Linear Algebra with Application (LAWA 2020) Homework 2

Francesco Dolce
francesco.dolce@fjfi.cvut.cz
April 2020

Exercise 1 [Equation (3.11)]
Let us consider the matrix

$$
\left(\begin{array}{ccccc}
1 & -4 & 1 & 0 & 5 \\
0 & 0 & 1 & -3 & -1 \\
0 & 0 & 0 & 1 & 2
\end{array}\right)
$$

The matrix is already in row-echelon form. In order to find its reduced rowechelon equivalent we need to clean the column containing the leading 1 s .

The first leading one, in position $(1,1)$ is the only non-zero element of the column. Above the second leading one, in position $(2,3)$, there is a non-zero element, that is 1 (in position $(1,3)$). To obtain a zero in its place, we subtract the second row from the first (elementary row operation of type iii), and we obtain

$$
\left(\begin{array}{ccccc}
1 & -4 & 0 & 3 & 6 \\
0 & 0 & 1 & -3 & -1 \\
0 & 0 & 0 & 1 & 2
\end{array}\right)
$$

Now we do the same operation on the third column, containing the third leading one, that is we subtract 3 times the third row to the first one, obtaining
the matrix

$$
\left(\begin{array}{ccccc}
1 & -4 & 0 & 0 & 0 \\
0 & 0 & 1 & -3 & -1 \\
0 & 0 & 0 & 1 & 2
\end{array}\right)
$$

and then we add 3 times the third row to the second one, finally finding

$$
\left(\begin{array}{ccccc}
1 & -4 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 5 \\
0 & 0 & 0 & 1 & 2
\end{array}\right)
$$

that is in reduced row-echelon form.

Exercise 2 [Example 3.18]
Let us find all solutions of the following system of linear equations

$$
\left\{\begin{aligned}
x+y-z & =3 \\
-2 x-y & =-4 \\
4 x+2 y+3 z & =-1
\end{aligned}\right.
$$

The augmented matrix of the system is

$$
\left(\begin{array}{cccc}
1 & 1 & -1 & 3 \\
-2 & -1 & 0 & -4 \\
4 & 2 & 3 & -1
\end{array}\right)
$$

The reduction of the augmented matrix (to its reduced row-echelon form) is

$$
\begin{aligned}
& \left(\begin{array}{cccc}
1 & 1 & -1 & 3 \\
-2 & -1 & 0 & -4 \\
4 & 2 & 3 & -1
\end{array}\right) \xrightarrow[R_{2} \rightarrow R_{2}+2 R_{1}]{i i i)}\left(\begin{array}{cccc}
1 & 1 & -1 & 3 \\
0 & 1 & -2 & 2 \\
4 & 2 & 3 & -1
\end{array}\right) \\
& \xrightarrow[R_{3} \rightarrow R_{3}-4 R_{1}]{i i i)}\left(\begin{array}{cccc}
1 & 1 & -1 & 3 \\
0 & 1 & -2 & 2 \\
0 & -2 & 7 & -13
\end{array}\right) \\
& \xrightarrow[R_{1} \rightarrow R_{1}-R_{2}]{i i i)}\left(\begin{array}{cccc}
1 & 0 & 1 & 1 \\
0 & 1 & -2 & 2 \\
0 & -2 & 7 & -13
\end{array}\right) \\
& \xrightarrow[R_{3} \rightarrow R_{3}+2 R_{2}]{i i i)}\left(\begin{array}{cccc}
1 & 0 & 1 & 1 \\
0 & 1 & -2 & 2 \\
0 & 0 & 3 & 9
\end{array}\right) \\
& \xrightarrow[R_{3} \rightarrow \frac{1}{2} R_{3}]{i i)}\left(\begin{array}{cccc}
1 & 0 & 1 & 1 \\
0 & 1 & -2 & 2 \\
0 & 0 & 1 & -3
\end{array}\right) \\
& \xrightarrow[R_{1} \rightarrow R_{1}-R_{3}]{i i i)}\left(\begin{array}{cccc}
1 & 0 & 0 & 4 \\
0 & 1 & -2 & 2 \\
0 & 0 & 1 & -3
\end{array}\right) \\
& \xrightarrow[R_{2} \rightarrow R_{2}+2 R_{3}]{i i i)}\left(\begin{array}{cccc}
1 & 0 & 0 & 4 \\
0 & 1 & 0 & -4 \\
0 & 0 & 1 & -3
\end{array}\right) \text {. }
\end{aligned}
$$

The last matrix is the augmented matrix of the system of linear equations

$$
\left\{\begin{array}{l}
x=4 \\
y=-4 \\
z=-3
\end{array}\right.
$$

which has solution

$$
X=\left(\begin{array}{lll}
x & y & z
\end{array}\right)=\left(\begin{array}{lll}
4 & -4 & -3
\end{array}\right)
$$

Since the two systems are equivalent, then X is also a solution (actually the unique solution) of the original system.

Exercise 3 [Example 3.15]
Let us consider the two augmented matrices

$$
A=\left(\begin{array}{cccc}
1 & 0 & 0 & 10 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & -3
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & 3 \\
0 & 0 & 1 & -1 & 0 & 2 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

The first one represent a system of 3 linear equations in 3 variables and the second a system of 5 linear equations in 5 variables.

The two matrices, which are in (reduced) row-echelon form, have both 3 leading ones, that is

$$
\operatorname{rank}(A)=3 \quad \text { and } \quad \operatorname{rank}(B)=3
$$

Since the rank of A is equal to the number of variables of the first associated system, it follows from Theorem 3.19 that the solution is unique. On the other hand, since the rank of B is strictly less than the number of variables of the second system, and using again Theorem 3.19, we have that the set of solutions is infinite, and that it has $2(=5-3)$ parameters.

