Chapter 1

MPI - lecture 3

- Constrained optimization
- Reminder: integration of functions of 1 variable
- 2-variate function integration

1.1 Constrained optimization

Find the maximum and minimum points when walking along the black line:

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$. Find (local) maxima and minima of f subject to

$$
\left\{\begin{array}{rc}
g_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right) & =0 \\
g_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right) & =0 \\
& \vdots \\
g_{p}\left(x_{1}, x_{2}, \ldots, x_{n}\right) & =0 .
\end{array}\right.
$$

Set

$$
\mathcal{G}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid g_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0, i=1,2, \ldots, p\right\} .
$$

1. The functions f and g_{i}, with $i=1,2, \ldots, p$, have continuous second partial derivatives.
2. The gradients $\nabla g_{1}(x), \nabla g_{2}(x), \ldots, \nabla g_{p}(x)$ form a linearly independent set for all $x \in \mathcal{G}$.

Example 1. Are the gradients of the following functions linearly independent?

$$
\begin{array}{ll}
g_{1}(x, y)=2 x+x y^{2}, & g_{2}(x, y)=4 x+2 x y^{2}, \\
g_{3}(x, y)=2 x y^{2}+4 y^{2}, & g_{4}(x, y)=2 x+3 x y^{2}+4 y^{2}
\end{array}
$$

$f(x, y)=x+y, \quad \mathcal{G}=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=2\right\}$

Running example

Theorem 2. Assume f has a local extremum in $x^{*}=\left(x_{1}^{*}, \ldots, x_{n}^{*}\right) \in \mathcal{G}$ subject to \mathcal{G}.

Then there exist numbers $\mu_{1}^{*}, \ldots, \mu_{p}^{*}$ such that the Lagrangian function L given by

$$
L\left(x_{1}, \ldots, x_{n}, \mu_{1}, \ldots, \mu_{p}\right)=f\left(x_{1}, \ldots, x_{n}\right)+\sum_{i=1}^{p} \mu_{i} g_{i}\left(x_{1}, \ldots, x_{n}\right)
$$

has zero partial derivatives with respect to x_{1}, \ldots, x_{n} at the point x^{*}.

In other words, the following system of equations is true:

$$
\left\{\begin{aligned}
\frac{\partial f}{\partial x_{1}}\left(x^{*}\right)+\mu_{1}^{*} \frac{\partial g_{1}}{\partial x_{1}}\left(x^{*}\right)+\cdots+\mu_{p}^{*} \frac{\partial g_{p}}{\partial x_{1}}\left(x^{*}\right) & =0 \\
& \vdots \\
\frac{\partial f}{\partial x_{n}}\left(x^{*}\right)+\mu_{1}^{*} \frac{\partial g_{1}}{\partial x_{n}}\left(x^{*}\right)+\cdots+\mu_{p}^{*} \frac{\partial g_{p}}{\partial x_{n}}\left(x^{*}\right) & =0
\end{aligned}\right.
$$

Theorem 3. Let $x^{*}=\left(x_{1}^{*}, \ldots, x_{n}^{*}\right) \in \mathbb{R}^{n}$ and $\mu^{*}=\left(\mu_{1}^{*}, \ldots, \mu_{p}^{*}\right) \in \mathbb{R}^{p}$ such that
(i) the Lagrangian function $L\left(x_{1}, \ldots, x_{n}, \mu_{1}, \ldots, \mu_{p}\right)$ has zero partial derivatives with respect to x_{1}, \ldots, x_{n} at the point $\left(x^{*}, \mu^{*}\right) \in \mathbb{R}^{n+p}$;
(ii) the Lagrangian function $L\left(x_{1}, \ldots, x_{n}, \mu_{1}, \ldots, \mu_{p}\right)$ has zero partial derivatives with respect to μ_{1}, \ldots, μ_{p} at the point $\left(x^{*}, \mu^{*}\right) \in \mathbb{R}^{n+p}$;
(iii) for all non-zero $y \in \mathbb{R}^{n}$ satisfying $y \cdot \nabla g_{i}\left(x^{*}\right)=0$ for $i=1,2, \ldots, p$ we have

$$
y\left(\nabla^{2} f\left(x^{*}\right)+\sum_{i=1}^{p} \mu_{i}^{*} \nabla^{2} g_{i}\left(x^{*}\right)\right) y^{T}>0 .
$$

Thus, the function f has a strict local minimum at x^{*} (subject to \mathcal{G}).

If we replace in (iii) the condition " >0 " by " <0 ", we obtain a sufficient condition of a strict local maximum.

Example 4. Find maxima and minima of $f(x, y)=x+y$ subject to $x^{2}+y^{2}=$ 2.

1.2 Integration of functions of 1 variable

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $a<b$. \quad| Integration |
| :--- |
| funtions |
| variable |${ }_{1}^{\text {of }}$

Recall what does $\int_{a}^{b} f(x) \mathrm{d} x$ mean, if it exists.
What is its geometrical meaning?

Let $\Delta=\left(x_{i}\right)_{i=0}^{n}$ define a partition of $[a, b]: a=x_{0}<x_{1}<\ldots<x_{n}=b$.
Set $F_{\Delta, i}=\max _{x \in\left[x_{i-1}, x_{i}\right]} f(x) \quad$ and $\quad f_{\Delta, i}=\min _{x \in\left[x_{i-1}, x_{i}\right]} f(x)$.
The upper Darboux sum of f with respect to the partition Δ is

$$
S_{f, \Delta}=\sum_{i=1}^{n} F_{\Delta, i}\left(x_{i}-x_{i-1}\right)
$$

and the lower Darboux sum of f with respect to the partition Δ is

$$
s_{f, \Delta}=\sum_{i=1}^{n} f_{\Delta, i}\left(x_{i}-x_{i-1}\right) .
$$

The upper Darboux integral (of f over $[a, b]$) is

$$
D_{f}=\inf \left\{S_{f, \Delta}: \Delta \text { is a partition of }[a, b]\right\}
$$

and the lower Darboux integral (of f over $[a, b]$) is

$$
d_{f}=\sup \left\{s_{f, \Delta}: \Delta \text { is a partition of }[a, b]\right\} .
$$

If $D_{f}=d_{f}$, we call this value the Darboux integral of f over $[a, b]$, and denote it

$$
\int_{a}^{b} f(x) \mathrm{d} x=D_{f}=d_{f} .
$$

We say that f is (Darboux-) integrable over $[a, b]$.
This is equivalent to the Riemann integral and to Riemann integrability.

If f is continuous on $[a, b]$, then it is integrable on $[a, b]$.

Let f be integrable on $[a, b]$ and on $[b, c]$ (with $a<b<c$).
We have that f is integrable on $[a, c]$ and

$$
\int_{a}^{c} f(x) \mathrm{d} x=\int_{a}^{b} f(x) \mathrm{d} x+\int_{b}^{c} f(x) \mathrm{d} x .
$$

Let $F(x)$ be a real function which is continuous on $[a, b]$ and differentiable on (a, b)

Let $f(x)$ be a real function which is continuous on (a, b) and such that

$$
\forall x \in(a, b), \quad F^{\prime}(x)=f(x)
$$

Such function F is called a primitive function of f on (a, b).
Example 5. Find a primitive function on $(0,1)$ of the function $f(x)=2 x+x^{2}$.

$$
\longrightarrow \quad \stackrel{\text { Newton's }}{\text { formula }}
$$

Let f be integrable on $[a, b]$ and $F(x)$ be (one of) its primitive function on (a, b).

We have

$$
\int_{a}^{b} f(x) \mathrm{d} x=[F(x)]_{a}^{b}=F(b)-F(a) .
$$

Example 6. Calculate $\int_{0}^{1}\left(2 x+x^{2}\right) \mathrm{d} x$.

Let $\alpha, \beta \in \mathbb{R}$ such that $\alpha<\beta$.
Let φ be a real function differentiable on (α, β) such that φ and φ^{\prime} are both continuous on $[\alpha, \beta]$.

Let f be continuous on $[\varphi(\alpha), \varphi(\beta)]$ (or $[\varphi(\beta), \varphi(\alpha)]$).
If $f(\varphi(t)) \varphi^{\prime}(t)$ is integrable on $[\alpha, \beta]$, then

$$
\int_{\alpha}^{\beta} f(\varphi(t)) \varphi^{\prime}(t) \mathrm{d} t=\int_{\varphi(\alpha)}^{\varphi(\beta)} f(x) \mathrm{d} x .
$$

Example 7. Calculate $\int_{1}^{2} \frac{2 \ln (t)^{2}}{t} \mathrm{~d} t$.

Let f and g be differentiable on (a, b) and let $f, g, f^{\prime}, g^{\prime}$ be continuous on $[a, b]$.

We have

$$
\int_{a}^{b} f^{\prime}(x) g(x) \mathrm{d} x=[f(x) g(x)]_{a}^{b}-\int_{a}^{b} f(x) g^{\prime}(x) \mathrm{d} x .
$$

Example 8. Calculate $\int_{1}^{2} 10 x \ln x \mathrm{~d} x$.

$1.3 \quad 2$-variate function integration

Suppose we have a function $f: D \rightarrow \mathbb{R}$, where $D=[a, b] \times[c, d]$.

Imagine that this function represents (part of) a surface of some object. What is the volume of this object?

Let $\Delta_{x}=\left(x_{i}\right)_{i=0}^{n}$ define a partition of $[a, b]$ and $\Delta_{y}=\left(y_{j}\right)_{j=0}^{m}$ a partition of $[c, d]$.

Then, $\Delta=\Delta_{x} \times \Delta_{y}$ defines a partitions of $D=[a, b] \times[c, d]$ into rectangles.

Set

- $F_{\Delta, i, j}=\max \left\{f(x, y):(x, y) \in\left[x_{i-1}, x_{i}\right] \times\left[y_{j-1}, y_{j}\right]\right\}$ and
- $f_{\Delta, i, j}=\min \left\{f(x, y):(x, y) \in\left[x_{i-1}, x_{i}\right] \times\left[y_{j-1}, y_{j}\right]\right\}$.

The upper Darboux sum of f with respect to the partition Δ is

$$
S_{f, \Delta}=\sum_{i=1}^{n} \sum_{j=1}^{m} F_{\Delta, i, j}\left(x_{i}-x_{i-1}\right)\left(y_{j}-y_{j-1}\right)
$$

while the lower Darboux sum of f with respect to the partition Δ is

$$
s_{f, \Delta}=\sum_{i=1}^{n} \sum_{j=1}^{m} f_{\Delta, i, j}\left(x_{i}-x_{i-1}\right)\left(y_{j}-y_{j-1}\right) .
$$

The upper Darboux integral (of f over D) is

$$
D_{f}=\inf \left\{S_{f, \Delta}: \Delta \text { is a (rectangular) partition of } D\right\}
$$

and the lower Darboux integral (of f over D is

$$
d_{f}=\sup \left\{s_{f, \Delta}: \Delta \text { is a (rectangular) partition of } D\right\} .
$$

If $D_{f}=d_{f}$, we call this value the (double) Darboux integral of f over D, and denote it

$$
\iint_{D} f(x, y) \mathrm{d} x \mathrm{~d} y=D_{f}=d_{f} .
$$

We say that f is (Darboux-) integrable over D.

Theorem 9. If f is integrable over $D=[a, b] \times[c, d]$ and one of the integrals

$$
\int_{a}^{b}\left(\int_{c}^{d} f(x, y) \mathrm{d} y\right) \mathrm{d} x \quad \text { or } \quad \int_{c}^{d}\left(\int_{a}^{b} f(x, y) \mathrm{d} x\right) \mathrm{d} y
$$

exists, then it is equal to

$$
\iint_{D} f(x, y) \mathrm{d} x \mathrm{~d} y .
$$

Example 10. Calculate the double integral over $D=[0,2] \times[-1,2]$ of the function $f(x, y)=x^{2} y+1$.

And if D is not a rectangle?

The definition is very similar: we approximate D using smaller and smaller rectangular areas...

We will consider the following two types of the domain D.

- (type 1) $x \in[a, b]$ and y is bounded by continuous functions $\varphi_{1}(x)$ and $\varphi_{2}(x)$;
- (type 2) $y \in[c, d]$ and x is bounded by continuous functions $\psi_{1}(y)$ and $\psi_{2}(y)$.

Double integrals over such D are calculated as follows.
Theorem 11. If the integral on the right side exists, then we have (for such a domain D):

- if D is of type 1 , then

$$
\iint_{D} f(x, y) \mathrm{d} x \mathrm{~d} y=\int_{a}^{b}\left(\int_{\varphi_{1}(x)}^{\varphi_{2}(x)} f(x, y) \mathrm{d} y\right) \mathrm{d} x
$$

- if D is of type 2, then

$$
\iint_{D} f(x, y) \mathrm{d} x \mathrm{~d} y=\int_{c}^{d}\left(\int_{\psi_{1}(y)}^{\psi_{2}(y)} f(x, y) \mathrm{d} x\right) \mathrm{d} y
$$

Example 12. Let D be the region in the first quadrant between the lines $x-4 y=0$ and $x-2 y=1$. Calculate

$$
\iint_{D} \frac{x}{1+y^{2}} \mathrm{~d} x \mathrm{~d} y
$$

