Linear Algebra with Application (LAWA 2020) Homework 1

Francesco Dolce

```
francesco.dolce@fjfi.cvut.cz
```

March 2020

Corollary 2.23 Let $A, B \in \mathcal{M}_{n, n}(\mathbb{R})$. If A and $A B$ are both invertible, then B is also invertible.
Proof. Let A^{-1} and $(A B)^{-1}$ be the inverses of A and $A B$ respectively. Note that $A B$ is a $n \times n$ matrix, as well as the inverses A^{-1} and $(A B)^{-1}$. Recall from point 3. of Theorem 2.22, that $(A B)^{-1}=B^{-1} A^{-1}$.

Let us consider the matrix $C=(A B)^{-1} A$. We claim that $C=B^{-1}$. Indeed

$$
C B=(A B)^{-1} A B=\left(B^{-1} A^{-1}\right) A B=B^{-1}\left(A^{-1} A\right) B=B^{-1} B=I
$$

and

$$
B C=B(A B)^{-1} A=B\left(B^{-1} A^{-1}\right) A=\left(B^{-1} B\right)\left(A^{-1} A\right)=I I=I
$$

which proves the claim and thus the result.

Proposition 2.26 Let $A, B \in \mathcal{M}_{n, n}(\mathbb{R})$ be two diagonal matrices. Then

1. $A+B$ is diagonal;
2. $A B$ is diagonal.

Proof. Let $A=\operatorname{diag}\left(a_{11}, a_{22}, \ldots, a_{n n}\right)$ and $B=\operatorname{diag}\left(b_{11}, b_{22}, \ldots, b_{n n}\right)$, that is

$$
A=\left(\begin{array}{cccc}
a_{11} & 0 & \cdots & 0 \\
0 & a_{22} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a_{n n}
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{cccc}
b_{11} & 0 & \cdots & 0 \\
0 & b_{22} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & b_{n n}
\end{array}\right)
$$

for certain numbers $a_{11}, a_{22}, \ldots, a_{n n}, b_{11}, b_{22}, \ldots, b_{n n} \in \mathbb{R}$.
Then one has $A+B=\operatorname{diag}\left(a_{11}+b_{11}, a_{22}+b_{22}, \ldots, a_{n n}+b_{n n}\right)$, that is

$$
A+B=\left(\begin{array}{cccc}
a_{11}+b_{11} & 0 & \cdots & 0 \\
0 & a_{22}+b_{22} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a_{n n}+b_{n n}
\end{array}\right)
$$

and $A \cdot B=\operatorname{diag}\left(a_{11} b_{11}, a_{22} b_{22}, \ldots, a_{n n} b_{n n}\right)$, that is

$$
A B=\left(\begin{array}{cccc}
a_{11} b_{11} & 0 & \cdots & 0 \\
0 & a_{22} b_{22} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a_{n n} b_{n n}
\end{array}\right)
$$

Another way of proving it is by noticing that, if we denote $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$, then we have $A+B=\left(c_{i j}\right)$ and $A B=\left(d_{i j}\right)$ with

$$
c_{i j}=a_{i j}+b_{i j} \quad \text { and } \quad d_{i j}=\sum_{k=1}^{n} a_{j k} b_{k j}
$$

for all i, j. Since A and B are diagonal, we have $a_{i j}=0$ for all $i \neq j$ and $b_{i j}=0$ for all $i \neq j$. Thus for all $i \neq j$ one has

$$
c_{i j}=a_{i j}+b_{i j}=0+0=0
$$

and

$$
\begin{aligned}
d_{i j} & =\sum_{k \neq i, j}^{n} a_{i k} b_{k j}+a_{i i} b_{i j}+a_{i j} b_{j j} \\
& =\sum_{k \neq i, j}^{n} 0 \cdot 0+a_{i i} \cdot 0+0 \cdot b_{j j} \\
& =0+0+0=0
\end{aligned}
$$

Proposition 2.28 Let $A, B \in \mathcal{M}_{n, n}(\mathbb{R})$ be two upper triangular matrices. Then

1. $A+B$ is upper triangular;
2. $A B$ is upper triangular.

Proof. Let $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$. Since the two matrices are upper triangular, then we have $a_{i j}=b_{i j}=0$ for all $j<i$, that is the two matrices are of the form

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
0 & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a_{n n}
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{cccc}
b_{11} & b_{12} & \cdots & b_{1 n} \\
0 & b_{22} & \cdots & b_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & b_{n n}
\end{array}\right)
$$

for certain numbers $a_{i j}, b_{i j}$ with $1 \leq j<i \leq n$.
Then we have $A+B=\left(c_{i j}\right)$ and $A B=\left(d_{i j}\right)$ with

$$
c_{i j}=a_{i j}+b_{i j} \quad \text { and } \quad d_{i j}=\sum_{k=1}^{n} a_{j k} b_{k j}
$$

for all i, j. Thus, for all $j<i$, we have

$$
c_{i j}=a_{i j}+b_{i j}=0+0=0
$$

and

$$
\begin{aligned}
d_{i j} & =\sum_{k=1}^{i-1} a_{i k} b_{k j}+\sum_{k=i}^{n} a_{i k} b_{k j} \\
& =\sum_{k=1}^{i-1} 0 \cdot b_{k j}+\sum_{k=i}^{n} a_{i k} \cdot 0 \\
& =0+0=0
\end{aligned}
$$

where the second equality holds because $a_{i k}=0$ for all $k \leq i-1<i$ and $b_{k j}=0$ for all $j<i \leq k$.

Example 3.4 The system

$$
\left\{\begin{array}{r}
x+y=1 \\
2 x+2 y=3
\end{array}\right.
$$

has no solution, so it is inconsistent. Indeed, from trom the first equation we find that

$$
y=1-x
$$

If we substitute y with $1-x$ in the second equation, we find

$$
2 x+2(1-x)=2 x+2-2 x=3
$$

that is

$$
2=3
$$

which gives us a contradiction.

Example 3.5 The system

$$
\left\{\begin{array}{l}
x+y+z=2 \\
x-y+z=0
\end{array}\right.
$$

has infinitely many solutions. Indeed, from trom the first equation we find that

$$
z=2-x-y
$$

If we substitute z with $2-x-y$ in the second equation, we find

$$
x-y+2-x-y=2-2 y=2(1-y)=0
$$

which implies that $y=1$. Thus we obtain the equation on two variables

$$
x+z=1
$$

which hold for every $z=1-x$. Hence, all solutions have the form

$$
X=\left(\begin{array}{lll}
s & 1 & 1-s
\end{array}\right)
$$

for a parameter $s \in \mathbb{R}$.

