Linear Algebra with Application (LAWA 2020) Homework 8

Francesco Dolce
francesco.dolce@fjfi.cvut.cz
May 2020

Exercise 1 [Theorem 5.33] Let A be a diagonalizable matrix. Let us suppose that P is a diagonalizing matrix and $D=P^{-1} A P$. Then, for any $k \in \mathbb{N}$ one has

$$
A^{k}=P D^{k} P^{-1}
$$

Proof. Let us prove the result by induction on k. If $k=1$ then it is clear since

$$
D=P^{-1} A P \quad \Longrightarrow \quad P D P^{-1}=A
$$

(Note that we could also have proved it for $k=0$).
Let us now suppose that the result is true for $k-1$, that is that we have $A^{k-1}=P D^{k-1} P^{-1}$. Then

$$
\begin{aligned}
A^{k} & =A^{k-1} A \\
& =\left(P D^{k-1} P^{-1}\right) A \\
& =\left(P D^{k-1} P^{-1}\right)\left(P D P^{-1}\right) \\
& =P D^{k-1}\left(P^{-1} P\right) D P^{-1} \\
& =P D^{k-1} D P^{-1} \\
& =P D^{k} P^{-1} .
\end{aligned}
$$

Exercise 2 [Example 5.45]
Let us consider the matrix

$$
A=\left(\begin{array}{lll}
3 & -4 & 2 \\
1 & -2 & 2 \\
1 & -5 & 5
\end{array}\right)
$$

To compute A^{20} we first need to find the diagonal matrix D and the diagonalizing matrix P such that $A=P D P^{-1}$. To find the eigenvalues of A let us study the characteristic polynomial

$$
\begin{aligned}
c_{A}(x) & =\operatorname{det}\left(x I_{3}-A\right) \\
& =\operatorname{det}\left(\left(\begin{array}{ccc}
x & 0 & 0 \\
0 & x & 0 \\
0 & 0 & x
\end{array}\right)-\left(\begin{array}{ccc}
3 & -4 & 2 \\
1 & -2 & 2 \\
1 & -5 & 5
\end{array}\right)\right) \\
& =\operatorname{det}\left(\begin{array}{ccc}
x-3 & 4 & -2 \\
-1 & x+2 & -2 \\
-1 & 5 & x-5
\end{array}\right) \\
& =(x-1) \operatorname{det}\left(\begin{array}{cc}
x+2 & -2 \\
5 & x-5
\end{array}\right)+\operatorname{det}\left(\begin{array}{cc}
4 & -2 \\
5 & x-5
\end{array}\right)-\operatorname{det}\left(\begin{array}{cc}
4 & -2 \\
x+2 & -2
\end{array}\right) \\
& =(x-3)((x+2)(x-5)+10)+(4 x-20+10)-(-8+2 x+4) \\
& =(x-3)\left(x^{2}-3 x\right)+2(x-3) \\
& =\left(x^{2}-3 x+2\right)(x-3) \\
& =(x-1)(x-2)(x-3)
\end{aligned}
$$

Thus the eigenvalues of A are the roots of $c_{A}(x)$:

$$
\lambda_{1}=1, \quad \lambda_{2}=2 \quad \text { and } \quad \lambda_{3}=3
$$

Since there are three distinct eigenvalues we are sure that the matix is diagonalizable.

To find the respective eigenvectors, let us study the homogenous systems of linear equations

$$
\left(\lambda_{1} I_{3}-A\right) X=O, \quad\left(\lambda_{2} I_{3}-A\right) X=O \quad \text { and } \quad\left(\lambda_{3} I_{3}-A\right) X=O
$$

- For $\lambda_{1}=1$, the system

$$
(1 \cdot I-A) X=\left(\begin{array}{ccc}
-2 & 4 & -2 \\
-1 & 3 & -2 \\
-1 & 5 & -4
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

has general solution

$$
X=s\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

with s an arbitrary number. Thus, an eigenvector to A relative to λ_{1} is the column-vector

$$
X_{1}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

(one can actually check that $A X_{1}=1 \cdot X_{1}$).

- For $\lambda_{2}=2$, the system

$$
(2 \cdot I-A) X=\left(\begin{array}{ccc}
-1 & 4 & -2 \\
-1 & 4 & -2 \\
-1 & 5 & -3
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

has general solution

$$
X=s\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right)
$$

with s an arbitrary number. Thus, an eigenvector to A relative to λ_{2} is the column-vector

$$
X_{2}=\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right)
$$

(one can actually check that $A X_{2}=2 \cdot X_{2}$).

- For $\lambda_{3}=3$, the system

$$
(3 \cdot I-A) X=\left(\begin{array}{ccc}
0 & 4 & -2 \\
-1 & 5 & -2 \\
-1 & 5 & -2
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

has general solution

$$
X=s\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right)
$$

with s an arbitrary number. Thus, an eigenvector to A relative to λ_{3} is the column-vector

$$
X_{3}=\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right)
$$

(one can cactually check that $A X_{3}=3 \cdot X_{3}$).
Now that we have the three eigenvectors, we can construct a diagonalizing matrix

$$
P=\left(\begin{array}{lll}
X_{1} & X_{2} & X_{3}
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 1 \\
1 & 1 & 1 \\
1 & 1 & 2
\end{array}\right)
$$

Such a matrix is invertible, and we can find its inverse using the Inverse Matrix

Algorithm reducing $\left(\begin{array}{ll}P & I\end{array}\right) \rightarrow\left(\begin{array}{ll}I & P^{-1}\end{array}\right)$:

$$
\begin{aligned}
& \left(\begin{array}{llllll}
1 & 2 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 2 & 0 & 0 & 1
\end{array}\right) \xrightarrow[\substack{ \\
R_{2} \rightarrow R_{2}-R_{1} \\
R_{3} \rightarrow R_{3}-R_{1}}]{i i i)}\left(\begin{array}{cccccc}
1 & 2 & 1 & 1 & 0 & 0 \\
0 & -1 & 0 & -1 & 1 & 0 \\
0 & -1 & 1 & -1 & 0 & 1
\end{array}\right) \\
& \xrightarrow[R_{2} \rightarrow-R_{2}]{i i)}\left(\begin{array}{cccccc}
1 & 2 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & -1 & 0 \\
0 & -1 & 1 & -1 & 0 & 1
\end{array}\right) \\
& \xrightarrow[\substack{R_{1} \rightarrow R_{1}-2 R_{2}}]{i i i)}\left(\begin{array}{cccccc}
1 & 0 & 1 & -1 & 2 & 0 \\
0 & 1 & 0 & 1 & -1 & 0 \\
0 & 0 & 1 & 0 & -1 & 1
\end{array}\right) \\
& R 3 \rightarrow R_{3}+R_{2} \\
& \xrightarrow[R_{1} \rightarrow R_{1}-R_{3}]{i i i)}\left(\begin{array}{cccccc}
1 & 0 & 0 & -1 & 3 & -1 \\
0 & 1 & 0 & 1 & -1 & 0 \\
0 & 0 & 1 & 0 & -1 & 1
\end{array}\right) \text {. }
\end{aligned}
$$

So we have

$$
P^{-1}=\left(\begin{array}{ccc}
-1 & 3 & -1 \\
1 & -1 & 0 \\
0 & -1 & 1
\end{array}\right)
$$

We can check that

$$
P^{-1} A P=\left(\begin{array}{ccc}
-1 & 3 & -1 \\
1 & -1 & 0 \\
0 & -1 & 1
\end{array}\right) A=\left(\begin{array}{ccc}
3 & -4 & 2 \\
1 & -2 & 2 \\
1 & -5 & 5
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 1 \\
1 & 1 & 1 \\
1 & 1 & 2
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right)
$$

Let us call

$$
D=\operatorname{diag}(1,2,3)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right)
$$

Then we have $A=P D P^{-1}$ and

$$
\begin{aligned}
A^{20} & =P D^{20} P^{-1} \\
& =\left(\begin{array}{lll}
1 & 2 & 1 \\
1 & 1 & 1 \\
1 & 1 & 2
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right)^{20}\left(\begin{array}{ccc}
-1 & 3 & -1 \\
1 & -1 & 0 \\
0 & -1 & 1
\end{array}\right) \\
& =\left(\begin{array}{lll}
1 & 2 & 1 \\
1 & 1 & 1 \\
1 & 1 & 2
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2^{20} & 0 \\
0 & 0 & 3^{20}
\end{array}\right)\left(\begin{array}{ccc}
-1 & 3 & -1 \\
1 & -1 & 0 \\
0 & -1 & 1
\end{array}\right) \\
& =\left(\begin{array}{lll}
2^{20}-1 & 3-2^{21}-3^{20} & 3^{20}-1 \\
2^{20}-1 & 3-2^{20}-3^{20} & 3^{20}-1 \\
2^{20}-1 & 3-2^{20}-2 \cdot 3^{20} & 3^{20}-1
\end{array}\right)
\end{aligned}
$$

Exercise 3 [Example 5.48]

Let A, B be two square matrices such that $A \sim B$. If A is diagonalizable, then B is also diagonalizable.

Indeed, since A is diagonalizable, then there exists an invertible matrix P such that $A=P^{-1} D P$ with D a diagonal matrix. On the other hand, since $A \sim B$, then there exists an invertible matrix Q such that $B=Q^{-1} A Q$. Thus

$$
B=Q^{-1}\left(P^{-1} D P\right) Q=\left(Q^{-1} P^{-1}\right) D(P Q)=(P Q)^{-1} D(P Q)
$$

That is, B is diagonalizable with diagonalizing matrix the invertible matrix $P Q$.

