Linear Algebra with Application (LAWA 2020) Homework 5

Francesco Dolce
francesco.dolce@fjfi.cvut.cz
April 2020

Exercise 1 [Example 4.18]

Let us consider the three elementary matrices

$$
E_{1}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right), \quad E_{2}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{1}{3} & 0 \\
0 & 0 & 1
\end{array}\right) \quad \text { and } \quad E_{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right) .
$$

As seen in Example 4.16, the elementary row operation that produces E_{1} from I is

$$
I \xrightarrow[R_{1} \leftrightarrow R_{3}]{i)} E_{1} .
$$

To obtain the matrix E_{1}^{-1} we consider the inverse of this operation, that is the (same) operation

$$
I \xrightarrow[R_{3} \leftrightarrow R_{1}]{i)} E_{1}^{-1}
$$

and thus the inverse of E_{1} is the (same) matrix

$$
E_{1}^{-1}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

The elementary row operation that produces E_{2} from I is

$$
I \underset{R_{2} \rightarrow \frac{1}{3} R_{2}}{i i)} E_{2}
$$

To obtain the matrix E_{2}^{-1} we consider the inverse of this operation, that is the operation

$$
I \xrightarrow[R_{2} \rightarrow 3 R_{2}]{i i)} E_{2}^{-1}
$$

and thus the inverse of E_{2} is the matrix

$$
E_{2}^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

The elementary row operation that produces E_{3} from I is

$$
I \xrightarrow[R_{3} \rightarrow R_{3}-2 R_{1}]{i i i)} E_{3}
$$

To obtain the matrix E_{3}^{-1} we consider the inverse of this operation, that is the operation

$$
I \xrightarrow[R_{3} \rightarrow R_{3}+2 R_{1}]{i i i)} E_{3}^{-1}
$$

and thus the inverse of E_{3} is the matrix

$$
E_{3}^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 & 0 & 1
\end{array}\right)
$$

To double check one can easy verify that

$$
\begin{aligned}
& E_{1} E_{1}^{-1}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)=I=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)=E_{1}^{-1} E_{1}, \\
& E_{2} E_{2}^{-1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & \frac{1}{3} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 1
\end{array}\right)=I=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{1}{3} & 0 \\
0 & 0 & 1
\end{array}\right)=E_{2}^{-1} E_{2}
\end{aligned}
$$

and
$E_{3} E_{3}^{-1}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1\end{array}\right)\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1\end{array}\right)=I=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1\end{array}\right)\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1\end{array}\right)=E_{3}^{-1} E_{3}$

Exercise 2 [Example 4.23]

Let us consider the matrix

$$
A=\left(\begin{array}{lll}
3 & -2 & 5 \\
1 & -1 & 0
\end{array}\right)
$$

A possible reduction of A to an equivalent matrix B in reduced row-echelon form is the following:

$$
\begin{aligned}
A=\left(\begin{array}{ccc}
3 & -2 & 5 \\
1 & -1 & 0
\end{array}\right) \xrightarrow{\substack{R_{2} \rightarrow R 2-3 R_{1}}} \stackrel{i)}{\substack{R_{1} \leftrightarrow R 2}}
\end{aligned}\left(\begin{array}{ccc}
1 & -1 & 0 \\
3 & -2 & 5
\end{array}\right)
$$

The elementary matrices corresponding to the previous elementary operations are, in order:

$$
E_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad E_{2}=\left(\begin{array}{cc}
1 & 0 \\
-3 & 1
\end{array}\right), \quad \text { and } \quad E_{3}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) .
$$

We thus have $B=U A$, where

$$
U=E_{3} E_{2} E_{1}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-3 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & -2 \\
1 & -3
\end{array}\right)
$$

Exercise 3 [Example 4.27]
Let us consider the matrix

$$
A=\left(\begin{array}{lll}
3 & -3 & 6 \\
1 & -1 & 1
\end{array}\right) \in \mathcal{M}_{2,3}(\mathbb{R})
$$

Let us use Theorem 4.25 to show that there exist two matrices U, V such that

$$
U A V=\left(\begin{array}{ll}
I_{r} & O \\
O & O
\end{array}\right)
$$

with $r=\operatorname{rank}(A)$. Let us first consider the reduction $\left(\begin{array}{ll}A & I_{2}\end{array}\right) \rightarrow\left(\begin{array}{ll}R & U\end{array}\right)$ with R in reduced row-echelon form.

$$
\begin{aligned}
& \left(\begin{array}{ccccc}
3 & -3 & 6 & 1 & 0 \\
-1 & -1 & 1 & 0 & 1
\end{array}\right) \xrightarrow[R_{1} \leftrightarrow R_{2}]{i)}\left(\begin{array}{ccccc}
1 & -1 & 1 & 0 & 1 \\
3 & -3 & 6 & 1 & 0
\end{array}\right) \\
& \xrightarrow[R_{2} \rightarrow R_{2}-3 R_{1}]{i i i)}\left(\begin{array}{ccccc}
1 & -1 & 1 & 0 & 1 \\
0 & 0 & 3 & 1 & -3
\end{array}\right) \\
& \xrightarrow[R_{2} \rightarrow \frac{1}{3} R_{2}]{i i)}\left(\begin{array}{ccccc}
1 & -1 & 1 & 0 & 1 \\
0 & 0 & 1 & \frac{1}{3} & -1
\end{array}\right)
\end{aligned}
$$

$$
\xrightarrow[R_{1} \rightarrow R_{1}-R_{2}]{i i i)}\left(\begin{array}{ccccc}
1 & -1 & 0 & -\frac{1}{3} & 2 \\
0 & 0 & 1 & \frac{1}{3} & -1
\end{array}\right) .
$$

Thus we have

$$
R=\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad \text { and } \quad U=\left(\begin{array}{cc}
-\frac{1}{3} & 2 \\
\frac{1}{3} & -1
\end{array}\right)
$$

Moreover, since R has two leadings ones, we have $\operatorname{rank}(A)=\operatorname{rank}(R)=2$.
Using the second step of Theorem 4.25, we obtain:

$$
\left.\left.\begin{array}{c}
\left(\begin{array}{ccccc}
1 & 0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 1 & 0 \\
0 & 1
\end{array}\right) \\
0
\end{array}\right) \begin{array}{c}
\stackrel{1}{2}
\end{array}\right) \xrightarrow[R_{2} \leftrightarrow R_{3}]{i)}\left(\begin{array}{ccccc}
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 \\
-1 & 0 & 0 & 1 & 0
\end{array}\right) .
$$

where

$$
V=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

Finally, one can check that we actually have

$$
\left(\begin{array}{cc}
-\frac{1}{3} & 2 \\
\frac{1}{3} & -1
\end{array}\right)\left(\begin{array}{lll}
3 & -3 & 6 \\
1 & -1 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

that is

$$
U A V=\left(\begin{array}{ll}
I_{2} & O_{2,1}
\end{array}\right)
$$

