
Chapter 1

MPI - lecture 8

1.1 Numerical mathematics

Numerical
mathematics

Numerical mathematics is devoted to methods that seek an approximate but
sufficiently accurate solution of problems in various fields. A simplified
mathematical model of the problem is used; its partial tasks consist of
various mathematical problems.

The following mathematical problems are often involved:

1. solution of systems of linear equations,

2. solution of differential equations,

3. calculation of integrals,

4. evaluations of function values,

5. estimation of errors in calculations,

6. . . .

Typically, a computer calculation is involved.
From the his-
tory

1
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• Error in the Patriot missile system

(0.1)10 = (0.000110011001100110011001100110011...)2

• Explosion of the Ariane 5 rocket
conversion from a 64-bit floating point number to a 16-bit signed in-
teger

• . . .

1.2 Computer arithmetics

Representation with floating point

Representation
with floating
pointTo store a number in computer we usually use the binary number system.

(6)10 = (110)2 (0.1)10 = (0.000110011001100110011001100110011...)2

For non-integers, one can use the scientific notation. In the binary base a
number x is represented as

x = ±m · 2e.

m - mantissa/significand having a fixed number of digits / fixed length;
these digits are also called significant digits.

e - exponent having a fixed number of digits / fixed length.
IEEE-754

A number x is represented by its sign s and by the numbers e and m.
The standard IEEE-754 defines the following lengths of e and m and their
interpretation.
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precision length of m d = length of e b

binary32 / single precision 23 8 127
binary64 / double precision 52 11 1023
binary128 / quadruple precision 112 15 16383

• if e = 2d − 1 and m 6= 0, then x = NaN (Not a Number)

• if e = 2d − 1 and m = 0 and s = 0, then x = +Inf

• if e = 2d − 1 and m = 0 and s = 1, then x = −Inf

• if 0 < e < 2d − 1, the x = (−1)s · (1.m)2 · 2e−b (so-called normalized
numbers)

• if e = 0 and m 6= 0, then x = (−1)s · (0.m)2 · 2−b+1 (so-called subnor-
mal/unnormalized numbers)

• if e = 0 and m = 0 and s = 0, then x = 0

• if e = 0 and m = 0 and s = 1, then x = −0

Machine
numbers (1/3)

The numbers that can be represented as floating point numbers (with
selected finite lengths of m and e) are called machine numbers.

Example: take m of length 2 bits, e of length 3 bits, and b = 3.

We obtain the following set of numbers (we consider only positive elements)

{
0, 1

16 ,
1
8 ,

3
16 ,

1
4 ,

5
16 ,

3
8 ,

7
16 ,

1
2 ,

5
8 ,

3
4 ,

7
8 , 1,

5
4 ,

3
2 ,

7
4 , 2,

5
2 , 3,

7
2 , 4, 5, 6, 7, 8, 10, 12, 14

}
Subnormal numbers are in brown.
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The set of all machine numbers with a given precision has little in common
with real numbers. It resembles more to a finite subset of integers.

Machine
numbers (2/3)
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Denote the set of machine numbers by F .

The set F has the largest and the smallest positive elements as follows:

precision max. no. min. pos. normalized min. pos. subnormal

single (2− 2−23) · 2127

≈ 3.4 · 1038
2−126

≈ 1.2 · 10−38
2−126−23 = 2−149

≈ 1.4 · 10−45

double (2− 2−52) · 21023

≈ 1.8 · 10308
2−1022

≈ 2.2 · 10−308
2−1022−52 = 2−1074

≈ 4.9 · 10324

Machine
numbers (3/3)

F is characterized by the machine epsilon εF , which is the difference be-
tween 1.0 and the smallest number in F larger than 1.

For single precision we have εF = 2−23, for double 2−52.

Proposition 1. The distance between any two neighboring normalized num-
bers in F is at least εF2 and at most εF .

Representation
of real numbers
(1/3)Let fl : R → F be the mapping which assigns to any x ∈ R the closest

machine number.

The “closest” is given by the method chosen: rounding (“ties to even”),
chopping (rounding towards 0),. . .

When trying to represent a number which is out of the representable range,
an overflow or underflow is returned.

Definition 2. Let a number α be an approximate value of a number a.

• The absolute error is the value |α− a|.

• For a 6= 0, the relative error is |α− a|
|a|

.
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Representation
of real numbers
(2/3)In single precision, suppose that a number x ∈ R lies in the normalized

range, i.e.,

x = q · 2`, where 1 ≤ q < 2 and − 126 ≤ ` ≤ 127.

What is the error due to the rounding or chopping when the closest ma-
chine number is chosen?

Let’s round towards 0, i.e., chop off bits which do not fit into the significand
(for positive numbers). If

x = (1.b1b2b3b4 . . .)2 · 2`,

then
fl(x) = (1.b1b2 . . . b23) · 2`.

The absolute error is

|x− fl(x)| ≤ 2−23+`

and the relative error is

|x− fl(x)|
|x|

≤ 2−23+`

q · 2` ≤ 2−23.

Representation
of real numbers
(3/3)This threshold of relative error is called the unit roundoff error and is

denoted by u, i.e., in the single precision with chopping we have u = 2−23.

Attention, this number is sometimes called machine epsilon.

If we use mathematical rounding, we obtain u = 2−24.

Proposition 3. Let x ∈ R be greater than the smallest normalized number of
F and smaller than the greatest normalized number of F . We have

fl(x) = x(1 + δ), where |δ| ≤ u,
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Arithmetic operations

Arithmetic op-
erations - error

Proposition 4. Let x, y ∈ F and � be the operation of addition, multiplica-
tion or division. If there is no overflow or underflow, then we have

fl(x� y) = (x� y)(1 + δ), where |δ| ≤ u,

In general: If we operate with more numbers, it is better to start with the
smallest ones.

Arithmetic
operations - a
demonstration

Let f : R2 7→ R be a mapping given by

f(x, y) = 333.75y6 + x2
(
11x2y2 − y6 − 121y4 − 2

)
+ 5.5y8 + x

2y .

Let us evaluate f(77617, 33096):

SageMath (precision 23 bits) 1.17260
SageMath (precision 24 bits) −6.33825 · 10−29

SageMath (precision 53 bits) −1.18059162071741 · 1021

SageMath (precision 54 bits) 1.18059162071741 · 1021

SageMath (precision 100 bits) 1.1726039400531786318588349045
SageMath (precision 121 bits) 1.17260394005317863185883490452018371
SageMath (precision 122 bits) −0.827396059946821368141165095479816292

The exact solution is −54767
66192 ≈ −0.827396.

[S. M. Rump: Algorithms for verified inclusions - theory and practice, ...,
1988]

Loss of signifi-
cant digits (1/3)

Errors while doing arithmetical operations can accumulate.

Big problems can be caused by the so-called cancellation.
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Let us illustrate this on an example. Imagine that our computer calculates
in basis 10 and uses 10 significant digits.

We want to evaluate x− sin(x) for x = 1
15 .

x← 6.6666 66667 ·10−2

sin(x)← 6.6617 29492 ·10−2

x− sin(x)← 0.0049 37175 ·10−2

x− sin(x)← 4.9371 75000 ·10−5

The last 3 zeros are not correct significant digits.

Let us calculate the relative error.
Loss of signifi-
cant digits (2/3)∣∣∣ 1

15 − sin
(

1
15

)
− fl

(
fl
(

1
15

)
− sin

(
fl
(

1
15

)) )∣∣∣∣∣∣ 1
15 − sin

(
1
15

)∣∣∣ ≈ 1.4 · 10−7.

That is a lot in comparison to

|x− fl(x)|
|x|

≤ 5 · 10−10.

Proposition 5. Let x and y be normalized machine numbers and x > y > 0.
If 2−p ≤ 1− y

x
≤ 2−q for some positive integers p and q, then at most p

and at least q significant binary bits are lost when performing the operation
x− y.

Loss of signifi-
cant digits (3/3)

Cancellation can be avoided by using the following techniques:

• rationalizing the problem, i.e., using rational numbers and avoiding the
subtraction in floating points arithmetics,

• using series expansions (such as Taylor series),

• using other identities,. . .
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Errors - conclusion

Errors - conclu-
sion

Origins of errors:

• rounding errors and their accumulation,

• cancellation.

The errors on the inputs may also play an important role. Those errors are
given by the origin of the input which may be the output of another calculation
or a measurement.

A few final notes:

• increased precision may not lead to a more precise result,

• cancellation can be useful - it may cancel rounding errors,

• few operations with small numbers do not imply a small error.

Errors – alterna-
tives

One of the problems of machine numbers (IEEE-754) is in the ignorance
of the created error.

There are some alternatives:

• Exact arithmetics: Z, Q or GF (p) (it is not always possible or suitable).

• Interval arithmetics (we work with intervals instead of points). (IEEE
1788–2015).

• Unum.

https://en.wikipedia.org/wiki/Interval_arithmetic
https://en.wikipedia.org/wiki/Unum_(number_format)
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1.3 Conditioning and stability of an algorithm

Example:
system of linear
equations (1/2)Consider two systems of linear equations with 2 unknowns:(

1 1/2
1/2 1/3

)(
x
y

)
=
(

3/2
1

)
and

(
1 1/5

1/5 −1

)(
x
y

)
=
(

3/2
1

)
.

The solutions are

(x, y)T = (0, 3)T and (x, y)T = (85/52,−35/52)T ≈ (1.6346,−0.67308)T .

Let us try to simulate an error on the input, or during a calculation, by

changing the right side to
(

3/2
5/6

)
.

(
1 1/2

1/2 1/3

)(
x
y

)
=
(

3/2
5/6

)
and

(
1 1/5

1/5 −1

)(
x
y

)
=
(

3/2
5/6

)
.

The solutions change to

(x, y)T = (1, 1)T and (x, y)T = (125/78,−20/39)T ≈ (1.6026,−0.51282)T .

Example:
system of linear
equations (2/2)The change in the right side was(

3/2
1

)
−
(

3/2
5/6

)
=
(

0
1/6

)
,

vector of Euclidean length 1
6 (the relative error is 0.09).

The change in the solution of the first equation was(
0
3

)
−
(

1
1

)
=
(
−1
2

)
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(the relative error is 0.75) and the one in the solution of the second equation(
85/52
−35/52

)
−
(

125/78
−20/39

)
=
(

5/156
−25/156

)
(the relative error is 0.09).

Why is it that the first system is more sensitive to this change?

Why are the two relative errors so different?
Forward and
backward error

Let V be a numerical algorithm whose theoretical (accurate) output is
denoted by V ∗(d) where d is the input.

The result in the finite arithmetic is denoted V (d). Furthermore, denote
the so-called forward error by ∆v = V ∗(d)− V (d).

The least (in a norm) number ∆d such that V (d + ∆d) = V ∗(d) is the
backward error.

d+ ∆d

d

V ∗(d)

V (d)

∆d

V

V ∗

V

∆v
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If for all considerable inputs d the backward error is relatively small, we
say that the algorithm is backward stable. “Small” depends again on the
context.

Conditioning

Conditioning of a problem expresses the dependence of the output on the
inputs - given a little perturbation δd of the input, we look how the output
changes.

The relative condition number of a problem is

Cr = lim
ε→0+

sup
d+δd∈D
‖δd‖≤ε

‖V (d+ δd)− V (d)‖
‖V (d)‖
‖δd‖
‖d‖

,

where D is the domain of V .

If Cr ≈ 1, then we say that the problem is well-conditioned.
If it is large, we say the problem is ill-conditioned.

1.4 Direct and iterative methods

Direct methods

A direct method calculates a solution of a problem in finitely many steps such
that in absolute theoretical precision in gives the exact solution.

Idea of iterative
methods

Iterative methods look for approximate solutions to mathematical prob-
lems by constructing a sequence of approximate solutions:

x0, x1, x2, . . .

Every following (approximate) solution is derived from the previous:

xk = T (xk−1),

for k > 0 and some mapping T .
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The mapping T is chosen so that the sequence (xi) has a limit which is
the (exact) solution of the problem.

If T is the same for all k, the method is called stationary.

1.5 Systems of linear equations

Notation

System of linear
equations

We want to solve a system of n linear equations. We write the system in
matrix representation

Ax = b,

where A ∈ Rn,n is regular and b ∈ Rn,1.

This is often a partial subproblem of a larger problem.
Norm - reminder

A norm on a vector space V is a mapping ‖ · ‖ : V 7→ R+
0 which satisfies

1. ‖x‖ = 0 ⇒ x = 0,

2. ‖αx‖ = |α| · ‖x‖,

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality),

for all x, y ∈ V and all scalars α.

On Rn (or Cn) the most used norm is probably the Euclidean norm:

‖x‖ =
(

n∑
i=1

x2
i

) 1
2

,

where x = (x1, . . . , xn) ∈ Rn.

Other commonly used norms include

• ‖x‖∞ = max
{
|xi| : i ∈ {1, . . . , n}

}
maximum norm,

• ‖x‖1 =
n∑
i=1
|xi| taxicab or L1 norm.
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Matrix norm

Given a vector norm ‖·‖, we define the induced matrix norm of the matrix
A ∈ Cn,n as follows

‖A‖ = sup
{
‖Ax‖ : x ∈ Cn,1 and ‖x‖ = 1

}
.

Such norm satisfies

• ‖I‖ = 1,

• ‖Ax‖ ≤ ‖A‖ · ‖x‖ (norm consistency),

• ‖AB‖ ≤ ‖A‖ · ‖B‖.

Conditioning of the problem

Conditioning
of the problem
(1/2)Let us see the conditioning of Ax = b. We suppose that the right side b is the

input of the problem, and x is the output.

Given a small perturbation δx we have:

A(x+ δx) = Ax+Aδx = b+ δb,

where Aδx = δb.

We have ‖b‖ = ‖Ax‖ ≤ ‖A‖ · ‖x‖, which implies 1
‖x‖
≤ ‖A‖
‖b‖

.

Furthermore, ‖δx‖ = ‖A−1δb‖ ≤ ‖A−1‖ · ‖δb‖.

Finally,
‖δx‖
‖x‖

≤ ‖A‖ · ‖A−1‖‖δb‖
‖b‖

,

Conditioning
of the problem
(2/2)‖δx‖

‖x‖
≤
(
‖A‖ · ‖A−1‖

) ‖δb‖
‖b‖
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The number κ(A) = ‖A‖ · ‖A−1‖ is the condition number of the matrix A.

The above inequality reads: the relative error of the results is less than
the relative error of the input times the condition number.

The greater κ(A) is, the more ill-conditioned the problem is. Note that b
may contain an error coming from its origin, for instance a measurement.

Of course, the condition number depends on the chosen norm.
Example of
two sets of
linear equations
revisitedLet us revisit the example we saw earlier:

A =
(

1 1/2
1/2 1/3

)
and B =

(
1 1/5

1/5 −1

)
,

The inverses are

A−1 =
(

4 −6
−6 12

)
and B−1 ≈

(
0.961538 0.192308
0.192308 −0.961538

)
,

To calculate the condition number κ(A) = ‖A‖ · ‖A−1‖ we shall use the
norm ‖A‖∞:

κ(A) = ‖A‖∞ · ‖A−1‖∞ = 3
2 · 18 = 27 and κ(B) = 18

13 ≈ 1.3846056.

The problem with the matrix A is significantly more ill-conditioned than
with the matrix B. This is in accordance with our previous observations.
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Description of the iterative method

Basic iterative
methods for
Ax = bWe will construct a sequence of vectors x0, x1, x2, . . . which will approximate

the solution of Ax = b.

The vector x0 is chosen randomly. We choose a regular matrix Q and the
following terms will be calculated as

Qxk = (Q−A)xk−1 + b

for all k > 0.

The idea: we choose the matrix Q so that the sequence (xk) converges to
some x∗. Then,

Qx∗ = (Q−A)x∗ + b

and thus
Ax∗ = b.

Convergence -
choice of Q

We use the equality xk = Q−1((Q−A)xk−1 + b
)
in

xk − x = Q−1((Q−A)xk−1 + b
)
− x

= (I −Q−1A)xk−1 − x+Q−1b
= (I −Q−1A)xk−1 − (I −Q−1A)x
= (I −Q−1A)(xk−1 − x),

where x is the exact solution satisfying Ax = b.

Denote W = I −Q−1A.

We denote the error vector ek = xk − x. We have ek = Wek−1.

ek will be “smaller” than ek−1 if W is “small”. “Small” can be determined
using norms.

Since ek = W ke0, to lower the error at each step we need to have lim
k→+∞

W k =
0.
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Convergence

Convergence vs.
spectral radius

Spectral radius of a matrix M is the number ρ(M) defined as the greatest
eigenvalues (in absolute value), i.e.,

ρ(M) = max{|λ| : λ is an eigenvalue of M},

Theorem 6. If M ∈ Cn,n, then

lim
k→+∞

Mk = 0 ⇔ ρ(M) < 1,

Thus, in our case, the method converges if and only if

ρ(W ) < 1,

i.e., all the eigenvalues of the matrix W = I − Q−1A are in absolute value
less than 1.

. . . proof (1/2)

We will show ρ(M) < 1⇒ lim
k→+∞

Mk = 0 for a special case.

Suppose that M is diagonalizable, i.e., there exists a change of basis P
such that M = PDP−1, where

D =


λ1 0 · · · 0
0 λ2 · · · 0
...

... . . . ...
0 0 · · · λn

 ,

where (λi) are the eigenvalues of M .

We have Mk = PDP−1 PDP−1 PDP−1 · · · = PDkP−1.
. . . proof (2/2)
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Since

Dk =


λk1 0 · · · 0
0 λk2 · · · 0
...

... . . . ...
0 0 · · · λkn


and ρ(M) < 1, i.e., for all i we have |λi| < 1, then lim

k→+∞
Dk = 0.

Overall lim
k→+∞

Mk = P
(

lim
k→+∞

Dk
)
P−1 = 0.

If M is not diagonalizable, the proof is very similar - the Jordan normal
form is used instead of the diagonal matrix.

Speed of conver-
gence of ek

How fast is the error vector ek converging to 0?

We have
ek = W ke0.

We estimate in norm

‖ek‖ = ‖W ke0‖ ≤ ‖W k‖ · ‖e0‖ ≤ ‖W‖k · ‖e0‖.

The condition of convergence ρ(W ) < 1 does not imply anything on the
speed from the previous estimate.

However, the estimate on the right side is strictly decreasing if ‖W‖ < 1.
When to stop?
(1/2)

The iterative method is stopped in the step k if xk reaches some desired
precision.

The desired precision is given by the nature of the problem.

In the case ‖W‖ < 1, we know that the sequence (‖ek‖) is strictly decreas-
ing and we may stop iterating when

‖ek − ek−1‖ < ε,
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where ε is a constant supplied by the user. This is impractical since we do
not have the exact solution.

In the step k we can calculate the so-called residue Axk − b and the con-
vergence criterion can be set to

‖Axk − b‖ < ε.

When to stop?
(2/2)

Instead of calculating the residues, one may use a more efficient criterion

‖xk+1 − xk‖ < ε.

We have

‖ek‖ = ‖xk − x‖ = ‖xk − xk+1 + xk+1 − x‖
≤ ‖xk − xk+1‖+ ‖xk+1 − x︸ ︷︷ ︸

=ek+1

‖

< ε+ ‖W‖ · ‖ek‖,

where, supposing ‖W‖ < 1, the last inequality gives

‖ek‖ <
ε

1− ‖W‖ .

Thus, this criterion can be effectively used if ‖W‖ is less than 1, but not
too close to 1.

Finite precision
calculations

All ideas so far were made in the theoretical absolute precision.
In a finite precision, the method may not converge even if ‖W‖ < 1 due

to rounding errors.

However, an advantage of iterative methods in a finite precision arithmetic
is that at each step the rounding errors from the previous step are “forgotten”.
We start the new iteration with a better approximate solution.

In finite arithmetic the method can diverge even if the problem is not
ill-conditioned.
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Thus, in practice, we need another parameter of the method - a maximum
number of iterations. If we reach this number of iterations without satisfying
a convergence criterion, then the method outputs failure.

Concrete algorithms

Choices of Q

Denote by ai,j the entries of the matrix A and denote

L =


0 0 · · · 0
a2,1 0 · · · 0
... . . . . . . ...

an,1 · · · an,n−1 0

 and D =


a1,1 0 · · · 0

0 a2,2
. . . ...

... . . . . . . 0
0 · · · 0 an,n

 .

Denote U so that A = L+D + U .

We will mention the following choices of Q:

• Richardson method Q = I,

• Jacobi method Q = D,

• successive overrelaxation / SOR method Q = 1
ω
D + L.

Richardson
method

Set Q = I.

The recurrence relation is given by

xk = (I −A)xk−1 + b

The convergence is for a narrow class of matrices: A must be close to I so
that

‖I −A‖ < 1.

Jacobi method

Set Q = D.
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The recurrence relation is given by

Dxk = (D −A)xk−1 + b = −(L+ U)xk−1 + b.

Proposition 7. If the matrix A is diagonally dominant, then the Jacobi
method converges for any choice of x0.

A matrix is diagonally dominant if, for each row, the sum of the absolute
values of all the entries except the one on the diagonal is less than the absolute
value of the entry on the diagonal.

SOR method

Set Q = 1
ω
D + L, where ω ∈ R \ {0}.

The recurrence relation is given by( 1
ω
D + L

)
xk =

( 1
ω
D + L−A

)
xk−1 + b =

((
−1 + 1

ω

)
D − U

)
xk−1 + b.

Proposition 8. For 0 < ω < 2 the SOR method converges if A is symmetric,
positive definite and has positive diagonal entries.

The parameter ω is used to speed up the convergence.
The choice ω = 1 is the Gauss-Seidel method.

Algorithm

Inputs: matrices A,Q, vector b, precision ε, maximum number of itera-
tions K.

1. choose x̂0 at random

2. for k from 1 to K do



CHAPTER 1. MPI - LECTURE 8 21

2.1 x̂k+1 = Q−1(Q−A)x̂k +Q−1b

2.2 if ‖Ax̂k − b‖ < ε, return x̂k (or in general if any convergence criterion
is satisfied)

3. return “no solution found after K steps”.

Demonstration -
Jacobi method
(1/2)

Let A =
(

2 1
1 4

)
. ‖I −D−1A‖ = 1

2 .

We use the Jacobi method to calculate a solution for b = (3, 5)T .
The exact solution is (1, 1)T .

The convergence criterion used is ‖Ax̂k − b‖ < 10−2.

k x̂k ‖Ax̂k − b‖
0 (0.5, 1.5) 1.58113883008
1 (0.75, 1.125) 0.450693909433
2 (0.9375, 1.0625) 0.197642353761
3 (0.96875, 1.015625) 0.0563367386791
4 (0.9921875, 1.0078125) 0.0247052942201
5 (0.99609375, 1.001953125) 0.00704209233489

Demonstration -
Jacobi method
(2/2)...the same problem but with a different x̂0, which is further from the exact

solution.
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k x̂k ‖Ax̂k − b‖
0 (−10, 10) 28.1780056072
1 (−3.5, 3.75) 9.01734439844
2 (−0.375, 2.125) 3.5222507009
3 (0.4375, 1.34375) 1.1271680498
4 (0.828125, 1.140625) 0.440281337613
5 (0.9296875, 1.04296875) 0.140896006226
6 (0.978515625, 1.017578125) 0.0550351672016
7 (0.9912109375, 1.00537109375) 0.0176120007782
8 (0.997314453125, 1.002197265625) 0.0068793959002

1.6 Numerical mathematics - summary

Summary

We mentioned

• finite computer arithmetic and the most common problems when using
it,

• different types of errors and their estimate,

• direct and iterative methods,

• basic iterative methods for systems of linear equations.
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