
        CR0.TS ← 1;
    ELSE
        CR0.TS ← 0;
FI;

Figure 12-1.  Example of Saving the x87 FPU, MMX, SSE, SSE2, SSE3, and SSSE3 
State During an Operating-System Controlled Task Switch
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If a new task attempts to access an x87 FPU, MMX, XMM, or MXCSR register while the 
TS flag is set to 1, a device-not-available exception (#NM) is generated. The device-
not-available exception handler executes the following pseudo-code.

FXSAVE “To x87FPU/MMX/XMM/MXCSR State Save Area for Current 
x87FPU_MMX_XMM_MXCSR_StateOwner”;

FXRSTOR “x87FPU/MMX/XMM/MXCSR State From Current Task’s
x87FPU/MMX/XMM/MXCSR State Save Area”;

x87FPU_MMX_XMM_MXCSR_StateOwner ← Current_Task;
CR0.TS ← 0;

This exception handler code performs the following tasks:

• Saves the x87 FPU, MMX, XMM, or MXCSR registers in the state save area for the 
current owner of the x87 FPU/MMX/XMM/MXCSR state.

• Restores the x87 FPU, MMX, XMM, or MXCSR registers from the new task’s save 
area for the x87 FPU/MMX/XMM/MXCSR state.

• Updates the current x87 FPU/MMX/XMM/MXCSR state owner to be the current 
task.

• Clears the TS flag. 

12.6 XSAVE/XRSTOR AND PROCESSOR EXTENDED STATE 
MANAGEMENT 

The features associated with managing processor extended states include 

• An extensible data layout for existing and future processor state extensions. The 
layout of the XSAVE/XRSTOR area extends from the 512-byte FXSAVE/FXRSTOR 
layout to provide compatibility and migration path from managing the legacy 
FXSAVE/FXRSTOR area. Specifically, the XSAVE/XRSTOR area layout consists of:

— The FXSAVE/FXRSTOR area (512 bytes, the layout is identical to the 
FXSAVE/FXRSTOR area),

— The XSAVE header area (64 bytes),

— A finite set of save areas, each corresponding to a processor extended state 
(see Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2B, XSAVE instruction). The number of save areas, the offset and the 
size of each save area is enumerated by CPUID leaf function 0DH.

• CPUID Enhancement: CPUID instruction provides information on 

— CPUID.01H.ECX.XSAVE[bit 26]. A feature flag indicating the processor’s 
support of XSAVE/XRSTOR architecture extensions

— CPUID.01H.ECX.OSXSAVE[bit 27]. A feature flag indicating whether OS has 
enabled extensible state management and communicating that the OS 
supports processor extended state management.
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— CPUID leaf function 0DH enumerates the list of processor states (including 
legacy x87 FPU, SSE states and processor extended states), the offset and 
size of individual save area for each processor extended state.

• Control register enhancement and dedicated register for enabling each processor 
extended state: CR4. OSXSAVE[bit 18] and the XFEATURE_ENABLED_MASK 
register (XCR0) are described in Chapter 2, “System Architecture Overview”. 
XCR0 can be read at all privilege levels but written only at ring 0. 

• Instructions to manage the XFEATURE_ENABLED_MASK register (XCR0) and the 
XSAVE/XRSTOR area (see Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 2B):

— XGETBV: reads XCR0.

— XSETBV: writes to XCR0, ring 0 only.

— XRSTOR: restores from memory the processor states specified by a bit vector 
mask specified in EDX:EAX.

— XSAVE: saves the current processor states to memory according to a bit 
vector mask in EDX:EAX.

12.6.1 XSAVE Header 
The header section includes a “XSTATE_BV“ bit vector field. If the value of a bit in 
HEADER.XSTATE_BV is 1, it indicates that the corresponding processor extended 
state was written to the respective save area in memory by the XSAVE instruction.

If software modifies the save area image of a particular processor state component 
directly, it is responsible to update the corresponding bit in HEADER.XSTATE_BV to 1. 
Otherwise, directly modified state information in a save area image may be ignored 
by XRSTOR. 

The order of bit vectors in XSTATE_BV matches those of the 
XFEATURE_ENABLED_MASK register (XCR0). Although XCR0 has only two bits 
initially defined for state management, the general relationship between the value of 
XSTATE_BV and the corresponding processor state in the XSAVE/XRSTOR layout is 
depicted in Figure 12-2. 
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The XSAVE header is 64 bytes in length and must be aligned on 64 byte boundary. 
Therefore, the XSAVE/XRSTOR region must be aligned on 64-byte boundary. The 
format of the header is as follows (see Table 12-3):

The value of each bit in HEADER.XSTATE_BV may affect the action performed by 
XRSTOR, depending on the logical value of the respective bits in the 
XFEATURE_ENABLED_MASK register (XCR0), the restore bit mask (EDX:EAX input to 
XRSTOR), and HEADER.XSTATE_BV.  When an XRSTOR instruction is executed with a 
restore bit mask selecting the i’th bit vector (and the corresponding XCR0 bit is 

Figure 12-2.  Future Layout of XSAVE/XRSTOR Area and XSTATE_BV with Five Sets 
of Processor State Extensions

Table 12-3.  XSAVE Header Format
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enabled), a value of "1" in the corresponding bit of HEADER.XSTATE_BV causes the 
processor state to be updated with contents of the save area read from the memory 
image.  A value of "0" in HEADER.XSTATE_BV causes the processor state to be initial-
ized by hardware supplied values instead of from memory (See the operation detail 
of XRSTOR in Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2B).  

The save area image corresponding to a bit with "0" value in HEADER.XSTATE_BV 
may or may not contain the correct state information. XRSTOR will ensure the 
register state for a component is properly initialized  regardless of the value of the 
save area when the component header bit is zero.

12.7 INTEROPERABILITY OF XSAVE/XRSTOR AND 
FXSAVE/FXRSTOR

FXSAVE instruction writes x87 FPU and SSE state information to a 512-byte FXSAVE, 
FXRSTOR save area. FXRSTOR restores the processor’s x87 FPU and SSE states from 
FXSAVE/FXRSTOR save area image. XSAVE/XRSTOR instructions support x87 FPU 
and SSE states using the same layout as the FXSAVE/FXRSTOR area to provide 
interoperability of FXSAVE versus XSAVE, and FXRSTOR versus XRSTOR. 
XSAVE/XRSTOR provides the additional flexibility for system software to manage SSE 
state independent of x87 FPU states. Thus system software that had been using 
FXSAVE/FXRSTOR to manage x87 FPU and SSE states can transition to 
XSAVE/XRSTOR to manage x87 FPU, SSE and other processor extended states in a 
systematic and forward-looking manner. 

It is also possible for system software to adopt an alternate approach of using 
FXSAVE/FXRSTOR for x87 and SSE state management, and implementing forward 
processor extended state management using XSAVE/XRSTOR. In this case, system 
software must specify the bit vector mask in EDX:EAX appropriately when executing 
XSAVE/XRSTOR instructions. 

For instance, when using the XSAVE instruction, the OS can supply a bit vector in 
EDX:EAX with the two least significant bits corresponding to x87 FPU and SSE state 
equal to 0.  Then, the XSAVE instruction will not write the processor’s x87 FPU and 
SSE state into memory.  Similarly for the XRSTOR instruction a bit vector mask in 
EDX:EAX with the least two significant bit equal to 0 will cause the XRSTOR instruc-
tion to not restore nor initialize the processor’s x87 FPU and SSE state.

The processor’s action as a result of executing XRSTOR, on the x87 FPU state, 
MXCSR, and XMM registers, are listed in Table 12-4 (Both bit 1 and bit 0 of the 
XFEATURE_ENABLED_MASK register are presumed to be 1). The x87 FPU or XMM 
registers may be initialized by the processor (See XRSTOR operation in Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 2B). When the MXCSR 
register is updated from memory, reserved bit checking is enforced. The 
saving/restoring of MXCSR is bound to the SSE state, independent of the x87 FPU 
state. The action of XSAVE is listed in Table 12-5.
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XSAVE, XRSTOR instructions operating on FP or SSE state will cause a #NM Device 
Not Available) exception, if CR0.TS is set.  Using this feature, system software can 
implement the “lazy restore” technique of managing x87 FPU/SSE state using either 
FXSAVE/FXRSTOR or XSAVE/XRSTOR. It can be accomplished even with the inter-
mixing of FXSAVE and XSAVE instructions.

Table 12-4.  XRSTOR Action on MXCSR, x87 FPU, XMM Register 

EDX:EAX XSTATE_BV MXCSR XMM Registers x87 FPU State

Bit 1 Bit 0 Bit 1 Bit 0

0 0 X X None None None

0 1 X 0 None None Init by processor

0 1 X 1 None None Load 

1 0 0 X Load/Check Init by processor None

1 0 1 X Load/Check Load None

1 1 0 0 Load/Check Init by processor Init by processor

1 1 0 1 Load/Check Init by processor Load

1 1 1 0 Load/Check Load Init by processor

1 1 1 1 Load/Check Load Load

Table 12-5.  XSAVE Action on MXCSR, x87 FPU, XMM Register 

EDX:EAX XCR01

NOTES:
1. XCR0 is the XFEATURE_ENABLED_MASK register. Note that attempts to set XCR0[0] to 0 cause 

#GP.

MXCSR XMM Registers x87 FPU State

Bit 1 Bit 0 Bit 1 Bit 0

0 0 X 1 None None None

0 1 X 1 None None Store 

1 0 0 1 None None None

1 0 1 1 Store Store None

1 1 0 1 None None Store

1 1 1 1 Store Store Store
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12.8 DETECTION, ENUMERATION, ENABLING PROCESSOR 
EXTENDED STATE SUPPORT

An OS can determine if the XSAVE/XRSTOR/XGETBV/XSETBV instructions and the 
XFEATURE_ENABLED_MASK register (XCR0) are available in the processor by 
checking the value of CPUID.1.ECX.XSAVE to be 1. The OS must set CR4.OSXSAVE to 
1 to enable the new instructions. The OS uses XSETBV to enable the processor state 
component (setting the corresponding bit in XCR0 to 1) that it will manage using 
XSAVE/XRSTOR. Bit 0 of XCR0 must be set to 1. The value of CR4.OSXSAVE is 
reflected in CPUID.01H:ECX.OSXSAVE (bit 27) to communicate the setting to non-
privileged software.

The bits that must be enabled in the XFEATURE_ENABLED_MASK register (XCR0) 
and the size of the memory region needed to save processor extended state informa-
tion must be enumerated by CPUID leaf 0DH with ECX = 0 as input. However, the 
recommended usage by system software to use XSAVE/XRSTOR is to:

• Allocate a memory buffer according to the size reported by CPUID.(EAX=0DH, 
ECX=0H):ECX. The value reported by CPUID.(EAX=0DH, ECX=0H):ECX always 
includes the size of the header. Clear the entire buffer prior to being used by 
XSAVE.

• Provide EDX:EAX with all bits set to 1 for XSAVE and XRSTOR instructions.

An alternative approach is to read the master bit vector mask EDX:EAX reported by 
CPUID.(EAX=0D, ECX=0H). This mask may be used as input to the XSAVE/XRSTOR 

Figure 12-3.  OS Enabling of Processor Extended State Support
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instructions, and provides a more constrained list of features than using all 1's in the 
save mask.

The advantage of using a mask value of all-bits-set-to-1 for XSAVE/XRSTOR is that it 
can simplify system software’s support for processor extended state management, 
when multiple generations of hardware may support different number of processor 
extended states as reported by CPUID. However, there may be additional implemen-
tation requirement of software modification that may arise due to a particular system 
software or specific details introduced by a new processor extended state. 

12.8.1 Application Programming Model and Processor Extended 
States

New instruction set extensions may be introduced over time and operating on a 
processor extended state that must be enabled in the XFEATURE_ENABLED_MASK 
register (XCR0). The general application programming model for using such instruc-
tion set extensions are:

• Check if OS has enabled processor extended state management. This requires 
two elements

— If CPUID.01H:ECX.XSAVE is 1: XSAVE/XRSTOR/XSETBV/XGETBV instruc-
tions and the XFEATURE_ENABLED_MASK register are supported by the 
processor.

— If CPUID.01H:ECX.OSXSAVE is 1: OS has enabled its support for processor 
extended state management.

At an application level, application do not need to check the value of 
CPUID.01H:ECX.XSAVE because “CPUID.01H:ECX.OSXSAVE = 1” implies OS has 
successfully verified CPUID.01H:ECX.XSAVE = 1.

• Check whether the processor extended state component associated with a given 
instruction set extension is enabled by the OS. The bits of EDX:EAX returned by 
XGETBV as 1 indicate which processor extended state components have been 
enabled by OS. Note, the CR4.OSFXSR is not used by OS to enable instruction 
extensions requiring processor extended state support.

• Check the target instruction set extension is supported in the processor. Each 
new instruction set extension is expected to provide a feature flag in CPUID when 
it is introduced. 
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If all three requirements are met, applications can use the target new instruction set 
extensions. If any of the above requirements are not met, an attempt to execute an 
instruction operating on a processor extended state corresponding to bit offset 
higher than 1 in the XFEATURE_ENABLED_MASK register (XCR0) will cause a #UD 
exception. 

Newer instruction extensions operating on SSE state, but not on any processor 
extended states corresponding bits in XCR0 with an offset higher than 1, follow the 
programming model described by Section 12.1 through Section 12.5. XCR0 is not 
required to enable OS support for SSE state management, but CR4.OSFXSR is 
required. 

Figure 12-4.  Application Detection of New Instruction Extensions and Processor 
Extended State
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CHAPTER 13
POWER AND THERMAL MANAGEMENT

This chapter describes facilities of Intel 64 and IA-32 architecture used for power 
management and thermal monitoring.

13.1 ENHANCED INTEL SPEEDSTEP® TECHNOLOGY
Enhanced Intel SpeedStep® Technology was introduced in the Pentium M processor; 
it is available in Pentium 4, Intel Xeon, Intel® Core™ Solo, Intel® Core™ Duo, and 
Intel® Core™2 Duo processors. The technology manages processor power consump-
tion using performance state transitions. These states are defined as discrete oper-
ating points associated with different frequencies. 

Enhanced Intel SpeedStep Technology differs from previous generations of Intel 
SpeedStep Technology in two ways:

• Centralization of the control mechanism and software interface in the processor 
by using model-specific registers.

• Reduced hardware overhead; this permits more frequent performance state 
transitions.

Previous generations of the Intel SpeedStep Technology require processors to be a 
deep sleep state, holding off bus master transfers for the duration of a performance 
state transition. Performance state transitions under the Enhanced Intel SpeedStep 
Technology are discrete transitions to a new target frequency.

Support is indicated by CPUID, using ECX feature bit 07. Enhanced Intel SpeedStep 
Technology is enabled by setting IA32_MISC_ENABLE MSR, bit 16. On reset, bit 16 of 
IA32_MISC_ENABLE MSR is cleared. 

13.1.1 Software Interface For Initiating Performance State 
Transitions

State transitions are initiated by writing a 16-bit value to the IA32_PERF_CTL 
register, see Figure 13-2. If a transition is already in progress, transition to a new 
value will subsequently take effect. 

Reads of IA32_PERF_CTL determine the last targeted operating point. The current 
operating point can be read from IA32_PERF_STATUS. IA32_PERF_STATUS is 
updated dynamically.

The 16-bit encoding that defines valid operating points is model-specific. Applications 
and performance tools are not expected to use either IA32_PERF_CTL or 
IA32_PERF_STATUS and should treat both as reserved. Performance monitoring 
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tools can access model-specific events and report the occurrences of state 
transitions.

13.2 P-STATE HARDWARE COORDINATION
The Advanced Configuration and Power Interface (ACPI) defines performance states 
(P-state) that are used facilitate system software’s ability to manage processor 
power consumption. Different P-state correspond to different performance levels 
that are applied while the processor is actively executing instructions. Enhanced Intel 
SpeedStep Technology supports P-state by providing software interfaces that control 
the operating frequency and voltage of a processor. 

With multiple processor cores residing in the same physical package, hardware 
dependencies may exist for a subset of logical processors on a platform. These 
dependencies may impose requirements that impact coordination of P-state transi-
tions. As a result, multi-core processors may require an OS to provide additional soft-
ware support for coordinating P-state transitions for those subsets of logical 
processors.

A BIOS (following ACPI 3.0 specification) can choose to expose P-state as dependent 
and hardware-coordinated to OS power management (OSPM) policy. To support 
OSPMs, multi-core processors must have additional built-in support for P-state hard-
ware coordination and feedback.

Intel 64 and IA-32 processors with dependent P-state amongst a subset of logical 
processors permit hardware coordination of P-state and provide a hardware-coordi-
nation feedback mechanism using IA32_MPERF MSR and IA32_APERF MSR. See 
Figure 13-1 for an overview of the two 64-bit MSRs and the bullets below for a 
detailed description:

• Use CPUID to check the P-State hardware coordination feedback capability bit. 
CPUID.06H.ECX[Bit 0] = 1 indicates IA32_MPERF MSR and IA32_APERF MSR are 
present.

• IA32_MPERF MSR (0xE7) increments in proportion to a fixed frequency, which is 
configured when the processor is booted.

Figure 13-1.  IA32_MPERF MSR and IA32_APERF MSR for P-state Coordination
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• IA32_APERF MSR (0xE8) increments in proportion to actual performance, while 
accounting for hardware coordination of P-state and TM1/TM2; or software 
initiated throttling.

• The MSRs are per logical processor; they measure performance only when the 
targeted processor is in the C0 state.

• Only the IA32_APERF/IA32_MPERF ratio is architecturally defined; software 
should not attach meaning to the content of the individual of IA32_APERF or 
IA32_MPERF MSRs.

• When either MSR overflows, both MSRs are reset to zero and continue to 
increment.

• Both MSRs are full 64-bits counters. Each MSR can be written to independently. 
However, software should follow the guidelines illustrated in Example 13-1.

If P-states are exposed by the BIOS as hardware coordinated, software is expected 
to confirm processor support for P-state hardware coordination feedback and use the 
feedback mechanism to make P-state decisions. The OSPM is expected to either save 
away the current MSR values (for determination of the delta of the counter ratio at a 
later time) or reset both MSRs (execute WRMSR with 0 to these MSRs individually) at 
the start of the time window used for making the P-state decision. When not reset-
ting the values, overflow of the MSRs can be detected by checking whether the new 
values read are less than the previously saved values. 

Example 13-1 demonstrates steps for using the hardware feedback mechanism 
provided by IA32_APERF MSR and IA32_MPERF MSR to determine a target P-state.

Example 13-1.  Determine Target P-state From Hardware Coordinated Feedback

DWORD PercentBusy; // Percentage of processor time not idle.
// Measure “PercentBusy“ during previous sampling window.
// Typically, “PercentBusy“ is measure over a time scale suitable for
// power management decisions
// 
// RDMSR of MCNT and ACNT should be performed without delay.
// Software needs to exercise care to avoid delays between 
// the two RDMSRs (for example, interrupts).
MCNT = RDMSR(IA32_MPERF);
ACNT = RDMSR(IA32_APERF);

// PercentPerformance indicates the percentage of the processor
// that is in use. The calculation is based on the PercentBusy, 
// that is the percentage of processor time not idle and the P-state
// hardware coordinated feedback using the ACNT/MCNT ratio.
// Note that both values need to be calculated over the same 
// time window. 

PercentPerformance = PercentBusy * (ACNT/MCNT);
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// This example does not cover the additional logic or algorithms
//  necessary to coordinate multiple logical processors to a target P-state.

TargetPstate = FindPstate(PercentPerformance);

if (TargetPstate != currentPstate) {
SetPState(TargetPstate);

} 
WRMSR(IA32_MPERF, 0);
WRMSR(IA32_APERF, 0);

13.3 SYSTEM SOFTWARE CONSIDERATIONS AND 
OPPORTUNISTIC PROCESSOR PERFORMANCE 
OPERATION

An Intel 64 processor may support a form of processor operation that takes advan-
tage of design headroom to opportunistically increase performance. 

13.3.1 Intel Dynamic Acceleration
Intel Core 2 Duo processor T 7700 introduces Intel Dynamic Acceleration (IDA). IDA 
takes advantage of thermal design headroom and opportunistically allows a single 
core to operate at a higher performance level when the operating system requests 
increased performance. 

13.3.2 System Software Interfaces for Opportunistic Processor 
Performance Operation

Opportunistic processor operation, such as Intel Dynamic Acceleration, has the 
following characteristics:

• A transition from a normal state of operation (e.g. IDA disengaged) to a target 
state is not guaranteed, but may occur opportunistically after the corresponding 
enable mechanism is activated, the headroom is available and certain criteria are 
met.

• The opportunistic processor performance operation is generally transparent to 
most application software.

• System software (BIOS and Operating system) must be aware of hardware 
support for opportunistic processor performance operation and may need to 
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temporarily disengage opportunistic processor performance operation when it 
requires more predictable processor operation. 

• When opportunistic processor performance operation is engaged, the OS should 
use hardware coordination feedback mechanisms to prevent un-intended policy 
effects if it is activated during inappropriate situations.

13.3.2.1  Discover Hardware Support and Enabling of Opportunistic 
Processor Operation

If an Intel 64 processor has hardware support for opportunistic processor perfor-
mance operation, the power-on default state of IA32_MISC_ENABLES[38] indicates 
the presence of such hardware support. For Intel 64 processors that support oppor-
tunistic processor performance operation, the default value is 1, indicating its pres-
ence. For processors that do not support opportunistic processor performance 
operation, the default value is 0. The power-on default value of 
IA32_MISC_ENABLES[38] allows BIOS to detect the presence of hardware support of 
opportunistic processor performance operation. 

IA32_MISC_ENABLES[38] is shared across all logical processors in a physical 
package. It is written by BIOS during platform initiation to enable/disable opportu-
nistic processor operation in conjunction of OS power management capabilities, see 
Section 13.3.2.2. BIOS can set IA32_MISC_ENABLES[38] with 1 to disable opportu-
nistic processor performance operation; it must clear the default value of 
IA32_MISC_ENABLES[38] to 0 to enable opportunistic processor performance oper-
ation. OS and applications must use CPUID leaf 06H if it needs to detect processors 
that has opportunistic processor operation enabled.

When CPUID is executed with EAX = 06H on input, Bit 1 of EAX in Leaf 06H (i.e. 
CPUID.06H:EAX[1]) indicates opportunistic processor performance operation, such 
as IDA, has been enabled by BIOS. 

Opportunistic processor performance operation can be disabled by setting bit 38 of 
IA32_MISC_ENABLES. This mechanism is intended for BIOS only. If 
IA32_MISC_ENABLES[38] is set, CPUID.06H:EAX[1] will return 0. 

13.3.2.2  OS Control of Opportunistic Processor Performance Operation
There may be phases of software execution in which system software cannot tolerate 
the non-deterministic aspects of opportunistic processor performance operation. For 
example, when calibrating a real-time workload to make a CPU reservation request 
to the OS, it may be undesirable to allow the possibility of the processor delivering 
increased performance that cannot be sustained after the calibration phase. 

System software can temporarily disengage opportunistic processor performance 
operation by setting bit 32 of the IA32_PERF_CTL MSR (0199H), using a read-
modify-write sequence on the MSR. The opportunistic processor performance opera-
tion can be re-engaged by clearing bit 32 in IA32_PERF_CTL MSR, using a read-
modify-write sequence. The DISENAGE bit in IA32_PERF_CTL is not reflected in bit 
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32 of the IA32_PERF_STATUS MSR (0198H), and it is not shared between logical 
processors in a physical package. In order for OS to engage IDA, the BIOS must 

• enable opportunistic processor performance operation, as described in Section 
13.3.2.1,

• expose the operating points associated with IDA to the OS.

13.3.2.3  Required Changes to OS Power Management P-state Policy
Intel Dynamic Acceleration (IDA) can provide opportunistic performance greater 
than the performance level corresponding to the maximum qualified frequency of the 
processor (see CPUID’s brand string information). System software can use a pair of 
MSRs to observe performance feedback. Software must query for the presence of 
IA32_APERF and IA32_MPERF (see Section 13.2). The ratio between IA32_APERF 
and IA32_MPERF is architecturally defined and a value greater than unity indicates 
performance increase occurred during the observation period due to IDA. Without 
incorporating such performance feedback, the target P-state evaluation algorithm 
can result in a non-optimal P-state target. 

There are other scenarios under which OS power management may want to disable 
IDA, some of these are listed below:

• When engaging ACPI defined passive thermal management, it may be more 
effective to disable IDA for the duration of passive thermal management.

• When the user has indicated a policy preference of power savings over perfor-
mance, OS power management may want to disable IDA while that policy is in 
effect.

13.4 MWAIT EXTENSIONS FOR ADVANCED POWER 
MANAGEMENT

IA-32 processors may support a number of C-states1 that reduce power consumption 
for inactive states. Intel Core Solo and Intel Core Duo processors support both 

Figure 13-2.  IA32_PERF_CTL Register
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deeper C-state and MWAIT extensions that can be used by OS to implement power 
management policy.

Software should use CPUID to discover if a target processor supports the enumera-
tion of MWAIT extensions. If CPUID.05H.ECX[Bit 0] = 1, the target processor 
supports MWAIT extensions and their enumeration (see Chapter 3, “Instruction Set 
Reference, A-M,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2A).

If CPUID.05H.ECX[Bit 1] = 1, the target processor supports using interrupts as 
break-events for MWAIT, even when interrupts are disabled. Use this feature to 
measure C-state residency as follows:

• Software can write to bit 0 in the MWAIT Extensions register (ECX) when issuing 
an MWAIT to enter into a processor-specific C-state or sub C-state.

• When a processor comes out of an inactive C-state or sub C-state, software can 
read a timestamp before an interrupt service routine (ISR) is potentially 
executed. 

CPUID.05H.EDX allows software to enumerate processor-specific C-states and sub 
C-states available for use with MWAIT extensions. IA-32 processors may support 
more than one C-state of a given C-state type. These are called sub C-states. Numer-
ically higher C-state have higher power savings and latency (upon entering and 
exiting) than lower-numbered C-state. 

At CPL = 0, system software can specify desired C-state and sub C-state by using the 
MWAIT hints register (EAX). Processors will not go to C-state and sub C-state deeper 
than what is specified by the hint register. If CPL > 0 and if MONITOR/MWAIT is 
supported at CPL > 0, the processor will only enter C1-state (regardless of the 
C-state request in the hints register). 

Executing MWAIT generates an exception on processors operating at a privilege level 
where MONITOR/MWAIT are not supported.

NOTE
If MWAIT is used to enter a C-state (including sub C-state) that is 
numerically higher than C1, a store to the address range armed by 
MONITOR instruction will cause the processor to exit MWAIT if the 
store was originated by other processor agents. A store from non-
processor agent may not cause the processor to exit MWAIT. 

1. The processor-specific C-states defined in MWAIT extensions can map to ACPI defined C-state 
types (C0, C1, C2, C3). The mapping relationship depends on the definition of a C-state by proces-
sor implementation and is exposed to OSPM by the BIOS using the ACPI defined _CST table.
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13.5 THERMAL MONITORING AND PROTECTION
The IA-32 architecture provides the following mechanisms for monitoring tempera-
ture and controlling thermal power:

1. The catastrophic shutdown detector forces processor execution to stop if the 
processor’s core temperature rises above a preset limit.

2. Automatic and adaptive thermal monitoring mechanisms force the 
processor to reduce it’s power consumption in order to operate within predeter-
mined temperature limits.

3. The software controlled clock modulation mechanism permits operating 
systems to implement power management policies that reduce power 
consumption; this is in addition to the reduction offered by automatic thermal 
monitoring mechanisms.

4. On-die digital thermal sensor and interrupt mechanisms permit the OS to 
manage thermal conditions natively without relying on BIOS or other system 
board components.

The first mechanism is not visible to software. The other three mechanisms are 
visible to software using processor feature information returned by executing CPUID 
with EAX = 1.

The second mechanism includes: 

• Automatic thermal monitoring provides two modes of operation. One mode 
modulates the clock duty cycle; the second mode changes the processor’s 
frequency. Both modes are used to control the core temperature of the processor.

• Adaptive thermal monitoring can provide flexible thermal management on 
processors made of multiple cores.

The third mechanism modulates the clock duty cycle of the processor. As shown in 
Figure 13-3, the phrase ‘duty cycle’ does not refer to the actual duty cycle of the 
clock signal. Instead it refers to the time period during which the clock signal is 
allowed to drive the processor chip. By using the stop clock mechanism to control 
how often the processor is clocked, processor power consumption can be modulated. 

Figure 13-3.  Processor Modulation Through Stop-Clock Mechanism
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For previous automatic thermal monitoring mechanisms, software controlled mecha-
nisms that changed processor operating parameters to impact changes in thermal 
conditions. Software did not have native access to the native thermal condition of the 
processor; nor could software alter the trigger condition that initiated software 
program control. 

The fourth mechanism (listed above) provides access to an on-die digital thermal 
sensor using a model-specific register and uses an interrupt mechanism to alert soft-
ware to initiate digital thermal monitoring. 

13.5.1 Catastrophic Shutdown Detector
P6 family processors introduced a thermal sensor that acts as a catastrophic shut-
down detector. This catastrophic shutdown detector was also implemented in 
Pentium 4, Intel Xeon and Pentium M processors. It is always enabled. When 
processor core temperature reaches a factory preset level, the sensor trips and 
processor execution is halted until after the next reset cycle.

13.5.2 Thermal Monitor
Pentium 4, Intel Xeon and Pentium M processors introduced a second temperature 
sensor that is factory-calibrated to trip when the processor’s core temperature 
crosses a level corresponding to the recommended thermal design envelop. The trip-
temperature of the second sensor is calibrated below the temperature assigned to 
the catastrophic shutdown detector. 

13.5.2.1  Thermal Monitor 1
The Pentium 4 processor uses the second temperature sensor in conjunction with a 
mechanism called Thermal Monitor 1 (TM1) to control the core temperature of the 
processor. TM1 controls the processor’s temperature by modulating the duty cycle of 
the processor clock. Modulation of duty cycles is processor model specific. Note that 
the processors STPCLK# pin is not used here; the stop-clock circuitry is controlled 
internally.

Support for TM1 is indicated by CPUID.1:EDX.TM[bit 29] = 1.

TM1 is enabled by setting the thermal-monitor enable flag (bit 3) in 
IA32_MISC_ENABLE [see Appendix B, “Model-Specific Registers (MSRs)”]. Following 
a power-up or reset, the flag is cleared, disabling TM1. BIOS is required to enable 
only one automatic thermal monitoring modes. Operating systems and applications 
must not disable the operation of these mechanisms.
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13.5.2.2  Thermal Monitor 2
An additional automatic thermal protection mechanism, called Thermal Monitor 2 
(TM2), was introduced in the Intel Pentium M processor and also incorporated in 
newer models of the Pentium 4 processor family. Intel Core Duo and Solo processors, 
and Intel Core 2 Duo processor family all support TM1 and TM2. TM2 controls the 
core temperature of the processor by reducing the operating frequency and voltage 
of the processor and offers a higher performance level for a given level of power 
reduction than TM1.

TM2 is triggered by the same temperature sensor as TM1. The mechanism to enable 
TM2 may be implemented differently across various IA-32 processor families with 
different CPUID signatures in the family encoding value, but will be uniform within an 
IA-32 processor family. 

Support for TM2 is indicated by CPUID.1:ECX.TM2[bit 8] = 1.

13.5.2.3  Two Methods for Enabling TM2
On processors with CPUID family/model/stepping signature encoded as 0x69n or 
0x6Dn (early Pentium M processors), TM2 is enabled if the TM_SELECT flag (bit 16) 
of the MSR_THERM2_CTL register is set to 1 (Figure 13-4) and bit 3 of the 
IA32_MISC_ENABLE register is set to 1. 

Following a power-up or reset, the TM_SELECT flag may be cleared. BIOS is required 
to enable either TM1 or TM2. Operating systems and applications must not disable 
mechanisms that enable TM1 or TM2. If bit 3 of the IA32_MISC_ENABLE register is 
set and TM_SELECT flag of the MSR_THERM2_CTL register is cleared, TM1 is 
enabled.

On processors introduced after the Pentium 4 processor (this includes most Pentium 
M processors), the method used to enable TM2 is different. TM2 is enable by setting 
bit 13 of IA32_MISC_ENABLE register to 1. This applies to Intel Core Duo, Core Solo, 
and Intel Core 2 processor family.

Figure 13-4.  MSR_THERM2_CTL Register On Processors with CPUID 
Family/Model/Stepping Signature Encoded as 0x69n or 0x6Dn
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The target operating frequency and voltage for the TM2 transition after TM2 is trig-
gered is specified by the value written to MSR_THERM2_CTL, bits 15:0 (Figure 13-5). 
Following a power-up or reset, BIOS is required to enable at least one of these two 
thermal monitoring mechanisms. If both TM1 and TM2 are supported, BIOS may 
choose to enable TM2 instead of TM1. Operating systems and applications must not 
disable the mechanisms that enable TM1or TM2; and they must not alter the value in 
bits 15:0 of the MSR_THERM2_CTL register.

13.5.2.4  Performance State Transitions and Thermal Monitoring
If the thermal control circuitry (TCC) for thermal monitor (TM1/TM2) is active, writes 
to the IA32_PERF_CTL will effect a new target operating point as follows:

• If TM1 is enabled and the TCC is engaged, the performance state transition can 
commence before the TCC is disengaged. 

• If TM2 is enabled and the TCC is engaged, the performance state transition 
specified by a write to the IA32_PERF_CTL will commence after the TCC has 
disengaged. 

13.5.2.5  Thermal Status Information
The status of the temperature sensor that triggers the thermal monitor (TM1/TM2) is 
indicated through the thermal status flag and thermal status log flag in the 
IA32_THERM_STATUS MSR (see Figure 13-6). 

The functions of these flags are:

• Thermal Status flag, bit 0 — When set, indicates that the processor core 
temperature is currently at the trip temperature of the thermal monitor and that 
the processor power consumption is being reduced via either TM1 or TM2, 
depending on which is enabled. When clear, the flag indicates that the core 
temperature is below the thermal monitor trip temperature. This flag is read only. 

• Thermal Status Log flag, bit 1 — When set, indicates that the thermal sensor 
has tripped since the last power-up or reset or since the last time that software 
cleared this flag. This flag is a sticky bit; once set it remains set until cleared by 
software or until a power-up or reset of the processor. The default state is clear.

Figure 13-5.  MSR_THERM2_CTL Register for Supporting TM2
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After the second temperature sensor has been tripped, the thermal monitor 
(TM1/TM2) will remain engaged for a minimum time period (on the order of 1 ms). 
The thermal monitor will remain engaged until the processor core temperature drops 
below the preset trip temperature of the temperature sensor, taking hysteresis into 
account.

While the processor is in a stop-clock state, interrupts will be blocked from inter-
rupting the processor. This holding off of interrupts increases the interrupt latency, 
but does not cause interrupts to be lost. Outstanding interrupts remain pending until 
clock modulation is complete. 

The thermal monitor can be programmed to generate an interrupt to the processor 
when the thermal sensor is tripped. The delivery mode, mask and vector for this 
interrupt can be programmed through the thermal entry in the local APIC’s LVT (see 
Section 9.5.1, “Local Vector Table”). The low-temperature interrupt enable and high-
temperature interrupt enable flags in the IA32_THERM_INTERRUPT MSR (see 
Figure 13-7) control when the interrupt is generated; that is, on a transition from a 
temperature below the trip point to above and/or vice-versa.

• High-Temperature Interrupt Enable flag, bit 0 — Enables an interrupt to be 
generated on the transition from a low-temperature to a high-temperature when 
set; disables the interrupt when clear.(R/W).

• Low-Temperature Interrupt Enable flag, bit 1 — Enables an interrupt to be 
generated on the transition from a high-temperature to a low-temperature when 
set; disables the interrupt when clear.

The thermal monitor interrupt can be masked by the thermal LVT entry. After a 
power-up or reset, the low-temperature interrupt enable and high-temperature 

Figure 13-6.  IA32_THERM_STATUS MSR

Figure 13-7.  IA32_THERM_INTERRUPT MSR
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interrupt enable flags in the IA32_THERM_INTERRUPT MSR are cleared (interrupts 
are disabled) and the thermal LVT entry is set to mask interrupts. This interrupt 
should be handled either by the operating system or system management mode 
(SMM) code.

Note that the operation of the thermal monitoring mechanism has no effect upon the 
clock rate of the processor's internal high-resolution timer (time stamp counter). 

13.5.2.6  Adaptive Thermal Monitor 
The Intel Core 2 Duo processor family supports enhanced thermal management 
mechanism, referred to as Adaptive Thermal Monitor (Adaptive TM). 

Unlike TM2, Adaptive TM is not limited to one TM2 transition target. During a thermal 
trip event, Adaptive TM (if enabled) selects an optimal target operating point based 
on whether or not the current operating point has effectively cooled the processor.

Similar to TM2, Adaptive TM is enable by BIOS. The BIOS is required to test the TM1 
and TM2 feature flags and enable all available thermal control mechanisms (including 
Adaptive TM) at platform initiation. 

Adaptive TM is available only to a subset of processors that support TM2.

In each chip-multiprocessing (CMP) silicon die, each core has a unique thermal 
sensor that triggers independently. These thermal sensor can trigger TM1 or TM2 
transitions in the same manner as described in Section 13.5.2.1 and Section 
13.5.2.2. The trip point of the thermal sensor is not programmable by software since 
it is set during the fabrication of the processor. 

Each thermal sensor in a processor core may be triggered independently to engage 
thermal management features. In Adaptive TM, both cores will transition to a lower 
frequency and/or lower voltage level if one sensor is triggered.

Triggering of this sensor is visible to software via the thermal interrupt LVT entry in 
the local APIC of a given core. 

13.5.3 Software Controlled Clock Modulation
Pentium 4, Intel Xeon and Pentium M processors also support software-controlled 
clock modulation. This provides a means for operating systems to implement a power 
management policy to reduce the power consumption of the processor. Here, the 
stop-clock duty cycle is controlled by software through the 
IA32_CLOCK_MODULATION MSR (see Figure 13-8). 
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The IA32_CLOCK_MODULATION MSR contains the following flag and field used to 
enable software-controlled clock modulation and to select the clock modulation duty 
cycle:

• On-Demand Clock Modulation Enable, bit 4 — Enables on-demand software 
controlled clock modulation when set; disables software-controlled clock 
modulation when clear.

• On-Demand Clock Modulation Duty Cycle, bits 1 through 3 — Selects the 
on-demand clock modulation duty cycle (see Table 13-1). This field is only active 
when the on-demand clock modulation enable flag is set.

Note that the on-demand clock modulation mechanism (like the thermal monitor) 
controls the processor’s stop-clock circuitry internally to modulate the clock signal. 
The STPCLK# pin is not used in this mechanism.

The on-demand clock modulation mechanism can be used to control processor power 
consumption. Power management software can write to the 
IA32_CLOCK_MODULATION MSR to enable clock modulation and to select a modula-
tion duty cycle. If on-demand clock modulation and TM1 are both enabled and the 
thermal status of the processor is hot (bit 0 of the IA32_THERM_STATUS MSR is set), 

Figure 13-8.  IA32_CLOCK_MODULATION MSR

Table 13-1.  On-Demand Clock Modulation Duty Cycle Field Encoding

Duty Cycle Field Encoding Duty Cycle

000B Reserved

001B 12.5% (Default)

010B 25.0%

011B 37.5%

100B 50.0%

101B 63.5%

110B 75%

111B 87.5%

63 0

Reserved

13

On-Demand Clock Modulation Duty Cycle
On-Demand Clock Modulation Enable

45

Reserved
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clock modulation at the duty cycle specified by TM1 takes precedence, regardless of 
the setting of the on-demand clock modulation duty cycle.

For Hyper-Threading Technology enabled processors, the 
IA32_CLOCK_MODULATION register is duplicated for each logical processor. In order 
for the On-demand clock modulation feature to work properly, the feature must be 
enabled on all the logical processors within a physical processor. If the programmed 
duty cycle is not identical for all the logical processors, the processor clock will modu-
late to the highest duty cycle programmed. 

For the P6 family processors, on-demand clock modulation was implemented 
through the chipset, which controlled clock modulation through the processor’s 
STPCLK# pin.

13.5.4 Detection of Thermal Monitor and Software Controlled 
Clock Modulation Facilities

The ACPI flag (bit 22) of the CPUID feature flags indicates the presence of the 
IA32_THERM_STATUS, IA32_THERM_INTERRUPT, IA32_CLOCK_MODULATION 
MSRs, and the xAPIC thermal LVT entry. 

The TM1 flag (bit 29) of the CPUID feature flags indicates the presence of the auto-
matic thermal monitoring facilities that modulate clock duty cycles.

13.5.5 On Die Digital Thermal Sensors
On die digital thermal sensor can be read using an MSR (no I/O interface). In Intel 
Core Duo processors, each core has a unique digital sensor whose temperature is 
accessible using an MSR. The digital thermal sensor is the preferred method for 
reading the die temperature because (a) it is located closer to the hottest portions of 
the die, (b) it enables software to accurately track the die temperature and the 
potential activation of thermal throttling.

13.5.5.1  Digital Thermal Sensor Enumeration
The processor supports a digital thermal sensor if CPUID.06H.EAX[0] = 1. If the 
processor supports digital thermal sensor, EBX[bits 3:0] determine the number of 
thermal thresholds that are available for use. 

Software sets thermal thresholds by using the IA32_THERM_INTERRUPT MSR. Soft-
ware reads output of the digital thermal sensor using the IA32_THERM_STATUS 
MSR.
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13.5.5.2  Reading the Digital Sensor
Unlike traditional analog thermal devices, the output of the digital thermal sensor is 
a temperature relative to the maximum supported operating temperature of the 
processor.

Temperature measurements returned by digital thermal sensors are always at or 
below TCC activation temperature. Critical temperature conditions are detected 
using the “Critical Temperature Status” bit. When this bit is set, the processor is 
operating at a critical temperature and immediate shutdown of the system should 
occur. Once the “Critical Temperature Status” bit is set, reliable operation is not guar-
anteed. 

See Figure 13-9 for the layout of IA32_THERM_STATUS MSR. Bit fields include:

• Thermal Status (bit 0, RO) — This bit indicates whether the digital thermal 
sensor high-temperature output signal (PROCHOT#) is currently active. Bit 0 = 1 
indicates the feature is active. This bit may not be written by software; it reflects 
the state of the digital thermal sensor.

• Thermal Status Log (bit 1, R/WC0) — This is a sticky bit that indicates the 
history of the thermal sensor high temperature output signal (PROCHOT#). 
Bit 1 = 1 if PROCHOT# has been asserted since a previous RESET or the last time 
software cleared the bit. Software may clear this bit by writing a zero.

• PROCHOT# or FORCEPR# Event (bit 2, RO) — Indicates whether PROCHOT# 
or FORCEPR# is being asserted by another agent on the platform. 

Figure 13-9.  IA32_THERM_STATUS Register 
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• PROCHOT# or FORCEPR# Log (bit 3, R/WC0) — Sticky bit that indicates 
whether PROCHOT# or FORCEPR# has been asserted by another agent on the 
platform since the last clearing of this bit or a reset. If bit 3 = 1, PROCHOT# or 
FORCEPR# has been externally asserted. Software may clear this bit by writing a 
zero. External PROCHOT# assertions are only acknowledged if the Bidirectional 
Prochot feature is enabled.

• Critical Temperature Status (bit 4, RO) — Indicates whether the critical 
temperature detector output signal is currently active. If bit 4 = 1, the critical 
temperature detector output signal is currently active.

• Critical Temperature Log (bit 5, R/WC0) — Sticky bit that indicates whether 
the critical temperature detector output signal has been asserted since the last 
clearing of this bit or reset. If bit 5 = 1, the output signal has been asserted. 
Software may clear this bit by writing a zero.

• Thermal Threshold #1 Status (bit 6, RO) — Indicates whether the actual 
temperature is currently higher than or equal to the value set in Thermal 
Threshold #1. If bit 6 = 0, the actual temperature is lower. If bit 6 = 1, the 
actual temperature is greater than or equal to TT#1. A lower reading in the 
Digital Readout field (bits 22:16) indicates a higher actual temperature.

• Thermal Threshold #1 Log (bit 7, R/WC0) — Sticky bit that indicates 
whether the Thermal Threshold #1 has been reached since the last clearing of 
this bit or a reset. If bit 7 = 1, the Threshold #1 has been reached. Software may 
clear this bit by writing a zero.

• Thermal Threshold #2 Status (bit 8, RO) — Indicates whether actual 
temperature is currently higher than or equal to the value set in Thermal 
Threshold #2. If bit 8 = 0, the actual temperature is lower. If bit 8 = 1, the 
actual temperature is greater than or equal to TT#2. 

• Thermal Threshold #2 Log (bit 9, R/WC0) — Sticky bit that indicates 
whether the Thermal Threshold #2 has been reached since the last clearing of 
this bit or a reset. If bit 9 = 1, the Thermal Threshold #2 has been reached. 
Software may clear this bit by writing a zero.

• Digital Readout (bits 22:16, RO) — Digital temperature reading in 1 degree 
Celsius relative to the TCC activation temperature. A readout value of 0 = TCC 
temperature, 1 = (TCC - 1) degrees C, etc. See the processor’s data sheet for 
details regarding TCC activation.

• Resolution in Degrees Celsius (bits 30:27, RO) — Specifies the resolution 
(or tolerance) of the digital thermal sensor. The value is in degrees Celsius. It is 
recommended that new threshold values be offset from the current temperature 
by at least the resolution + 1 in order to avoid hysteresis of interrupt generation.

• Reading Valid (bit 31, RO) — Indicates if the digital readout in bits 22:16 is 
valid. The readout is valid if bit 31 = 1.

Changes to temperature can be detected using two thresholds (see Figure 13-10); 
one is set above and the other below the current temperature. These thresholds have 
the capability of generating interrupts using the core's local APIC which software 
must then service. Note that the local APIC entries used by these thresholds are also 
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used by the Intel® Thermal Monitor; it is up to software to determine the source of a 
specific interrupt.

See Figure 13-10 for the layout of IA32_THERM_INTERRUPT MSR. Bit fields include:

• High-Temperature Interrupt Enable (bit 0, R/W) — This bit allows the BIOS 
to enable the generation of an interrupt on the transition from low-temperature 
to a high-temperature threshold.  Bit 0 = 0 (default) disables interrupts; 
bit 0 = 1 enables interrupts.

• Low-Temperature Interrupt Enable (bit 1, R/W) — This bit allows the BIOS 
to enable the generation of an interrupt on the transition from high-temperature 
to a low-temperature (TCC de-activation). Bit 1 = 0 (default) disables interrupts; 
bit 1 = 1 enables interrupts.

• PROCHOT# Interrupt Enable (bit 2, R/W) — This bit allows the BIOS or OS 
to enable the generation of an interrupt when PROCHOT# has been asserted by 
another agent on the platform and the Bidirectional Prochot feature is enabled. 
Bit 2 = 0 disables the interrupt; bit 2 = 1 enables the interrupt.

• FORCEPR# Interrupt Enable (bit 3, R/W) — This bit allows the BIOS or OS to 
enable the generation of an interrupt when FORCEPR# has been asserted by 
another agent on the platform. Bit 3 = 0 disables the interrupt; bit 3 = 1 enables 
the interrupt.

• Critical Temperature Interrupt Enable (bit 4, R/W) — Enables the 
generation of an interrupt when the Critical Temperature Detector has detected a 
critical thermal condition. Bit 4 = 0 disables the interrupt; bit 4 = 1 enables the 
interrupt.

• Threshold #1 Value (bits 14:8, R/W) — A temperature threshold, encoded 
relative to the TCC Activation temperature (using the same format as the Digital 

Figure 13-10.  IA32_THERM_INTERRUPT Register 
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Readout). This threshold is compared against the Digital Readout and is used to 
generate the Thermal Threshold #1 Status and Log bits as well as the Threshold 
#1 thermal interrupt delivery.

• Threshold #1 Interrupt Enable (bit 15, R/W) — Enables the generation of 
an interrupt when the actual temperature crosses the Threshold #1 setting in any 
direction.  Bit 15 = 0 enables the interrupt; bit 15 = 1 disables the interrupt.

• Threshold #2 Value (bits 22:16, R/W) —A temperature threshold, encoded 
relative to the TCC Activation temperature (using the same format as the Digital 
Readout). This threshold is compared against the Digital Readout and is used to 
generate the Thermal Threshold #2 Status and Log bits as well as the Threshold 
#2 thermal interrupt delivery.

• Threshold #2 Interrupt Enable (bit 23, R/W) — Enables the generation of 
an interrupt when the actual temperature crosses the Threshold #2 setting in any 
direction.  Bit 23 = 0 enables the interrupt; bit 23 = 1 disables the interrupt.
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CHAPTER 14
MACHINE-CHECK ARCHITECTURE

This chapter describes the machine-check architecture and machine-check 
exception mechanism found in the Pentium 4, Intel Xeon, and P6 family 
processors. See Chapter 5, “Interrupt 18—Machine-Check Exception 
(#MC),” for more information on machine-check exceptions. A brief descrip-
tion of the Pentium processor’s machine check capability is also given.

14.1 MACHINE-CHECK EXCEPTIONS AND ARCHITECTURE
The Pentium 4, Intel Xeon, and P6 family processors implement a machine-
check architecture that provides a mechanism for detecting and reporting 
hardware (machine) errors, such as: system bus errors, ECC errors, parity 
errors, cache errors, and TLB errors. It consists of a set of model-specific 
registers (MSRs) that are used to set up machine checking and additional 
banks of MSRs used for recording errors that are detected. 

The processor signals the detection of a machine-check error by generating 
a machine-check exception (#MC), which is an abort class exception. The 
implementation of the machine-check architecture does not ordinarily 
permit the processor to be restarted reliably after generating a machine-
check exception. However, the machine-check-exception handler can collect 
information about the machine-check error from the machine-check MSRs.

14.2 COMPATIBILITY WITH PENTIUM PROCESSOR
The Pentium 4, Intel Xeon, and P6 family processors support and extend the 
machine-check exception mechanism introduced in the Pentium processor. 
The Pentium processor reports the following machine-check errors:

• data parity errors during read cycles

• unsuccessful completion of a bus cycle

The above errors are reported using the P5_MC_TYPE and P5_MC_ADDR 
MSRs (implementation specific for the Pentium processor). Use the RDMSR 
instruction to read these MSRs. See Appendix B, “Model-Specific Registers 
(MSRs),” for the addresses.

The machine-check error reporting mechanism that Pentium processors use 
is similar to that used in Pentium 4, Intel Xeon, and P6 family processors. 
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When an error is detected, it is recorded in P5_MC_TYPE and P5_MC_ADDR; 
the processor then generates a machine-check exception (#MC).

See Section 14.3.3, “Mapping of the Pentium Processor Machine-Check 
Errors to the Machine-Check Architecture,” and Section 14.8.3, “Pentium 

Processor Machine-Check Exception Handling,” for information on compati-
bility between machine-check code written to run on the Pentium processors 
and code written to run on P6 family processors.

14.3 MACHINE-CHECK MSRS
Machine check MSRs in the Pentium 4, Intel Xeon, and P6 family processors 
consist of a set of global control and status registers and several error-
reporting register banks. See Figure 14-1.

Each error-reporting bank is associated with a specific hardware unit (or 
group of hardware units) in the processor. Use RDMSR and WRMSR to read 
and to write these registers. 

14.3.1 Machine-Check Global Control MSRs
The machine-check global control MSRs include the IA32_MCG_CAP, 
IA32_MCG_STATUS, and IA32_MCG_CTL. See Appendix B, “Model-Specific 
Registers (MSRs),” for the addresses of these registers. 

Figure 14-1.  Machine-Check MSRs

0

63 0

63
IA32_MCG_CAP MSR

IA32_MCG_STATUS MSR

Error-Reporting Bank Registers

0

63 0

63
IA32_MCi_CTL MSR

IA32_MCi_STATUS MSR

0

63 0

63
IA32_MCi_ADDR MSR

IA32_MCi_MISC MSR

Global Control MSRs
(One Set for Each Hardware Unit)

063
IA32_MCG_CTL MSR



Vol. 3   14-3

MACHINE-CHECK ARCHITECTURE

14.3.1.1  IA32_MCG_CAP MSR

The IA32_MCG_CAP MSR is a read-only register that provides information 
about the machine-check architecture of the processor. Figure 14-2 shows 
the structure of the register in Pentium 4, Intel Xeon, and P6 family proces-
sors. 

Where:

• Count field, bits 7:0 — Indicates the number of hardware unit error-reporting 
banks available in a particular processor implementation.

• MCG_CTL_P (control MSR present) flag, bit 8 — Indicates that the processor 
implements the IA32_MCG_CTL MSR when set; this register is absent when clear.

• MCG_EXT_P (extended MSRs present) flag, bit 9 — Indicates that the 
processor implements the extended machine-check state registers found starting 
at MSR address 180H; these registers are absent when clear.

• MCG_TES_P (threshold-based error status present) flag, bit 11 — 
Indicates (when set) that bits 56:53 of the IA32_MCi_STATUS MSR are part of 
the architectural space. Bits 56:55 are reserved, and bits 54:53 are used to 
report threshold-based error status. Note that when MCG_TES_P is not set, bits 
56:53 of the IA32_MCi_STATUS MSR are model-specific.

• MCG_EXT_CNT, bits 23:16 — Indicates the number of extended machine-
check state registers present. This field is meaningful only when the MCG_EXT_P 
flag is set.

The effect of writing to the IA32_MCG_CAP MSR is undefined. 

Figure 14-2.  IA32_MCG_CAP Register
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14.3.1.2  IA32_MCG_STATUS MSR

The IA32_MCG_STATUS MSR describes the current state of the processor 
after a machine-check exception has occurred (see Figure 14-3).

Where:

• RIPV (restart IP valid) flag, bit 0 — Indicates (when set) that program 
execution can be restarted reliably at the instruction pointed to by the instruction 
pointer pushed on the stack when the machine-check exception is generated. 
When clear, the program cannot be reliably restarted at the pushed instruction 
pointer.

• EIPV (error IP valid) flag, bit 1 — Indicates (when set) that the instruction 
pointed to by the instruction pointer pushed onto the stack when the machine-
check exception is generated is directly associated with the error. When this flag 
is cleared, the instruction pointed to may not be associated with the error.

• MCIP (machine check in progress) flag, bit 2 — Indicates (when set) that a 
machine-check exception was generated. Software can set or clear this flag. The 
occurrence of a second Machine-Check Event while MCIP is set will cause the 
processor to enter a shutdown state. For information on processor behavior in 
the shutdown state, please refer to the description in Chapter 5, “Interrupt and 
Exception Handling”: “Interrupt 8—Double Fault Exception (#DF)”.

Bits 63:03 in IA32_MCG_STATUS are reserved. 

14.3.1.3  IA32_MCG_CTL MSR

The IA32_MCG_CTL MSR is present if the capability flag MCG_CTL_P is set in 
the IA32_MCG_CAP MSR. 

IA32_MCG_CTL controls the reporting of machine-check exceptions. If 
present, writing 1s to this register enables machine-check features and 
writing all 0s disables machine-check features. All other values are unde-
fined and/or implementation specific.

Figure 14-3.  IA32_MCG_STATUS Register
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14.3.2 Error-Reporting Register Banks
Each error-reporting register bank can contain the IA32_MCi_CTL, 
IA32_MCi_STATUS, IA32_MCi_ADDR, and IA32_MCi_MISC MSRs. The 
number of reporting banks is indicated by bits [7:0] of IA32_MCG_CAP MSR 
(address 0179H). The first error-reporting register (IA32_MC0_CTL) always 
starts at address 400H. 

See Appendix B, “Model-Specific Registers (MSRs),” for addresses of the 
error-reporting registers in the Pentium 4 and Intel Xeon processors; and for 
addresses of the error-reporting registers P6 family processors. 

14.3.2.1  IA32_MCi_CTL MSRs

The IA32_MCi_CTL MSR controls error reporting for errors produced by a 
particular hardware unit (or group of hardware units). Each of the 64 flags 
(EEj) represents a potential error. Setting an EEj flag enables reporting of 
the associated error and clearing it disables reporting of the error. The 
processor does not write changes to bits that are not implemented. 
Figure 14-4 shows the bit fields of IA32_MCi_CTL.

NOTE
For P6 family processors only: the operating system or executive 
software must not modify the contents of the IA32_MC0_CTL MSR. 
This MSR is internally aliased to the EBL_CR_POWERON MSR and 
controls platform-specific error handling features. System specific 
firmware (the BIOS) is responsible for the appropriate initialization of 
the IA32_MC0_CTL MSR. P6 family processors only allow the writing 
of all 1s or all 0s to the IA32_MCi_CTL MSR.

14.3.2.2  IA32_MCi_STATUS MSRS

Each IA32_MCi_STATUS MSR contains information related to a machine-
check error if its VAL (valid) flag is set (see Figure 14-5). Software is respon-

Figure 14-4.  IA32_MCi_CTL Register
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sible for clearing IA32_MCi_STATUS MSRs by explicitly writing 0s to them; 
writing 1s to them causes a general-protection exception. 

NOTE
Figure  depicts the IA32_MCi_STATUS MSR when 
IA32_MCG_CAP[11] = 1. When IA32_MCG_CAP[11] = 0, bits 56:53 
are part of the “Other Information” field. The use of bits 54:53 for 
threshold-based error reporting began with Core Duo processors, 
and is currently used for cache memory. See Section 14.4, 
“Enhanced Cache Error reporting,” for more information. 

Where:

• MCA (machine-check architecture) error code field, bits 15:0 — Specifies 
the machine-check architecture-defined error code for the machine-check error 

Figure 14-5.  IA32_MCi_STATUS Register
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condition detected. The machine-check architecture-defined error codes are 
guaranteed to be the same for all IA-32 processors that implement the machine-
check architecture. See Section 14.7, “Interpreting the MCA Error Codes,” and 
Appendix E, “Interpreting Machine-Check Error Codes”, for information on 
machine-check error codes. 

• Model-specific error code field, bits 31:16 — Specifies the model-specific 
error code that uniquely identifies the machine-check error condition detected. 
The model-specific error codes may differ among IA-32 processors for the same 
machine-check error condition. See Appendix E, “Interpreting Machine-Check 
Error Codes”for information on model-specific error codes.

• Reserved, Error Status, and Other Information fields, bits 56:32 — 

• Bits 52:32 always contain “Other Information” that is implementation-
specific and is not part of the machine-check architecture. Software that 
is intended to be portable among IA-32 processors should not rely on 
these values. 

• If IA32_MCG_CAP[11] is 0, bits 56:53 also contain “Other Information” 
(in the same sense).

• If IA32_MCG_CAP[11] is 1, bits 56:53 are architectural (not model-
specific). In this case, bits 56:53 have the following functionality:

• Bits 56:55 are reserved for future architectural assignment.

• If the UC bit (Figure ) is 1, bits 54:53 are undefined. 

• If the UC bit (Figure ) is 0, bits 54:53 indicate the status of the 
hardware structure that reported the threshold-based error. See 
Table 14-1.

• PCC (processor context corrupt) flag, bit 57 — Indicates (when set) that the 
state of the processor might have been corrupted by the error condition detected 

Table 14-1.  Bits 54:53 in IA32_MCi_STATUS MSRs 
when IA32_MCG_CAP[11] = 1 and UC = 0

Bits 54:53 Meaning

00 No tracking - No hardware status tracking is provided for the structure reporting this 
event. 

01 Green - Status tracking is provided for the structure posting the event; the current 
status is green (below threshold). For more information, see Section 14.4, “Enhanced 
Cache Error reporting”. 

10 Yellow - Status tracking is provided for the structure posting the event; the current 
status is yellow (above threshold). For more information, see Section 14.4, “Enhanced 
Cache Error reporting”. 

11 Reserved
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and that reliable restarting of the processor may not be possible. When clear, this 
flag indicates that the error did not affect the processor’s state.

• ADDRV (IA32_MCi_ADDR register valid) flag, bit 58 — Indicates (when set) 
that the IA32_MCi_ADDR register contains the address where the error occurred 
(see Section 14.3.2.3, “IA32_MCi_ADDR MSRs”). When clear, this flag indicates 
that the IA32_MCi_ADDR register is either not implemented or does not contain 
the address where the error occurred. Do not read these registers if they are not 
implemented in the processor.

• MISCV (IA32_MCi_MISC register valid) flag, bit 59 — Indicates (when set) 
that the IA32_MCi_MISC register contains additional information regarding the 
error. When clear, this flag indicates that the IA32_MCi_MISC register is either 
not implemented or does not contain additional information regarding the error. 
Do not read these registers if they are not implemented in the processor.

• EN (error enabled) flag, bit 60 — Indicates (when set) that the error was 
enabled by the associated EEj bit of the IA32_MCi_CTL register.

• UC (error uncorrected) flag, bit 61 — Indicates (when set) that the processor 
did not or was not able to correct the error condition. When clear, this flag 
indicates that the processor was able to correct the error condition.

• OVER (machine check overflow) flag, bit 62 — Indicates (when set) that a 
machine-check error occurred while the results of a previous error were still in 
the error-reporting register bank (that is, the VAL bit was already set in the 
IA32_MCi_STATUS register). The processor sets the OVER flag and software is 
responsible for clearing it. In general, enabled errors are written over disabled 
errors, and uncorrected errors are written over corrected errors. Uncorrected 
errors are not written over previous valid uncorrected errors. For more infor-
mation, see Section 14.3.2.2.1, “05_Level_Numbered Overwrite Rules for 
Machine Check Overflow”.

• VAL (IA32_MCi_STATUS register valid) flag, bit 63 — Indicates (when set) 
that the information within the IA32_MCi_STATUS register is valid. When this flag 
is set, the processor follows the rules given for the OVER flag in the 
IA32_MCi_STATUS register when overwriting previously valid entries. The 
processor sets the VAL flag and software is responsible for clearing it.

14.3.2.2.1  05_Level_Numbered Overwrite Rules for Machine Check Overflow

Table 14-2 shows the overwrite rules for how to treat a second event if the 
cache has already posted an event to the MC bank – that is, what to do if the 
valid bit for an MC bank already is set to 1. When more than one structure 
posts events in a given bank, these rules specify whether a new event will 
overwrite a previous posting or not. These rules define a priority for uncor-
rected (highest priority), yellow, and green/unmonitored (lowest priority) 
status.

In Table 14-2, the values in the two left-most columns are 
IA32_MCi_STATUS[54:53]. 
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If a second event overwrites a previously posted event, the information (as 
guarded by individual valid bits) in the MCi bank is entirely from the second 
event. Similarly, if a first event is retained, all of the information previously 
posted for that event is retained. In either case, the OVER bit 
(MCi_Status[62]) will be set to indicate an overflow. 

After software polls a posting and clears the register, the valid bit is no 
longer set and therefore the meaning of the rest of the bits, including the 
yellow/green/00 status field in bits 54:53, is undefined. The yellow/green 
indication will only be posted for events associated with monitored struc-
tures – otherwise the unmonitored (00) code will be posted in 
MCi_Status[54:53].

14.3.2.3  IA32_MCi_ADDR MSRs

The IA32_MCi_ADDR MSR contains the address of the code or data memory 
location that produced the machine-check error if the ADDRV flag in the 
IA32_MCi_STATUS register is set (see Section 14-6, “IA32_MCi_ADDR 
MSR”). The IA32_MCi_ADDR register is either not implemented or contains 
no address if the ADDRV flag in the IA32_MCi_STATUS register is clear. 
When not implemented in the processor, all reads and writes to this MSR will 
cause a general protection exception. 

The address returned is an offset into a segment, linear address, or physical 
address. This depends on the error encountered. These registers can be 
cleared by explicitly writing 0s to bits that are not reserved. Writing 1s to 
these registers will cause a general-protection exception. See Figure 14-6.

Table 14-2.  Overwrite Rules for Enabled Errors
First Event Second Event UC bit Color MCA Info

00/green 00/green 0 00/green second

00/green yellow 0 yellow second error

yellow 00/green 0 yellow first error 

yellow yellow 0 yellow either

00/green/yellow UC 1 undefined second

UC 00/green/yellow 1 undefined first 
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14.3.2.4  IA32_MCi_MISC MSRs

The IA32_MCi_MISC MSR contains additional information describing the 
machine-check error if the MISCV flag in the IA32_MCi_STATUS register is 
set. The IA32_MCi_MISC_MSR is either not implemented or does not contain 
additional information if the MISCV flag in the IA32_MCi_STATUS register is 
clear. 

When not implemented in the processor, all reads and writes to this MSR will 
cause a general protection exception. When implemented in a processor, 
these registers can be cleared by explicitly writing all 0s to them; writing 1s 
to them causes a general-protection exception to be generated. This register 
is not implemented in any of the error-reporting register banks for the P6 
family processors. 

14.3.2.5  IA32_MCG Extended Machine Check State MSRs

The Pentium 4 and Intel Xeon processors implement a variable number of 
extended machine-check state MSRs. The MCG_EXT_P flag in the 
IA32_MCG_CAP MSR indicates the presence of these extended registers, 
and the MCG_EXT_CNT field indicates the number of these registers actually 
implemented. See Section 14.3.1.1, “IA32_MCG_CAP MSR.” Also see Table 
14-3.

Figure 14-6.  IA32_MCi_ADDR MSR

Address

63 0

Reserved

3536

Address*

63 0

Processor Without Support For Intel 64 Architecture

Processor With Support for Intel 64 Architecture

* Useful bits in this field depend on the address methodology in use when the 
the register state is saved.
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In processors with support for Intel 64 architecture, 64-bit machine check 
state MSRs are aliased to the legacy MSRs. In addition, there may be regis-
ters beyond IA32_MCG_MISC. These may include up to five reserved MSRs 
(IA32_MCG_RESERVED[1:5]) and save-state MSRs for registers introduced 
in 64-bit mode. See Table 14-4. 

Table 14-3.  Extended Machine Check State MSRs
in Processors Without Support for Intel 64 Architecture

MSR Address Description

IA32_MCG_EAX 180H Contains state of the EAX register at the time of the machine-
check error.

IA32_MCG_EBX 181H Contains state of the EBX register at the time of the machine-
check error.

IA32_MCG_ECX 182H Contains state of the ECX register at the time of the machine-
check error.

IA32_MCG_EDX 183H Contains state of the EDX register at the time of the machine-
check error.

IA32_MCG_ESI 184H Contains state of the ESI register at the time of the machine-
check error.

IA32_MCG_EDI 185H Contains state of the EDI register at the time of the machine-
check error.

IA32_MCG_EBP 186H Contains state of the EBP register at the time of the machine-
check error.

IA32_MCG_ESP 187H Contains state of the ESP register at the time of the machine-
check error.

IA32_MCG_EFLAGS 188H Contains state of the EFLAGS register at the time of the 
machine-check error.

IA32_MCG_EIP 189H Contains state of the EIP register at the time of the machine-
check error.

IA32_MCG_MISC 18AH When set, indicates that a page assist or page fault occurred 
during DS normal operation.

Table 14-4.  Extended Machine Check State MSRs 
In Processors With Support For Intel 64 Architecture 

MSR Address Description

IA32_MCG_RAX 180H Contains state of the RAX register at the time of the machine-
check error.
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IA32_MCG_RBX 181H Contains state of the RBX register at the time of the machine-
check error.

IA32_MCG_RCX 182H Contains state of the RCX register at the time of the machine-
check error.

IA32_MCG_RDX 183H Contains state of the RDX register at the time of the machine-
check error.

IA32_MCG_RSI 184H Contains state of the RSI register at the time of the machine-
check error.

IA32_MCG_RDI 185H Contains state of the RDI register at the time of the machine-
check error.

IA32_MCG_RBP 186H Contains state of the RBP register at the time of the machine-
check error.

IA32_MCG_RSP 187H Contains state of the RSP register at the time of the machine-
check error.

IA32_MCG_RFLAGS 188H Contains state of the RFLAGS register at the time of the 
machine-check error.

IA32_MCG_RIP 189H Contains state of the RIP register at the time of the machine-
check error.

IA32_MCG_MISC 18AH When set, indicates that a page assist or page fault occurred 
during DS normal operation.

IA32_MCG_ 
RSERVED[1:5]

18BH- 
18FH

These registers, if present, are reserved.

IA32_MCG_R8 190H Contains state of the R8 register at the time of the machine-
check error.

IA32_MCG_R9 191H Contains state of the R9 register at the time of the machine-
check error.

IA32_MCG_R10 192H Contains state of the R10 register at the time of the machine-
check error.

IA32_MCG_R11 193H Contains state of the R11 register at the time of the machine-
check error.

IA32_MCG_R12 194H Contains state of the R12 register at the time of the machine-
check error.

IA32_MCG_R13 195H Contains state of the R13 register at the time of the machine-
check error.

IA32_MCG_R14 196H Contains state of the R14 register at the time of the machine-
check error.

Table 14-4.  Extended Machine Check State MSRs 
In Processors With Support For Intel 64 Architecture (Contd.)

MSR Address Description
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When a machine-check error is detected on a Pentium 4 or Intel Xeon 
processor, the processor saves the state of the general-purpose registers, 
the R/EFLAGS register, and the R/EIP in these extended machine-check 
state MSRs. This information can be used by a debugger to analyze the error.

These registers are read/write to zero registers. This means software can 
read them; but if software writes to them, only all zeros is allowed. If soft-
ware attempts to write a non-zero value into one of these registers, a 
general-protection (#GP) exception is generated. These registers are 
cleared on a hardware reset (power-up or RESET), but maintain their 
contents following a soft reset (INIT reset).

14.3.3 Mapping of the Pentium Processor Machine-Check Errors 
to the Machine-Check Architecture

The Pentium processor reports machine-check errors using two registers: 
P5_MC_TYPE and P5_MC_ADDR. The Pentium 4, Intel Xeon, and P6 family 
processors map these registers to the IA32_MCi_STATUS and 
IA32_MCi_ADDR in the error-reporting register bank. This bank reports on 
the same type of external bus errors reported in P5_MC_TYPE and 
P5_MC_ADDR. 

The information in these registers can then be accessed in two ways:

• By reading the IA32_MCi_STATUS and IA32_MCi_ADDR registers as part of a 
general machine-check exception handler written for Pentium 4 and P6 family 
processors.

• By reading the P5_MC_TYPE and P5_MC_ADDR registers using the RDMSR 
instruction.

The second capability permits a machine-check exception handler written to 
run on a Pentium processor to be run on a Pentium 4, Intel Xeon, or P6 
family processor. There is a limitation in that information returned by the 
Pentium 4, Intel Xeon, and P6 family processors is encoded differently than 
information returned by the Pentium processor. To run a Pentium processor 
machine-check exception handler on a Pentium 4, Intel Xeon, or P6 family 
processor; the handler must be written to interpret P5_MC_TYPE encodings 
correctly.

IA32_MCG_R15 197H Contains state of the R15 register at the time of the machine-
check error.

Table 14-4.  Extended Machine Check State MSRs 
In Processors With Support For Intel 64 Architecture (Contd.)

MSR Address Description
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14.4 ENHANCED CACHE ERROR REPORTING
Starting with Core Duo processors, cache error reporting was enhanced. In 
earlier Intel processors, cache status was based on the number of correction 
events that occurred in a cache. In the new paradigm, called “threshold-
based error status”, cache status is based on the number of lines (ECC 
blocks) in a cache that incur repeated corrections. The threshold is chosen 
by Intel, based on various factors. If a processor supports threshold-based 
error status, it sets IA32_MCG_CAP[11] (MCG_TES_P) to 1; if not, to 0. 

A processor that supports enhanced cache error reporting contains hard-
ware that tracks the operating status of certain caches and provides an indi-
cator of their “health”. The hardware reports a “green” status when the 
number of lines that incur repeated corrections is at or below a pre-defined 
threshold, and a “yellow” status when the number of affected lines exceeds 
the threshold. Yellow status means that the cache reporting the event is 
operating correctly, but you should schedule the system for servicing within 
a few weeks.

Intel recommends that you rely on this mechanism for structures supported 
by threshold-base error reporting. 

The CPU/system/platform response to a yellow event should be less severe 
than its response to an uncorrected error. An uncorrected error means that 
a serious error has actually occurred, whereas the yellow condition is a 
warning that the number of affected lines has exceeded the threshold but is 
not, in itself, a serious event: the error was corrected and system state was 
not compromised. 

The green/yellow status indicator is not a foolproof early warning for an 
uncorrected error resulting from the failure of two bits in the same ECC 
block. Such a failure can occur and cause an uncorrected error before the 
yellow threshold is reached. However, the chance of an uncorrected error 
increases as the number of affected lines increases. 

14.5 MACHINE-CHECK AVAILABILITY
The machine-check architecture and machine-check exception (#MC) are 
model-specific features. Software can execute the CPUID instruction to 
determine whether a processor implements these features. Following the 
execution of the CPUID instruction, the settings of the MCA flag (bit 14) and 
MCE flag (bit 7) in EDX indicate whether the processor implements the 
machine-check architecture and machine-check exception.
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14.6 MACHINE-CHECK INITIALIZATION
To use the processors machine-check architecture, software must initialize 
the processor to activate the machine-check exception and the error-
reporting mechanism. 

Example 14-1 gives pseudocode for performing this initialization. This 
pseudocode checks for the existence of the machine-check architecture and 
exception; it then enables machine-check exception and the error-reporting 
register banks. The pseudocode shown is compatible with the Pentium 4, 
Intel Xeon, P6 family, and Pentium processors. 

Following power up or power cycling, IA32_MCi_STATUS registers are not 
guaranteed to have valid data until after they are initially cleared to zero by 
software (as shown in the initialization pseudocode in Example 14-1). In 
addition, when using P6 family processors, software must set MCi_STATUS 
registers to zero when doing a soft-reset.

Example 14-1.  Machine-Check Initialization Pseudocode

Check CPUID Feature Flags for MCE and MCA support
IF CPU supports MCE
THEN

IF CPU supports MCA
THEN

IF (IA32_MCG_CAP.MCG_CTL_P = 1)
(* IA32_MCG_CTL register is present *)
THEN

IA32_MCG_CTL ← FFFFFFFFFFFFFFFFH;
(* enables all MCA features *)

FI

(* Determine number of error-reporting banks supported *)
COUNT← IA32_MCG_CAP.Count;
MAX_BANK_NUMBER ← COUNT - 1;

IF (Processor Family is 6H)
THEN

(* Enable logging of all errors except for MC0_CTL register *)
FOR error-reporting banks (1 through MAX_BANK_NUMBER)
DO

IA32_MCi_CTL ← 0FFFFFFFFFFFFFFFFH;
OD

(* Clear all errors *)
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FOR error-reporting banks (0 through MAX_BANK_NUMBER)
DO

IA32_MCi_STATUS ← 0;
OD

ELSE IF (Processor Family is 0FH) (*any Processor Extended Family *)
THEN

(* Enable logging of all errors including MC0_CTL register *)
FOR error-reporting banks (0 through MAX_BANK_NUMBER)
DO

IA32_MCi_CTL ← 0FFFFFFFFFFFFFFFFH;
OD

(* BIOS clears all errors only on power-on reset *)
IF (BIOS detects Power-on reset)
THEN 

FOR error-reporting banks (0 through MAX_BANK_NUMBER)
DO

IA32_MCi_STATUS ← 0;
OD

ELSE
FOR error-reporting banks (0 through MAX_BANK_NUMBER)
DO

(Optional for BIOS and OS) Log valid errors
(OS only) IA32_MCi_STATUS ← 0;

OD
 

FI
FI

FI

Setup the Machine Check Exception (#MC) handler for vector 18 in IDT

Set the MCE bit (bit 6) in CR4 register to enable Machine-Check Exceptions
FI

14.7 INTERPRETING THE MCA ERROR CODES
When the processor detects a machine-check error condition, it writes a 16-
bit error code to the MCA error code field of one of the IA32_MCi_STATUS 
registers and sets the VAL (valid) flag in that register. The processor may 
also write a 16-bit model-specific error code in the IA32_MCi_STATUS 
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register depending on the implementation of the machine-check architec-
ture of the processor.

The MCA error codes are architecturally defined for IA-32 processors. 
However, the specific IA32_MCi_STATUS register that a code is ‘written to’ is 
model specific. To determine the cause of a machine-check exception, the 
machine-check exception handler must read the VAL flag for each 
IA32_MCi_STATUS register. If the flag is set, the machine check-exception 
handler must then read the MCA error code field of the register. It is the 
encoding of the MCA error code field [15:0] that determines the type of error 
being reported and not the register bank reporting it.

There are two types of MCA error codes: simple error codes and compound 
error codes. 

14.7.1 Simple Error Codes
Table 14-5 shows the simple error codes. These unique codes indicate global 
error information.

Table 14-5.  IA32_MCi_Status [15:0] Simple Error Code Encoding  
Error Code Binary Encoding Meaning

No Error 0000 0000 0000 0000 No error has been reported to this bank of 
error-reporting registers.

Unclassified 0000 0000 0000 0001 This error has not been classified into the 
MCA error classes.

Microcode ROM Parity 
Error

0000 0000 0000 0010 Parity error in internal microcode ROM

External Error 0000 0000 0000 0011 The BINIT# from another processor caused 
this processor to enter machine check.1

FRC Error 0000 0000 0000 0100 FRC (functional redundancy check) 
master/slave error

Internal Timer Error 0000 0100 0000 0000 Internal timer error.

Internal Unclassified 0000 01xx  xxxx  xxxx Internal unclassified errors. 2

NOTES:
1. BINIT# assertion will cause a machine check exception if the processor (or any processor on the 

same external bus) has BINIT# observation enabled during power-on configuration (hardware 
strapping) and if machine check exceptions are enabled (by setting CR4.MCE = 1).

2. At least one X must equal one. Internal unclassified errors have not been classified. This is 
because no additional information is included in the machine check register.
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14.7.2 Compound Error Codes
Compound error codes describe errors related to the TLBs, memory, caches, 
bus and interconnect logic, and internal timer. A set of sub-fields is common 
to all of compound errors. These sub-fields describe the type of access, level 
in the memory hierarchy, and type of request. Table 14-6 shows the general 
form of the compound error codes. 

The “Interpretation” column in the table indicates the name of a compound 
error. The name is constructed by substituting mnemonics for the sub-field 
names given within curly braces. For example, the error code 
ICACHEL1_RD_ERR is constructed from the form: 

{TT}CACHE{LL}_{RRRR}_ERR,
where {TT} is replaced by I, {LL} is replaced by L1, and {RRRR} is replaced by RD.

For more information on the “Form” and “Interpretation” columns, see 
Sections Section 14.7.2.1, “Correction Report Filtering (F) Bit” through 
Section 14.7.2.5, “Bus and Interconnect Errors”.

14.7.2.1  Correction Report Filtering (F) Bit 

Starting with Core Duo processors, bit 12 in the “Form” column in Table 14-6 
is used to indicate that a particular posting to a log may be the last posting 
for corrections in that line/entry, at least for some time:

• 0 in bit 12 indicates “normal” filtering (original P6/Pentium4/Xeon processor 
meaning).

• 1 in bit 12 indicates “corrected” filtering (filtering is activated for the line/entry in 
the posting). Filtering means that some or all of the subsequent corrections to 
this entry (in this structure) will not be posted. The enhanced error reporting 
introduced with the Core Duo processors is based on tracking the lines affected 
by repeated corrections (see Section 14.4, “Enhanced Cache Error reporting”). 
Only the first few correction events for a line are posted; subsequent redundant 
correction events to the same line are not posted. Uncorrected events are always 
posted. 

Table 14-6.  IA32_MCi_Status [15:0] Compound Error Code Encoding  
Type Form Interpretation

Generic Memory Hierarchy 000F 0000 0000 11LL Generic memory hierarchy error

TLB Errors 000F 0000 0001 TTLL {TT}TLB{LL}_ERR

Memory Hierarchy Errors 000F 0001 RRRR TTLL {TT}CACHE{LL}_{RRRR}_ERR

Bus and Interconnect Errors 000F 1PPT RRRR IILL BUS{LL}_{PP}_{RRRR}_{II}_{T}_ERR
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The behavior of error filtering after crossing the yellow threshold is model-
specific.

14.7.2.2  Transaction Type (TT) Sub-Field

The 2-bit TT sub-field (Table 14-7) indicates the type of transaction (data, 
instruction, or generic). The sub-field applies to the TLB, cache, and inter-
connect error conditions. Note that interconnect error conditions are prima-
rily associated with P6 family and Pentium processors, which utilize an 
external APIC bus separate from the system bus. The generic type is 
reported when the processor cannot determine the transaction type.

14.7.2.3  Level (LL) Sub-Field

The 2-bit LL sub-field (see Table 14-8) indicates the level in the memory 
hierarchy where the error occurred (level 0, level 1, level 2, or generic). The 
LL sub-field also applies to the TLB, cache, and interconnect error condi-
tions. The Pentium 4, Intel Xeon, and P6 family processors support two 
levels in the cache hierarchy and one level in the TLBs. Again, the generic 
type is reported when the processor cannot determine the hierarchy level.

14.7.2.4  Request (RRRR) Sub-Field

The 4-bit RRRR sub-field (see Table 14-9) indicates the type of action asso-
ciated with the error. Actions include read and write operations, prefetches, 
cache evictions, and snoops. Generic error is returned when the type of error 
cannot be determined. Generic read and generic write are returned when 
the processor cannot determine the type of instruction or data request that 

Table 14-7.  Encoding for TT (Transaction Type) Sub-Field
Transaction Type Mnemonic Binary Encoding

Instruction I 00

Data D 01

Generic G 10

Table 14-8.  Level Encoding for LL (Memory Hierarchy Level) Sub-Field  
Hierarchy Level Mnemonic Binary Encoding

Level 0 L0 00

Level 1 L1 01

Level 2 L2 10

Generic LG 11
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caused the error. Eviction and snoop requests apply only to the caches. All of 
the other requests apply to TLBs, caches and interconnects.

14.7.2.5  Bus and Interconnect Errors

The bus and interconnect errors are defined with the 2-bit PP (participation), 
1-bit T (time-out), and 2-bit II (memory or I/O) sub-fields, in addition to the 
LL and RRRR sub-fields (see Table 14-10). The bus error conditions are 
implementation dependent and related to the type of bus implemented by 
the processor. Likewise, the interconnect error conditions are predicated on 
a specific implementation-dependent interconnect model that describes the 
connections between the different levels of the storage hierarchy. The type 
of bus is implementation dependent, and as such is not specified in this 
document. A bus or interconnect transaction consists of a request involving 
an address and a response.

Table 14-9.  Encoding of Request (RRRR) Sub-Field  
Request Type Mnemonic Binary Encoding

Generic Error ERR 0000

Generic Read RD 0001

Generic Write WR 0010

Data Read DRD 0011

Data Write DWR 0100

Instruction Fetch IRD 0101

Prefetch PREFETCH 0110

Eviction EVICT 0111

Snoop SNOOP 1000
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14.7.3 Machine-Check Error Codes Interpretation
Appendix E, “Interpreting Machine-Check Error Codes,” provides information 
on interpreting the MCA error code, model-specific error code, and other 
information error code fields. For P6 family processors, information has been 
included on decoding external bus errors. For Pentium 4 and Intel Xeon 
processors; information is included on external bus, internal timer and 
memory hierarchy errors.

14.8 GUIDELINES FOR WRITING MACHINE-CHECK 
SOFTWARE

The machine-check architecture and error logging can be used in two 
different ways:

• To detect machine errors during normal instruction execution, using the 
machine-check exception (#MC).

• To periodically check and log machine errors.

To use the machine-check exception, the operating system or executive 
software must provide a machine-check exception handler. This handler can 
be designed specifically for Pentium 4 and Intel Xeon processors or for P6 

Table 14-10.  Encodings of PP, T, and II Sub-Fields  
Sub-Field Transaction Mnemonic Binary Encoding

PP (Participation) Local processor* originated request SRC 00

Local processor* responded to request RES 01

Local processor* observed error as 
third party

OBS 10

Generic 11

T (Time-out) Request timed out TIMEOUT 1

Request did not time out NOTIMEOUT 0

II (Memory or I/O) Memory Access M 00

Reserved 01

I/O IO 10

Other transaction 11

NOTE:
* Local processor differentiates the processor reporting the error from other system components 

(including the APIC, other processors, etc.).
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family processors. It can also be a portable handler that handles processor 
machine-check errors from several generations of IA-32 processors.

A special program or utility is required to log machine errors.

Guidelines for writing a machine-check exception handler or a machine-
error logging utility are given in the following sections.

14.8.1 Machine-Check Exception Handler
The machine-check exception (#MC) corresponds to vector 18. To service 
machine-check exceptions, a trap gate must be added to the IDT. The 
pointer in the trap gate must point to a machine-check exception handler. 
Two approaches can be taken to designing the exception handler:

1. The handler can merely log all the machine status and error information, then call 
a debugger or shut down the system.

2. The handler can analyze the reported error information and, in some cases, 
attempt to correct the error and restart the processor.

For Pentium 4, Intel Xeon, P6 family, and Pentium processors; virtually all 
machine-check conditions cannot be corrected (they result in abort-type 
exceptions). The logging of status and error information is therefore a base-
line implementation requirement.

When recovery from a machine-check error may be possible, consider the 
following when writing a machine-check exception handler:

• To determine the nature of the error, the handler must read each of the error-
reporting register banks. The count field in the IA32_MCG_CAP register gives 
number of register banks. The first register of register bank 0 is at address 400H.

• The VAL (valid) flag in each IA32_MCi_STATUS register indicates whether the 
error information in the register is valid. If this flag is clear, the registers in that 
bank do not contain valid error information and do not need to be checked.

• To write a portable exception handler, only the MCA error code field in the 
IA32_MCi_STATUS register should be checked. See Section 14.7, “Interpreting 
the MCA Error Codes,” for information that can be used to write an algorithm to 
interpret this field.

• The RIPV, PCC, and OVER flags in each IA32_MCi_STATUS register indicate 
whether recovery from the error is possible. If PCC or OVER are set, recovery is 
not possible. If RIPV is not set, program execution can not be restarted reliably. 
When recovery is not possible, the handler typically records the error information 
and signals an abort to the operating system.

• Correctable errors are corrected automatically by the processor. The UC flag in 
each IA32_MCi_STATUS register indicates whether the processor automatically 
corrected an error.
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• The RIPV flag in the IA32_MCG_STATUS register indicates whether the program 
can be restarted at the instruction indicated by the instruction pointer (the 
address of the instruction pushed on the stack when the exception was 
generated). If this flag is clear, the processor may still be able to be restarted (for 
debugging purposes) but not without loss of program continuity.

• For unrecoverable errors, the EIPV flag in the IA32_MCG_STATUS register 
indicates whether the instruction indicated by the instruction pointer pushed on 
the stack (when the exception was generated) is related to the error. If the flag is 
clear, the pushed instruction may not be related to the error.

• The MCIP flag in the IA32_MCG_STATUS register indicates whether a machine-
check exception was generated. Before returning from the machine-check 
exception handler, software should clear this flag so that it can be used reliably by 
an error logging utility. The MCIP flag also detects recursion. The machine-check 
architecture does not support recursion. When the processor detects machine-
check recursion, it enters the shutdown state.

14.8.2 Enabling BINIT# Drive and BINIT# Observation
For complete operation of the processors machine check capabilities, it is 
essential that the system BIOS enable BINIT# drive and BINIT# observa-
tion. This allows the processor to use BINIT# to clear internal blocking 
states and some external blocking states. This also allows the processor to 
correctly report a wide range of machine check exceptions.

For example, on a Pentium III processor that is:

• Executing a locked CMPXCHG8B instruction.

• Reports a machine check exception on the initial data read.

• And the comparison operation fails.

The processor unlocks the bus after completion of the locked sequence by 
asserting a BINIT# signal. Without BINIT# drive (UP environment) or 
BINIT# drive and observation enabled (MP environment); the machine 
check error is logged but the machine check exception is not taken (if MCE's 
are enabled).

Example 14-2 gives typical steps carried out by a machine-check exception 
handler.

Example 14-2.  Machine-Check Exception Handler Pseudocode

IF CPU supports MCE
THEN

IF CPU supports MCA
THEN

call errorlogging routine; (* returns restartability *)
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FI;
ELSE (* Pentium(R) processor compatible *)

READ P5_MC_ADDR
READ P5_MC_TYPE;
report RESTARTABILITY to console;

FI;
IF error is not restartable

THEN
report RESTARTABILITY to console;
abort system;

FI;
CLEAR MCIP flag in IA32_MCG_STATUS;

14.8.3 Pentium Processor Machine-Check Exception Handling
To make the machine-check exception handler portable to the Pentium 4, 
Intel Xeon, P6 family, and Pentium processors, checks can be made (using 
CPUID) to determine the processor type. Then based on the processor type, 
machine-check exceptions can be handled specifically for Pentium 4, Intel 
Xeon, P6 family, or Pentium processors.

When machine-check exceptions are enabled for the Pentium processor 
(MCE flag is set in control register CR4), the machine-check exception 
handler uses the RDMSR instruction to read the error type from the 
P5_MC_TYPE register and the machine check address from the 
P5_MC_ADDR register. The handler then normally reports these register 
values to the system console before aborting execution (see Example 14-2).

14.8.4 Logging Correctable Machine-Check Errors
If a machine-check error is correctable, the processor does not generate a 
machine-check exception for it. To detect correctable machine-check errors, 
a utility program must be written that reads each of the machine-check 
error-reporting register banks and logs the results in an accounting file or 
data structure. This utility can be implemented in either of the following 
ways.

• A system daemon that polls the register banks on an infrequent basis, such as 
hourly or daily.

• A user-initiated application that polls the register banks and records the 
exceptions. Here, the actual polling service is provided by an operating-system 
driver or through the system call interface.

Example 14-3 gives pseudocode for an error logging utility.
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Example 14-3.  Machine-Check Error Logging Pseudocode

Assume that execution is restartable;
IF the processor supports MCA

THEN
FOR each bank of machine-check registers 

DO
READ IA32_MCi_STATUS;
IF VAL flag in IA32_MCi_STATUS = 1

THEN
IF ADDRV flag in IA32_MCi_STATUS = 1

THEN READ IA32_MCi_ADDR; 
FI;
IF MISCV flag in IA32_MCi_STATUS = 1

THEN READ IA32_MCi_MISC;
FI;
IF MCIP flag in IA32_MCG_STATUS = 1

(* Machine-check exception is in progress *) 
AND PCC flag in IA32_MCi_STATUS = 1
AND RIPV flag in IA32_MCG_STATUS = 0
(* execution is not restartable *)

THEN 
RESTARTABILITY = FALSE;
return RESTARTABILITY to calling procedure;

FI;
Save time-stamp counter and processor ID;
Set IA32_MCi_STATUS to all 0s;
Execute serializing instruction (i.e., CPUID);

FI;
OD;

FI;

If the processor supports the machine-check architecture, the utility reads 
through the banks of error-reporting registers looking for valid register 
entries. It then saves the values of the IA32_MCi_STATUS, IA32_MCi_ADDR, 
IA32_MCi_MISC and IA32_MCG_STATUS registers for each bank that is 
valid. The routine minimizes processing time by recording the raw data into 
a system data structure or file, reducing the overhead associated with 
polling. User utilities analyze the collected data in an off-line environment.

When the MCIP flag is set in the IA32_MCG_STATUS register, a machine-
check exception is in progress and the machine-check exception handler has 
called the exception logging routine. 

Once the logging process has been completed the exception-handling 
routine must determine whether execution can be restarted, which is usually 
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possible when damage has not occurred (The PCC flag is clear, in the 
IA32_MCi_STATUS register) and when the processor can guarantee that 
execution is restartable (the RIPV flag is set in the IA32_MCG_STATUS 
register). If execution cannot be restarted, the system is not recoverable 
and the exception-handling routine should signal the console appropriately 
before returning the error status to the Operating System kernel for subse-
quent shutdown.

The machine-check architecture allows buffering of exceptions from a given 
error-reporting bank although the Pentium 4, Intel Xeon, and P6 family 
processors do not implement this feature. The error logging routine should 
provide compatibility with future processors by reading each hardware 
error-reporting bank's IA32_MCi_STATUS register and then writing 0s to 
clear the OVER and VAL flags in this register. The error logging utility should 
re-read the IA32_MCi_STATUS register for the bank ensuring that the valid 
bit is clear. The processor will write the next error into the register bank and 
set the VAL flags. 

Additional information that should be stored by the exception-logging 
routine includes the processor’s time-stamp counter value, which provides a 
mechanism to indicate the frequency of exceptions. A multiprocessing oper-
ating system stores the identity of the processor node incurring the excep-
tion using a unique identifier, such as the processor’s APIC ID (see Section 
9.8, “Handling Interrupts”). 

The basic algorithm given in Example 14-3 can be modified to provide more 
robust recovery techniques. For example, software has the flexibility to 
attempt recovery using information unavailable to the hardware. Specifi-
cally, the machine-check exception handler can, after logging carefully 
analyze the error-reporting registers when the error-logging routine reports 
an error that does not allow execution to be restarted. These recovery tech-
niques can use external bus related model-specific information provided 
with the error report to localize the source of the error within the system and 
determine the appropriate recovery strategy. 
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CHAPTER 15
8086 EMULATION

IA-32 processors (beginning with the Intel386 processor) provide two ways to 
execute new or legacy programs that are assembled and/or compiled to run on an 
Intel 8086 processor: 

• Real-address mode.

• Virtual-8086 mode.

Figure 2-3 shows the relationship of these operating modes to protected mode and 
system management mode (SMM). 

When the processor is powered up or reset, it is placed in the real-address mode. 
This operating mode almost exactly duplicates the execution environment of the 
Intel 8086 processor, with some extensions. Virtually any program assembled and/or 
compiled to run on an Intel 8086 processor will run on an IA-32 processor in this 
mode.

When running in protected mode, the processor can be switched to virtual-8086 
mode to run 8086 programs. This mode also duplicates the execution environment of 
the Intel 8086 processor, with extensions. In virtual-8086 mode, an 8086 program 
runs as a separate protected-mode task. Legacy 8086 programs are thus able to run 
under an operating system (such as Microsoft Windows*) that takes advantage of 
protected mode and to use protected-mode facilities, such as the protected-mode 
interrupt- and exception-handling facilities. Protected-mode multitasking permits 
multiple virtual-8086 mode tasks (with each task running a separate 8086 program) 
to be run on the processor along with other non-virtual-8086 mode tasks.

This section describes both the basic real-address mode execution environment and 
the virtual-8086-mode execution environment, available on the IA-32 processors 
beginning with the Intel386 processor. 

15.1 REAL-ADDRESS MODE
The IA-32 architecture’s real-address mode runs programs written for the Intel 8086, 
Intel 8088, Intel 80186, and Intel 80188 processors, or for the real-address mode of 
the Intel 286, Intel386, Intel486, Pentium, P6 family, Pentium 4, and Intel Xeon 
processors.

The execution environment of the processor in real-address mode is designed to 
duplicate the execution environment of the Intel 8086 processor. To an 8086 
program, a processor operating in real-address mode behaves like a high-speed 
8086 processor. The principal features of this architecture are defined in Chapter 3, 
“Basic Execution Environment”, of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1.
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The following is a summary of the core features of the real-address mode execution 
environment as would be seen by a program written for the 8086:

• The processor supports a nominal 1-MByte physical address space (see Section 
15.1.1, “Address Translation in Real-Address Mode”, for specific details). This 
address space is divided into segments, each of which can be up to 64 KBytes in 
length. The base of a segment is specified with a 16-bit segment selector, which 
is zero extended to form a 20-bit offset from address 0 in the address space. An 
operand within a segment is addressed with a 16-bit offset from the base of the 
segment. A physical address is thus formed by adding the offset to the 20-bit 
segment base (see Section 15.1.1, “Address Translation in Real-Address Mode”).

• All operands in “native 8086 code” are 8-bit or 16-bit values. (Operand size 
override prefixes can be used to access 32-bit operands.)

• Eight 16-bit general-purpose registers are provided: AX, BX, CX, DX, SP, BP, SI, 
and DI. The extended 32 bit registers (EAX, EBX, ECX, EDX, ESP, EBP, ESI, and 
EDI) are accessible to programs that explicitly perform a size override operation.

• Four segment registers are provided: CS, DS, SS, and ES. (The FS and GS 
registers are accessible to programs that explicitly access them.) The CS register 
contains the segment selector for the code segment; the DS and ES registers 
contain segment selectors for data segments; and the SS register contains the 
segment selector for the stack segment.

• The 8086 16-bit instruction pointer (IP) is mapped to the lower 16-bits of the EIP 
register. Note this register is a 32-bit register and unintentional address wrapping 
may occur.

• The 16-bit FLAGS register contains status and control flags. (This register is 
mapped to the 16 least significant bits of the 32-bit EFLAGS register.)

• All of the Intel 8086 instructions are supported (see Section 15.1.3, “Instructions 
Supported in Real-Address Mode”).

• A single, 16-bit-wide stack is provided for handling procedure calls and 
invocations of interrupt and exception handlers. This stack is contained in the 
stack segment identified with the SS register. The SP (stack pointer) register 
contains an offset into the stack segment. The stack grows down (toward lower 
segment offsets) from the stack pointer. The BP (base pointer) register also 
contains an offset into the stack segment that can be used as a pointer to a 
parameter list. When a CALL instruction is executed, the processor pushes the 
current instruction pointer (the 16 least-significant bits of the EIP register and, 
on far calls, the current value of the CS register) onto the stack. On a return, 
initiated with a RET instruction, the processor pops the saved instruction pointer 
from the stack into the EIP register (and CS register on far returns). When an 
implicit call to an interrupt or exception handler is executed, the processor 
pushes the EIP, CS, and EFLAGS (low-order 16-bits only) registers onto the 
stack. On a return from an interrupt or exception handler, initiated with an IRET 
instruction, the processor pops the saved instruction pointer and EFLAGS image 
from the stack into the EIP, CS, and EFLAGS registers.
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• A single interrupt table, called the “interrupt vector table” or “interrupt table,” is 
provided for handling interrupts and exceptions (see Figure 15-2). The interrupt 
table (which has 4-byte entries) takes the place of the interrupt descriptor table 
(IDT, with 8-byte entries) used when handling protected-mode interrupts and 
exceptions. Interrupt and exception vector numbers provide an index to entries 
in the interrupt table. Each entry provides a pointer (called a “vector”) to an 
interrupt- or exception-handling procedure. See Section 15.1.4, “Interrupt and 
Exception Handling”, for more details. It is possible for software to relocate the 
IDT by means of the LIDT instruction on IA-32 processors beginning with the 
Intel386 processor.

• The x87 FPU is active and available to execute x87 FPU instructions in real-
address mode. Programs written to run on the Intel 8087 and Intel 287 math 
coprocessors can be run in real-address mode without modification.

The following extensions to the Intel 8086 execution environment are available in the 
IA-32 architecture’s real-address mode. If backwards compatibility to Intel 286 and 
Intel 8086 processors is required, these features should not be used in new programs 
written to run in real-address mode.

• Two additional segment registers (FS and GS) are available.

• Many of the integer and system instructions that have been added to later IA-32 
processors can be executed in real-address mode (see Section 15.1.3, “Instruc-
tions Supported in Real-Address Mode”). 

• The 32-bit operand prefix can be used in real-address mode programs to execute 
the 32-bit forms of instructions. This prefix also allows real-address mode 
programs to use the processor’s 32-bit general-purpose registers.

• The 32-bit address prefix can be used in real-address mode programs, allowing 
32-bit offsets.

The following sections describe address formation, registers, available instructions, 
and interrupt and exception handling in real-address mode. For information on I/O in 
real-address mode, see Chapter 13, “Input/Output”, of the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 1. 

15.1.1 Address Translation in Real-Address Mode
In real-address mode, the processor does not interpret segment selectors as indexes 
into a descriptor table; instead, it uses them directly to form linear addresses as the 
8086 processor does. It shifts the segment selector left by 4 bits to form a 20-bit 
base address (see Figure 15-1). The offset into a segment is added to the base 
address to create a linear address that maps directly to the physical address space. 

When using 8086-style address translation, it is possible to specify addresses larger 
than 1 MByte. For example, with a segment selector value of FFFFH and an offset of 
FFFFH, the linear (and physical) address would be 10FFEFH (1 megabyte plus 64 
KBytes). The 8086 processor, which can form addresses only up to 20 bits long, trun-
cates the high-order bit, thereby “wrapping” this address to FFEFH. When operating 
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in real-address mode, however, the processor does not truncate such an address and 
uses it as a physical address. (Note, however, that for IA-32 processors beginning 
with the Intel486 processor, the A20M# signal can be used in real-address mode to 
mask address line A20, thereby mimicking the 20-bit wrap-around behavior of the 
8086 processor.) Care should be take to ensure that A20M# based address wrapping 
is handled correctly in multiprocessor based system.

The IA-32 processors beginning with the Intel386 processor can generate 32-bit 
offsets using an address override prefix; however, in real-address mode, the value of 
a 32-bit offset may not exceed FFFFH without causing an exception. 

For full compatibility with Intel 286 real-address mode, pseudo-protection faults 
(interrupt 12 or 13) occur if a 32-bit offset is generated outside the range 0 through 
FFFFH.

15.1.2 Registers Supported in Real-Address Mode
The register set available in real-address mode includes all the registers defined for 
the 8086 processor plus the new registers introduced in later IA-32 processors, such 
as the FS and GS segment registers, the debug registers, the control registers, and 
the floating-point unit registers. The 32-bit operand prefix allows a real-address 
mode program to use the 32-bit general-purpose registers (EAX, EBX, ECX, EDX, 
ESP, EBP, ESI, and EDI).

15.1.3 Instructions Supported in Real-Address Mode
The following instructions make up the core instruction set for the 8086 processor. If 
backwards compatibility to the Intel 286 and Intel 8086 processors is required, only 
these instructions should be used in a new program written to run in real-address 
mode.

Figure 15-1.  Real-Address Mode Address Translation
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• Move (MOV) instructions that move operands between general-purpose 
registers, segment registers, and between memory and general-purpose 
registers.

• The exchange (XCHG) instruction.

• Load segment register instructions LDS and LES.

• Arithmetic instructions ADD, ADC, SUB, SBB, MUL, IMUL, DIV, IDIV, INC, DEC, 
CMP, and NEG.

• Logical instructions AND, OR, XOR, and NOT.

• Decimal instructions DAA, DAS, AAA, AAS, AAM, and AAD.

• Stack instructions PUSH and POP (to general-purpose registers and segment 
registers).

• Type conversion instructions CWD, CDQ, CBW, and CWDE.

• Shift and rotate instructions SAL, SHL, SHR, SAR, ROL, ROR, RCL, and RCR.

• TEST instruction.

• Control instructions JMP, Jcc, CALL, RET, LOOP, LOOPE, and LOOPNE.

• Interrupt instructions INT n, INTO, and IRET.

• EFLAGS control instructions STC, CLC, CMC, CLD, STD, LAHF, SAHF, PUSHF, and 
POPF.

• I/O instructions IN, INS, OUT, and OUTS.

• Load effective address (LEA) instruction, and translate (XLATB) instruction.

• LOCK prefix.

• Repeat prefixes REP, REPE, REPZ, REPNE, and REPNZ.

• Processor halt (HLT) instruction.

• No operation (NOP) instruction.

The following instructions, added to later IA-32 processors (some in the Intel 286 
processor and the remainder in the Intel386 processor), can be executed in real-
address mode, if backwards compatibility to the Intel 8086 processor is not required.

• Move (MOV) instructions that operate on the control and debug registers.

• Load segment register instructions LSS, LFS, and LGS.

• Generalized multiply instructions and multiply immediate data.

• Shift and rotate by immediate counts.

• Stack instructions PUSHA, PUSHAD, POPA and POPAD, and PUSH immediate 
data.

• Move with sign extension instructions MOVSX and MOVZX.

• Long-displacement Jcc instructions.

• Exchange instructions CMPXCHG, CMPXCHG8B, and XADD. 

• String instructions MOVS, CMPS, SCAS, LODS, and STOS. 
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• Bit test and bit scan instructions BT, BTS, BTR, BTC, BSF, and BSR; the byte-set-
on condition instruction SETcc; and the byte swap (BSWAP) instruction.

• Double shift instructions SHLD and SHRD.

• EFLAGS control instructions PUSHF and POPF.

• ENTER and LEAVE control instructions.

• BOUND instruction.

• CPU identification (CPUID) instruction.

• System instructions CLTS, INVD, WINVD, INVLPG, LGDT, SGDT, LIDT, SIDT, 
LMSW, SMSW, RDMSR, WRMSR, RDTSC, and RDPMC.

Execution of any of the other IA-32 architecture instructions (not given in the 
previous two lists) in real-address mode result in an invalid-opcode exception (#UD) 
being generated.

15.1.4 Interrupt and Exception Handling
When operating in real-address mode, software must provide interrupt and excep-
tion-handling facilities that are separate from those provided in protected mode. 
Even during the early stages of processor initialization when the processor is still in 
real-address mode, elementary real-address mode interrupt and exception-handling 
facilities must be provided to insure reliable operation of the processor, or the initial-
ization code must insure that no interrupts or exceptions will occur.

The IA-32 processors handle interrupts and exceptions in real-address mode similar 
to the way they handle them in protected mode. When a processor receives an inter-
rupt or generates an exception, it uses the vector number of the interrupt or excep-
tion as an index into the interrupt table. (In protected mode, the interrupt table is 
called the interrupt descriptor table (IDT), but in real-address mode, the table is 
usually called the interrupt vector table, or simply the interrupt table.) The entry 
in the interrupt vector table provides a pointer to an interrupt- or exception-handler 
procedure. (The pointer consists of a segment selector for a code segment and a 16-
bit offset into the segment.) The processor performs the following actions to make an 
implicit call to the selected handler:

1. Pushes the current values of the CS and EIP registers onto the stack. (Only the 16 
least-significant bits of the EIP register are pushed.)

2. Pushes the low-order 16 bits of the EFLAGS register onto the stack.

3. Clears the IF flag in the EFLAGS register to disable interrupts.

4. Clears the TF, RC, and AC flags, in the EFLAGS register.

5. Transfers program control to the location specified in the interrupt vector table.

An IRET instruction at the end of the handler procedure reverses these steps to 
return program control to the interrupted program. Exceptions do not return error 
codes in real-address mode.
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The interrupt vector table is an array of 4-byte entries (see Figure 15-2). Each entry 
consists of a far pointer to a handler procedure, made up of a segment selector and 
an offset. The processor scales the interrupt or exception vector by 4 to obtain an 
offset into the interrupt table. Following reset, the base of the interrupt vector table 
is located at physical address 0 and its limit is set to 3FFH. In the Intel 8086 
processor, the base address and limit of the interrupt vector table cannot be 
changed. In the later IA-32 processors, the base address and limit of the interrupt 
vector table are contained in the IDTR register and can be changed using the LIDT 
instruction. 

(For backward compatibility to Intel 8086 processors, the default base address and 
limit of the interrupt vector table should not be changed.)

Table 15-1 shows the interrupt and exception vectors that can be generated in real-
address mode and virtual-8086 mode, and in the Intel 8086 processor. See Chapter 
5, “Interrupt and Exception Handling”, for a description of the exception conditions.

Figure 15-2.  Interrupt Vector Table in Real-Address Mode
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15.2 VIRTUAL-8086 MODE
Virtual-8086 mode is actually a special type of a task that runs in protected mode. 
When the operating-system or executive switches to a virtual-8086-mode task, the 
processor emulates an Intel 8086 processor. The execution environment of the 
processor while in the 8086-emulation state is the same as is described in Section 
15.1, “Real-Address Mode” for real-address mode, including the extensions. The 
major difference between the two modes is that in virtual-8086 mode the 8086 
emulator uses some protected-mode services (such as the protected-mode interrupt 
and exception-handling and paging facilities).

As in real-address mode, any new or legacy program that has been assembled 
and/or compiled to run on an Intel 8086 processor will run in a virtual-8086-mode 
task. And several 8086 programs can be run as virtual-8086-mode tasks concur-
rently with normal protected-mode tasks, using the processor’s multitasking 
facilities.

Table 15-1.  Real-Address Mode Exceptions and Interrupts 

Vector 
No.

Description Real-Address 
Mode

Virtual-8086 
Mode

Intel 8086 
Processor

 0 Divide Error (#DE) Yes Yes Yes

 1 Debug Exception (#DB) Yes Yes No

 2 NMI Interrupt Yes Yes Yes

 3 Breakpoint (#BP) Yes Yes Yes

 4 Overflow (#OF) Yes Yes Yes

 5 BOUND Range Exceeded (#BR) Yes Yes Reserved

 6 Invalid Opcode (#UD) Yes Yes Reserved

 7 Device Not Available (#NM) Yes Yes Reserved

 8 Double Fault (#DF) Yes Yes Reserved

 9 (Intel reserved. Do not use.) Reserved Reserved Reserved

10 Invalid TSS (#TS) Reserved Yes Reserved

11 Segment Not Present (#NP) Reserved Yes Reserved

12 Stack Fault (#SS) Yes Yes Reserved

13 General Protection (#GP)* Yes Yes Reserved

14 Page Fault (#PF) Reserved Yes Reserved

15 (Intel reserved. Do not use.) Reserved Reserved Reserved

16 Floating-Point Error (#MF) Yes Yes Reserved

17 Alignment Check (#AC) Reserved Yes Reserved

18 Machine Check (#MC) Yes Yes Reserved
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15.2.1 Enabling Virtual-8086 Mode
The processor runs in virtual-8086 mode when the VM (virtual machine) flag in the 
EFLAGS register is set. This flag can only be set when the processor switches to a 
new protected-mode task or resumes virtual-8086 mode via an IRET instruction.

System software cannot change the state of the VM flag directly in the EFLAGS 
register (for example, by using the POPFD instruction). Instead it changes the flag in 
the image of the EFLAGS register stored in the TSS or on the stack following a call to 
an interrupt- or exception-handler procedure. For example, software sets the VM flag 
in the EFLAGS image in the TSS when first creating a virtual-8086 task.

The processor tests the VM flag under three general conditions:

• When loading segment registers, to determine whether to use 8086-style 
address translation.

• When decoding instructions, to determine which instructions are not supported in 
virtual-8086 mode and which instructions are sensitive to IOPL.

• When checking privileged instructions, on page accesses, or when performing 
other permission checks. (Virtual-8086 mode always executes at CPL 3.)

15.2.2 Structure of a Virtual-8086 Task
A virtual-8086-mode task consists of the following items:

• A 32-bit TSS for the task.

• The 8086 program.

• A virtual-8086 monitor.

• 8086 operating-system services.

The TSS of the new task must be a 32-bit TSS, not a 16-bit TSS, because the 16-bit 
TSS does not load the most-significant word of the EFLAGS register, which contains 
the VM flag. All TSS’s, stacks, data, and code used to handle exceptions when in 
virtual-8086 mode must also be 32-bit segments.

19-31 (Intel reserved. Do not use.) Reserved Reserved Reserved

32-
255

User Defined Interrupts Yes Yes Yes

NOTE:
* In the real-address mode, vector 13 is the segment overrun exception. In protected and vir-

tual-8086 modes, this exception covers all general-protection error conditions, including traps 
to the virtual-8086 monitor from virtual-8086 mode.

Table 15-1.  Real-Address Mode Exceptions and Interrupts (Contd.)

Vector 
No.

Description Real-Address 
Mode

Virtual-8086 
Mode

Intel 8086 
Processor
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The processor enters virtual-8086 mode to run the 8086 program and returns to 
protected mode to run the virtual-8086 monitor.

The virtual-8086 monitor is a 32-bit protected-mode code module that runs at a CPL 
of 0. The monitor consists of initialization, interrupt- and exception-handling, and I/O 
emulation procedures that emulate a personal computer or other 8086-based plat-
form. Typically, the monitor is either part of or closely associated with the protected-
mode general-protection (#GP) exception handler, which also runs at a CPL of 0. As 
with any protected-mode code module, code-segment descriptors for the virtual-
8086 monitor must exist in the GDT or in the task’s LDT. The virtual-8086 monitor 
also may need data-segment descriptors so it can examine the IDT or other parts of 
the 8086 program in the first 1 MByte of the address space. The linear addresses 
above 10FFEFH are available for the monitor, the operating system, and other system 
software.

The 8086 operating-system services consists of a kernel and/or operating-system 
procedures that the 8086 program makes calls to. These services can be imple-
mented in either of the following two ways:

• They can be included in the 8086 program. This approach is desirable for either 
of the following reasons:

— The 8086 program code modifies the 8086 operating-system services.

— There is not sufficient development time to merge the 8086 operating-
system services into main operating system or executive.

• They can be implemented or emulated in the virtual-8086 monitor. This approach 
is desirable for any of the following reasons:

— The 8086 operating-system procedures can be more easily coordinated 
among several virtual-8086 tasks.

— Memory can be saved by not duplicating 8086 operating-system procedure 
code for several virtual-8086 tasks.

— The 8086 operating-system procedures can be easily emulated by calls to the 
main operating system or executive.

The approach chosen for implementing the 8086 operating-system services may 
result in different virtual-8086-mode tasks using different 8086 operating-system 
services.

15.2.3 Paging of Virtual-8086 Tasks
Even though a program running in virtual-8086 mode can use only 20-bit linear 
addresses, the processor converts these addresses into 32-bit linear addresses 
before mapping them to the physical address space. If paging is being used, the 
8086 address space for a program running in virtual-8086 mode can be paged and 
located in a set of pages in physical address space. If paging is used, it is transparent 
to the program running in virtual-8086 mode just as it is for any task running on the 
processor.
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Paging is not necessary for a single virtual-8086-mode task, but paging is useful or 
necessary in the following situations:

• When running multiple virtual-8086-mode tasks. Here, paging allows the lower 1 
MByte of the linear address space for each virtual-8086-mode task to be mapped 
to a different physical address location.

• When emulating the 8086 address-wraparound that occurs at 1 MByte. When 
using 8086-style address translation, it is possible to specify addresses larger 
than 1 MByte. These addresses automatically wraparound in the Intel 8086 
processor (see Section 15.1.1, “Address Translation in Real-Address Mode”). If 
any 8086 programs depend on address wraparound, the same effect can be 
achieved in a virtual-8086-mode task by mapping the linear addresses between 
100000H and 110000H and linear addresses between 0 and 10000H to the same 
physical addresses.

• When sharing the 8086 operating-system services or ROM code that is common 
to several 8086 programs running as different 8086-mode tasks.

• When redirecting or trapping references to memory-mapped I/O devices.

15.2.4 Protection within a Virtual-8086 Task
Protection is not enforced between the segments of an 8086 program. Either of the 
following techniques can be used to protect the system software running in a virtual-
8086-mode task from the 8086 program:

• Reserve the first 1 MByte plus 64 KBytes of each task’s linear address space for 
the 8086 program. An 8086 processor task cannot generate addresses outside 
this range.

• Use the U/S flag of page-table entries to protect the virtual-8086 monitor and 
other system software in the virtual-8086 mode task space. When the processor 
is in virtual-8086 mode, the CPL is 3. Therefore, an 8086 processor program has 
only user privileges. If the pages of the virtual-8086 monitor have supervisor 
privilege, they cannot be accessed by the 8086 program.

15.2.5 Entering Virtual-8086 Mode
Figure 15-3 summarizes the methods of entering and leaving virtual-8086 mode. 
The processor switches to virtual-8086 mode in either of the following situations:

• Task switch when the VM flag is set to 1 in the EFLAGS register image stored in 
the TSS for the task. Here the task switch can be initiated in either of two ways:

— A CALL or JMP instruction.

— An IRET instruction, where the NT flag in the EFLAGS image is set to 1.

• Return from a protected-mode interrupt or exception handler when the VM flag is 
set to 1 in the EFLAGS register image on the stack.
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When a task switch is used to enter virtual-8086 mode, the TSS for the virtual-8086-
mode task must be a 32-bit TSS. (If the new TSS is a 16-bit TSS, the upper word of 
the EFLAGS register is not in the TSS, causing the processor to clear the VM flag 
when it loads the EFLAGS register.) The processor updates the VM flag prior to 
loading the segment registers from their images in the new TSS. The new setting of 
the VM flag determines whether the processor interprets the contents of the segment 
registers as 8086-style segment selectors or protected-mode segment selectors. 
When the VM flag is set, the segment registers are loaded from the TSS, using 8086-
style address translation to form base addresses. 

See Section 15.3, “Interrupt and Exception Handling in Virtual-8086 Mode”, for infor-
mation on entering virtual-8086 mode on a return from an interrupt or exception 
handler.
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Figure 15-3.  Entering and Leaving Virtual-8086 Mode
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15.2.6 Leaving Virtual-8086 Mode
The processor can leave the virtual-8086 mode only through an interrupt or excep-
tion. The following are situations where an interrupt or exception will lead to the 
processor leaving virtual-8086 mode (see Figure 15-3):

• The processor services a hardware interrupt generated to signal the suspension 
of execution of the virtual-8086 application. This hardware interrupt may be 
generated by a timer or other external mechanism. Upon receiving the hardware 
interrupt, the processor enters protected mode and switches to a protected-
mode (or another virtual-8086 mode) task either through a task gate in the 
protected-mode IDT or through a trap or interrupt gate that points to a handler 
that initiates a task switch. A task switch from a virtual-8086 task to another task 
loads the EFLAGS register from the TSS of the new task. The value of the VM flag 
in the new EFLAGS determines if the new task executes in virtual-8086 mode or 
not.

• The processor services an exception caused by code executing the virtual-8086 
task or services a hardware interrupt that “belongs to” the virtual-8086 task. 
Here, the processor enters protected mode and services the exception or 
hardware interrupt through the protected-mode IDT (normally through an 
interrupt or trap gate) and the protected-mode exception- and interrupt-
handlers. The processor may handle the exception or interrupt within the context 
of the virtual 8086 task and return to virtual-8086 mode on a return from the 
handler procedure. The processor may also execute a task switch and handle the 
exception or interrupt in the context of another task.

• The processor services a software interrupt generated by code executing in the 
virtual-8086 task (such as a software interrupt to call a MS-DOS* operating 
system routine). The processor provides several methods of handling these 
software interrupts, which are discussed in detail in Section 15.3.3, “Class 
3—Software Interrupt Handling in Virtual-8086 Mode”. Most of them involve the 
processor entering protected mode, often by means of a general-protection 
(#GP) exception. In protected mode, the processor can send the interrupt to the 
virtual-8086 monitor for handling and/or redirect the interrupt back to the 
application program running in virtual-8086 mode task for handling.

IA-32 processors that incorporate the virtual mode extension (enabled with the 
VME flag in control register CR4) are capable of redirecting software-generated 
interrupts back to the program’s interrupt handlers without leaving virtual-8086 
mode. See Section 15.3.3.4, “Method 5: Software Interrupt Handling”, for more 
information on this mechanism.

• A hardware reset initiated by asserting the RESET or INIT pin is a special kind of 
interrupt. When a RESET or INIT is signaled while the processor is in virtual-8086 
mode, the processor leaves virtual-8086 mode and enters real-address mode.

• Execution of the HLT instruction in virtual-8086 mode will cause a general-
protection (GP#) fault, which the protected-mode handler generally sends to the 
virtual-8086 monitor. The virtual-8086 monitor then determines the correct 
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execution sequence after verifying that it was entered as a result of a HLT 
execution.

See Section 15.3, “Interrupt and Exception Handling in Virtual-8086 Mode”, for infor-
mation on leaving virtual-8086 mode to handle an interrupt or exception generated 
in virtual-8086 mode.

15.2.7 Sensitive Instructions
When an IA-32 processor is running in virtual-8086 mode, the CLI, STI, PUSHF, POPF, 
INT n, and IRET instructions are sensitive to IOPL. The IN, INS, OUT, and OUTS 
instructions, which are sensitive to IOPL in protected mode, are not sensitive in 
virtual-8086 mode.

The CPL is always 3 while running in virtual-8086 mode; if the IOPL is less than 3, an 
attempt to use the IOPL-sensitive instructions listed above triggers a general-protec-
tion exception (#GP). These instructions are sensitive to IOPL to give the virtual-
8086 monitor a chance to emulate the facilities they affect.

15.2.8 Virtual-8086 Mode I/O
Many 8086 programs written for non-multitasking systems directly access I/O ports. 
This practice may cause problems in a multitasking environment. If more than one 
program accesses the same port, they may interfere with each other. Most multi-
tasking systems require application programs to access I/O ports through the oper-
ating system. This results in simplified, centralized control.

The processor provides I/O protection for creating I/O that is compatible with the 
environment and transparent to 8086 programs. Designers may take any of several 
possible approaches to protecting I/O ports:

• Protect the I/O address space and generate exceptions for all attempts to 
perform I/O directly.

• Let the 8086 program perform I/O directly.

• Generate exceptions on attempts to access specific I/O ports.

• Generate exceptions on attempts to access specific memory-mapped I/O ports.

The method of controlling access to I/O ports depends upon whether they are 
I/O-port mapped or memory mapped.

15.2.8.1  I/O-Port-Mapped I/O
The I/O permission bit map in the TSS can be used to generate exceptions on 
attempts to access specific I/O port addresses. The I/O permission bit map of each 
virtual-8086-mode task determines which I/O addresses generate exceptions for 
that task. Because each task may have a different I/O permission bit map, the 
addresses that generate exceptions for one task may be different from the addresses 
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for another task. This differs from protected mode in which, if the CPL is less than or 
equal to the IOPL, I/O access is allowed without checking the I/O permission bit map. 
See Chapter 13, “Input/Output”, in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1, for more information about the I/O permission bit 
map.

15.2.8.2  Memory-Mapped I/O
In systems which use memory-mapped I/O, the paging facilities of the processor can 
be used to generate exceptions for attempts to access I/O ports. The virtual-8086 
monitor may use paging to control memory-mapped I/O in these ways:

• Map part of the linear address space of each task that needs to perform I/O to the 
physical address space where I/O ports are placed. By putting the I/O ports at 
different addresses (in different pages), the paging mechanism can enforce 
isolation between tasks.

• Map part of the linear address space to pages that are not-present. This 
generates an exception whenever a task attempts to perform I/O to those pages. 
System software then can interpret the I/O operation being attempted.

Software emulation of the I/O space may require too much operating system inter-
vention under some conditions. In these cases, it may be possible to generate an 
exception for only the first attempt to access I/O. The system software then may 
determine whether a program can be given exclusive control of I/O temporarily, the 
protection of the I/O space may be lifted, and the program allowed to run at full 
speed.

15.2.8.3  Special I/O Buffers
Buffers of intelligent controllers (for example, a bit-mapped frame buffer) also can be 
emulated using page mapping. The linear space for the buffer can be mapped to a 
different physical space for each virtual-8086-mode task. The virtual-8086 monitor 
then can control which virtual buffer to copy onto the real buffer in the physical 
address space.

15.3 INTERRUPT AND EXCEPTION HANDLING  
IN VIRTUAL-8086 MODE

When the processor receives an interrupt or detects an exception condition while in 
virtual-8086 mode, it invokes an interrupt or exception handler, just as it does in 
protected or real-address mode. The interrupt or exception handler that is invoked 
and the mechanism used to invoke it depends on the class of interrupt or exception 
that has been detected or generated and the state of various system flags and fields.
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In virtual-8086 mode, the interrupts and exceptions are divided into three classes for 
the purposes of handling:

• Class 1 — All processor-generated exceptions and all hardware interrupts, 
including the NMI interrupt and the hardware interrupts sent to the processor’s 
external interrupt delivery pins. All class 1 exceptions and interrupts are handled 
by the protected-mode exception and interrupt handlers.

• Class 2 — Special case for maskable hardware interrupts (Section 5.3.2, 
“Maskable Hardware Interrupts”) when the virtual mode extensions are enabled.

• Class 3 — All software-generated interrupts, that is interrupts generated with 
the INT n instruction1.

The method the processor uses to handle class 2 and 3 interrupts depends on the 
setting of the following flags and fields:

• IOPL field (bits 12 and 13 in the EFLAGS register) — Controls how class 3 
software interrupts are handled when the processor is in virtual-8086 mode (see 
Section 2.3, “System Flags and Fields in the EFLAGS Register”). This field also 
controls the enabling of the VIF and VIP flags in the EFLAGS register when the 
VME flag is set. The VIF and VIP flags are provided to assist in the handling of 
class 2 maskable hardware interrupts.

• VME flag (bit 0 in control register CR4) — Enables the virtual mode extension 
for the processor when set (see Section 2.5, “Control Registers”).

• Software interrupt redirection bit map (32 bytes in the TSS, see 
Figure 15-5) — Contains 256 flags that indicates how class 3 software 
interrupts should be handled when they occur in virtual-8086 mode. A software 
interrupt can be directed either to the interrupt and exception handlers in the 
currently running 8086 program or to the protected-mode interrupt and 
exception handlers.

• The virtual interrupt flag (VIF) and virtual interrupt pending flag (VIP) 
in the EFLAGS register — Provides virtual interrupt support for the handling 
of class 2 maskable hardware interrupts (see Section 15.3.2, “Class 2—Maskable 
Hardware Interrupt Handling in Virtual-8086 Mode Using the Virtual Interrupt 
Mechanism”). 

NOTE
The VME flag, software interrupt redirection bit map, and VIF and VIP 
flags are only available in IA-32 processors that support the virtual 
mode extensions. These extensions were introduced in the IA-32 
architecture with the Pentium processor.

The following sections describe the actions that processor takes and the possible 
actions of interrupt and exception handlers for the two classes of interrupts described 

1. The INT 3 instruction is a special case (see the description of the INT n instruction in Chapter 3, 
“Instruction Set Reference, A-M”, of the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 2A).
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in the previous paragraphs. These sections describe three possible types of interrupt 
and exception handlers:

• Protected-mode interrupt and exceptions handlers — These are the 
standard handlers that the processor calls through the protected-mode IDT.

• Virtual-8086 monitor interrupt and exception handlers — These handlers 
are resident in the virtual-8086 monitor, and they are commonly accessed 
through a general-protection exception (#GP, interrupt 13) that is directed to the 
protected-mode general-protection exception handler.

• 8086 program interrupt and exception handlers — These handlers are part 
of the 8086 program that is running in virtual-8086 mode.

The following sections describe how these handlers are used, depending on the 
selected class and method of interrupt and exception handling.

15.3.1 Class 1—Hardware Interrupt and Exception Handling in 
Virtual-8086 Mode

In virtual-8086 mode, the Pentium, P6 family, Pentium 4, and Intel Xeon processors 
handle hardware interrupts and exceptions in the same manner as they are handled 
by the Intel486 and Intel386 processors. They invoke the protected-mode interrupt 
or exception handler that the interrupt or exception vector points to in the IDT. Here, 
the IDT entry must contain either a 32-bit trap or interrupt gate or a task gate. The 
following sections describe various ways that a virtual-8086 mode interrupt or excep-
tion can be handled after the protected-mode handler has been invoked.

See Section 15.3.2, “Class 2—Maskable Hardware Interrupt Handling in Virtual-8086 
Mode Using the Virtual Interrupt Mechanism”, for a description of the virtual interrupt 
mechanism that is available for handling maskable hardware interrupts while in 
virtual-8086 mode. When this mechanism is either not available or not enabled, 
maskable hardware interrupts are handled in the same manner as exceptions, as 
described in the following sections.

15.3.1.1  Handling an Interrupt or Exception Through a Protected-Mode 
Trap or Interrupt Gate

When an interrupt or exception vector points to a 32-bit trap or interrupt gate in the 
IDT, the gate must in turn point to a nonconforming, privilege-level 0, code segment. 
When accessing this code segment, processor performs the following steps.

1. Switches to 32-bit protected mode and privilege level 0.

2. Saves the state of the processor on the privilege-level 0 stack. The states of the 
EIP, CS, EFLAGS, ESP, SS, ES, DS, FS, and GS registers are saved (see 
Figure 15-4).

3. Clears the segment registers. Saving the DS, ES, FS, and GS registers on the 
stack and then clearing the registers lets the interrupt or exception handler safely 
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save and restore these registers regardless of the type segment selectors they 
contain (protected-mode or 8086-style). The interrupt and exception handlers, 
which may be called in the context of either a protected-mode task or a virtual-
8086-mode task, can use the same code sequences for saving and restoring the 
registers for any task. Clearing these registers before execution of the IRET 
instruction does not cause a trap in the interrupt handler. Interrupt procedures 
that expect values in the segment registers or that return values in the segment 
registers must use the register images saved on the stack for privilege level 0.

4. Clears VM, NT, RF and TF flags (in the EFLAGS register). If the gate is an interrupt 
gate, clears the IF flag.

5. Begins executing the selected interrupt or exception handler.

If the trap or interrupt gate references a procedure in a conforming segment or in a 
segment at a privilege level other than 0, the processor generates a general-protec-
tion exception (#GP). Here, the error code is the segment selector of the code 
segment to which a call was attempted.

Figure 15-4.  Privilege Level 0 Stack After Interrupt or 
Exception in Virtual-8086 Mode
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Interrupt and exception handlers can examine the VM flag on the stack to determine 
if the interrupted procedure was running in virtual-8086 mode. If so, the interrupt or 
exception can be handled in one of three ways:

• The protected-mode interrupt or exception handler that was called can handle 
the interrupt or exception.

• The protected-mode interrupt or exception handler can call the virtual-8086 
monitor to handle the interrupt or exception.

• The virtual-8086 monitor (if called) can in turn pass control back to the 8086 
program’s interrupt and exception handler.

If the interrupt or exception is handled with a protected-mode handler, the handler 
can return to the interrupted program in virtual-8086 mode by executing an IRET 
instruction. This instruction loads the EFLAGS and segment registers from the 
images saved in the privilege level 0 stack (see Figure 15-4). A set VM flag in the 
EFLAGS image causes the processor to switch back to virtual-8086 mode. The CPL at 
the time the IRET instruction is executed must be 0, otherwise the processor does 
not change the state of the VM flag.

The virtual-8086 monitor runs at privilege level 0, like the protected-mode interrupt 
and exception handlers. It is commonly closely tied to the protected-mode general-
protection exception (#GP, vector 13) handler. If the protected-mode interrupt or 
exception handler calls the virtual-8086 monitor to handle the interrupt or exception, 
the return from the virtual-8086 monitor to the interrupted virtual-8086 mode 
program requires two return instructions: a RET instruction to return to the 
protected-mode handler and an IRET instruction to return to the interrupted 
program.

The virtual-8086 monitor has the option of directing the interrupt and exception back 
to an interrupt or exception handler that is part of the interrupted 8086 program, as 
described in Section 15.3.1.2, “Handling an Interrupt or Exception With an 8086 
Program Interrupt or Exception Handler”.

15.3.1.2  Handling an Interrupt or Exception With an 8086 Program 
Interrupt or Exception Handler

Because it was designed to run on an 8086 processor, an 8086 program running in a 
virtual-8086-mode task contains an 8086-style interrupt vector table, which starts at 
linear address 0. If the virtual-8086 monitor correctly directs an interrupt or excep-
tion vector back to the virtual-8086-mode task it came from, the handlers in the 
8086 program can handle the interrupt or exception. The virtual-8086 monitor must 
carry out the following steps to send an interrupt or exception back to the 8086 
program:

1. Use the 8086 interrupt vector to locate the appropriate handler procedure in the 
8086 program interrupt table.
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2. Store the EFLAGS (low-order 16 bits only), CS and EIP values of the 8086 
program on the privilege-level 3 stack. This is the stack that the virtual-8086-
mode task is using. (The 8086 handler may use or modify this information.)

3. Change the return link on the privilege-level 0 stack to point to the privilege-level 
3 handler procedure.

4. Execute an IRET instruction to pass control to the 8086 program handler.

5. When the IRET instruction from the privilege-level 3 handler triggers a general-
protection exception (#GP) and thus effectively again calls the virtual-8086 
monitor, restore the return link on the privilege-level 0 stack to point to the 
original, interrupted, privilege-level 3 procedure.

6. Copy the low order 16 bits of the EFLAGS image from the privilege-level 3 stack 
to the privilege-level 0 stack (because some 8086 handlers modify these flags to 
return information to the code that caused the interrupt). 

7. Execute an IRET instruction to pass control back to the interrupted 8086 
program.

Note that if an operating system intends to support all 8086 MS-DOS-based 
programs, it is necessary to use the actual 8086 interrupt and exception handlers 
supplied with the program. The reason for this is that some programs modify their 
own interrupt vector table to substitute (or hook in series) their own specialized 
interrupt and exception handlers.

15.3.1.3  Handling an Interrupt or Exception Through a Task Gate
When an interrupt or exception vector points to a task gate in the IDT, the processor 
performs a task switch to the selected interrupt- or exception-handling task. The 
following actions are carried out as part of this task switch:

1. The EFLAGS register with the VM flag set is saved in the current TSS.

2. The link field in the TSS of the called task is loaded with the segment selector of 
the TSS for the interrupted virtual-8086-mode task.

3. The EFLAGS register is loaded from the image in the new TSS, which clears the 
VM flag and causes the processor to switch to protected mode.

4. The NT flag in the EFLAGS register is set.

5. The processor begins executing the selected interrupt- or exception-handler 
task.

When an IRET instruction is executed in the handler task and the NT flag in the 
EFLAGS register is set, the processors switches from a protected-mode interrupt- or 
exception-handler task back to a virtual-8086-mode task. Here, the EFLAGS and 
segment registers are loaded from images saved in the TSS for the virtual-8086-
mode task. If the VM flag is set in the EFLAGS image, the processor switches back to 
virtual-8086 mode on the task switch. The CPL at the time the IRET instruction is 
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executed must be 0, otherwise the processor does not change the state of the VM 
flag. 

15.3.2 Class 2—Maskable Hardware Interrupt Handling in 
Virtual-8086 Mode Using the Virtual Interrupt Mechanism

Maskable hardware interrupts are those interrupts that are delivered through the 
INTR# pin or through an interrupt request to the local APIC (see Section 5.3.2, 
“Maskable Hardware Interrupts”). These interrupts can be inhibited (masked) from 
interrupting an executing program or task by clearing the IF flag in the EFLAGS 
register.

When the VME flag in control register CR4 is set and the IOPL field in the EFLAGS 
register is less than 3, two additional flags are activated in the EFLAGS register:

• VIF (virtual interrupt) flag, bit 19 of the EFLAGS register.

• VIP (virtual interrupt pending) flag, bit 20 of the EFLAGS register.

These flags provide the virtual-8086 monitor with more efficient control over 
handling maskable hardware interrupts that occur during virtual-8086 mode tasks. 
They also reduce interrupt-handling overhead, by eliminating the need for all IF 
related operations (such as PUSHF, POPF, CLI, and STI instructions) to trap to the 
virtual-8086 monitor. The purpose and use of these flags are as follows.

NOTE
The VIF and VIP flags are only available in IA-32 processors that 
support the virtual mode extensions. These extensions were 
introduced in the IA-32 architecture with the Pentium processor. 
When this mechanism is either not available or not enabled, 
maskable hardware interrupts are handled as class 1 interrupts. 
Here, if VIF and VIP flags are needed, the virtual-8086 monitor can 
implement them in software.

Existing 8086 programs commonly set and clear the IF flag in the EFLAGS register to 
enable and disable maskable hardware interrupts, respectively; for example, to 
disable interrupts while handling another interrupt or an exception. This practice 
works well in single task environments, but can cause problems in multitasking and 
multiple-processor environments, where it is often desirable to prevent an applica-
tion program from having direct control over the handling of hardware interrupts. 
When using earlier IA-32 processors, this problem was often solved by creating a 
virtual IF flag in software. The IA-32 processors (beginning with the Pentium 
processor) provide hardware support for this virtual IF flag through the VIF and VIP 
flags.

The VIF flag is a virtualized version of the IF flag, which an application program 
running from within a virtual-8086 task can used to control the handling of maskable 
hardware interrupts. When the VIF flag is enabled, the CLI and STI instructions 
operate on the VIF flag instead of the IF flag. When an 8086 program executes the 
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CLI instruction, the processor clears the VIF flag to request that the virtual-8086 
monitor inhibit maskable hardware interrupts from interrupting program execution; 
when it executes the STI instruction, the processor sets the VIF flag requesting that 
the virtual-8086 monitor enable maskable hardware interrupts for the 8086 
program. But actually the IF flag, managed by the operating system, always controls 
whether maskable hardware interrupts are enabled. Also, if under these circum-
stances an 8086 program tries to read or change the IF flag using the PUSHF or POPF 
instructions, the processor will change the VIF flag instead, leaving IF unchanged.

The VIP flag provides software a means of recording the existence of a deferred (or 
pending) maskable hardware interrupt. This flag is read by the processor but never 
explicitly written by the processor; it can only be written by software. 

If the IF flag is set and the VIF and VIP flags are enabled, and the processor receives 
a maskable hardware interrupt (interrupt vector 0 through 255), the processor 
performs and the interrupt handler software should perform the following 
operations:

1. The processor invokes the protected-mode interrupt handler for the interrupt 
received, as described in the following steps. These steps are almost identical to 
those described for method 1 interrupt and exception handling in Section 
15.3.1.1, “Handling an Interrupt or Exception Through a Protected-Mode Trap or 
Interrupt Gate”:

a. Switches to 32-bit protected mode and privilege level 0.

b. Saves the state of the processor on the privilege-level 0 stack. The states of 
the EIP, CS, EFLAGS, ESP, SS, ES, DS, FS, and GS registers are saved (see 
Figure 15-4).

c. Clears the segment registers.

d. Clears the VM flag in the EFLAGS register.

e. Begins executing the selected protected-mode interrupt handler.

2. The recommended action of the protected-mode interrupt handler is to read the 
VM flag from the EFLAGS image on the stack. If this flag is set, the handler makes 
a call to the virtual-8086 monitor.

3. The virtual-8086 monitor should read the VIF flag in the EFLAGS register. 

— If the VIF flag is clear, the virtual-8086 monitor sets the VIP flag in the 
EFLAGS image on the stack to indicate that there is a deferred interrupt 
pending and returns to the protected-mode handler.

— If the VIF flag is set, the virtual-8086 monitor can handle the interrupt if it 
“belongs” to the 8086 program running in the interrupted virtual-8086 task; 
otherwise, it can call the protected-mode interrupt handler to handle the 
interrupt.

4. The protected-mode handler executes a return to the program executing in 
virtual-8086 mode.
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5. Upon returning to virtual-8086 mode, the processor continues execution of the 
8086 program.

When the 8086 program is ready to receive maskable hardware interrupts, it 
executes the STI instruction to set the VIF flag (enabling maskable hardware 
interrupts). Prior to setting the VIF flag, the processor automatically checks the VIP 
flag and does one of the following, depending on the state of the flag:

• If the VIP flag is clear (indicating no pending interrupts), the processor sets the 
VIF flag. 

• If the VIP flag is set (indicating a pending interrupt), the processor generates a 
general-protection exception (#GP).

The recommended action of the protected-mode general-protection exception 
handler is to then call the virtual-8086 monitor and let it handle the pending inter-
rupt. After handling the pending interrupt, the typical action of the virtual-8086 
monitor is to clear the VIP flag and set the VIF flag in the EFLAGS image on the stack, 
and then execute a return to the virtual-8086 mode. The next time the processor 
receives a maskable hardware interrupt, it will then handle it as described in steps 1 
through 5 earlier in this section.

If the processor finds that both the VIF and VIP flags are set at the beginning of an 
instruction, it generates a general-protection exception. This action allows the 
virtual-8086 monitor to handle the pending interrupt for the virtual-8086 mode task 
for which the VIF flag is enabled. Note that this situation can only occur immediately 
following execution of a POPF or IRET instruction or upon entering a virtual-8086 
mode task through a task switch.

Note that the states of the VIF and VIP flags are not modified in real-address mode or 
during transitions between real-address and protected modes.

NOTE
The virtual interrupt mechanism described in this section is also 
available for use in protected mode, see Section 15.4, “Protected-
Mode Virtual Interrupts”.

15.3.3 Class 3—Software Interrupt Handling in Virtual-8086 Mode
When the processor receives a software interrupt (an interrupt generated with the 
INT n instruction) while in virtual-8086 mode, it can use any of six different methods 
to handle the interrupt. The method selected depends on the settings of the VME flag 
in control register CR4, the IOPL field in the EFLAGS register, and the software inter-
rupt redirection bit map in the TSS. Table 15-2 lists the six methods of handling soft-
ware interrupts in virtual-8086 mode and the respective settings of the VME flag, 
IOPL field, and the bits in the interrupt redirection bit map for each method. The table 
also summarizes the various actions the processor takes for each method. 

The VME flag enables the virtual mode extensions for the Pentium and later IA-32 
processors. When this flag is clear, the processor responds to interrupts and excep-
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tions in virtual-8086 mode in the same manner as an Intel386 or Intel486 processor 
does. When this flag is set, the virtual mode extension provides the following 
enhancements to virtual-8086 mode:

• Speeds up the handling of software-generated interrupts in virtual-8086 mode by 
allowing the processor to bypass the virtual-8086 monitor and redirect software 
interrupts back to the interrupt handlers that are part of the currently running 
8086 program.

• Supports virtual interrupts for software written to run on the 8086 processor.

The IOPL value interacts with the VME flag and the bits in the interrupt redirection bit 
map to determine how specific software interrupts should be handled.

The software interrupt redirection bit map (see Figure 15-5) is a 32-byte field in the 
TSS. This map is located directly below the I/O permission bit map in the TSS. Each 
bit in the interrupt redirection bit map is mapped to an interrupt vector. Bit 0 in the 
interrupt redirection bit map (which maps to vector zero in the interrupt table) is 
located at the I/O base map address in the TSS minus 32 bytes. When a bit in this bit 
map is set, it indicates that the associated software interrupt (interrupt generated 
with an INT n instruction) should be handled through the protected-mode IDT and 
interrupt and exception handlers. When a bit in this bit map is clear, the processor 
redirects the associated software interrupt back to the interrupt table in the 8086 
program (located at linear address 0 in the program’s address space). 

NOTE
The software interrupt redirection bit map does not affect hardware 
generated interrupts and exceptions. Hardware generated interrupts 
and exceptions are always handled by the protected-mode interrupt 
and exception handlers.
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Table 15-2.  Software Interrupt Handling Methods While in Virtual-8086 Mode

Method VME IOPL

Bit in 
Redir. 

Bitmap* Processor Action

1 0 3 X Interrupt directed to a protected-mode interrupt handler:

• Switches to privilege-level 0 stack
• Pushes GS, FS, DS and ES onto privilege-level 0 stack
• Pushes SS, ESP, EFLAGS, CS and EIP of interrupted task onto 

privilege-level 0 stack
• Clears VM, RF, NT, and TF flags
• If serviced through interrupt gate, clears IF flag
• Clears GS, FS, DS and ES to 0
• Sets CS and EIP from interrupt gate

2 0  < 3 X Interrupt directed to protected-mode general-protection 
exception (#GP) handler.

3 1 < 3 1 Interrupt directed to a protected-mode general-protection 
exception (#GP) handler; VIF and VIP flag support for handling 
class 2 maskable hardware interrupts.

4 1 3 1 Interrupt directed to protected-mode interrupt handler: (see 
method 1 processor action).

5 1 3 0 Interrupt redirected to 8086 program interrupt handler:

• Pushes EFLAGS 
• Pushes CS and EIP (lower 16 bits only)
• Clears IF flag
• Clears TF flag
• Loads CS and EIP (lower 16 bits only) from selected entry in 

the interrupt vector table of the current virtual-8086 task

6 1 < 3 0 Interrupt redirected to 8086 program interrupt handler; VIF and 
VIP flag support for handling class 2 maskable hardware 
interrupts:

• Pushes EFLAGS with IOPL set to 3 and VIF copied to IF
• Pushes CS and EIP (lower 16 bits only)
• Clears the VIF flag
• Clears TF flag
• Loads CS and EIP (lower 16 bits only) from selected entry in 

the interrupt vector table of the current virtual-8086 task

NOTE:
* When set to 0, software interrupt is redirected back to the 8086 program interrupt handler; 

when set to 1, interrupt is directed to protected-mode handler.
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Redirecting software interrupts back to the 8086 program potentially speeds up 
interrupt handling because a switch back and forth between virtual-8086 mode and 
protected mode is not required. This latter interrupt-handling technique is particu-
larly useful for 8086 operating systems (such as MS-DOS) that use the INT n instruc-
tion to call operating system procedures.

The CPUID instruction can be used to verify that the virtual mode extension is imple-
mented on the processor. Bit 1 of the feature flags register (EDX) indicates the avail-
ability of the virtual mode extension (see “CPUID—CPU Identification” in Chapter 3, 
“Instruction Set Reference, A-M”, of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 2A).

The following sections describe the six methods (or mechanisms) for handling soft-
ware interrupts in virtual-8086 mode. See Section 15.3.2, “Class 2—Maskable Hard-
ware Interrupt Handling in Virtual-8086 Mode Using the Virtual Interrupt 
Mechanism”, for a description of the use of the VIF and VIP flags in the EFLAGS 
register for handling maskable hardware interrupts.

15.3.3.1  Method 1: Software Interrupt Handling
When the VME flag in control register CR4 is clear and the IOPL field is 3, a Pentium 
or later IA-32 processor handles software interrupts in the same manner as they are 
handled by an Intel386 or Intel486 processor. It executes an implicit call to the inter-

Figure 15-5.  Software Interrupt Redirection Bit Map in TSS
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rupt handler in the protected-mode IDT pointed to by the interrupt vector. See 
Section 15.3.1, “Class 1—Hardware Interrupt and Exception Handling in Virtual-8086 
Mode”, for a complete description of this mechanism and its possible uses.

15.3.3.2  Methods 2 and 3: Software Interrupt Handling
When a software interrupt occurs in virtual-8086 mode and the method 2 or 3 condi-
tions are present, the processor generates a general-protection exception (#GP). 
Method 2 is enabled when the VME flag is set to 0 and the IOPL value is less than 3. 
Here the IOPL value is used to bypass the protected-mode interrupt handlers and 
cause any software interrupt that occurs in virtual-8086 mode to be treated as a 
protected-mode general-protection exception (#GP). The general-protection excep-
tion handler calls the virtual-8086 monitor, which can then emulate an 8086-
program interrupt handler or pass control back to the 8086 program’s handler, as 
described in Section 15.3.1.2, “Handling an Interrupt or Exception With an 8086 
Program Interrupt or Exception Handler”.

Method 3 is enabled when the VME flag is set to 1, the IOPL value is less than 3, and 
the corresponding bit for the software interrupt in the software interrupt redirection 
bit map is set to 1. Here, the processor performs the same operation as it does for 
method 2 software interrupt handling. If the corresponding bit for the software inter-
rupt in the software interrupt redirection bit map is set to 0, the interrupt is handled 
using method 6 (see Section 15.3.3.5, “Method 6: Software Interrupt Handling”).

15.3.3.3  Method 4: Software Interrupt Handling
Method 4 handling is enabled when the VME flag is set to 1, the IOPL value is 3, and 
the bit for the interrupt vector in the redirection bit map is set to 1. Method 4 soft-
ware interrupt handling allows method 1 style handling when the virtual mode exten-
sion is enabled; that is, the interrupt is directed to a protected-mode handler (see 
Section 15.3.3.1, “Method 1: Software Interrupt Handling”).

15.3.3.4  Method 5: Software Interrupt Handling
Method 5 software interrupt handling provides a streamlined method of redirecting 
software interrupts (invoked with the INT n instruction) that occur in virtual 8086 
mode back to the 8086 program’s interrupt vector table and its interrupt handlers. 
Method 5 handling is enabled when the VME flag is set to 1, the IOPL value is 3, and 
the bit for the interrupt vector in the redirection bit map is set to 0. The processor 
performs the following actions to make an implicit call to the selected 8086 program 
interrupt handler:

1. Pushes the low-order 16 bits of the EFLAGS register onto the stack.

2. Pushes the current values of the CS and EIP registers onto the current stack. 
(Only the 16 least-significant bits of the EIP register are pushed and no stack 
switch occurs.)
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3. Clears the IF flag in the EFLAGS register to disable interrupts.

4. Clears the TF flag, in the EFLAGS register.

5. Locates the 8086 program interrupt vector table at linear address 0 for the 8086-
mode task.

6. Loads the CS and EIP registers with values from the interrupt vector table entry 
pointed to by the interrupt vector number. Only the 16 low-order bits of the EIP 
are loaded and the 16 high-order bits are set to 0. The interrupt vector table is 
assumed to be at linear address 0 of the current virtual-8086 task.

7. Begins executing the selected interrupt handler.

An IRET instruction at the end of the handler procedure reverses these steps to 
return program control to the interrupted 8086 program.

Note that with method 5 handling, a mode switch from virtual-8086 mode to 
protected mode does not occur. The processor remains in virtual-8086 mode 
throughout the interrupt-handling operation.

The method 5 handling actions are virtually identical to the actions the processor 
takes when handling software interrupts in real-address mode. The benefit of using 
method 5 handling to access the 8086 program handlers is that it avoids the over-
head of methods 2 and 3 handling, which requires first going to the virtual-8086 
monitor, then to the 8086 program handler, then back again to the virtual-8086 
monitor, before returning to the interrupted 8086 program (see Section 15.3.1.2, 
“Handling an Interrupt or Exception With an 8086 Program Interrupt or Exception 
Handler”). 

NOTE
Methods 1 and 4 handling can handle a software interrupt in a virtual-
8086 task with a regular protected-mode handler, but this approach 
requires all virtual-8086 tasks to use the same software interrupt 
handlers, which generally does not give sufficient latitude to the 
programs running in the virtual-8086 tasks, particularly MS-DOS 
programs.

15.3.3.5  Method 6: Software Interrupt Handling
Method 6 handling is enabled when the VME flag is set to 1, the IOPL value is less 
than 3, and the bit for the interrupt or exception vector in the redirection bit map is 
set to 0. With method 6 interrupt handling, software interrupts are handled in the 
same manner as was described for method 5 handling (see Section 15.3.3.4, 
“Method 5: Software Interrupt Handling”).

Method 6 differs from method 5 in that with the IOPL value set to less than 3, the VIF 
and VIP flags in the EFLAGS register are enabled, providing virtual interrupt support 
for handling class 2 maskable hardware interrupts (see Section 15.3.2, “Class 
2—Maskable Hardware Interrupt Handling in Virtual-8086 Mode Using the Virtual 
Interrupt Mechanism”). These flags provide the virtual-8086 monitor with an effi-
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cient means of handling maskable hardware interrupts that occur during a virtual-
8086 mode task. Also, because the IOPL value is less than 3 and the VIF flag is 
enabled, the information pushed on the stack by the processor when invoking the 
interrupt handler is slightly different between methods 5 and 6 (see Table 15-2).

15.4 PROTECTED-MODE VIRTUAL INTERRUPTS
The IA-32 processors (beginning with the Pentium processor) also support the VIF 
and VIP flags in the EFLAGS register in protected mode by setting the PVI (protected-
mode virtual interrupt) flag in the CR4 register. Setting the PVI flag allows applica-
tions running at privilege level 3 to execute the CLI and STI instructions without 
causing a general-protection exception (#GP) or affecting hardware interrupts. 

When the PVI flag is set to 1, the CPL is 3, and the IOPL is less than 3, the STI and 
CLI instructions set and clear the VIF flag in the EFLAGS register, leaving IF unaf-
fected. In this mode of operation, an application running in protected mode and at a 
CPL of 3 can inhibit interrupts in the same manner as is described in Section 15.3.2, 
“Class 2—Maskable Hardware Interrupt Handling in Virtual-8086 Mode Using the 
Virtual Interrupt Mechanism”, for a virtual-8086 mode task. When the application 
executes the CLI instruction, the processor clears the VIF flag. If the processor 
receives a maskable hardware interrupt, the processor invokes the protected-mode 
interrupt handler. This handler checks the state of the VIF flag in the EFLAGS register. 
If the VIF flag is clear (indicating that the active task does not want to have interrupts 
handled now), the handler sets the VIP flag in the EFLAGS image on the stack and 
returns to the privilege-level 3 application, which continues program execution. 
When the application executes a STI instruction to set the VIF flag, the processor 
automatically invokes the general-protection exception handler, which can then 
handle the pending interrupt. After handing the pending interrupt, the handler typi-
cally sets the VIF flag and clears the VIP flag in the EFLAGS image on the stack and 
executes a return to the application program. The next time the processor receives a 
maskable hardware interrupt, the processor will handle it in the normal manner for 
interrupts received while the processor is operating at a CPL of 3.

As with the virtual mode extension (enabled with the VME flag in the CR4 register), 
the protected-mode virtual interrupt extension only affects maskable hardware 
interrupts (interrupt vectors 32 through 255). NMI interrupts and exceptions are 
handled in the normal manner.

When protected-mode virtual interrupts are disabled (that is, when the PVI flag in 
control register CR4 is set to 0, the CPL is less than 3, or the IOPL value is 3), then 
the CLI and STI instructions execute in a manner compatible with the Intel486 
processor. That is, if the CPL is greater (less privileged) than the I/O privilege level 
(IOPL), a general-protection exception occurs. If the IOPL value is 3, CLI and STI 
clear or set the IF flag, respectively.

PUSHF, POPF, IRET and INT are executed like in the Intel486 processor, regardless of 
whether protected-mode virtual interrupts are enabled.
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It is only possible to enter virtual-8086 mode through a task switch or the execution 
of an IRET instruction, and it is only possible to leave virtual-8086 mode by faulting 
to a protected-mode interrupt handler (typically the general-protection exception 
handler, which in turn calls the virtual 8086-mode monitor). In both cases, the 
EFLAGS register is saved and restored. This is not true, however, in protected mode 
when the PVI flag is set and the processor is not in virtual-8086 mode. Here, it is 
possible to call a procedure at a different privilege level, in which case the EFLAGS 
register is not saved or modified. However, the states of VIF and VIP flags are never 
examined by the processor when the CPL is not 3.
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CHAPTER 16
MIXING 16-BIT AND 32-BIT CODE

Program modules written to run on IA-32 processors can be either 16-bit modules or 
32-bit modules. Table 16-1 shows the characteristic of 16-bit and 32-bit modules.

The IA-32 processors function most efficiently when executing 32-bit program 
modules. They can, however, also execute 16-bit program modules, in any of the 
following ways:

• In real-address mode.

• In virtual-8086 mode.

• System management mode (SMM).

• As a protected-mode task, when the code, data, and stack segments for the task 
are all configured as a 16-bit segments.

• By integrating 16-bit and 32-bit segments into a single protected-mode task.

• By integrating 16-bit operations into 32-bit code segments.

Real-address mode, virtual-8086 mode, and SMM are native 16-bit modes. A legacy 
program assembled and/or compiled to run on an Intel 8086 or Intel 286 processor 
should run in real-address mode or virtual-8086 mode without modification. Sixteen-
bit program modules can also be written to run in real-address mode for handling 
system initialization or to run in SMM for handling system management functions. 
See Chapter 15, “8086 Emulation,” for detailed information on real-address mode 
and virtual-8086 mode; see Chapter 24, “System Management,” for information on 
SMM.

This chapter describes how to integrate 16-bit program modules with 32-bit program 
modules when operating in protected mode and how to mix 16-bit and 32-bit code 
within 32-bit code segments.

Table 16-1.  Characteristics of 16-Bit and 32-Bit Program Modules

Characteristic 16-Bit Program Modules 32-Bit Program Modules

Segment Size 0 to 64 KBytes 0 to 4 GBytes

Operand Sizes 8 bits and 16 bits 8 bits and 32 bits

Pointer Offset Size (Address 
Size)

16 bits 32 bits

Stack Pointer Size 16 Bits 32 Bits

Control Transfers Allowed to 
Code Segments of This Size

16 Bits 32 Bits
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16.1 DEFINING 16-BIT AND 32-BIT PROGRAM MODULES
The following IA-32 architecture mechanisms are used to distinguish between and 
support 16-bit and 32-bit segments and operations:

• The D (default operand and address size) flag in code-segment descriptors.

• The B (default stack size) flag in stack-segment descriptors.

• 16-bit and 32-bit call gates, interrupt gates, and trap gates.

• Operand-size and address-size instruction prefixes.

• 16-bit and 32-bit general-purpose registers.

The D flag in a code-segment descriptor determines the default operand-size and 
address-size for the instructions of a code segment. (In real-address mode and 
virtual-8086 mode, which do not use segment descriptors, the default is 16 bits.) A 
code segment with its D flag set is a 32-bit segment; a code segment with its D flag 
clear is a 16-bit segment.

The B flag in the stack-segment descriptor specifies the size of stack pointer (the 
32-bit ESP register or the 16-bit SP register) used by the processor for implicit stack 
references. The B flag for all data descriptors also controls upper address range for 
expand down segments.

When transferring program control to another code segment through a call gate, 
interrupt gate, or trap gate, the operand size used during the transfer is determined 
by the type of gate used (16-bit or 32-bit), (not by the D-flag or prefix of the transfer 
instruction). The gate type determines how return information is saved on the stack 
(or stacks).

For most efficient and trouble-free operation of the processor, 32-bit programs or 
tasks should have the D flag in the code-segment descriptor and the B flag in the 
stack-segment descriptor set, and 16-bit programs or tasks should have these flags 
clear. Program control transfers from 16-bit segments to 32-bit segments (and vice 
versa) are handled most efficiently through call, interrupt, or trap gates.

Instruction prefixes can be used to override the default operand size and address size 
of a code segment. These prefixes can be used in real-address mode as well as in 
protected mode and virtual-8086 mode. An operand-size or address-size prefix only 
changes the size for the duration of the instruction.

16.2 MIXING 16-BIT AND 32-BIT OPERATIONS WITHIN A 
CODE SEGMENT

The following two instruction prefixes allow mixing of 32-bit and 16-bit operations 
within one segment:

• The operand-size prefix (66H)

• The address-size prefix (67H)
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These prefixes reverse the default size selected by the D flag in the code-segment 
descriptor. For example, the processor can interpret the (MOV mem, reg) instruction 
in any of four ways:

• In a 32-bit code segment:

— Moves 32 bits from a 32-bit register to memory using a 32-bit effective 
address.

— If preceded by an operand-size prefix, moves 16 bits from a 16-bit register to 
memory using a 32-bit effective address.

— If preceded by an address-size prefix, moves 32 bits from a 32-bit register to 
memory using a 16-bit effective address.

— If preceded by both an address-size prefix and an operand-size prefix, moves 
16 bits from a 16-bit register to memory using a 16-bit effective address.

• In a 16-bit code segment:

— Moves 16 bits from a 16-bit register to memory using a 16-bit effective 
address.

— If preceded by an operand-size prefix, moves 32 bits from a 32-bit register to 
memory using a 16-bit effective address.

— If preceded by an address-size prefix, moves 16 bits from a 16-bit register to 
memory using a 32-bit effective address.

— If preceded by both an address-size prefix and an operand-size prefix, moves 
32 bits from a 32-bit register to memory using a 32-bit effective address.

The previous examples show that any instruction can generate any combination of 
operand size and address size regardless of whether the instruction is in a 16- or 
32-bit segment. The choice of the 16- or 32-bit default for a code segment is 
normally based on the following criteria:

• Performance — Always use 32-bit code segments when possible. They run 
much faster than 16-bit code segments on P6 family processors, and somewhat 
faster on earlier IA-32 processors.

• The operating system the code segment will be running on — If the 
operating system is a 16-bit operating system, it may not support 32-bit program 
modules.

• Mode of operation — If the code segment is being designed to run in real-
address mode, virtual-8086 mode, or SMM, it must be a 16-bit code segment.

• Backward compatibility to earlier IA-32 processors — If a code segment 
must be able to run on an Intel 8086 or Intel 286 processor, it must be a 16-bit 
code segment.
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16.3 SHARING DATA AMONG MIXED-SIZE CODE 
SEGMENTS

Data segments can be accessed from both 16-bit and 32-bit code segments. When a 
data segment that is larger than 64 KBytes is to be shared among 16- and 32-bit 
code segments, the data that is to be accessed from the 16-bit code segments must 
be located within the first 64 KBytes of the data segment. The reason for this is that 
16-bit pointers by definition can only point to the first 64 KBytes of a segment. 

A stack that spans less than 64 KBytes can be shared by both 16- and 32-bit code 
segments. This class of stacks includes:

• Stacks in expand-up segments with the G (granularity) and B (big) flags in the 
stack-segment descriptor clear.

• Stacks in expand-down segments with the G and B flags clear.

• Stacks in expand-up segments with the G flag set and the B flag clear and where 
the stack is contained completely within the lower 64 KBytes. (Offsets greater 
than FFFFH can be used for data, other than the stack, which is not shared.)

See Section 3.4.5, “Segment Descriptors,” for a description of the G and B flags and 
the expand-down stack type.

The B flag cannot, in general, be used to change the size of stack used by a 16-bit 
code segment. This flag controls the size of the stack pointer only for implicit stack 
references such as those caused by interrupts, exceptions, and the PUSH, POP, CALL, 
and RET instructions. It does not control explicit stack references, such as accesses 
to parameters or local variables. A 16-bit code segment can use a 32-bit stack only if 
the code is modified so that all explicit references to the stack are preceded by the 
32-bit address-size prefix, causing those references to use 32-bit addressing and 
explicit writes to the stack pointer are preceded by a 32-bit operand-size prefix.

In 32-bit, expand-down segments, all offsets may be greater than 64 KBytes; there-
fore, 16-bit code cannot use this kind of stack segment unless the code segment is 
modified to use 32-bit addressing.

16.4 TRANSFERRING CONTROL AMONG MIXED-SIZE CODE 
SEGMENTS

There are three ways for a procedure in a 16-bit code segment to safely make a call 
to a 32-bit code segment:

• Make the call through a 32-bit call gate.

• Make a 16-bit call to a 32-bit interface procedure. The interface procedure then 
makes a 32-bit call to the intended destination.

• Modify the 16-bit procedure, inserting an operand-size prefix before the call, to 
change it to a 32-bit call.
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Likewise, there are three ways for procedure in a 32-bit code segment to safely make 
a call to a 16-bit code segment:

• Make the call through a 16-bit call gate. Here, the EIP value at the CALL 
instruction cannot exceed FFFFH.

• Make a 32-bit call to a 16-bit interface procedure. The interface procedure then 
makes a 16-bit call to the intended destination.

• Modify the 32-bit procedure, inserting an operand-size prefix before the call, 
changing it to a 16-bit call. Be certain that the return offset does not exceed 
FFFFH.

These methods of transferring program control overcome the following architectural 
limitations imposed on calls between 16-bit and 32-bit code segments:

• Pointers from 16-bit code segments (which by default can only be 16 bits) cannot 
be used to address data or code located beyond FFFFH in a 32-bit segment.

• The operand-size attributes for a CALL and its companion RETURN instruction 
must be the same to maintain stack coherency. This is also true for implicit calls 
to interrupt and exception handlers and their companion IRET instructions.

• A 32-bit parameters (particularly a pointer parameter) greater than FFFFH 
cannot be squeezed into a 16-bit parameter location on a stack.

• The size of the stack pointer (SP or ESP) changes when switching between 16-bit 
and 32-bit code segments.

These limitations are discussed in greater detail in the following sections.

16.4.1 Code-Segment Pointer Size
For control-transfer instructions that use a pointer to identify the next instruction 
(that is, those that do not use gates), the operand-size attribute determines the size 
of the offset portion of the pointer. The implications of this rule are as follows:

• A JMP, CALL, or RET instruction from a 32-bit segment to a 16-bit segment is 
always possible using a 32-bit operand size, providing the 32-bit pointer does not 
exceed FFFFH.

• A JMP, CALL, or RET instruction from a 16-bit segment to a 32-bit segment 
cannot address a destination greater than FFFFH, unless the instruction is given 
an operand-size prefix.

See Section 16.4.5, “Writing Interface Procedures,” for an interface procedure that 
can transfer program control from 16-bit segments to destinations in 32-bit 
segments beyond FFFFH.

16.4.2 Stack Management for Control Transfer
Because the stack is managed differently for 16-bit procedure calls than for 32-bit 
calls, the operand-size attribute of the RET instruction must match that of the CALL 
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instruction (see Figure 16-1). On a 16-bit call, the processor pushes the contents of 
the 16-bit IP register and (for calls between privilege levels) the 16-bit SP register. 
The matching RET instruction must also use a 16-bit operand size to pop these 16-bit 
values from the stack into the 16-bit registers. 

A 32-bit CALL instruction pushes the contents of the 32-bit EIP register and (for 
inter-privilege-level calls) the 32-bit ESP register. Here, the matching RET instruction 
must use a 32-bit operand size to pop these 32-bit values from the stack into the 
32-bit registers. If the two parts of a CALL/RET instruction pair do not have matching 
operand sizes, the stack will not be managed correctly and the values of the instruc-
tion pointer and stack pointer will not be restored to correct values. 

Figure 16-1.  Stack after Far 16- and 32-Bit Calls
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While executing 32-bit code, if a call is made to a 16-bit code segment which is at the 
same or a more privileged level (that is, the DPL of the called code segment is less 
than or equal to the CPL of the calling code segment) through a 16-bit call gate, then 
the upper 16-bits of the ESP register may be unreliable upon returning to the 32-bit 
code segment (that is, after executing a RET in the 16-bit code segment).

When the CALL instruction and its matching RET instruction are in code segments 
that have D flags with the same values (that is, both are 32-bit code segments or 
both are 16-bit code segments), the default settings may be used. When the CALL 
instruction and its matching RET instruction are in segments which have different 
D-flag settings, an operand-size prefix must be used.

16.4.2.1  Controlling the Operand-Size Attribute For a Call
Three things can determine the operand-size of a call:

• The D flag in the segment descriptor for the calling code segment.

• An operand-size instruction prefix.

• The type of call gate (16-bit or 32-bit), if a call is made through a call gate.

When a call is made with a pointer (rather than a call gate), the D flag for the calling 
code segment determines the operand-size for the CALL instruction. This operand-
size attribute can be overridden by prepending an operand-size prefix to the CALL 
instruction. So, for example, if the D flag for a code segment is set for 16 bits and the 
operand-size prefix is used with a CALL instruction, the processor will cause the infor-
mation stored on the stack to be stored in 32-bit format. If the call is to a 32-bit code 
segment, the instructions in that code segment will be able to read the stack coher-
ently. Also, a RET instruction from the 32-bit code segment without an operand-size 
prefix will maintain stack coherency with the 16-bit code segment being returned to.

When a CALL instruction references a call-gate descriptor, the type of call is deter-
mined by the type of call gate (16-bit or 32-bit). The offset to the destination in the 
code segment being called is taken from the gate descriptor; therefore, if a 32-bit call 
gate is used, a procedure in a 16-bit code segment can call a procedure located more 
than 64 KBytes from the base of a 32-bit code segment, because a 32-bit call gate 
uses a 32-bit offset.

Note that regardless of the operand size of the call and how it is determined, the size 
of the stack pointer used (SP or ESP) is always controlled by the B flag in the stack-
segment descriptor currently in use (that is, when B is clear, SP is used, and when B 
is set, ESP is used).

An unmodified 16-bit code segment that has run successfully on an 8086 processor 
or in real-mode on a later IA-32 architecture processor will have its D flag clear and 
will not use operand-size override prefixes. As a result, all CALL instructions in this 
code segment will use the 16-bit operand-size attribute. Procedures in these code 
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segments can be modified to safely call procedures to 32-bit code segments in either 
of two ways:

• Relink the CALL instruction to point to 32-bit call gates (see Section 16.4.2.2, 
“Passing Parameters With a Gate”).

• Add a 32-bit operand-size prefix to each CALL instruction.

16.4.2.2  Passing Parameters With a Gate
When referencing 32-bit gates with 16-bit procedures, it is important to consider the 
number of parameters passed in each procedure call. The count field of the gate 
descriptor specifies the size of the parameter string to copy from the current stack to 
the stack of a more privileged (numerically lower privilege level) procedure. The 
count field of a 16-bit gate specifies the number of 16-bit words to be copied, 
whereas the count field of a 32-bit gate specifies the number of 32-bit doublewords 
to be copied. The count field for a 32-bit gate must thus be half the size of the 
number of words being placed on the stack by a 16-bit procedure. Also, the 16-bit 
procedure must use an even number of words as parameters.

16.4.3 Interrupt Control Transfers
A program-control transfer caused by an exception or interrupt is always carried out 
through an interrupt or trap gate (located in the IDT). Here, the type of the gate 
(16-bit or 32-bit) determines the operand-size attribute used in the implicit call to 
the exception or interrupt handler procedure in another code segment.

A 32-bit interrupt or trap gate provides a safe interface to a 32-bit exception or inter-
rupt handler when the exception or interrupt occurs in either a 32-bit or a 16-bit code 
segment. It is sometimes impractical, however, to place exception or interrupt 
handlers in 16-bit code segments, because only 16-bit return addresses are saved on 
the stack. If an exception or interrupt occurs in a 32-bit code segment when the EIP 
was greater than FFFFH, the 16-bit handler procedure cannot provide the correct 
return address.

16.4.4 Parameter Translation
When segment offsets or pointers (which contain segment offsets) are passed as 
parameters between 16-bit and 32-bit procedures, some translation is required. If a 
32-bit procedure passes a pointer to data located beyond 64 KBytes to a 16-bit 
procedure, the 16-bit procedure cannot use it. Except for this limitation, interface 
code can perform any format conversion between 32-bit and 16-bit pointers that 
may be needed.

Parameters passed by value between 32-bit and 16-bit code also may require trans-
lation between 32-bit and 16-bit formats. The form of the translation is application-
dependent.
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16.4.5 Writing Interface Procedures
Placing interface code between 32-bit and 16-bit procedures can be the solution to 
the following interface problems:

• Allowing procedures in 16-bit code segments to call procedures with offsets 
greater than FFFFH in 32-bit code segments.

• Matching operand-size attributes between companion CALL and RET instructions.

• Translating parameters (data), including managing parameter strings with a 
variable count or an odd number of 16-bit words.

• The possible invalidation of the upper bits of the ESP register.

The interface procedure is simplified where these rules are followed.

1. The interface procedure must reside in a 32-bit code segment (the D flag for the 
code-segment descriptor is set).

2. All procedures that may be called by 16-bit procedures must have offsets not 
greater than FFFFH.

3. All return addresses saved by 16-bit procedures must have offsets not greater 
than FFFFH.

The interface procedure becomes more complex if any of these rules are violated. For 
example, if a 16-bit procedure calls a 32-bit procedure with an entry point beyond 
FFFFH, the interface procedure will need to provide the offset to the entry point. The 
mapping between 16- and 32-bit addresses is only performed automatically when a 
call gate is used, because the gate descriptor for a call gate contains a 32-bit 
address. When a call gate is not used, the interface code must provide the 32-bit 
address.

The structure of the interface procedure depends on the types of calls it is going to 
support, as follows:

• Calls from 16-bit procedures to 32-bit procedures — Calls to the interface 
procedure from a 16-bit code segment are made with 16-bit CALL instructions 
(by default, because the D flag for the calling code-segment descriptor is clear), 
and 16-bit operand-size prefixes are used with RET instructions to return from 
the interface procedure to the calling procedure. Calls from the interface 
procedure to 32-bit procedures are performed with 32-bit CALL instructions (by 
default, because the D flag for the interface procedure’s code segment is set), 
and returns from the called procedures to the interface procedure are performed 
with 32-bit RET instructions (also by default).

• Calls from 32-bit procedures to 16-bit procedures — Calls to the interface 
procedure from a 32-bit code segment are made with 32-bit CALL instructions 
(by default), and returns to the calling procedure from the interface procedure 
are made with 32-bit RET instructions (also by default). Calls from the interface 
procedure to 16-bit procedures require the CALL instructions to have the 
operand-size prefixes, and returns from the called procedures to the interface 
procedure are performed with 16-bit RET instructions (by default).
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CHAPTER 17
ARCHITECTURE COMPATIBILITY

Intel 64 and IA-32 processors are binary compatible. Compatibility means that, 
within limited constraints, programs that execute on previous generations of proces-
sors will produce identical results when executed on later processors. The compati-
bility constraints and any implementation differences between the Intel 64 and IA-32 
processors are described in this chapter.

Each new processor has enhanced the software visible architecture from that found 
in earlier Intel 64 and IA-32 processors. Those enhancements have been defined 
with consideration for compatibility with previous and future processors. This chapter 
also summarizes the compatibility considerations for those extensions.

17.1 PROCESSOR FAMILIES AND CATEGORIES
IA-32 processors are referred to in several different ways in this chapter, depending 
on the type of compatibility information being related, as described in the following:

• IA-32 Processors — All the Intel processors based on the Intel IA-32 Archi-
tecture, which include the 8086/88, Intel 286, Intel386, Intel486, Pentium, 
Pentium Pro, Pentium II, Pentium III, Pentium 4, and Intel Xeon processors.

• 32-bit Processors — All the IA-32 processors that use a 32-bit architecture, 
which include the Intel386, Intel486, Pentium, Pentium Pro, Pentium II, 
Pentium III, Pentium 4, and Intel Xeon processors.

• 16-bit Processors — All the IA-32 processors that use a 16-bit architecture, 
which include the 8086/88 and Intel 286 processors.

• P6 Family Processors — All the IA-32 processors that are based on the P6 
microarchitecture, which include the Pentium Pro, Pentium II, and Pentium III 
processors.

• Pentium 4 Family Processors — A family of IA-32 processors that is based on 
the Intel NetBurst microarchitecture.

• Intel Xeon Family Processors — A family of IA-32 processors that is based on 
the Intel NetBurst microarchitecture. This family includes the Intel Xeon 
processor and the Intel Xeon processor MP.

• Pentium D Processors — A family of dual-core IA-32 processors that provides 
two processor cores in a physical package. Each core is based on the Intel 
NetBurst microarchitecture.

• Pentium Processor Extreme Editions — A family of dual-core IA-32 
processors that provides two processor cores in a physical package. Each core is 
based on the Intel NetBurst microarchitecture and supports Hyper-Threading 
Technology.
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17.2 RESERVED BITS
Throughout this manual, certain bits are marked as reserved in many register and 
memory layout descriptions. When bits are marked as undefined or reserved, it is 
essential for compatibility with future processors that software treat these bits as 
having a future, though unknown effect. Software should follow these guidelines in 
dealing with reserved bits:

• Do not depend on the states of any reserved bits when testing the values of 
registers or memory locations that contain such bits. Mask out the reserved bits 
before testing.

• Do not depend on the states of any reserved bits when storing them to memory 
or to a register.

• Do not depend on the ability to retain information written into any reserved bits.

• When loading a register, always load the reserved bits with the values indicated 
in the documentation, if any, or reload them with values previously read from the 
same register.

Software written for existing IA-32 processor that handles reserved bits correctly will 
port to future IA-32 processors without generating protection exceptions.

17.3 ENABLING NEW FUNCTIONS AND MODES
Most of the new control functions defined for the P6 family and Pentium processors 
are enabled by new mode flags in the control registers (primarily register CR4). This 
register is undefined for IA-32 processors earlier than the Pentium processor. 
Attempting to access this register with an Intel486 or earlier IA-32 processor results 
in an invalid-opcode exception (#UD). Consequently, programs that execute 
correctly on the Intel486 or earlier IA-32 processor cannot erroneously enable these 
functions. Attempting to set a reserved bit in register CR4 to a value other than its 
original value results in a general-protection exception (#GP). So, programs that 
execute on the P6 family and Pentium processors cannot erroneously enable func-
tions that may be implemented in future IA-32 processors. 

The P6 family and Pentium processors do not check for attempts to set reserved bits 
in model-specific registers. It is the obligation of the software writer to enforce this 
discipline. These reserved bits may be used in future Intel processors.
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17.4 DETECTING THE PRESENCE OF NEW FEATURES 
THROUGH SOFTWARE

Software can check for the presence of new architectural features and extensions in 
either of two ways:

1. Test for the presence of the feature or extension. Software can test for the 
presence of new flags in the EFLAGS register and control registers. If these flags 
are reserved (meaning not present in the processor executing the test), an 
exception is generated. Likewise, software can attempt to execute a new 
instruction, which results in an invalid-opcode exception (#UD) being generated 
if it is not supported.

2. Execute the CPUID instruction. The CPUID instruction (added to the IA-32 in the 
Pentium processor) indicates the presence of new features directly.

See Chapter 14, “Processor Identification and Feature Determination,” in the Intel® 
64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for detailed 
information on detecting new processor features and extensions.

17.5 INTEL MMX TECHNOLOGY
The Pentium processor with MMX technology introduced the MMX technology and a 
set of MMX instructions to the IA-32. The MMX instructions are described in Chapter 
9, “Programming with Intel® MMX™ Technology,” in the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1, and in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volumes 2A & 2B. The MMX technology 
and MMX instructions are also included in the Pentium II, Pentium III, Pentium 4, and 
Intel Xeon processors.

17.6 STREAMING SIMD EXTENSIONS (SSE)
The Streaming SIMD Extensions (SSE) were introduced in the Pentium III processor. 
The SSE extensions consist of a new set of instructions and a new set of registers. 
The new register include the eight 128-bit XXM registers and the 32-bit MXCSR 
control and status register. These instructions and registers are designed to allow 
SIMD computations to be made on single-precision floating-point numbers. Several 
of these new instructions also operate in the MMX registers. SSE instructions and 
registers are described in Section 10, “Programming with Streaming SIMD Exten-
sions (SSE),” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 1, and in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volumes 2A & 2B. 
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17.7 STREAMING SIMD EXTENSIONS 2 (SSE2)
The Streaming SIMD Extensions 2 (SSE2) were introduced in the Pentium 4 and Intel 
Xeon processors. They consist of a new set of instructions that operate on the XXM 
and MXCSR registers and perform SIMD operations on double-precision floating-
point values and on integer values. Several of these new instructions also operate in 
the MMX registers. SSE2 instructions and registers are described in Chapter 11, 
“Programming with Streaming SIMD Extensions 2 (SSE2),” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 1, and in the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volumes 2A & 2B.

17.8 STREAMING SIMD EXTENSIONS 3 (SSE3)
The Streaming SIMD Extensions 3 (SSE3) were introduced in Pentium 4 processors 
supporting Hyper-Threading Technology and Intel Xeon processors. SSE3 extensions 
include 13 instructions. Ten of these 13 instructions support the single instruction 
multiple data (SIMD) execution model used with SSE/SSE2 extensions. One SSE3 
instruction accelerates x87 style programming for conversion to integer. The 
remaining two instructions (MONITOR and MWAIT) accelerate synchronization of 
threads. SSE3 instructions are described in Chapter 12, “Programming with SSE3, 
SSSE3 and SSE4,” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 1, and in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volumes 2A & 2B.

17.9 HYPER-THREADING TECHNOLOGY
Hyper-Threading Technology is an extension to IA-32 architecture. The feature 
provides two logical processors that can execute two separate code streams (called 
threads) concurrently by using shared resources in single processor core or in a 
physical package. 

This feature was introduced in the Intel Xeon processor MP and later steppings of the 
Intel Xeon processor, and Pentium 4 processors supporting Hyper-Threading Tech-
nology. The feature is also found in the Pentium processor Extreme Edition. See also: 
Section 7.8, “Intel® Hyper-Threading Technology Architecture.”

17.10 DUAL-CORE TECHNOLOGY
The Pentium D processor and Pentium processor Extreme Edition provide two 
processor cores in each physical processor package. See also: Section 7.6, “Hyper-
Threading and Multi-Core Technology,” and Section 7.9, “Multi-Core Architecture.”
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17.11 SPECIFIC FEATURES OF DUAL-CORE PROCESSOR 
Dual-core processors may have some processor-specific features. Use CPUID feature 
flags to detect the availability features. Note the following:

• CPUID Brand String — On Pentium processor Extreme Edition, the process will 
report the correct brand string only after the correct microcode updates are 
loaded.

• Enhanced Intel SpeedStep Technology — This feature is supported in 
Pentium D processor but not in Pentium processor Extreme Edition. 

17.12 NEW INSTRUCTIONS IN THE PENTIUM AND LATER 
IA-32 PROCESSORS

Table 17-1 identifies the instructions introduced into the IA-32 in the Pentium 
processor and later IA-32 processors.

17.12.1 Instructions Added Prior to the Pentium Processor
The following instructions were added in the Intel486 processor:

• BSWAP (byte swap) instruction.

• XADD (exchange and add) instruction.

• CMPXCHG (compare and exchange) instruction.

• Ι NVD (invalidate cache) instruction.

• WBINVD (write-back and invalidate cache) instruction.

• INVLPG (invalidate TLB entry) instruction.

Table 17-1.  New Instruction in the Pentium Processor and 
Later IA-32 Processors 

Instruction CPUID Identification Bits Introduced In

CMOVcc (conditional move) EDX, Bit 15 Pentium Pro processor

FCMOVcc (floating-point conditional 
move)

EDX, Bits 0 and 15

FCOMI (floating-point compare and set 
EFLAGS)

EDX, Bits 0 and 15

RDPMC (read performance monitoring 
counters)

EAX, Bits 8-11, set to 6H;  
see Note 1

UD2 (undefined) EAX, Bits 8-11, set to 6H
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The following instructions were added in the Intel386 processor:

• LSS, LFS, and LGS (load SS, FS, and GS registers).

• Long-displacement conditional jumps.

• Single-bit instructions.

• Bit scan instructions.

• Double-shift instructions.

• Byte set on condition instruction.

• Move with sign/zero extension.

• Generalized multiply instruction.

• MOV to and from control registers.

• MOV to and from test registers (now obsolete).

• MOV to and from debug registers.

• RSM (resume from SMM). This instruction was introduced in the Intel386 SL and 
Intel486 SL processors.

The following instructions were added in the Intel 387 math coprocessor:

• FPREM1.

• FUCOM, FUCOMP, and FUCOMPP.

CMPXCHG8B (compare and exchange 8 
bytes)

EDX, Bit 8 Pentium processor

CPUID (CPU identification) None; see Note 2

RDTSC (read time-stamp counter) EDX, Bit 4

RDMSR (read model-specific register) EDX, Bit 5

WRMSR (write model-specific register) EDX, Bit 5

MMX Instructions EDX, Bit 23

NOTES:
1. The RDPMC instruction was introduced in the P6 family of processors and added to later model 

Pentium processors. This instruction is model specific in nature and not architectural.
2. The CPUID instruction is available in all Pentium and P6 family processors and in later models of 

the Intel486 processors. The ability to set and clear the ID flag (bit 21) in the EFLAGS register 
indicates the availability of the CPUID instruction.

Table 17-1.  New Instruction in the Pentium Processor and 
Later IA-32 Processors (Contd.)

Instruction CPUID Identification Bits Introduced In
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17.13 OBSOLETE INSTRUCTIONS
The MOV to and from test registers instructions were removed from the Pentium 
processor and future IA-32 processors. Execution of these instructions generates an 
invalid-opcode exception (#UD).

17.14 UNDEFINED OPCODES
All new instructions defined for IA-32 processors use binary encodings that were 
reserved on earlier-generation processors. Attempting to execute a reserved opcode 
always results in an invalid-opcode (#UD) exception being generated. Consequently, 
programs that execute correctly on earlier-generation processors cannot erroneously 
execute these instructions and thereby produce unexpected results when executed 
on later IA-32 processors.

17.15 NEW FLAGS IN THE EFLAGS REGISTER
The section titled “EFLAGS Register” in Chapter 3, “Basic Execution Environment,” of 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, 
shows the configuration of flags in the EFLAGS register for the P6 family processors. 
No new flags have been added to this register in the P6 family processors. The flags 
added to this register in the Pentium and Intel486 processors are described in the 
following sections.

The following flags were added to the EFLAGS register in the Pentium processor:

• VIF (virtual interrupt flag), bit 19.

• VIP (virtual interrupt pending), bit 20. 

• ID (identification flag), bit 21. 

The AC flag (bit 18) was added to the EFLAGS register in the Intel486 processor.

17.15.1 Using EFLAGS Flags to Distinguish Between 32-Bit IA-32 
Processors

The following bits in the EFLAGS register that can be used to differentiate between 
the 32-bit IA-32 processors:

• Bit 18 (the AC flag) can be used to distinguish an Intel386 processor from the P6 
family, Pentium, and Intel486 processors. Since it is not implemented on the 
Intel386 processor, it will always be clear.

• Bit 21 (the ID flag) indicates whether an application can execute the CPUID 
instruction. The ability to set and clear this bit indicates that the processor is a P6 
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family or Pentium processor. The CPUID instruction can then be used to 
determine which processor. 

• Bits 19 (the VIF flag) and 20 (the VIP flag) will always be zero on processors that 
do not support virtual mode extensions, which includes all 32-bit processors prior 
to the Pentium processor.

See Chapter 14, “Processor Identification and Feature Determination,” in the Intel® 
64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for more infor-
mation on identifying processors.

17.16 STACK OPERATIONS
This section identifies the differences in stack implementation between the various 
IA-32 processors.

17.16.1 PUSH SP
The P6 family, Pentium, Intel486, Intel386, and Intel 286 processors push a different 
value on the stack for a PUSH SP instruction than the 8086 processor. The 32-bit 
processors push the value of the SP register before it is decremented as part of the 
push operation; the 8086 processor pushes the value of the SP register after it is 
decremented. If the value pushed is important, replace PUSH SP instructions with the 
following three instructions:

PUSH BP
MOV  BP, SP
XCHG BP, [BP] 

This code functions as the 8086 processor PUSH SP instruction on the P6 family, 
Pentium, Intel486, Intel386, and Intel 286 processors.

17.16.2 EFLAGS Pushed on the Stack
The setting of the stored values of bits 12 through 15 (which includes the IOPL field 
and the NT flag) in the EFLAGS register by the PUSHF instruction, by interrupts, and 
by exceptions is different with the 32-bit IA-32 processors than with the 8086 and 
Intel 286 processors. The differences are as follows:

• 8086 processor—bits 12 through 15 are always set.

• Intel 286 processor—bits 12 through 15 are always cleared in real-address mode. 

• 32-bit processors in real-address mode—bit 15 (reserved) is always cleared, and 
bits 12 through 14 have the last value loaded into them.
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17.17 X87 FPU
This section addresses the issues that must be faced when porting floating-point 
software designed to run on earlier IA-32 processors and math coprocessors to a 
Pentium 4, Intel Xeon, P6 family, or Pentium processor with integrated x87 FPU. To 
software, a Pentium 4, Intel Xeon, or P6 family processor looks very much like a 
Pentium processor. Floating-point software which runs on a Pentium or Intel486 DX 
processor, or on an Intel486 SX processor/Intel 487 SX math coprocessor system or 
an Intel386 processor/Intel 387 math coprocessor system, will run with at most 
minor modifications on a Pentium 4, Intel Xeon, or P6 family processor. To port code 
directly from an Intel 286 processor/Intel 287 math coprocessor system or an 
Intel 8086 processor/8087 math coprocessor system to a Pentium 4, Intel Xeon, P6 
family, or Pentium processor, certain additional issues must be addressed. 

In the following sections, the term “32-bit x87 FPUs” refers to the P6 family, Pentium, 
and Intel486 DX processors, and to the Intel 487 SX and Intel 387 math coproces-
sors; the term “16-bit IA-32 math coprocessors” refers to the Intel 287 and 8087 
math coprocessors.

17.17.1 Control Register CR0 Flags
The ET, NE, and MP flags in control register CR0 control the interface between the 
integer unit of an IA-32 processor and either its internal x87 FPU or an external math 
coprocessor. The effect of these flags in the various IA-32 processors are described in 
the following paragraphs.

The ET (extension type) flag (bit 4 of the CR0 register) is used in the Intel386 
processor to indicate whether the math coprocessor in the system is an Intel 287 
math coprocessor (flag is clear) or an Intel 387 DX math coprocessor (flag is set). 
This bit is hardwired to 1 in the P6 family, Pentium, and Intel486 processors.

The NE (Numeric Exception) flag (bit 5 of the CR0 register) is used in the P6 family, 
Pentium, and Intel486 processors to determine whether unmasked floating-point 
exceptions are reported internally through interrupt vector 16 (flag is set) or exter-
nally through an external interrupt (flag is clear). On a hardware reset, the NE flag is 
initialized to 0, so software using the automatic internal error-reporting mechanism 
must set this flag to 1. This flag is nonexistent on the Intel386 processor.

As on the Intel 286 and Intel386 processors, the MP (monitor coprocessor) flag (bit 1 
of register CR0) determines whether the WAIT/FWAIT instructions or waiting-type 
floating-point instructions trap when the context of the x87 FPU is different from that 
of the currently-executing task. If the MP and TS flag are set, then a WAIT/FWAIT 
instruction and waiting instructions will cause a device-not-available exception 
(interrupt vector 7). The MP flag is used on the Intel 286 and Intel386 processors to 
support the use of a WAIT/FWAIT instruction to wait on a device other than a math 
coprocessor. The device reports its status through the BUSY# pin. Since the P6 
family, Pentium, and Intel486 processors do not have such a pin, the MP flag has no 
relevant use and should be set to 1 for normal operation.
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17.17.2 x87 FPU Status Word
This section identifies differences to the x87 FPU status word for the different IA-32 
processors and math coprocessors, the reason for the differences, and their impact 
on software.

17.17.2.1  Condition Code Flags (C0 through C3)
The following information pertains to differences in the use of the condition code 
flags (C0 through C3) located in bits 8, 9, 10, and 14 of the x87 FPU status word.

After execution of an FINIT instruction or a hardware reset on a 32-bit x87 FPU, the 
condition code flags are set to 0. The same operations on a 16-bit IA-32 math copro-
cessor leave these flags intact (they contain their prior value). This difference in 
operation has no impact on software and provides a consistent state after reset.

Transcendental instruction results in the core range of the P6 family and Pentium 
processors may differ from the Intel486 DX processor and Intel 487 SX math copro-
cessor by 2 to 3 units in the last place (ulps)—(see “Transcendental Instruction Accu-
racy” in Chapter 8, “Programming with the x87 FPU,” of the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 1). As a result, the value saved 
in the C1 flag may also differ.

After an incomplete FPREM/FPREM1 instruction, the C0, C1, and C3 flags are set to 0 
on the 32-bit x87 FPUs. After the same operation on a 16-bit IA-32 math copro-
cessor, these flags are left intact. 

On the 32-bit x87 FPUs, the C2 flag serves as an incomplete flag for the FTAN instruc-
tion. On the 16-bit IA-32 math coprocessors, the C2 flag is undefined for the FPTAN 
instruction. This difference has no impact on software, because Intel 287 or 8087 
programs do not check C2 after an FPTAN instruction. The use of this flag on later 
processors allows fast checking of operand range.

17.17.2.2  Stack Fault Flag
When unmasked stack overflow or underflow occurs on a 32-bit x87 FPU, the IE flag 
(bit 0) and the SF flag (bit 6) of the x87 FPU status word are set to indicate a stack 
fault and condition code flag C1 is set or cleared to indicate overflow or underflow, 
respectively. When unmasked stack overflow or underflow occurs on a 16-bit IA-32 
math coprocessor, only the IE flag is set. Bit 6 is reserved on these processors. The 
addition of the SF flag on a 32-bit x87 FPU has no impact on software. Existing excep-
tion handlers need not change, but may be upgraded to take advantage of the addi-
tional information.

17.17.3 x87 FPU Control Word
Only affine closure is supported for infinity control on a 32-bit x87 FPU. The infinity 
control flag (bit 12 of the x87 FPU control word) remains programmable on these 
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processors, but has no effect. This change was made to conform to the IEEE Stan-
dard 754 for Binary Floating-Point Arithmetic. On a 16-bit IA-32 math coprocessor, 
both affine and projective closures are supported, as determined by the setting of bit 
12. After a hardware reset, the default value of bit 12 is projective. Software that 
requires projective infinity arithmetic may give different results.

17.17.4 x87 FPU Tag Word
When loading the tag word of a 32-bit x87 FPU, using an FLDENV, FRSTOR, or 
FXRSTOR (Pentium III processor only) instruction, the processor examines the 
incoming tag and classifies the location only as empty or non-empty. Thus, tag 
values of 00, 01, and 10 are interpreted by the processor to indicate a non-empty 
location. The tag value of 11 is interpreted by the processor to indicate an empty 
location. Subsequent operations on a non-empty register always examine the value 
in the register, not the value in its tag. The FSTENV, FSAVE, and FXSAVE (Pentium III 
processor only) instructions examine the non-empty registers and put the correct 
values in the tags before storing the tag word.

The corresponding tag for a 16-bit IA-32 math coprocessor is checked before each 
register access to determine the class of operand in the register; the tag is updated 
after every change to a register so that the tag always reflects the most recent status 
of the register. Software can load a tag with a value that disagrees with the contents 
of a register (for example, the register contains a valid value, but the tag says 
special). Here, the 16-bit IA-32 math coprocessors honor the tag and do not examine 
the register. 

Software written to run on a 16-bit IA-32 math coprocessor may not operate 
correctly on a 16-bit x87 FPU, if it uses the FLDENV, FRSTOR, or FXRSTOR instruc-
tions to change tags to values (other than to empty) that are different from actual 
register contents.

The encoding in the tag word for the 32-bit x87 FPUs for unsupported data formats 
(including pseudo-zero and unnormal) is special (10B), to comply with IEEE Standard 
754. The encoding in the 16-bit IA-32 math coprocessors for pseudo-zero and 
unnormal is valid (00B) and the encoding for other unsupported data formats is 
special (10B). Code that recognizes the pseudo-zero or unnormal format as valid 
must therefore be changed if it is ported to a 32-bit x87 FPU.

17.17.5 Data Types
This section discusses the differences of data types for the various x87 FPUs and 
math coprocessors.

17.17.5.1  NaNs
The 32-bit x87 FPUs distinguish between signaling NaNs (SNaNs) and quiet NaNs 
(QNaNs). These x87 FPUs only generate QNaNs and normally do not generate an 
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exception upon encountering a QNaN. An invalid-operation exception (#I) is gener-
ated only upon encountering a SNaN, except for the FCOM, FIST, and FBSTP instruc-
tions, which also generates an invalid-operation exceptions for a QNaNs. This 
behavior matches IEEE Standard 754.

The 16-bit IA-32 math coprocessors only generate one kind of NaN (the equivalent of 
a QNaN), but the raise an invalid-operation exception upon encountering any kind of 
NaN.

When porting software written to run on a 16-bit IA-32 math coprocessor to a 32-bit 
x87 FPU, uninitialized memory locations that contain QNaNs should be changed to 
SNaNs to cause the x87 FPU or math coprocessor to fault when uninitialized memory 
locations are referenced.

17.17.5.2  Pseudo-zero, Pseudo-NaN, Pseudo-infinity, and Unnormal 
Formats

The 32-bit x87 FPUs neither generate nor support the pseudo-zero, pseudo-NaN, 
pseudo-infinity, and unnormal formats. Whenever they encounter them in an arith-
metic operation, they raise an invalid-operation exception. The 16-bit IA-32 math 
coprocessors define and support special handling for these formats. Support for 
these formats was dropped to conform with IEEE Standard 754 for Binary Floating-
Point Arithmetic.

This change should not impact software ported from 16-bit IA-32 math coprocessors 
to 32-bit x87 FPUs. The 32-bit x87 FPUs do not generate these formats, and there-
fore will not encounter them unless software explicitly loads them in the data regis-
ters. The only affect may be in how software handles the tags in the tag word (see 
also: Section 17.17.4, “x87 FPU Tag Word”).

17.17.6 Floating-Point Exceptions
This section identifies the implementation differences in exception handling for 
floating-point instructions in the various x87 FPUs and math coprocessors.

17.17.6.1  Denormal Operand Exception (#D)
When the denormal operand exception is masked, the 32-bit x87 FPUs automatically 
normalize denormalized numbers when possible; whereas, the 16-bit IA-32 math 
coprocessors return a denormal result. A program written to run on a 16-bit IA-32 
math coprocessor that uses the denormal exception solely to normalize denormal-
ized operands is redundant when run on the 32-bit x87 FPUs. If such a program is run 
on 32-bit x87 FPUs, performance can be improved by masking the denormal excep-
tion. Floating-point programs run faster when the FPU performs normalization of 
denormalized operands.

The denormal operand exception is not raised for transcendental instructions and the 
FXTRACT instruction on the 16-bit IA-32 math coprocessors. This exception is raised 
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for these instructions on the 32-bit x87 FPUs. The exception handlers ported to these 
latter processors need to be changed only if the handlers gives special treatment to 
different opcodes.

17.17.6.2  Numeric Overflow Exception (#O)
On the 32-bit x87 FPUs, when the numeric overflow exception is masked and the 
rounding mode is set to chop (toward 0), the result is the largest positive or smallest 
negative number. The 16-bit IA-32 math coprocessors do not signal the overflow 
exception when the masked response is not ∞; that is, they signal overflow only when 
the rounding control is not set to round to 0. If rounding is set to chop (toward 0), the 
result is positive or negative ∞. Under the most common rounding modes, this differ-
ence has no impact on existing software. 

If rounding is toward 0 (chop), a program on a 32-bit x87 FPU produces, under over-
flow conditions, a result that is different in the least significant bit of the significand, 
compared to the result on a 16-bit IA-32 math coprocessor. The reason for this differ-
ence is IEEE Standard 754 compatibility.

When the overflow exception is not masked, the precision exception is flagged on the 
32-bit x87 FPUs. When the result is stored in the stack, the significand is rounded 
according to the precision control (PC) field of the FPU control word or according to 
the opcode. On the 16-bit IA-32 math coprocessors, the precision exception is not 
flagged and the significand is not rounded. The impact on existing software is that if 
the result is stored on the stack, a program running on a 32-bit x87 FPU produces a 
different result under overflow conditions than on a 16-bit IA-32 math coprocessor. 
The difference is apparent only to the exception handler. This difference is for IEEE 
Standard 754 compatibility.

17.17.6.3  Numeric Underflow Exception (#U)
When the underflow exception is masked on the 32-bit x87 FPUs, the underflow 
exception is signaled when both the result is tiny and denormalization results in a 
loss of accuracy. When the underflow exception is unmasked and the instruction is 
supposed to store the result on the stack, the significand is rounded to the appro-
priate precision (according to the PC flag in the FPU control word, for those instruc-
tions controlled by PC, otherwise to extended precision), after adjusting the 
exponent.

When the underflow exception is masked on the 16-bit IA-32 math coprocessors and 
rounding is toward 0, the underflow exception flag is raised on a tiny result, regard-
less of loss of accuracy. When the underflow exception is not masked and the desti-
nation is the stack, the significand is not rounded, but instead is left as is. 

When the underflow exception is masked, this difference has no impact on existing 
software. The underflow exception occurs less often when rounding is toward 0.

When the underflow exception not masked. A program running on a 32-bit x87 FPU 
produces a different result during underflow conditions than on a 16-bit IA-32 math 
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coprocessor if the result is stored on the stack. The difference is only in the least 
significant bit of the significand and is apparent only to the exception handler.

17.17.6.4  Exception Precedence
There is no difference in the precedence of the denormal-operand exception on the 
32-bit x87 FPUs, whether it be masked or not. When the denormal-operand excep-
tion is not masked on the 16-bit IA-32 math coprocessors, it takes precedence over 
all other exceptions. This difference causes no impact on existing software, but some 
unneeded normalization of denormalized operands is prevented on the Intel486 
processor and Intel 387 math coprocessor.

17.17.6.5  CS and EIP For FPU Exceptions
On the Intel 32-bit x87 FPUs, the values from the CS and EIP registers saved for 
floating-point exceptions point to any prefixes that come before the floating-point 
instruction. On the 8087 math coprocessor, the saved CS and IP registers points to 
the floating-point instruction.

17.17.6.6  FPU Error Signals
The floating-point error signals to the P6 family, Pentium, and Intel486 processors do 
not pass through an interrupt controller; an INT# signal from an Intel 387, Intel 287 
or 8087 math coprocessors does. If an 8086 processor uses another exception for 
the 8087 interrupt, both exception vectors should call the floating-point-error excep-
tion handler. Some instructions in a floating-point-error exception handler may need 
to be deleted if they use the interrupt controller. The P6 family, Pentium, and Intel486 
processors have signals that, with the addition of external logic, support reporting for 
emulation of the interrupt mechanism used in many personal computers.

On the P6 family, Pentium, and Intel486 processors, an undefined floating-point 
opcode will cause an invalid-opcode exception (#UD, interrupt vector 6). Undefined 
floating-point opcodes, like legal floating-point opcodes, cause a device not available 
exception (#NM, interrupt vector 7) when either the TS or EM flag in control register 
CR0 is set. The P6 family, Pentium, and Intel486 processors do not check for floating-
point error conditions on encountering an undefined floating-point opcode.

17.17.6.7  Assertion of the FERR# Pin
When using the MS-DOS compatibility mode for handing floating-point exceptions, 
the FERR# pin must be connected to an input to an external interrupt controller. An 
external interrupt is then generated when the FERR# output drives the input to the 
interrupt controller and the interrupt controller in turn drives the INTR pin on the 
processor. 

For the P6 family and Intel386 processors, an unmasked floating-point exception 
always causes the FERR# pin to be asserted upon completion of the instruction that 



Vol. 3   17-15

ARCHITECTURE COMPATIBILITY

caused the exception. For the Pentium and Intel486 processors, an unmasked 
floating-point exception may cause the FERR# pin to be asserted either at the end of 
the instruction causing the exception or immediately before execution of the next 
floating-point instruction. (Note that the next floating-point instruction would not be 
executed until the pending unmasked exception has been handled.) See Appendix D, 
“Guidelines for Writing x87 FPU Extension Handlers,” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 1, for a complete description of 
the required mechanism for handling floating-point exceptions using the MS-DOS 
compatibility mode.

17.17.6.8  Invalid Operation Exception On Denormals 
An invalid-operation exception is not generated on the 32-bit x87 FPUs upon encoun-
tering a denormal value when executing a FSQRT, FDIV, or FPREM instruction or upon 
conversion to BCD or to integer. The operation proceeds by first normalizing the 
value. On the 16-bit IA-32 math coprocessors, upon encountering this situation, the 
invalid-operation exception is generated. This difference has no impact on existing 
software. Software running on the 32-bit x87 FPUs continues to execute in cases 
where the 16-bit IA-32 math coprocessors trap. The reason for this change was to 
eliminate an exception from being raised.

17.17.6.9  Alignment Check Exceptions (#AC)
If alignment checking is enabled, a misaligned data operand on the P6 family, 
Pentium, and Intel486 processors causes an alignment check exception (#AC) when 
a program or procedure is running at privilege-level 3, except for the stack portion of 
the FSAVE/FNSAVE, FXSAVE, FRSTOR, and FXRSTOR instructions.

17.17.6.10  Segment Not Present Exception During FLDENV
On the Intel486 processor, when a segment not present exception (#NP) occurs in 
the middle of an FLDENV instruction, it can happen that part of the environment is 
loaded and part not. In such cases, the FPU control word is left with a value of 007FH. 
The P6 family and Pentium processors ensure the internal state is correct at all times 
by attempting to read the first and last bytes of the environment before updating the 
internal state.

17.17.6.11  Device Not Available Exception (#NM)
The device-not-available exception (#NM, interrupt 7) will occur in the P6 family, 
Pentium, and Intel486 processors as described in Section 2.5, “Control Registers,” 
Table 2-1, and Chapter 5, “Interrupt 7—Device Not Available Exception (#NM).”
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17.17.6.12  Coprocessor Segment Overrun Exception
The coprocessor segment overrun exception (interrupt 9) does not occur in the P6 
family, Pentium, and Intel486 processors. In situations where the Intel 387 math 
coprocessor would cause an interrupt 9, the P6 family, Pentium, and Intel486 proces-
sors simply abort the instruction. To avoid undetected segment overruns, it is recom-
mended that the floating-point save area be placed in the same page as the TSS. This 
placement will prevent the FPU environment from being lost if a page fault occurs 
during the execution of an FLDENV, FRSTOR, or FXRSTOR instruction while the oper-
ating system is performing a task switch.

17.17.6.13  General Protection Exception (#GP)
A general-protection exception (#GP, interrupt 13) occurs if the starting address of a 
floating-point operand falls outside a segment’s size. An exception handler should be 
included to report these programming errors.

17.17.6.14  Floating-Point Error Exception (#MF)
In real mode and protected mode (not including virtual-8086 mode), interrupt vector 
16 must point to the floating-point exception handler. In virtual 8086 mode, the 
virtual-8086 monitor can be programmed to accommodate a different location of the 
interrupt vector for floating-point exceptions.

17.17.7 Changes to Floating-Point Instructions
This section identifies the differences in floating-point instructions for the various 
Intel FPU and math coprocessor architectures, the reason for the differences, and 
their impact on software.

17.17.7.1  FDIV, FPREM, and FSQRT Instructions
The 32-bit x87 FPUs support operations on denormalized operands and, when 
detected, an underflow exception can occur, for compatibility with the IEEE Standard 
754. The 16-bit IA-32 math coprocessors do not operate on denormalized operands 
or return underflow results. Instead, they generate an invalid-operation exception 
when they detect an underflow condition. An existing underflow exception handler 
will require change only if it gives different treatment to different opcodes. Also, it is 
possible that fewer invalid-operation exceptions will occur.

17.17.7.2  FSCALE Instruction
With the 32-bit x87 FPUs, the range of the scaling operand is not restricted. If (0 < | 
ST(1) < 1), the scaling factor is 0; therefore, ST(0) remains unchanged. If the 
rounded result is not exact or if there was a loss of accuracy (masked underflow), the 
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precision exception is signaled. With the 16-bit IA-32 math coprocessors, the range 
of the scaling operand is restricted. If (0 < | ST(1) | < 1), the result is undefined and 
no exception is signaled. The impact of this difference on exiting software is that 
different results are delivered on the 32-bit and 16-bit FPUs and math coprocessors 
when (0 < | ST(1) | < 1).

17.17.7.3  FPREM1 Instruction
The 32-bit x87 FPUs compute a partial remainder according to IEEE Standard 754. 
This instruction does not exist on the 16-bit IA-32 math coprocessors. The avail-
ability of the FPREM1 instruction has is no impact on existing software.

17.17.7.4  FPREM Instruction
On the 32-bit x87 FPUs, the condition code flags C0, C3, C1 in the status word 
correctly reflect the three low-order bits of the quotient following execution of the 
FPREM instruction. On the 16-bit IA-32 math coprocessors, the quotient bits are 
incorrect when performing a reduction of (64N + M) when (N ≥ 1) and M is 1 or 2. This 
difference does not affect existing software; software that works around the bug 
should not be affected.

17.17.7.5  FUCOM, FUCOMP, and FUCOMPP Instructions
When executing the FUCOM, FUCOMP, and FUCOMPP instructions, the 32-bit x87 
FPUs perform unordered compare according to IEEE Standard 754. These instruc-
tions do not exist on the 16-bit IA-32 math coprocessors. The availability of these 
new instructions has no impact on existing software.

17.17.7.6  FPTAN Instruction
On the 32-bit x87 FPUs, the range of the operand for the FPTAN instruction is much 
less restricted (| ST(0) | < 263) than on earlier math coprocessors. The instruction 
reduces the operand internally using an internal π/4 constant that is more accurate. 
The range of the operand is restricted to (| ST(0) | < π/4) on the 16-bit IA-32 math 
coprocessors; the operand must be reduced to this range using FPREM. This change 
has no impact on existing software.

17.17.7.7  Stack Overflow
On the 32-bit x87 FPUs, if an FPU stack overflow occurs when the invalid-operation 
exception is masked, the FPU returns the real, integer, or BCD-integer indefinite 
value to the destination operand, depending on the instruction being executed. On 
the 16-bit IA-32 math coprocessors, the original operand remains unchanged 
following a stack overflow, but it is loaded into register ST(1). This difference has no 
impact on existing software.
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17.17.7.8  FSIN, FCOS, and FSINCOS Instructions
On the 32-bit x87 FPUs, these instructions perform three common trigonometric 
functions. These instructions do not exist on the 16-bit IA-32 math coprocessors. The 
availability of these instructions has no impact on existing software, but using them 
provides a performance upgrade.

17.17.7.9  FPATAN Instruction
On the 32-bit x87 FPUs, the range of operands for the FPATAN instruction is unre-
stricted. On the 16-bit IA-32 math coprocessors, the absolute value of the operand in 
register ST(0) must be smaller than the absolute value of the operand in register 
ST(1). This difference has impact on existing software.

17.17.7.10  F2XM1 Instruction
The 32-bit x87 FPUs support a wider range of operands (–1 < ST (0) < + 1) for the 
F2XM1 instruction. The supported operand range for the 16-bit IA-32 math coproces-
sors is (0 ≤ ST(0) ≤ 0.5). This difference has no impact on existing software.

17.17.7.11  FLD Instruction
On the 32-bit x87 FPUs, when using the FLD instruction to load an extended-real 
value, a denormal-operand exception is not generated because the instruction is not 
arithmetic. The 16-bit IA-32 math coprocessors do report a denormal-operand 
exception in this situation. This difference does not affect existing software.

On the 32-bit x87 FPUs, loading a denormal value that is in single- or double-real 
format causes the value to be converted to extended-real format. Loading a 
denormal value on the 16-bit IA-32 math coprocessors causes the value to be 
converted to an unnormal. If the next instruction is FXTRACT or FXAM, the 32-bit x87 
FPUs will give a different result than the 16-bit IA-32 math coprocessors. This change 
was made for IEEE Standard 754 compatibility.

On the 32-bit x87 FPUs, loading an SNaN that is in single- or double-real format 
causes the FPU to generate an invalid-operation exception. The 16-bit IA-32 math 
coprocessors do not raise an exception when loading a signaling NaN. The invalid-
operation exception handler for 16-bit math coprocessor software needs to be 
updated to handle this condition when porting software to 32-bit FPUs. This change 
was made for IEEE Standard 754 compatibility.

17.17.7.12  FXTRACT Instruction
On the 32-bit x87 FPUs, if the operand is 0 for the FXTRACT instruction, the divide-
by-zero exception is reported and –∞ is delivered to register ST(1). If the operand is 
+∞, no exception is reported. If the operand is 0 on the 16-bit IA-32 math coproces-
sors, 0 is delivered to register ST(1) and no exception is reported. If the operand is 
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+∞, the invalid-operation exception is reported. These differences have no impact on 
existing software. Software usually bypasses 0 and ∞. This change is due to the IEEE 
Standard 754 recommendation to fully support the “logb” function.

17.17.7.13  Load Constant Instructions
On 32-bit x87 FPUs, rounding control is in effect for the load constant instructions. 
Rounding control is not in effect for the 16-bit IA-32 math coprocessors. Results for 
the FLDPI, FLDLN2, FLDLG2, and FLDL2E instructions are the same as for the 16-bit 
IA-32 math coprocessors when rounding control is set to round to nearest or round 
to +∞. They are the same for the FLDL2T instruction when rounding control is set to 
round to nearest, round to –∞, or round to zero. Results are different from the 16-bit 
IA-32 math coprocessors in the least significant bit of the mantissa if rounding 
control is set to round to –∞ or round to 0 for the FLDPI, FLDLN2, FLDLG2, and 
FLDL2E instructions; they are different for the FLDL2T instruction if round to +∞ is 
specified. These changes were implemented for compatibility with IEEE Standard 
754 for Floating-Point Arithmetic recommendations.

17.17.7.14  FSETPM Instruction
With the 32-bit x87 FPUs, the FSETPM instruction is treated as NOP (no operation). 
This instruction informs the Intel 287 math coprocessor that the processor is in 
protected mode. This change has no impact on existing software. The 32-bit x87 
FPUs handle all addressing and exception-pointer information, whether in protected 
mode or not.

17.17.7.15  FXAM Instruction
With the 32-bit x87 FPUs, if the FPU encounters an empty register when executing 
the FXAM instruction, it not generate combinations of C0 through C3 equal to 1101 or 
1111. The 16-bit IA-32 math coprocessors may generate these combinations, among 
others. This difference has no impact on existing software; it provides a performance 
upgrade to provide repeatable results.

17.17.7.16  FSAVE and FSTENV Instructions
With the 32-bit x87 FPUs, the address of a memory operand pointer stored by FSAVE 
or FSTENV is undefined if the previous floating-point instruction did not refer to 
memory

17.17.8 Transcendental Instructions
The floating-point results of the P6 family and Pentium processors for transcendental 
instructions in the core range may differ from the Intel486 processors by about 2 or 
3 ulps (see “Transcendental Instruction Accuracy” in Chapter 8, “Programming with 



17-20   Vol. 3

ARCHITECTURE COMPATIBILITY

the x87 FPU,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 1). Condition code flag C1 of the status word may differ as a result. The exact 
threshold for underflow and overflow will vary by a few ulps. The P6 family and 
Pentium processors’ results will have a worst case error of less than 1 ulp when 
rounding to the nearest-even and less than 1.5 ulps when rounding in other modes. 
The transcendental instructions are guaranteed to be monotonic, with respect to the 
input operands, throughout the domain supported by the instruction.

Transcendental instructions may generate different results in the round-up flag (C1) 
on the 32-bit x87 FPUs. The round-up flag is undefined for these instructions on the 
16-bit IA-32 math coprocessors. This difference has no impact on existing software.

17.17.9 Obsolete Instructions
The 8087 math coprocessor instructions FENI and FDISI and the Intel 287 math 
coprocessor instruction FSETPM are treated as integer NOP instructions in the 32-bit 
x87 FPUs. If these opcodes are detected in the instruction stream, no specific opera-
tion is performed and no internal states are affected.

17.17.10 WAIT/FWAIT Prefix Differences
On the Intel486 processor, when a WAIT/FWAIT instruction precedes a floating-point 
instruction (one which itself automatically synchronizes with the previous floating-
point instruction), the WAIT/FWAIT instruction is treated as a no-op. Pending 
floating-point exceptions from a previous floating-point instruction are processed not 
on the WAIT/FWAIT instruction but on the floating-point instruction following the 
WAIT/FWAIT instruction. In such a case, the report of a floating-point exception may 
appear one instruction later on the Intel486 processor than on a P6 family or Pentium 
FPU, or on Intel 387 math coprocessor.

17.17.11 Operands Split Across Segments and/or Pages
On the P6 family, Pentium, and Intel486 processor FPUs, when the first half of an 
operand to be written is inside a page or segment and the second half is outside, a 
memory fault can cause the first half to be stored but not the second half. In this situ-
ation, the Intel 387 math coprocessor stores nothing.

17.17.12 FPU Instruction Synchronization
On the 32-bit x87 FPUs, all floating-point instructions are automatically synchro-
nized; that is, the processor automatically waits until the previous floating-point 
instruction has completed before completing the next floating-point instruction. No 
explicit WAIT/FWAIT instructions are required to assure this synchronization. For the 
8087 math coprocessors, explicit waits are required before each floating-point 
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instruction to ensure synchronization. Although 8087 programs having explicit WAIT 
instructions execute perfectly on the 32-bit IA-32 processors without reassembly, 
these WAIT instructions are unnecessary.

17.18 SERIALIZING INSTRUCTIONS
Certain instructions have been defined to serialize instruction execution to ensure 
that modifications to flags, registers and memory are completed before the next 
instruction is executed (or in P6 family processor terminology “committed to machine 
state”). Because the P6 family processors use branch-prediction and out-of-order 
execution techniques to improve performance, instruction execution is not generally 
serialized until the results of an executed instruction are committed to machine state 
(see Chapter 2, “Intel® 64 and IA-32 Architectures,” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 1). 

As a result, at places in a program or task where it is critical to have execution 
completed for all previous instructions before executing the next instruction (for 
example, at a branch, at the end of a procedure, or in multiprocessor dependent 
code), it is useful to add a serializing instruction. See Section 7.4, “Serializing 
Instructions,” for more information on serializing instructions.

17.19 FPU AND MATH COPROCESSOR INITIALIZATION
Table 8-1 shows the states of the FPUs in the P6 family, Pentium, Intel486 processors 
and of the Intel 387 math coprocessor and Intel 287 coprocessor following a power-
up, reset, or INIT, or following the execution of an FINIT/FNINIT instruction. The 
following is some additional compatibility information concerning the initialization of 
x87 FPUs and math coprocessors.

17.19.1 Intel® 387 and Intel® 287 Math Coprocessor Initialization
Following an Intel386 processor reset, the processor identifies its coprocessor type 
(Intel® 287 or Intel® 387 DX math coprocessor) by sampling its ERROR# input some 
time after the falling edge of RESET# signal and before execution of the first floating-
point instruction. The Intel 287 coprocessor keeps its ERROR# output in inactive 
state after hardware reset; the Intel 387 coprocessor keeps its ERROR# output in 
active state after hardware reset. 

Upon hardware reset or execution of the FINIT/FNINIT instruction, the Intel 387 
math coprocessor signals an error condition. The P6 family, Pentium, and Intel486 
processors, like the Intel 287 coprocessor, do not.
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17.19.2 Intel486 SX Processor and Intel 487 SX Math Coprocessor 
Initialization

When initializing an Intel486 SX processor and an Intel 487 SX math coprocessor, 
the initialization routine should check the presence of the math coprocessor and 
should set the FPU related flags (EM, MP, and NE) in control register CR0 accordingly 
(see Section 2.5, “Control Registers,” for a complete description of these flags). Table 
17-2 gives the recommended settings for these flags when the math coprocessor is 
present. The FSTCW instruction will give a value of FFFFH for the Intel486 SX micro-
processor and 037FH for the Intel 487 SX math coprocessor.

The EM and MP flags in register CR0 are interpreted as shown in Table 17-3. 

Following is an example code sequence to initialize the system and check for the 
presence of Intel486 SX processor/Intel 487 SX math coprocessor.

fninit
fstcw mem_loc
mov ax, mem_loc
cmp ax, 037fh
jz Intel487_SX_Math_CoProcessor_present ;ax=037fh
jmp Intel486_SX_microprocessor_present ;ax=ffffh

Table 17-2.  Recommended Values of the EM, MP, and NE Flags for Intel486 SX 
Microprocessor/Intel 487 SX Math Coprocessor System

CR0 Flags Intel486 SX Processor Only Intel 487 SX Math Coprocessor Present

EM 1 0

MP 0 1

NE 1 0, for MS-DOS* systems 
1, for user-defined exception handler

Table 17-3.  EM and MP Flag Interpretation

EM MP Interpretation

0 0 Floating-point instructions are passed to FPU; WAIT/FWAIT 
and other waiting-type instructions ignore TS.

0 1 Floating-point instructions are passed to FPU; WAIT/FWAIT 
and other waiting-type instructions test TS.

1 0 Floating-point instructions trap to emulator; WAIT/FWAIT and 
other waiting-type instructions ignore TS.

1 1 Floating-point instructions trap to emulator; WAIT/FWAIT and 
other waiting-type instructions test TS.
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If the Intel 487 SX math coprocessor is not present, the following code can be run to 
set the CR0 register for the Intel486 SX processor.

mov eax, cr0
and eax, fffffffdh ;make MP=0
or eax, 0024h ;make EM=1, NE=1
mov cr0, eax

This initialization will cause any floating-point instruction to generate a device not 
available exception (#NH), interrupt 7. The software emulation will then take control 
to execute these instructions. This code is not required if an Intel 487 SX math 
coprocessor is present in the system. In that case, the typical initialization routine for 
the Intel486 SX microprocessor will be adequate.

Also, when designing an Intel486 SX processor based system with an Intel 487 SX 
math coprocessor, timing loops should be independent of clock speed and clocks per 
instruction. One way to attain this is to implement these loops in hardware and not in 
software (for example, BIOS).

17.20 CONTROL REGISTERS
The following sections identify the new control registers and control register flags 
and fields that were introduced to the 32-bit IA-32 in various processor families. See 
Figure 2-6 for the location of these flags and fields in the control registers.

The Pentium III processor introduced one new control flag in control register CR4:

• OSXMMEXCPT (bit 10) — The OS will set this bit if it supports unmasked SIMD 
floating-point exceptions.

The Pentium II processor introduced one new control flag in control register CR4:

• OSFXSR (bit 9) — The OS supports saving and restoring the Pentium III processor 
state during context switches.

The Pentium Pro processor introduced three new control flags in control register CR4:

• PAE (bit 5) — Physical address extension. Enables paging mechanism to 
reference 36-bit physical addresses when set; restricts physical addresses to 32 
bits when clear (see also: Section 17.21.1.1, “Physical Memory Addressing 
Extension”).

• PGE (bit 7) — Page global enable. Inhibits flushing of frequently-used or shared 
pages on task switches (see also: Section 17.21.1.2, “Global Pages”). 

• PCE (bit 8) — Performance-monitoring counter enable. Enables execution of the 
RDPMC instruction at any protection level.

The content of CR4 is 0H following a hardware reset.
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Control register CR4 was introduced in the Pentium processor. This register contains 
flags that enable certain new extensions provided in the Pentium processor:

• VME — Virtual-8086 mode extensions. Enables support for a virtual interrupt flag 
in virtual-8086 mode (see Section 15.3, “Interrupt and Exception Handling in 
Virtual-8086 Mode”).

• PVI — Protected-mode virtual interrupts. Enables support for a virtual interrupt 
flag in protected mode (see Section 15.4, “Protected-Mode Virtual Interrupts”).

• TSD — Time-stamp disable. Restricts the execution of the RDTSC instruction to 
procedures running at privileged level 0.

• DE — Debugging extensions. Causes an undefined opcode (#UD) exception to be 
generated when debug registers DR4 and DR5 are references for improved 
performance (see Section 18.2.2, “Debug Registers DR4 and DR5”).

• PSE — Page size extensions. Enables 4-MByte pages when set (see Section 3.6.1, 
“Paging Options”).

• MCE — Machine-check enable. Enables the machine-check exception, allowing 
exception handling for certain hardware error conditions (see Chapter 14, 
“Machine-Check Architecture”). 

The Intel486 processor introduced five new flags in control register CR0:

• NE — Numeric error. Enables the normal mechanism for reporting floating-point 
numeric errors.

• WP — Write protect. Write-protects user-level pages against supervisor-mode 
accesses.

• AM — Alignment mask. Controls whether alignment checking is performed. 
Operates in conjunction with the AC (Alignment Check) flag.

• NW — Not write-through. Enables write-throughs and cache invalidation cycles 
when clear and disables invalidation cycles and write-throughs that hit in the 
cache when set. 

• CD — Cache disable. Enables the internal cache when clear and disables the 
cache when set.

The Intel486 processor introduced two new flags in control register CR3:

• PCD — Page-level cache disable. The state of this flag is driven on the PCD# pin 
during bus cycles that are not paged, such as interrupt acknowledge cycles, when 
paging is enabled.   The PCD# pin is used to control caching in an external cache 
on a cycle-by-cycle basis.

• PWT — Page-level write-through. The state of this flag is driven on the PWT# pin 
during bus cycles that are not paged, such as interrupt acknowledge cycles, when 
paging is enabled. The PWT# pin is used to control write through in an external 
cache on a cycle-by-cycle basis. 
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17.21 MEMORY MANAGEMENT FACILITIES
The following sections describe the new memory management facilities available in 
the various IA-32 processors and some compatibility differences.

17.21.1 New Memory Management Control Flags
The Pentium Pro processor introduced three new memory management features: 
physical memory addressing extension, the global bit in page-table entries, and 
general support for larger page sizes. These features are only available when oper-
ating in protected mode.

17.21.1.1  Physical Memory Addressing Extension
The new PAE (physical address extension) flag in control register CR4, bit 5, enables 
4 additional address lines on the processor, allowing 36-bit physical addresses. This 
option can only be used when paging is enabled, using a new page-table mechanism 
provided to support the larger physical address range (see Section 3.8, “36-Bit Phys-
ical Addressing Using the PAE Paging Mechanism”).

17.21.1.2  Global Pages
The new PGE (page global enable) flag in control register CR4, bit 7, provides a 
mechanism for preventing frequently used pages from being flushed from the trans-
lation lookaside buffer (TLB). When this flag is set, frequently used pages (such as 
pages containing kernel procedures or common data tables) can be marked global by 
setting the global flag in a page-directory or page-table entry. 

On a task switch or a write to control register CR3 (which normally causes the TLBs 
to be flushed), the entries in the TLB marked global are not flushed. Marking pages 
global in this manner prevents unnecessary reloading of the TLB due to TLB misses 
on frequently used pages. See Section 3.12, “Translation Lookaside Buffers (TLBs),” 
for a detailed description of this mechanism.

17.21.1.3  Larger Page Sizes
The P6 family processors support large page sizes. This facility is enabled with the 
PSE (page size extension) flag in control register CR4, bit 4. When this flag is set, the 
processor supports either 4-KByte or 4-MByte page sizes when normal paging is used 
and 4-KByte and 2-MByte page sizes when the physical address extension is used. 
See Section 3.6.1, “Paging Options,” for more information about large page sizes.
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17.21.2 CD and NW Cache Control Flags
The CD and NW flags in control register CR0 were introduced in the Intel486 
processor. In the P6 family and Pentium processors, these flags are used to imple-
ment a writeback strategy for the data cache; in the Intel486 processor, they imple-
ment a write-through strategy. See Table 10-5 for a comparison of these bits on the 
P6 family, Pentium, and Intel486 processors. For complete information on caching, 
see Chapter 10, “Memory Cache Control.”

17.21.3 Descriptor Types and Contents
Operating-system code that manages space in descriptor tables often contains an 
invalid value in the access-rights field of descriptor-table entries to identify unused 
entries. Access rights values of 80H and 00H remain invalid for the P6 family, 
Pentium, Intel486, Intel386, and Intel 286 processors. Other values that were invalid 
on the Intel 286 processor may be valid on the 32-bit processors because uses for 
these bits have been defined.

17.21.4 Changes in Segment Descriptor Loads
On the Intel386 processor, loading a segment descriptor always causes a locked read 
and write to set the accessed bit of the descriptor. On the P6 family, Pentium, and 
Intel486 processors, the locked read and write occur only if the bit is not already set.

17.22 DEBUG FACILITIES
The P6 family and Pentium processors include extensions to the Intel486 processor 
debugging support for breakpoints. To use the new breakpoint features, it is neces-
sary to set the DE flag in control register CR4.

17.22.1 Differences in Debug Register DR6
It is not possible to write a 1 to reserved bit 12 in debug status register DR6 on the 
P6 family and Pentium processors; however, it is possible to write a 1 in this bit on the 
Intel486 processor. See Table 8-1 for the different setting of this register following a 
power-up or hardware reset.

17.22.2 Differences in Debug Register DR7
The P6 family and Pentium processors determines the type of breakpoint access by 
the R/W0 through R/W3 fields in debug control register DR7 as follows: 

00 Break on instruction execution only.



Vol. 3   17-27

ARCHITECTURE COMPATIBILITY

01 Break on data writes only.

10 Undefined if the DE flag in control register CR4 is cleared; break on I/O reads 
or writes but not instruction fetches if the DE flag in control register CR4 is 
set.

11 Break on data reads or writes but not instruction fetches.

On the P6 family and Pentium processors, reserved bits 11, 12, 14 and 15 are hard-
wired to 0. On the Intel486 processor, however, bit 12 can be set. See Table 8-1 for 
the different settings of this register following a power-up or hardware reset.

17.22.3 Debug Registers DR4 and DR5
Although the DR4 and DR5 registers are documented as reserved, previous genera-
tions of processors aliased references to these registers to debug registers DR6 and 
DR7, respectively. When debug extensions are not enabled (the DE flag in control 
register CR4 is cleared), the P6 family and Pentium processors remain compatible 
with existing software by allowing these aliased references. When debug extensions 
are enabled (the DE flag is set), attempts to reference registers DR4 or DR5 will 
result in an invalid-opcode exception (#UD).

17.23 RECOGNITION OF BREAKPOINTS
For the Pentium processor, it is recommended that debuggers execute the LGDT 
instruction before returning to the program being debugged to ensure that break-
points are detected. This operation does not need to be performed on the P6 family, 
Intel486, or Intel386 processors. Test Registers

The implementation of test registers on the Intel486 processor used for testing the 
cache and TLB has been redesigned using MSRs on the P6 family and Pentium 
processors. (Note that MSRs used for this function are different on the P6 family and 
Pentium processors.) The MOV to and from test register instructions generate 
invalid-opcode exceptions (#UD) on the P6 family processors.

17.24 EXCEPTIONS AND/OR EXCEPTION CONDITIONS
This section describes the new exceptions and exception conditions added to the 32-
bit IA-32 processors and implementation differences in existing exception handling. 
See Chapter 5, “Interrupt and Exception Handling,” for a detailed description of the 
IA-32 exceptions.

The Pentium III processor introduced new state with the XMM registers. Computations 
involving data in these registers can produce exceptions. A new MXCSR 
control/status register is used to determine which exception or exceptions have 
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occurred. When an exception associated with the XMM registers occurs, an interrupt 
is generated.

• SIMD floating-point exception (#XF, interrupt 19) — New exceptions associated 
with the SIMD floating-point registers and resulting computations.

No new exceptions were added with the Pentium Pro and Pentium II processors. The 
set of available exceptions is the same as for the Pentium processor. However, the 
following exception condition was added to the IA-32 with the Pentium Pro 
processor:

• Machine-check exception (#MC, interrupt 18) — New exception conditions. Many 
exception conditions have been added to the machine-check exception and a new 
architecture has been added for handling and reporting on hardware errors. See 
Chapter 14, “Machine-Check Architecture,” for a detailed description of the new 
conditions.

The following exceptions and/or exception conditions were added to the IA-32 with 
the Pentium processor:

• Machine-check exception (#MC, interrupt 18) — New exception. This exception 
reports parity and other hardware errors. It is a model-specific exception and 
may not be implemented or implemented differently in future processors. The 
MCE flag in control register CR4 enables the machine-check exception. When this 
bit is clear (which it is at reset), the processor inhibits generation of the machine-
check exception.

• General-protection exception (#GP, interrupt 13) — New exception condition 
added. An attempt to write a 1 to a reserved bit position of a special register 
causes a general-protection exception to be generated.

• Page-fault exception (#PF, interrupt 14) — New exception condition added. When 
a 1 is detected in any of the reserved bit positions of a page-table entry, page-
directory entry, or page-directory pointer during address translation, a page-fault 
exception is generated. 

The following exception was added to the Intel486 processor:

• Alignment-check exception (#AC, interrupt 17) — New exception. Reports 
unaligned memory references when alignment checking is being performed. 

The following exceptions and/or exception conditions were added to the Intel386 
processor:

• Divide-error exception (#DE, interrupt 0)

— Change in exception handling. Divide-error exceptions on the Intel386 
processors always leave the saved CS:IP value pointing to the instruction that 
failed. On the 8086 processor, the CS:IP value points to the next instruction.

— Change in exception handling. The Intel386 processors can generate the 
largest negative number as a quotient for the IDIV instruction (80H and 
8000H). The 8086 processor generates a divide-error exception instead.



Vol. 3   17-29

ARCHITECTURE COMPATIBILITY

• Invalid-opcode exception (#UD, interrupt 6) — New exception condition added. 
Improper use of the LOCK instruction prefix can generate an invalid-opcode 
exception.

• Page-fault exception (#PF, interrupt 14) — New exception condition added. If 
paging is enabled in a 16-bit program, a page-fault exception can be generated 
as follows. Paging can be used in a system with 16-bit tasks if all tasks use the 
same page directory. Because there is no place in a 16-bit TSS to store the PDBR 
register, switching to a 16-bit task does not change the value of the PDBR 
register. Tasks ported from the Intel 286 processor should be given 32-bit TSSs 
so they can make full use of paging.

• General-protection exception (#GP, interrupt 13) — New exception condition 
added. The Intel386 processor sets a limit of 15 bytes on instruction length. The 
only way to violate this limit is by putting redundant prefixes before an 
instruction. A general-protection exception is generated if the limit on instruction 
length is violated. The 8086 processor has no instruction length limit.

17.24.1 Machine-Check Architecture
The Pentium Pro processor introduced a new architecture to the IA-32 for handling 
and reporting on machine-check exceptions. This machine-check architecture 
(described in detail in Chapter 14, “Machine-Check Architecture”) greatly expands 
the ability of the processor to report on internal hardware errors.

17.24.2 Priority OF Exceptions
The priority of exceptions are broken down into several major categories:

1. Traps on the previous instruction

2. External interrupts

3. Faults on fetching the next instruction

4. Faults in decoding the next instruction

5. Faults on executing an instruction

There are no changes in the priority of these major categories between the different 
processors, however, exceptions within these categories are implementation depen-
dent and may change from processor to processor.

17.25 INTERRUPTS
The following differences in handling interrupts are found among the IA-32  
processors.
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17.25.1 Interrupt Propagation Delay
External hardware interrupts may be recognized on different instruction boundaries 
on the P6 family, Pentium, Intel486, and Intel386 processors, due to the superscaler 
designs of the P6 family and Pentium processors. Therefore, the EIP pushed onto the 
stack when servicing an interrupt may be different for the P6 family, Pentium, 
Intel486, and Intel386 processors.   

17.25.2 NMI Interrupts
After an NMI interrupt is recognized by the P6 family, Pentium, Intel486, Intel386, 
and Intel 286 processors, the NMI interrupt is masked until the first IRET instruction 
is executed, unlike the 8086 processor.

17.25.3 IDT Limit
The LIDT instruction can be used to set a limit on the size of the IDT. A double-fault 
exception (#DF) is generated if an interrupt or exception attempts to read a vector 
beyond the limit. Shutdown then occurs on the 32-bit IA-32 processors if the double-
fault handler vector is beyond the limit. (The 8086 processor does not have a shut-
down mode nor a limit.)

17.26 ADVANCED PROGRAMMABLE INTERRUPT 
CONTROLLER (APIC)

The Advanced Programmable Interrupt Controller (APIC), referred to in this book as 
the local APIC, was introduced into the IA-32 processors with the Pentium 
processor (beginning with the 735/90 and 815/100 models) and is included in the 
Pentium 4, Intel Xeon, and P6 family processors. The features and functions of the 
local APIC are derived from the Intel 82489DX external APIC, which was used with 
the Intel486 and early Pentium processors. Additional refinements of the local APIC 
architecture were incorporated in the Pentium 4 and Intel Xeon processors.

17.26.1 Software Visible Differences Between the Local APIC and 
the 82489DX

The following features in the local APIC features differ from those found in the 
82489DX external APIC:

• When the local APIC is disabled by clearing the APIC software enable/disable flag 
in the spurious-interrupt vector MSR, the state of its internal registers are 
unaffected, except that the mask bits in the LVT are all set to block local 
interrupts to the processor. Also, the local APIC ceases accepting IPIs except for 
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INIT, SMI, NMI, and start-up IPIs. In the 82489DX, when the local unit is 
disabled, all the internal registers including the IRR, ISR and TMR are cleared and 
the mask bits in the LVT are set. In this state, the 82489DX local unit will accept 
only the reset deassert message.

• In the local APIC, NMI and INIT (except for INIT deassert) are always treated as 
edge triggered interrupts, even if programmed otherwise. In the 82489DX, these 
interrupts are always level triggered. 

• In the local APIC, IPIs generated through the ICR are always treated as edge 
triggered (except INIT Deassert). In the 82489DX, the ICR can be used to 
generate either edge or level triggered IPIs. 

• In the local APIC, the logical destination register supports 8 bits; in the 82489DX, 
it supports 32 bits. 

• In the local APIC, the APIC ID register is 4 bits wide; in the 82489DX, it is 8 bits 
wide.

• The remote read delivery mode provided in the 82489DX and local APIC for 
Pentium processors is not supported in the local APIC in the Pentium 4, Intel 
Xeon, and P6 family processors.

• For the 82489DX, in the lowest priority delivery mode, all the target local APICs 
specified by the destination field participate in the lowest priority arbitration. For 
the local APIC, only those local APICs which have free interrupt slots will 
participate in the lowest priority arbitration.

17.26.2 New Features Incorporated in the Local APIC for the P6 
Family and Pentium Processors

The local APIC in the Pentium and P6 family processors have the following new 
features not found in the 82489DX external APIC.

• Cluster addressing is supported in logical destination mode.

• Focus processor checking can be enabled/disabled.

• Interrupt input signal polarity can be programmed for the LINT0 and LINT1 pins.

• An SMI IPI is supported through the ICR and I/O redirection table.

• An error status register is incorporated into the LVT to log and report APIC errors.

In the P6 family processors, the local APIC incorporates an additional LVT register to 
handle performance monitoring counter interrupts.

17.26.3 New Features Incorporated in the Local APIC of the Pentium 
4 and Intel Xeon Processors

The local APIC in the Pentium 4 and Intel Xeon processors has the following new 
features not found in the P6 family and Pentium processors and in the 82489DX.
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• The local APIC ID is extended to 8 bits.

• An thermal sensor register is incorporated into the LVT to handle thermal sensor 
interrupts. 

• The the ability to deliver lowest-priority interrupts to a focus processor is no 
longer supported.

• The flat cluster logical destination mode is not supported.

17.27 TASK SWITCHING AND TSS
This section identifies the implementation differences of task switching, additions to 
the TSS and the handling of TSSs and TSS segment selectors.

17.27.1 P6 Family and Pentium Processor TSS
When the virtual mode extensions are enabled (by setting the VME flag in control 
register CR4), the TSS in the P6 family and Pentium processors contain an interrupt 
redirection bit map, which is used in virtual-8086 mode to redirect interrupts back to 
an 8086 program.

17.27.2 TSS Selector Writes
During task state saves, the Intel486 processor writes 2-byte segment selectors into 
a 32-bit TSS, leaving the upper 16 bits undefined. For performance reasons, the P6 
family and Pentium processors write 4-byte segment selectors into the TSS, with the 
upper 2 bytes being 0. For compatibility reasons, code should not depend on the 
value of the upper 16 bits of the selector in the TSS.

17.27.3 Order of Reads/Writes to the TSS
The order of reads and writes into the TSS is processor dependent. The P6 family and 
Pentium processors may generate different page-fault addresses in control register 
CR2 in the same TSS area than the Intel486 and Intel386 processors, if a TSS 
crosses a page boundary (which is not recommended).

17.27.4 Using A 16-Bit TSS with 32-Bit Constructs
Task switches using 16-bit TSSs should be used only for pure 16-bit code. Any new 
code written using 32-bit constructs (operands, addressing, or the upper word of the 
EFLAGS register) should use only 32-bit TSSs. This is due to the fact that the 32-bit 
processors do not save the upper 16 bits of EFLAGS to a 16-bit TSS. A task switch 
back to a 16-bit task that was executing in virtual mode will never re-enable the 
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virtual mode, as this flag was not saved in the upper half of the EFLAGS value in the 
TSS. Therefore, it is strongly recommended that any code using 32-bit constructs 
use a 32-bit TSS to ensure correct behavior in a multitasking environment.

17.27.5 Differences in I/O Map Base Addresses
The Intel486 processor considers the TSS segment to be a 16-bit segment and wraps 
around the 64K boundary. Any I/O accesses check for permission to access this I/O 
address at the I/O base address plus the I/O offset. If the I/O map base address 
exceeds the specified limit of 0DFFFH, an I/O access will wrap around and obtain the 
permission for the I/O address at an incorrect location within the TSS. A TSS limit 
violation does not occur in this situation on the Intel486 processor. However, the P6 
family and Pentium processors consider the TSS to be a 32-bit segment and a limit 
violation occurs when the I/O base address plus the I/O offset is greater than the TSS 
limit. By following the recommended specification for the I/O base address to be less 
than 0DFFFH, the Intel486 processor will not wrap around and access incorrect loca-
tions within the TSS for I/O port validation and the P6 family and Pentium processors 
will not experience general-protection exceptions (#GP). Figure 17-1 demonstrates 
the different areas accessed by the Intel486 and the P6 family and Pentium 
processors. 

Figure 17-1.  I/O Map Base Address Differences
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17.28 CACHE MANAGEMENT
The P6 family processors include two levels of internal caches: L1 (level 1) and L2 
(level 2). The L1 cache is divided into an instruction cache and a data cache; the L2 
cache is a general-purpose cache. See Section 10.1, “Internal Caches, TLBs, and 
Buffers,” for a description of these caches. (Note that although the Pentium II 
processor L2 cache is physically located on a separate chip in the cassette, it is 
considered an internal cache.)

The Pentium processor includes separate level 1 instruction and data caches. The 
data cache supports a writeback (or alternatively write-through, on a line by line 
basis) policy for memory updates.

The Intel486 processor includes a single level 1 cache for both instructions and data. 

The meaning of the CD and NW flags in control register CR0 have been redefined for 
the P6 family and Pentium processors. For these processors, the recommended value 
(00B) enables writeback for the data cache of the Pentium processor and for the L1 
data cache and L2 cache of the P6 family processors. In the Intel486 processor, 
setting these flags to (00B) enables write-through for the cache.

External system hardware can force the Pentium processor to disable caching or to 
use the write-through cache policy should that be required. In the P6 family proces-
sors, the MTRRs can be used to override the CD and NW flags (see Table 10-6).

The P6 family and Pentium processors support page-level cache management in the 
same manner as the Intel486 processor by using the PCD and PWT flags in control 
register CR3, the page-directory entries, and the page-table entries. The Intel486 
processor, however, is not affected by the state of the PWT flag since the internal 
cache of the Intel486 processor is a write-through cache.

17.28.1 Self-Modifying Code with Cache Enabled
On the Intel486 processor, a write to an instruction in the cache will modify it in both 
the cache and memory. If the instruction was prefetched before the write, however, 
the old version of the instruction could be the one executed. To prevent this problem, 
it is necessary to flush the instruction prefetch unit of the Intel486 processor by 
coding a jump instruction immediately after any write that modifies an instruction. 
The P6 family and Pentium processors, however, check whether a write may modify 
an instruction that has been prefetched for execution. This check is based on the 
linear address of the instruction. If the linear address of an instruction is found to be 
present in the prefetch queue, the P6 family and Pentium processors flush the 
prefetch queue, eliminating the need to code a jump instruction after any writes that 
modify an instruction. 

Because the linear address of the write is checked against the linear address of the 
instructions that have been prefetched, special care must be taken for self-modifying 
code to work correctly when the physical addresses of the instruction and the written 
data are the same, but the linear addresses differ. In such cases, it is necessary to 
execute a serializing operation to flush the prefetch queue after the write and before 
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executing the modified instruction. See Section 7.4, “Serializing Instructions,” for 
more information on serializing instructions.

NOTE
The check on linear addresses described above is not in practice a 
concern for compatibility. Applications that include self-modifying 
code use the same linear address for modifying and fetching the 
instruction. System software, such as a debugger, that might 
possibly modify an instruction using a different linear address than 
that used to fetch the instruction must execute a serializing 
operation, such as IRET, before the modified instruction is executed.

17.28.2 Disabling the L3 Cache
A unified third-level (L3) cache was introduced in the Pentium 4 and Intel Xeon 
processors (see Section 10.1, “Internal Caches, TLBs, and Buffers”) along with the 
third-level cache disable flag, bit 6 of the IA32_MISC_ENABLE MSR. The third-level 
cache disable flag allows the L3 cache to be disabled and enabled, independently of 
the L1 and L2 caches (see Section 10.5.4, “Disabling and Enabling the L3 Cache”).

17.29 PAGING
This section identifies enhancements made to the paging mechanism and implemen-
tation differences in the paging mechanism for various IA-32 processors.

17.29.1 Large Pages
The Pentium processor extended the memory management/paging facilities of the 
IA-32 to allow large (4 MBytes) pages sizes (see Section 3.6.1, “Paging Options”). 
The first P6 family processor (the Pentium Pro processor) added a 2 MByte page size 
to the IA-32 in conjunction with the physical address extension (PAE) feature (see 
Section 3.8, “36-Bit Physical Addressing Using the PAE Paging Mechanism”). 

The availability of large pages on any IA-32 processor can be determined via feature 
bit 3 (PSE) of register EDX after the CPUID instruction has been execution with an 
argument of 1. Intel processors that do not support the CPUID instruction do not 
support page size enhancements. (See “CPUID—CPU Identification” in Chapter 3, 
“Instruction Set Reference, A-M,” in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 2A, and AP-485, Intel Processor Identification and the 
CPUID Instruction, for more information on the CPUID instruction.)
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17.29.2 PCD and PWT Flags
The PCD and PWT flags were introduced to the IA-32 in the Intel486 processor to 
control the caching of pages:

• PCD (page-level cache disable) flag—Controls caching on a page-by-page basis.

• PWT (page-level write-through) flag—Controls the write-through/writeback 
caching policy on a page-by-page basis. Since the internal cache of the Intel486 
processor is a write-through cache, it is not affected by the state of the PWT flag.   

17.29.3 Enabling and Disabling Paging
Paging is enabled and disabled by loading a value into control register CR0 that modi-
fies the PG flag. For backward and forward compatibility with all IA-32 processors, 
Intel recommends that the following operations be performed when enabling or 
disabling paging:

1. Execute a MOV CR0, REG instruction to either set (enable paging) or clear 
(disable paging) the PG flag. 

2. Execute a near JMP instruction.

The sequence bounded by the MOV and JMP instructions should be identity mapped 
(that is, the instructions should reside on a page whose linear and physical addresses 
are identical).

For the P6 family processors, the MOV CR0, REG instruction is serializing, so the 
jump operation is not required. However, for backwards compatibility, the JMP 
instruction should still be included.

17.30 STACK OPERATIONS
This section identifies the differences in the stack mechanism for the various IA-32 
processors.

17.30.1 Selector Pushes and Pops
When pushing a segment selector onto the stack, the Pentium 4, Intel Xeon, P6 
family, and Intel486 processors decrement the ESP register by the operand size and 
then write 2 bytes. If the operand size is 32-bits, the upper two bytes of the write are 
not modified. The Pentium processor decrements the ESP register by the operand 
size and determines the size of the write by the operand size. If the operand size is 
32-bits, the upper two bytes are written as 0s. 

When popping a segment selector from the stack, the Pentium 4, Intel Xeon, P6 
family, and Intel486 processors read 2 bytes and increment the ESP register by the 
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operand size of the instruction. The Pentium processor determines the size of the 
read from the operand size and increments the ESP register by the operand size.

It is possible to align a 32-bit selector push or pop such that the operation generates 
an exception on a Pentium processor and not on an Pentium 4, Intel Xeon, P6 family, 
or Intel486 processor. This could occur if the third and/or fourth byte of the operation 
lies beyond the limit of the segment or if the third and/or fourth byte of the operation 
is locate on a non-present or inaccessible page.

For a POP-to-memory instruction that meets the following conditions:

• The stack segment size is 16-bit.

• Any 32-bit addressing form with the SIB byte specifying ESP as the base register.

• The initial stack pointer is FFFCH (32-bit operand) or FFFEH (16-bit operand) and 
will wrap around to 0H as a result of the POP operation.

The result of the memory write is implementation-specific. For example, in P6 family 
processors, the result of the memory write is SS:0H plus any scaled index and 
displacement. In Pentium processors, the result of the memory write may be either a 
stack fault (real mode or protected mode with stack segment size of 64 KByte), or 
write to SS:10000H plus any scaled index and displacement (protected mode and 
stack segment size exceeds 64 KByte).

17.30.2 Error Code Pushes
The Intel486 processor implements the error code pushed on the stack as a 16-bit 
value. When pushed onto a 32-bit stack, the Intel486 processor only pushes 2 bytes 
and updates ESP by 4. The P6 family and Pentium processors’ error code is a full 32 
bits with the upper 16 bits set to zero. The P6 family and Pentium processors, there-
fore, push 4 bytes and update ESP by 4. Any code that relies on the state of the upper 
16 bits may produce inconsistent results.

17.30.3 Fault Handling Effects on the Stack 
During the handling of certain instructions, such as CALL and PUSHA, faults may 
occur in different sequences for the different processors. For example, during far 
calls, the Intel486 processor pushes the old CS and EIP before a possible branch fault 
is resolved. A branch fault is a fault from a branch instruction occurring from a 
segment limit or access rights violation. If a branch fault is taken, the Intel486 and 
P6 family processors will have corrupted memory below the stack pointer. However, 
the ESP register is backed up to make the instruction restartable. The P6 family 
processors issue the branch before the pushes. Therefore, if a branch fault does 
occur, these processors do not corrupt memory below the stack pointer. This imple-
mentation difference, however, does not constitute a compatibility problem, as only 
values at or above the stack pointer are considered to be valid.
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17.30.4 Interlevel RET/IRET From a 16-Bit Interrupt or Call Gate
If a call or interrupt is made from a 32-bit stack environment through a 16-bit gate, 
only 16 bits of the old ESP can be pushed onto the stack. On the subsequent 
RET/IRET, the 16-bit ESP is popped but the full 32-bit ESP is updated since control is 
being resumed in a 32-bit stack environment. The Intel486 processor writes the SS 
selector into the upper 16 bits of ESP. The P6 family and Pentium processors write 
zeros into the upper 16 bits.     

17.31  MIXING 16- AND 32-BIT SEGMENTS
The features of the 16-bit Intel 286 processor are an object-code compatible subset 
of those of the 32-bit IA-32 processors. The D (default operation size) flag in 
segment descriptors indicates whether the processor treats a code or data segment 
as a 16-bit or 32-bit segment; the B (default stack size) flag in segment descriptors 
indicates whether the processor treats a stack segment as a 16-bit or 32-bit 
segment.

The segment descriptors used by the Intel 286 processor are supported by the 32-bit 
IA-32 processors if the Intel-reserved word (highest word) of the descriptor is clear. 
On the 32-bit IA-32 processors, this word includes the upper bits of the base address 
and the segment limit.

The segment descriptors for data segments, code segments, local descriptor tables 
(there are no descriptors for global descriptor tables), and task gates are the same 
for the 16- and 32-bit processors. Other 16-bit descriptors (TSS segment, call gate, 
interrupt gate, and trap gate) are supported by the 32-bit processors. 

The 32-bit processors also have descriptors for TSS segments, call gates, interrupt 
gates, and trap gates that support the 32-bit architecture. Both kinds of descriptors 
can be used in the same system.

For those segment descriptors common to both 16- and 32-bit processors, clear bits 
in the reserved word cause the 32-bit processors to interpret these descriptors 
exactly as an Intel 286 processor does, that is:

• Base Address — The upper 8 bits of the 32-bit base address are clear, which limits 
base addresses to 24 bits.

• Limit — The upper 4 bits of the limit field are clear, restricting the value of the 
limit field to 64 KBytes.

• Granularity bit — The G (granularity) flag is clear, indicating the value of the 
16-bit limit is interpreted in units of 1 byte.

• Big bit — In a data-segment descriptor, the B flag is clear in the segment 
descriptor used by the 32-bit processors, indicating the segment is no larger than 
64 KBytes.

• Default bit — In a code-segment descriptor, the D flag is clear, indicating 16-bit 
addressing and operands are the default. In a stack-segment descriptor, the D 
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flag is clear, indicating use of the SP register (instead of the ESP register) and a 
64-KByte maximum segment limit.

For information on mixing 16- and 32-bit code in applications, see Chapter 16, 
“Mixing 16-Bit and 32-Bit Code.”

17.32  SEGMENT AND ADDRESS WRAPAROUND
This section discusses differences in segment and address wraparound between the 
P6 family, Pentium, Intel486, Intel386, Intel 286, and 8086 processors.

17.32.1 Segment Wraparound
On the 8086 processor, an attempt to access a memory operand that crosses offset 
65,535 or 0FFFFH or offset 0 (for example, moving a word to offset 65,535 or 
pushing a word when the stack pointer is set to 1) causes the offset to wrap around 
modulo 65,536 or 010000H. With the Intel 286 processor, any base and offset combi-
nation that addresses beyond 16 MBytes wraps around to the 1 MByte of the address 
space. The P6 family, Pentium, Intel486, and Intel386 processors in real-address 
mode generate an exception in these cases: 

• A general-protection exception (#GP) if the segment is a data segment (that is, 
if the CS, DS, ES, FS, or GS register is being used to address the segment).

• A stack-fault exception (#SS) if the segment is a stack segment (that is, if the SS 
register is being used). 

An exception to this behavior occurs when a stack access is data aligned, and the 
stack pointer is pointing to the last aligned piece of data that size at the top of the 
stack (ESP is FFFFFFFCH). When this data is popped, no segment limit violation 
occurs and the stack pointer will wrap around to 0. 

The address space of the P6 family, Pentium, and Intel486 processors may wrap-
around at 1 MByte in real-address mode. An external A20M# pin forces wraparound 
if enabled. On Intel 8086 processors, it is possible to specify addresses greater than 
1 MByte. For example, with a selector value FFFFH and an offset of FFFFH, the effec-
tive address would be 10FFEFH (1 MByte plus 65519 bytes). The 8086 processor, 
which can form addresses up to 20 bits long, truncates the uppermost bit, which 
“wraps” this address to FFEFH. However, the P6 family, Pentium, and Intel486 
processors do not truncate this bit if A20M# is not enabled. 

If a stack operation wraps around the address limit, shutdown occurs. (The 8086 
processor does not have a shutdown mode or a limit.) 

The behavior when executing near the limit of a 4-GByte selector (limit=0xFFFFFFFF) 
is different between the Pentium Pro and the Pentium 4 family of processors. On the 
Pentium Pro, instructions which cross the limit -- for example, a two byte instruction 
such as INC EAX that is encoded as 0xFF 0xC0 starting exactly at the limit faults for 
a segment violation (a one byte instruction at 0xFFFFFFFF does not cause an excep-
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tion). Using the Pentium 4 microprocessor family, neither of these situations causes 
a fault.

17.33  STORE BUFFERS AND MEMORY ORDERING
The Pentium 4, Intel Xeon, and P6 family processors provide a store buffer for 
temporary storage of writes (stores) to memory (see Section 10.10, “Store Buffer”). 
Writes stored in the store buffer(s) are always written to memory in program order, 
with the exception of “fast string” store operations (see Section 7.2.4, “Out-of-Order 
Stores For String Operations”).

The Pentium processor has two store buffers, one corresponding to each of the pipe-
lines. Writes in these buffers are always written to memory in the order they were 
generated by the processor core.

It should be noted that only memory writes are buffered and I/O writes are not. The 
Pentium 4, Intel Xeon, P6 family, Pentium, and Intel486 processors do not synchro-
nize the completion of memory writes on the bus and instruction execution after a 
write. An I/O, locked, or serializing instruction needs to be executed to synchronize 
writes with the next instruction (see Section 7.4, “Serializing Instructions”).

The Pentium 4, Intel Xeon, and P6 family processors use processor ordering to main-
tain consistency in the order that data is read (loaded) and written (stored) in a 
program and the order the processor actually carries out the reads and writes. With 
this type of ordering, reads can be carried out speculatively and in any order, reads 
can pass buffered writes, and writes to memory are always carried out in program 
order. (See Section 7.2, “Memory Ordering,” for more information about processor 
ordering.) The Pentium III processor introduced a new instruction to serialize writes 
and make them globally visible. Memory ordering issues can arise between a 
producer and a consumer of data. The SFENCE instruction provides a performance-
efficient way of ensuring ordering between routines that produce weakly-ordered 
results and routines that consume this data.

No re-ordering of reads occurs on the Pentium processor, except under the condition 
noted in Section 7.2.1, “Memory Ordering in the Intel® Pentium® and Intel486™ 
Processors,” and in the following paragraph describing the Intel486 processor. 

Specifically, the store buffers are flushed before the IN instruction is executed. No 
reads (as a result of cache miss) are reordered around previously generated writes 
sitting in the store buffers. The implication of this is that the store buffers will be 
flushed or emptied before a subsequent bus cycle is run on the external bus.

On both the Intel486 and Pentium processors, under certain conditions, a memory 
read will go onto the external bus before the pending memory writes in the buffer 
even though the writes occurred earlier in the program execution. A memory read 
will only be reordered in front of all writes pending in the buffers if all writes pending 
in the buffers are cache hits and the read is a cache miss. Under these conditions, the 
Intel486 and Pentium processors will not read from an external memory location that 
needs to be updated by one of the pending writes. 
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During a locked bus cycle, the Intel486 processor will always access external 
memory, it will never look for the location in the on-chip cache. All data pending in 
the Intel486 processor's store buffers will be written to memory before a locked cycle 
is allowed to proceed to the external bus. Thus, the locked bus cycle can be used for 
eliminating the possibility of reordering read cycles on the Intel486 processor. The 
Pentium processor does check its cache on a read-modify-write access and, if the 
cache line has been modified, writes the contents back to memory before locking the 
bus. The P6 family processors write to their cache on a read-modify-write operation 
(if the access does not split across a cache line) and does not write back to system 
memory. If the access does split across a cache line, it locks the bus and accesses 
system memory.

I/O reads are never reordered in front of buffered memory writes on an IA-32 
processor. This ensures an update of all memory locations before reading the status 
from an I/O device.

17.34  BUS LOCKING
The Intel 286 processor performs the bus locking differently than the Intel P6 family, 
Pentium, Intel486, and Intel386 processors. Programs that use forms of memory 
locking specific to the Intel 286 processor may not run properly when run on later 
processors.

A locked instruction is guaranteed to lock only the area of memory defined by the 
destination operand, but may lock a larger memory area. For example, typical 8086 
and Intel 286 configurations lock the entire physical memory space. Programmers 
should not depend on this.

On the Intel 286 processor, the LOCK prefix is sensitive to IOPL. If the CPL is greater 
than the IOPL, a general-protection exception (#GP) is generated. On the Intel386 
DX, Intel486, and Pentium, and P6 family processors, no check against IOPL is 
performed.

The Pentium processor automatically asserts the LOCK# signal when acknowledging 
external interrupts. After signaling an interrupt request, an external interrupt 
controller may use the data bus to send the interrupt vector to the processor. After 
receiving the interrupt request signal, the processor asserts LOCK# to insure that no 
other data appears on the data bus until the interrupt vector is received. This bus 
locking does not occur on the P6 family processors.

17.35  BUS HOLD
Unlike the 8086 and Intel 286 processors, but like the Intel386 and Intel486 proces-
sors, the P6 family and Pentium processors respond to requests for control of the bus 
from other potential bus masters, such as DMA controllers, between transfers of 
parts of an unaligned operand, such as two words which form a doubleword. Unlike 
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the Intel386 processor, the P6 family, Pentium and Intel486 processors respond to 
bus hold during reset initialization.

17.36  MODEL-SPECIFIC EXTENSIONS TO THE IA-32
Certain extensions to the IA-32 are specific to a processor or family of IA-32 proces-
sors and may not be implemented or implemented in the same way in future proces-
sors. The following sections describe these model-specific extensions. The CPUID 
instruction indicates the availability of some of the model-specific features.

17.36.1 Model-Specific Registers
The Pentium processor introduced a set of model-specific registers (MSRs) for use in 
controlling hardware functions and performance monitoring. To access these MSRs, 
two new instructions were added to the IA-32 architecture: read MSR (RDMSR) and 
write MSR (WRMSR). The MSRs in the Pentium processor are not guaranteed to be 
duplicated or provided in the next generation IA-32 processors.

The P6 family processors greatly increased the number of MSRs available to soft-
ware. See Appendix B, “Model-Specific Registers (MSRs),” for a complete list of the 
available MSRs. The new registers control the debug extensions, the performance 
counters, the machine-check exception capability, the machine-check architecture, 
and the MTRRs. These registers are accessible using the RDMSR and WRMSR instruc-
tions. Specific information on some of these new MSRs is provided in the following 
sections. As with the Pentium processor MSR, the P6 family processor MSRs are not 
guaranteed to be duplicated or provided in the next generation IA-32 processors.

17.36.2 RDMSR and WRMSR Instructions
The RDMSR (read model-specific register) and WRMSR (write model-specific 
register) instructions recognize a much larger number of model-specific registers in 
the P6 family processors. (See “RDMSR—Read from Model Specific Register” and 
“WRMSR—Write to Model Specific Register” in the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volumes 2A & 2B for more information.)

17.36.3 Memory Type Range Registers
Memory type range registers (MTRRs) are a new feature introduced into the IA-32 in 
the Pentium Pro processor. MTRRs allow the processor to optimize memory opera-
tions for different types of memory, such as RAM, ROM, frame buffer memory, and 
memory-mapped I/O.

MTRRs are MSRs that contain an internal map of how physical address ranges are 
mapped to various types of memory. The processor uses this internal memory map 
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to determine the cacheability of various physical memory locations and the optimal 
method of accessing memory locations. For example, if a memory location is speci-
fied in an MTRR as write-through memory, the processor handles accesses to this 
location as follows. It reads data from that location in lines and caches the read data 
or maps all writes to that location to the bus and updates the cache to maintain cache 
coherency. In mapping the physical address space with MTRRs, the processor recog-
nizes five types of memory: uncacheable (UC), uncacheable, speculatable, write-
combining (WC), write-through (WT), write-protected (WP), and writeback (WB).

Earlier IA-32 processors (such as the Intel486 and Pentium processors) used the 
KEN# (cache enable) pin and external logic to maintain an external memory map and 
signal cacheable accesses to the processor. The MTRR mechanism simplifies hard-
ware designs by eliminating the KEN# pin and the external logic required to drive it.

See Chapter 8, “Processor Management and Initialization,” and Appendix B, “Model-
Specific Registers (MSRs),” for more information on the MTRRs.

17.36.4 Machine-Check Exception and Architecture
The Pentium processor introduced a new exception called the machine-check excep-
tion (#MC, interrupt 18). This exception is used to detect hardware-related errors, 
such as a parity error on a read cycle. 

The P6 family processors extend the types of errors that can be detected and that 
generate a machine-check exception. It also provides a new machine-check architec-
ture for recording information about a machine-check error and provides extended 
recovery capability.

The machine-check architecture provides several banks of reporting registers for 
recording machine-check errors. Each bank of registers is associated with a specific 
hardware unit in the processor. The primary focus of the machine checks is on bus 
and interconnect operations; however, checks are also made of translation lookaside 
buffer (TLB) and cache operations.

The machine-check architecture can correct some errors automatically and allow for 
reliable restart of instruction execution. It also collects sufficient information for soft-
ware to use in correcting other machine errors not corrected by hardware.

See Chapter 14, “Machine-Check Architecture,” for more information on the 
machine-check exception and the machine-check architecture.

17.36.5 Performance-Monitoring Counters
The P6 family and Pentium processors provide two performance-monitoring counters 
for use in monitoring internal hardware operations. These counters are event 
counters that can be programmed to count a variety of different types of events, 
such as the number of instructions decoded, number of interrupts received, or 
number of cache loads. Appendix A, “Performance-Monitoring Events,” lists all the 
events that can be counted (Table A-15 for the P6 family processors and Table A-16 
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for the Pentium processors). The counters are set up, started, and stopped using two 
MSRs and the RDMSR and WRMSR instructions. For the P6 family processors, the 
current count for a particular counter can be read using the new RDPMC instruction.

The performance-monitoring counters are useful for debugging programs, optimizing 
code, diagnosing system failures, or refining hardware designs. See Chapter 18, 
“Debugging and Performance Monitoring,” for more information on these counters.

17.37 TWO WAYS TO RUN INTEL 286 PROCESSOR TASKS
When porting 16-bit programs to run on 32-bit IA-32 processors, there are two 
approaches to consider:

• Porting an entire 16-bit software system to a 32-bit processor, complete with the 
old operating system, loader, and system builder. Here, all tasks will have 16-bit 
TSSs. The 32-bit processor is being used as if it were a faster version of the 16-bit 
processor.

• Porting selected 16-bit applications to run in a 32-bit processor environment with 
a 32-bit operating system, loader, and system builder. Here, the TSSs used to 
represent 286 tasks should be changed to 32-bit TSSs. It is possible to mix 16 
and 32-bit TSSs, but the benefits are small and the problems are great. All tasks 
in a 32-bit software system should have 32-bit TSSs. It is not necessary to 
change the 16-bit object modules themselves; TSSs are usually constructed by 
the operating system, by the loader, or by the system builder. See Chapter 16, 
“Mixing 16-Bit and 32-Bit Code,” for more detailed information about mixing 
16-bit and 32-bit code.

Because the 32-bit processors use the contents of the reserved word of 16-bit 
segment descriptors, 16-bit programs that place values in this word may not run 
correctly on the 32-bit processors.
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