
Part I

Quick outline of the course
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0.1 Why mathematics?

Why mathemat-
ics?

Why should
we learn
mathematics?

If someone can take up this position (painlessly),
what do you say to yourself? [0.2cm] Good! I’d like to be agile as she is
. . . [0.2cm] OR [0.2cm] Hm, I didn’t need such a daredevil position in my
life, I am going to train sitting on a chair instead, that’s what I do . . .

Understanding
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15 Majors that
Will Make You
Rich (measured
by money)

1. Petroleum Engineering ($155,000 – after some time)

2. Physics ($101,800)

3. Applied Mathematics ($98,600 “Jobs in this field can be found in nearly
every sector.”)

4. Computer Science ($97,900)

5. Biomedical Engineering ($97,800)

6. Statistics ($93,800)

7. Civil Engineering ($90,200)

8. Mathematics ($89,900)

9. Environmental Engineering ($88,600)

10. Software Engineering ($87,800)

11. Finance ($87,300)
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12. Construction Management ($85,200)

13. Biochemistry ($84,700)

14. Geology ($83,300)

15. Management Information Systems ($82,200)

source: http://likes.com/misc/15-majors-that-will-make-you-rich

Famous names
. . .

• George Stibitz (Ph.D. in mathematical physics)

He was a Bell Labs researcher known for his work in the 1930s
and 1940s on the realization of Boolean logic digital circuits
using electromechanical relays as the switching element.

• breaking of German codes during WWII: Tommy Flowers (electroengi-
neer), Alan Turing (mathematician), Max Newman (mathematician)

• Clause Shannon (founder of information theory, mathematician)

Shannon is famous for having founded information theory with
one landmark paper published in 1948. But he is also cred-
ited with founding both digital computer and digital circuit
design theory in 1937, when, as a 21-year-old master’s stu-
dent at MIT, he wrote a thesis demonstrating that electrical
application of Boolean algebra could construct and resolve any
logical, numerical relationship.

• John von Neumann (Von Neumann architecture)

Dennis Ritchie,
Linus Torvalds

Ritchie graduated from Harvard University with degrees in physics
and applied mathematics.

source: wikipedia.org

http://likes.com/misc/15-majors-that-will-make-you-rich


5

Linus Torvalds was born to Nils and Anna Torvalds, who were
both journalists. However, he was highly influenced by his ma-
ternal grandfather to pursue his career in computers. Since child-
hood, Linus was brilliant in mathematics. Life of Linus Torvalds
in computers began at the University of Helsinki in 1988 where
he studied computer science. Linus is from a minority group in
Finland and thus his first language is not Finnish but Swedish.
For this reason, his pronunciation of Linux in Swedish were not
understood or often taken as an error.

source: http://www.mapsofworld.com/cities/finland/helsinki/linus-torvalds.html

Bill Gates

In his sophomore year, Gates devised an algorithm for pancake
sorting as a solution to one of a series of unsolved problems pre-
sented in a combinatorics class by Harry Lewis, one of his pro-
fessors. Gates’ solution held the record as the fastest version for
over thirty years; its successor is faster by only one percent. His
solution was later formalized in a published paper in collaboration
with Harvard computer scientist Christos Papadimitriou.

source: wikipedia.org

Larry Page,
Sergey Brin

The company was founded by Larry Page and Sergey Brin while
they were both attending Stanford University. . . . After enrolling
for a Ph.D. program in computer science at Stanford University,
Larry Page was in search of a dissertation theme and considered
exploring the mathematical properties of the World Wide Web,
understanding its link structure as a huge graph. . . . Sergey Brin
earned his undergraduate degree at the University of Maryland,
following in his father’s and grandfather’s footsteps by studying
mathematics, as well as computer science. After graduation, he
moved to Stanford University to acquire a Ph.D in computer sci-
ence.

source: wikipedia.org
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0.2 Short overview of included topics

Multivariate
functions and
optimization• Many problems can be formulated as optimization problems: we maxi-

mize/minimize some functions that determines gain/cost/time/distance
. . .

• If the function is given analytically, we know how to find the optimum.

[2mm] sin(x · y)

General algebra

Notions from general algebra are one of the basic mathematical tools.

· 1 2 3 4 5 6 7 8 9 10 11 12
1 1 2 3 4 5 6 7 8 9 10 11 12
2 2 4 6 8 10 12 1 3 5 7 9 11
3 3 6 9 12 2 5 8 11 1 4 7 10
4 4 8 12 3 7 11 2 6 10 1 5 9
5 5 10 2 7 12 4 9 1 6 11 3 8
6 6 12 5 11 4 10 3 9 2 8 1 7
7 7 1 8 2 9 3 10 4 11 5 12 6
8 8 3 11 6 1 9 4 12 7 2 10 5
9 9 5 1 10 6 2 11 7 3 12 8 4
10 10 7 4 1 11 8 5 2 12 9 6 3
11 11 9 7 5 3 1 12 10 8 6 4 2
12 12 11 10 9 8 7 6 5 4 3 2 1

[1mm] Cayley

table of the group Z×13

Besides a general introduction, we will focus on finite groups and fields, which
form the basis for cryptography, hash functions, etc.

Numerical
mathematics



7

• continous mathematics using the computer, stability of numerical algo-
rithms . . .

Discrete Fourier
transform

• basic tool for frequency analysis

source: www.wavemetrics.com



Part II

Multivariate optimisation
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0.3 Examples

Duration of a
text processing
program (1 of 6)Problem 1. Imagine the following situation: You have created a program

that processes a text input by a user. You know from theoretical analysis of
the source code and algorithms used within the program that it is impossible to
determine the exact time needed to process a text of length k. However, you
know that it is approximately proportional to the length of the text.

Mathematically: Denote t(k) the “average” number of seconds needed to
process a text of length k. We know that

t(k) ≈ αk for some α ∈ R.

Problem: The proportionality constant α is unknown. How would you
reasonably estimate its value?

Duration of a
text processing
program (2 of 6)Sketch of a solution:

1. Run the program for several, say n, texts of various lengths and mea-
sure the actual running times. This gives us n couples of measurements
(k1, t1), (k2, t2), . . . , (kn, tn).

2. For a given α, we can measure the approximation error t(k) ≈ αk by this
function:

e(α) = (t1 − αk1)2 + (t2 − αk2)2 + · · ·+ (tn − αkn)2 =
n∑
i=1

(ti − αki)2.

3. In order to find the best approximating proportionality constant α, we find
the value of α for which the error e(α) is minimal:

an optimal value of α is a minimum point of the function e(α).

Duration of a
text processing
program (3 of 6)How to find a minimum point of e(α):
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1. Find the first derivative e′(α):

e′(α) =
(

n∑
i=1

(ti − αki)2
)′

=
n∑
i=1
−2ki(ti − αki) .

2. Find the critical points, i.e., the points α0 where e′(α0) is zero or does not
exist:

e′(α0) = 0⇔
n∑
i=1
−2ki(ti−α0ki) = 0⇔

n∑
i=1

kiti = α0

n∑
i=1

k2
i ⇔ α0 =

∑n
i=1 kiti∑n
i=1 k

2
i

3. The critical points are our candidates for the points of (local) minimal or
maximal values of the function e. To be sure that the value of α we found
is a minimum we need the second derivative:

e′′(α) =
(

n∑
i=1
−2ki(ti − αki)

)′
=

n∑
i=1

2k2
i .

. . . continues . . .

Duration of a
text processing
program (4 of 6)We know that if e′′(α0) > 0 (resp. e′′(α0) < 0), then the critical point α0

is a local strict minimum (resp. strict maximum) point. If e′′(α0) = 0, then
α is neither of these two cases (it may just be an inflexion point).

Solution: based on our measurements (k1, t1), (k2, t2), . . . , (kn, tn), we get
the best approximation t(k) ≈ αk for

α = α0 =
∑n
i=1 kiti∑n
i=1 k

2
i

.

Indeed, this α0 is the unique (why unique?) global (why global?) minimum
point of the approximation error function e(α) since the second derivative

e′′(α0) =
n∑
i=1

2k2
i is positive.

Duration of a
text processing
program (5 of 6)
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Problem 2 (slight modification). Imagine the following situation: You have
created a program that processes a text input by a user. You know from the-
oretical analysis of the source code and algorithms used within the program
that it is impossible to determine precisely the time needed to process a text
of length k. However, you know that it is approximately proportional to the
length of the text and to the frequency of the processor.

Mathematically: Denote by t(k, f) the “average” number of seconds
needed to process a text of length k, and the frequency of the processor by
f . We know that

t(k, f) ≈ αk + βf for some α, β ∈ R.

Problem: The constants α and β are unknown. How would you reasonably
estimate their values?

Duration of a
text processing
program (6 of 6)Sketch of solution:

1. Run the program for several, say n, texts of various lengths on computers
with different frequencies and measure the actual running times. This gives
us n triplets of measurements (k1, t1, f1), (k2, t2, f2), . . . , (kn, tn, fn).

2. For a given α and β, we can measure the approximation error t(k, f) ≈
αk + βf by this two-variable function:

e(α, β) = (t1 − αk1 − βf1)2 + (t2 − αk2 − βf2)2 + · · ·+ (tn − αkn − βfn)2 =

=
n∑
i=1

(ti − αki − βfi)2.

3. In order to find the best approximating constants α and β, we find values
of α and β for which the error e(α, β) is minimal: an optimal value of α
and β is the “two-dimensional” minimum point of e(α, β).

Comments

Why “optimization”?

A typical situation in physics, engineering, economy, chemistry. . . is that
you have a function that measures your profit, your loss, the energy of some-
thing. . . The value of such function is given by one or more inputs and the
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relation between inputs and the resulting value is usually stated as a mathe-
matical formula since all these sciences uses mathematical models to under-
stand and quantify their subject of interest. An example of such function is
our function e(α, β) that measures the approximation error.

Typically, we want to maximize or minimize such functions (maximize the
profit, the energy, minimize the loss, the error) which leads to the problem of
finding optimal values of the inputs. Therefore the name “optimization”.

Comments

There is another very important usage of the derivative.
Derivatives measure the rate of change of a function. This helps us to

describe the behaviour of a dynamical systems like a ball on a spring:

x0
x(t)

mk

Position of the ball at time t is a function x(t) satisfying the differential
equation

x′′(t) + ω2x(t) = 0 .

Solution of this equation is

x(t) = x0 cos(ωt) + v0
ω

sin(ωt), t ∈ R,

where x0 = x(0) and v0 are the position and the speed of the ball at time
t = 0. This model is known as harmonic oscillator.

0.4 Univariate optimization

Derivative

How do we dif-
ferentiate?

Example 3. Find the first derivative of f(x), where

(a) f(x) = x3 + 4x2 + 6,

(b) f(x) = sin(x3),

(c) f(x) = ex sin x.
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Solutions:

(a) f ′(x) = 3x2 + 8x,

(b) f ′(x) = 3x2 cos(x3),

(c) f ′(x) = ex sin x+ ex cosx.

Geom. meaning
of the deriva-
tive: tangent
line (1 of 2)

x

y

a

f(a)

z

f(z)

z − a

f(z)− f(a)

α

tanα = f(z)− f(a)
z − a

y = f(a) + tanα · (x− a)

Geom. meaning
of the deriva-
tive: tangent
line (2 of 2)

• The tangent line to the graph of a function f(x) at a point x0 is a
straight line that “just touches” the curve at that point.

• Any straight line has equation y = ax + b, where a is the slope of the
line.

• The slope of the tangent line to f(x) at the point x0 equals the first
derivative evaluated at x0: f ′(x0).

• The tangent line at the point x0 satisfies the equation

y = f ′(x0)(x− x0) + f(x0).
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Derivative and
optimization

With this geometrical explanation it is easy to see that the following state-
ments are true:

• If f ′(x0) is positive, then f(x) is increasing at x0.

• If f ′(x0) is negative, then f(x) is decreasing at x0.

• If x0 is a local minimum/maximum point of f(x), then f ′(x0) = 0 or
f ′(x0) does not exists. Such points are called critical points.

Example 4. Find all critical points of

f(x) = x3

3 + 2x2 + 3x+ 6 .

Second deriva-
tive

What does it mean that the second derivative f ′′(x) is positive?

• The second derivative is a derivative of the first derivative; therefore the
fact that f ′′(x) is positive implies that f ′(x) is increasing (at the point
x).

• If f ′(x) is increasing, then the function f(x) is more and more increasing
(if f ′(x) > 0) or less and less decreasing (if f ′(x) < 0).

• An illustrative example of function with positive second derivative is
f(x) = x2.

Second deriva-
tive as a
criterion for
extremal valuesAgain, if we understand the geometrical meaning of the second derivative,

we can easily see that the following statements are true:

Theorem 5. Let x0 be a critical point of a function f(x) such that f ′(x0) = 0
and f ′′(x0) exists.

• If f ′′(x0) > 0, then the function is convex at x0 and x0 is a point of a
(strict) minimum.

• If f ′′(x0) < 0, then the function is concave at x0 and x0 is a point of a
(strict) maximum.
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Question: what can happen if f ′′(x0) = 0?
Universal cook-
book of univari-
ate optimizationGiven a function f(x), we want to find its extremal values.

1. Find the first derivative f ′(x).

2. Find the critical points: solve the equation f ′(x) = 0 and find the points
where the derivative does not exist.

3. Find the second derivative f ′′(x).

4. If possible, for all critical points x0 evaluate f ′′(x0) and decide whether
this point is a point of minimum or maximum or whether it is an inflexion
point. (Other critical points have to be treated by hand.)

The goal of this and the next lecture is to understand what happens when
we have more than 1 variable. We shall build a similar cookbook for such
functions.

0.5 Multivariate optimization

Graph of
multivariate
functions (1 of
2)For a univariate function f(x), its graph is the set of points (x, f(x)) which

can be depicted in Cartesian coordinate system (typically with x- and y-
axis).[2mm] What if the function depends on more variables? For instance:
f(x, y).

Graph of a two-variable function
sin(x · y): the set of points (x, y, sin(x · y)).
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Graph of
multivariate
functions (2 of
2)

• To depict a graph of a two-variable function we need a third axis (typi-
cally z-axis) and a 3-dimensional figure. Such graph is in general some
surface.

• It is impossible to (directly) depict graphs of functions of more than 2
variables since we cannot make 4 or more dimensional figures.

Example 6. How does the graph of f(x, y) = x2 − y2 look?

Partial deriva-
tive – introduc-
tion

Given the function f(x, y) = x2 + xy + y2.

• If we fix the value of the variable y to 3, we obtain a univariate function
f(x) = x2 + x3 + 9 having its derivative equal to 2x+ 3.

• We can fix the value of y not only to a specific number: we just treat
y as a constant. Then we get univariate function f(x) = x2 + xy + y2

and its derivative is 2x+ y.

• This derivative is called partial derivative of (x, y) with respect to
x and denoted by

∂f

∂x
(x, y) = 2x+ y .

• In the same way we define the partial derivative of f(x, y) with respect
to y:

∂f

∂y
(x, y) = 2y + x .

• In general ∂f
∂x

(x, y) and ∂f

∂y
(x, y) are two-variate functions.
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Partial deriva-
tive – definition

The derivative of a (single variate) function f(x) is the following limit (if
it exists):

f ′(x) = lim
δ→0

f(x+ δ)− f(x)
δ

.

Partial derivatives are defined similarly:

Definition 7. The partial derivative of f(x1, x2, . . . , xn) with respect to xi at
the point (x1, x2, . . . , xn) is defined by (if the limit below exists)

∂f

∂xi
(x1, x2, . . . , xi−1, xi, xi+1, . . . , xn) =

= lim
δ→0

f(x1, x2, . . . , xi−1, xi + δ, xi+1, . . . , xn)− f(x1, x2, . . . , xn)
δ

.

Since the definition is similar, even the geometrical meaning is analogous.
Partial deriva-
tive – definition

The partial derivatives of f(x, y) can be in short denoted by

fx(x, y) = ∂f

∂x
(x, y) and fy(x, y) = ∂f

∂y
(x, y) .

The number fx(x, y) for given values of x and y is again the slope of a tangent
line, but a surface has infinitely many tangent lines in all possible directions
at any point, so which one is this one?

It is the only tangent line which is parallel to the x-axis.

Second partial
derivatives
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Definition 8. For a function f(x1, x2, . . . , xn) we define second partial deriva-
tives

fxjxi(x1, x2, . . . , xn) = ∂2f

∂xj∂xi
(x1, x2, . . . , xn) = ∂

∂xj

(
∂f

∂xi
(x1, x2, . . . , xn)

)
,

in particular, for i = j we have

fxixi(x1, x2, . . . , xn) = ∂2f

∂x2
i

(x1, x2, . . . , xn) = ∂

∂xi

(
∂f

∂xi
(x1, x2, . . . , xn)

)
.

Partial deriva-
tives – exercises

Example 9. Find partial derivatives with respect to all variables

(a) f(x, y) = xy + ex cos y,

(b) f(x, y) = x2y3 + x3y4 − exy2,

(c) f(x, y, z) = sin(xy/z).

Example 10. Find all second partial derivatives of the functions

(a) f(x, y) = x2 + xy2 + 3x3y,

(b) f(x, y, z) = exz + y cosx,

(c) f(x, y, z) = z cos(xy) + x sin(yz).

Equality of
mixed partial
derivativesThe fact that the mixed partial derivatives are equal is not a coincidence:

Theorem 11. If a function f(x, y) has continuous second partial derivatives,
then the mixed second derivatives are equal, i.e.,

∂2f

∂y∂x
= ∂2f

∂x∂y
.

This theorem is not true in general, a counterexample is the function

f(x, y) =


0 at point (0, 0)
xy(x2 − y2)
x2 + y2 otherwise.
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