Linear Algebra with Application (LAWA 2020) Homework 7

Francesco Dolce

francesco.dolce@fjfi.cvut.cz
May 2020

Exercise 1 [Theorem 5.22, point 2)]
Let $A \in \mathcal{M}_{n, n}(\mathbb{R})$ be an invertible matrix. Then

$$
\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}
$$

Proof. Let A^{-1} be the inverse of A. Because of the Product Theorem, we know that

$$
\operatorname{det}(A) \operatorname{det}\left(A^{-1}\right)=\operatorname{det}\left(A A^{-1}\right)=\operatorname{det}(I)=1,
$$

Since $\operatorname{det}(A) \neq 0$, from the point 1) of Theorem 5.22 , then we can divide both members by $\operatorname{det}(A)$ and obtain

$$
\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}
$$

Exercise 2 [Example 5.23]

Let $A, B \in \mathcal{M}_{n, n}(\mathbb{R})$ and let us suppose that

$$
\operatorname{det}(A)=2 \quad \text { and } \quad \operatorname{det}(B)=-3
$$

Then we have

$$
\begin{aligned}
\operatorname{det}\left(2 A^{3} B^{-1} A^{T} B^{2}\right) & =2^{n} \operatorname{det}\left(A^{3} B^{-1} A^{T} B^{2}\right) \\
& =2^{n} \operatorname{det}\left(A^{3}\right) \operatorname{det}\left(B^{-1}\right) \operatorname{det}\left(A^{T}\right) \operatorname{det}\left(B^{2}\right) \\
& =2^{n} \operatorname{det}(A)^{3} \frac{1}{\operatorname{det}(B)} \operatorname{det}(A) \operatorname{det}(B)^{2} \\
& =2^{n} \operatorname{det}(A)^{4} \operatorname{det}(B) \\
& =-3 \cdot 2^{n+4} .
\end{aligned}
$$

Exercise 3 [Example 5.32]

Let us consider the system of linear equations

$$
\left\{\begin{array}{rl}
3 x_{1}-x_{3} & =1 \\
4 x_{1}+7 x_{2}+3 x_{3} & =0 \\
-2 x_{1}+8 x_{2}+5 x_{3} & =1
\end{array} .\right.
$$

We saw in Example 5.29 that the matrix

$$
A=\left(\begin{array}{ccc}
3 & 0 & -1 \\
4 & 7 & 3 \\
-2 & 8 & 5
\end{array}\right)
$$

has determinant $\operatorname{det}(A)=-13 \neq 0$ and thus it is invertible. Let us now consider the three matrices
$A_{1}(B)=\left(\begin{array}{ccc}1 & 0 & -1 \\ 0 & 7 & 3 \\ 1 & 8 & 5\end{array}\right), \quad A_{2}(B)=\left(\begin{array}{ccc}3 & 1 & -1 \\ 4 & 0 & 3 \\ -2 & 1 & 5\end{array}\right) \quad$ and $\quad A_{3}(B)=\left(\begin{array}{ccc}3 & 0 & 1 \\ 4 & 7 & 0 \\ -2 & 8 & 1\end{array}\right)$.
Their determinants are respectively

$$
\begin{gathered}
\operatorname{det}\left(A_{1}(B)\right)=\operatorname{det}\left(\begin{array}{ll}
7 & 3 \\
8 & 5
\end{array}\right)+\operatorname{det}\left(\begin{array}{cc}
0 & -1 \\
7 & 3
\end{array}\right)=11+7=18 \\
\operatorname{det}\left(A_{2}(B)\right)=-\operatorname{det}\left(\begin{array}{cc}
4 & 3 \\
-2 & 5
\end{array}\right)-\operatorname{det}\left(\begin{array}{cc}
3 & -1 \\
4 & 3
\end{array}\right)=-26-13=-39 \quad \text { and } \\
\operatorname{det}\left(A_{3}(B)\right)=\operatorname{det}\left(\begin{array}{cc}
4 & 7 \\
-2 & 8
\end{array}\right)+\operatorname{det}\left(\begin{array}{cc}
3 & 0 \\
4 & 7
\end{array}\right)=46+21=67
\end{gathered}
$$

Thus, using Cramer's Rule, we have

$$
x_{1}=-\frac{18}{13}, \quad x_{2}=\frac{39}{13}=3 \quad \text { and } \quad x_{3}=-\frac{67}{13}
$$

