MIE-MPI - EXAM	JANUARY 20, 2020				
Name	Q1-6	Q7	Q8	Q9	$\boldsymbol{\Sigma}$

Multiple choice question answer table					
Q1	Q2	Q3	Q4	Q5	Q6

Instructions: The questions $1-6$ have possible answers labelled A-E. There is always exactly one correct answer. Please, use the table above to mark your answer. If you make a mistake, correct your answer in the table (in a readable manner).

Other questions serve as a preparation for the oral part of the exam (nevertheless, your written preparation should be understandable). Don't forget to sign this sheet and all the sheets that you will hand in.

You can use only a paper, pen and your brain! Good luck!

Question 1 (5 points). Let us consider the permutation $f=\left(\begin{array}{ll}3 & 87945216) \in S_{9} \text {. The }\end{array}\right.$ permutation f^{44} is:
(A) (2 35841796)
(B) (871456329)
(C) (123945786)
(D) (712694835)
(E) No other option is true.

Question 2 (5 points). Select the correct statement
(A) Every group of order 15 is cyclic.
(B) $P(x) \in K[x]$ is irreducible over a field K if and only if it cannot be decomposed into a product of two elements of $K[x]$.
(C) Every group of order strictly less than 6 is cyclic.
(D) The group \mathbb{Z}_{36}^{\times}contains a subgroup of order 12 .
(E) No other option is true.

Question 3 (5 points). In the field $G F\left(3^{2}\right)$ with multiplication modulo $x^{2}+1$, find the results of $(20-11) \cdot 12$.
(A) 02
(B) 22
(C) 01
(D) 10
(E) No other option is true.

Question 4 (5 points). Let $f(x, y)=x^{3}+x^{2} y+y^{2} x-y$. What is the value of $\frac{\partial^{2}}{\partial x \partial y} f$ at the point $(1,-1)$?
(A) 2
(B) 0
(C) -1
(D) $3 x^{2}+2 x y+y^{2}$
(E) No other option is true.

Question 5 (5 points). Let us consider as domain D the triangle with vertices the points (0,0), $(0,2)$ and $(1,0)$. Select the value of the double integral

$$
\iint_{D} x-y \mathrm{~d} x \mathrm{~d} y
$$

(A) 1
(B) $\frac{1}{8}$
(C) $-\frac{7}{3}$
(D) 0
(E) No other option is true.

Question 6 (5 points). Let us consider the set $M=\{\alpha+\beta \sqrt{5} \mid \alpha, \beta \in \mathbb{Z}\}$ with classical addition and multiplication.
(A) $(M,+)$ is a ring.
(B) $(M \backslash\{0\}, \cdot)$ is a group.
(C) $(M,+, \cdot)$ is ring but not a field.
(D) $(M,+, \cdot)$ is a field.
(E) No other option is true.

*** ORAL PART PREPARATION ***

Question 7. (11 points) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $(x, y) \in \mathbb{R}^{2}$. List sufficient conditions for (x, y) to be
(a) a saddle point;
(b) a point of local strict minimum;
(c) a point of local strict maximum.

Question 8. (11 points)

1. Write down the definition of t -norm.
2. Give an example of t-norm.
3. How can we use t-norms in fuzzy logic?

Question 9. (12 points)

1. Write down the definition of group and of subgroup.
2. What is the Cayley table of a finite group? Give an example.
3. Can two different groups have the same Cayley talble (up to renaming the elements)?
