Linear Algebra with Application (LAWA 2020) Homework 3

Francesco Dolce
francesco.dolce@fjfi.cvut.cz
April 2020

Exercise 1 [Example 3.21]
Let us consider the systems of linear equations

$$
\left\{\begin{array}{rl}
x_{1}-2 x_{2}+4 x_{3}-x_{4}+5 x_{6} & =0 \\
-2 x_{1}+4 x_{2}-7 x_{3}+x_{4}+2 x_{5}-8 x_{6} & =0 \\
3 x_{1}-6 x_{2}+12 x_{3}-3 x_{4}+x_{5}+15 x_{6} & =0 \\
2 x_{1}-4 x_{2}+9 x_{3}-3 x_{4}+3 x_{5}+12 x_{6} & =0
\end{array} .\right.
$$

The reduction of the augmented matrix to an equivalent matrix in reduced row-echelon form is the following:

$$
\left(\begin{array}{ccccccc}
1 & -2 & 4 & -1 & 0 & 5 & 0 \\
-2 & 4 & -7 & 1 & 2 & -8 & 0 \\
3 & -6 & 12 & -3 & 1 & 15 & 0 \\
2 & -4 & 9 & -3 & 3 & 12 & 0
\end{array}\right) \xrightarrow[\begin{array}{l}
R_{2} \rightarrow R_{2}+2 R_{1} \\
R_{3} \rightarrow R_{3}-3 R_{1} \\
R_{4} \rightarrow R_{4}-2 R_{1}
\end{array}]{\stackrel{i i i)}{ }}\left(\begin{array}{ccccccc}
1 & -2 & 4 & -1 & 0 & 5 & 0 \\
0 & 0 & 1 & -1 & 2 & 2 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & -1 & 3 & 2 & 0
\end{array}\right)
$$

$$
\xrightarrow[\substack{R_{1} \rightarrow R_{1}-4 R_{2} \\
R_{4} \rightarrow R_{4}-R_{2}}]{\stackrel{i i i)}{ } \xrightarrow[\substack{i i i)}]{\substack{R_{1} \rightarrow R_{1}+8 R_{3} \\
R_{2} \rightarrow R_{2}-2 R_{3} \\
R_{4} \rightarrow R_{4}-R_{3}}}\left(\begin{array}{ccccccc}
1 & -2 & 0 & 3 & -8 & -3 & 0 \\
0 & 0 & 1 & -1 & 2 & 2 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0
\end{array}\right)}\left(\begin{array}{ccccccc}
1 & -2 & 0 & 3 & 0 & -3 & 0 \\
0 & 0 & 1 & -1 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

Exercise 2 [Example 3.25]

Let us consider the system of linear equations

$$
\left\{\begin{array}{r}
x_{1}-2 x_{2}+2 x_{3}-x_{4}=1 \\
2 x_{1}-4 x_{2}+3 x_{3}+x_{4}=2 \\
3 x_{1}-6 x_{2}+5 x_{3}=3
\end{array} .\right.
$$

Let us first find a particular solution of the system. A possible one is

$$
X_{0}=\left(\begin{array}{c}
-1 \\
-1 \\
0 \\
0
\end{array}\right)
$$

We can rewrite this system as the matrix equation

$$
A X=B
$$

where

$$
A=\left(\begin{array}{cccc}
1 & -2 & 2 & -1 \\
2 & -4 & 3 & 1 \\
3 & -6 & 5 & 0
\end{array}\right), \quad X=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{l}
1 \\
3 \\
4
\end{array}\right)
$$

The associated homogeneous system is represented by the matrix equation

$$
\left(\begin{array}{cccc}
1 & -2 & 2 & -1 \\
2 & -4 & 3 & 1 \\
3 & -6 & 5 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

By reduction of the augmented matrix of the homogeneous system in a reduced row-echelon form

$$
\left(\begin{array}{ccccc}
1 & -2 & 2 & -1 & 0 \\
2 & -4 & 3 & 1 & 0 \\
3 & -6 & 5 & 0 & 0
\end{array}\right) \xrightarrow[\substack{R_{2} \rightarrow R_{2}-2 R_{1} \\
R_{3} \rightarrow R_{3}-3 R_{1}}]{i i i)}\left(\begin{array}{ccccc}
1 & -2 & 2 & -1 & 0 \\
0 & 0 & -1 & 3 & 0 \\
0 & 0 & -1 & 3 & 0
\end{array}\right)
$$

$$
\begin{gathered}
\underset{\substack{R_{2} \rightarrow-R_{2}}}{\stackrel{i i)}{i i i)}}\left(\begin{array}{ccccc}
1 & -2 & 2 & -1 & 0 \\
0 & 0 & 1 & -3 & 0 \\
0 & 0 & -1 & 3 & 0
\end{array}\right) \\
\substack{R_{1} \rightarrow R_{1}-2 R_{2} \\
R_{3} \rightarrow R_{3}-R_{2}}
\end{gathered}\left(\begin{array}{ccccc}
1 & -2 & 0 & 5 & 0 \\
0 & 0 & 1 & -3 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

we find that the general solution of the homogeneous system is

$$
X=\left(\begin{array}{c}
2 s-5 t \\
s \\
3 t \\
t
\end{array}\right)=s\left(\begin{array}{l}
2 \\
1 \\
0 \\
0
\end{array}\right)+t\left(\begin{array}{c}
-5 \\
0 \\
3 \\
1
\end{array}\right)
$$

where s and t are parameters representing arbitrary numbers.
If we thus define the basic solytions

$$
X_{1}=\left(\begin{array}{l}
2 \\
1 \\
0 \\
0
\end{array}\right) \quad \text { and } \quad X_{2}=\left(\begin{array}{c}
-5 \\
0 \\
3 \\
1
\end{array}\right)
$$

we can write the general solution of the original system as

$$
X=X_{0}+s X_{1}+t X_{2}=\left(\begin{array}{c}
-1 \\
-1 \\
0 \\
0
\end{array}\right)+s\left(\begin{array}{l}
2 \\
1 \\
0 \\
0
\end{array}\right)+t\left(\begin{array}{c}
-5 \\
0 \\
3 \\
1
\end{array}\right)
$$

