Linear Algebra with Application (LAWA 2020) Homework 4

Francesco Dolce
francesco.dolce@fjfi.cvut.cz
April 2020

Exercise 1 [Example 4.2]
Let us consider the two matrices

$$
A=\left(\begin{array}{cc}
2 & -5 \\
1 & 2
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{ll}
x_{1} & x_{2} \\
x_{3} & x_{4}
\end{array}\right)
$$

with $x_{1}, x_{2}, x_{3}, x_{4} \in \mathbb{R}$ and let us suppose that $A B=I$. Thus, we have

$$
\left(\begin{array}{cc}
2 & -5 \\
1 & 2
\end{array}\right)\left(\begin{array}{ll}
x_{1} & x_{2} \\
x_{3} & x_{4}
\end{array}\right)=\left(\begin{array}{cc}
2 x_{1}-5 x_{3} & 2 x_{2}-5 x_{4} \\
x_{1}+2 x_{3} & x_{2}+2 x_{4}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
$$

This give us the following system of four linear equations in four variables

$$
\left\{\begin{array}{rl}
2 x_{1}-5 x_{3} & =1 \\
2 x_{2}-5 x_{4} & =0 \\
x_{1}+2 x_{3} & =0 \\
x_{2}+2 x_{4} & =1
\end{array} .\right.
$$

To find the solution of this system we use the Gaussian algorithm on the augmented matrix of the system and get the equivalent reduced row-echelon matrix,
as follows

$$
\begin{aligned}
& \left(\begin{array}{ccccc}
2 & 0 & -5 & 0 & 1 \\
0 & 2 & 0 & -5 & 0 \\
1 & 0 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 1
\end{array}\right) \xrightarrow[\substack{R_{1} \leftrightarrow R_{3} \\
R_{2} \leftrightarrow R_{4}}]{i)}\left(\begin{array}{ccccc}
1 & 0 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 1 \\
2 & 0 & -5 & 0 & 1 \\
0 & 2 & 0 & -5 & 0
\end{array}\right) \\
& \xrightarrow[\substack{R_{3} \rightarrow R_{3}-2 R_{1} \\
R_{4} \rightarrow R_{4}-2 R_{2}}]{i i i)}\left(\begin{array}{ccccc}
1 & 0 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 1 \\
0 & 0 & -9 & 0 & 1 \\
0 & 0 & 0 & -9 & -2
\end{array}\right) \\
& \xrightarrow[\substack{R_{3} \rightarrow-\frac{1}{9} R_{3} \\
R_{4} \rightarrow-\frac{1}{9} R_{4}}]{i i)}\left(\begin{array}{ccccc}
1 & 0 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 1 \\
0 & 0 & 1 & 0 & -\frac{1}{9} \\
0 & 0 & 0 & 1 & \frac{2}{9}
\end{array}\right) \\
& \xrightarrow[\substack{R_{1} \rightarrow R_{1}-2 R_{3} \\
R_{2} \rightarrow R_{2}-2 R_{4}}]{i i i)}\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & \frac{2}{9} \\
0 & 1 & 0 & 0 & \frac{5}{9} \\
0 & 0 & 1 & 0 & -\frac{1}{9} \\
0 & 0 & 0 & 1 & \frac{2}{9}
\end{array}\right)
\end{aligned}
$$

Thus we get

$$
\left(\begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4}
\end{array}\right)=\left(\begin{array}{cccc}
\frac{2}{9} & \frac{5}{9} & -\frac{1}{9} & \frac{2}{9}
\end{array}\right) .
$$

Exercise 2 [Example 4.6]
Let us consider the matrix

$$
A=\left(\begin{array}{ccc}
1 & 2 & -1 \\
2 & 3 & -5 \\
4 & 1 & 1
\end{array}\right)
$$

To find the inverse of A let us use the matrix inversion algorithm, that is let us find the reduction into a reduced row-echelon form of the matrix $\left(\begin{array}{ll}A & I\end{array}\right)$

$$
\begin{aligned}
& \left(\begin{array}{cccccc}
1 & 2 & -1 & 1 & 0 & 0 \\
2 & 3 & -5 & 0 & 1 & 0 \\
4 & 1 & 1 & 0 & 0 & 1
\end{array}\right) \xrightarrow[\substack{R_{2} \rightarrow R_{2}-2 R_{1} \\
R_{3} \rightarrow R_{3}-4 R_{1}}]{i i i)}\left(\begin{array}{cccccc}
1 & 2 & -1 & 1 & 0 & 0 \\
0 & -1 & -3 & -2 & 1 & 0 \\
0 & -7 & 5 & -4 & 0 & 1
\end{array}\right) \\
& \xrightarrow[R_{2} \rightarrow-R_{2}]{i i)}\left(\begin{array}{cccccc}
1 & 2 & -1 & 1 & 0 & 0 \\
0 & 1 & 3 & 2 & -1 & 0 \\
0 & -7 & 5 & -4 & 0 & 1
\end{array}\right) \\
& \xrightarrow[\substack{R_{1} \rightarrow R_{1}-2 R_{2}}]{\text { iii) }}\left(\begin{array}{cccccc}
1 & 0 & -7 & -3 & 2 & 0 \\
0 & 1 & 3 & 2 & -1 & 0 \\
0 & 0 & 26 & 10 & -7 & 1
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \xrightarrow[\substack{ \\
R_{3} \rightarrow \frac{1}{26} R_{3}}]{i i)}\left(\begin{array}{cccccc}
1 & 0 & -7 & -3 & 2 & 0 \\
0 & 1 & 3 & 2 & -1 & 0 \\
0 & 0 & 1 & \frac{5}{13} & -\frac{7}{26} & \frac{1}{26}
\end{array}\right) \\
& \xrightarrow[\substack{\text { iii) } \\
R_{1} \rightarrow R_{1}+7 R_{2} \\
R_{2} \rightarrow R_{2}-3 R_{3}}]{ }\left(\begin{array}{cccccc}
1 & 0 & 0 & -\frac{4}{13} & \frac{3}{26} & \frac{7}{26} \\
0 & 1 & 0 & \frac{11}{13} & -\frac{5}{26} & -\frac{3}{26} \\
0 & 0 & 1 & \frac{5}{13} & -\frac{7}{26} & \frac{1}{26}
\end{array}\right)
\end{aligned}
$$

Thus the inverse of A is the matrix

$$
A^{-1}=\left(\begin{array}{ccc}
-\frac{4}{13} & \frac{3}{26} & \frac{7}{26} \\
\frac{11}{13} & -\frac{5}{26} & -\frac{3}{26} \\
\frac{5}{13} & -\frac{\gamma}{26} & \frac{1}{26}
\end{array}\right)=\frac{1}{26}\left(\begin{array}{ccc}
-8 & 3 & 7 \\
22 & -5 & -3 \\
10 & -7 & 1
\end{array}\right) .
$$

Exercise 3 [Example 4.14]
Let A, B be two square matrices and let us suppose that $A^{3}=B$ and that B is invertible. Then, using Theorem 4.12, we can prove that A is invertible too.

Indeed, since B is invertible, then B^{-1} exists. Let us multiply B^{-1} to both sides of $A^{3}=B$. We get

$$
B^{-1} A^{3}=B^{-1} B=I \quad \text { and } \quad A^{3} B^{-1}=B B^{-1}=I .
$$

Thus $\left(B^{-1} A^{2}\right) A=I$. By Theorem 4.12 we know that $A\left(B^{-1} A^{2}\right)=I$ too. This proves that A is invertible, and its inverse is $A^{-1}=B^{-1} A^{2}$.

