
Chapter 1

MPI - lecture 9

1.1 Eigenvectors

Eigenvalues and
eigenvectors

A complex number λ is called an eigenvalue of the matricM ∈ Cn,n, whenever
there exists a non-zero vector u ∈ Cn such that

Mu = λu.

The vector u is called an eigenvector of the matrix M relative to the
eigenvalue λ.

The set of eigenvectors of M (relative to the eigenvalues λ and to the zero
vector) form a base of the subspace ker(M − λE).

The eigenvalues of the matrix M are the roots of the characteristic poly-
nomial of the M , that is the polynomial

pM (λ) := det(M − λE).

Therefore, each matrix M ∈ Cn,n has at most n different complex eigenval-
ues.

Diagonalizability
of a matrix

A matrix M ∈ Cn,n is diagonalizable when there exist a diagonal matrix
D ∈ Cn,n and a regular matrix P ∈ Cn,n such that

M = PDP−1.
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where D = diag(λ1, . . . , λn).
Remind: In the previous lecture we saw that Mk = PDkP−1.
Remark: The columns of the matrix P are the eigenvectors of M . These

eigenvectors form a basis of Cn. The elements of the diagonal matrix D are
the eigenvalues of M (with their multiplicity).

Looking for an
eigenvector

LetM ∈ Cn,n. Suppose it is diagonalizable and we can order its eigenvalues
as follows

|λ1| > |λ2| ≥ . . . ≥ |λn|.

We are looking for the eigenvector of the eigenvalue λ1, the so-called dom-
inant eigenvalue. It is a vector u1 such that

Mu1 = λ1u1.

In general, the matrix need not be diagonalizable, but the ideas would be
more complicated (actually, we only require to have one eigenvalue which is
the greatest in absolute value).

Applications

Eigenvalues play an importan role in several applications:

• Classification of conics and quadratic forms (geometry).

• Quantum computation, quantum mechanics, asymptotic behaviour of
dynamical systems (physics).

• PCA, or Principal Component Analysis (big data).

• Recognition of 2D and 3D objects using spectral methods (AI).

• More practical example: PageRank mesures a relative importance of
WWW documents by ispecting links between them.

– Its values is in fact an eigenvector of the dominant eigenvalues of
a modified adjacency matrix of these links. This matrix satisfies
requirement of our problem.

– PageRank is calculated using power methods.
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1.2 Power method
Introduction
and assump-
tions (1/2)In its basic variant, the power method is used to find the dominant eigenvalue

of a matrix,
Given a matrix M ∈ Cn,n let us consider a regular matrix P ∈ Cn,n such

that
M = PDP−1

where D = diag(λ1, . . . , λn). Let also suppose that the values are ordered:

|λ1| > |λ2| ≥ · · · ≥ |λn|.

Note: We suppose that the dominant eigenvalue λ1 is not degerate (i.e.,
that the correspoinding eigenspace has dimension 1).

Introduction
and assump-
tions (2/2)We are looking for an eigenvector associated to the eigenvalue λ1, that is

a non-zero vector u1 such that

Mu1 = λ1u1.

The power method is an iterative method. We will construct a sequence
(xk) as follows: x0 is chosen randomly and the next terms are determined by

xk = Mxk−1 for k > 0.

Equivalently, we have
xk = Mkx0 k ∈ N0.

Power method
principle (1/4)

IfM is regular, thus diagonalizable, there exist eigenvectors {u1, u2, . . . , un},
which form a basis of Cn,1.

If M is not regular, then we need to complete the set of eigenvectors by a
basis of the kernel of M .

The vector x0 can be written as x0 = α1u1 + · · ·+ αnun.
Suppose that α1 6= 0.
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Coefficients αi can be absorbed by the eigenvectors (u′i = αiui) and we
have

x0 = u′1 + · · ·+ u′n.

Power method
principle (2/4)

The recurrent definition of xk implies

xk = Mkx0

= Mku1 + · · ·+Mkun

= λk
1u1 + · · ·+ λk

nun.

The last equality gives

xk = λk
1

(
u1 +

(
λ2
λ1

)k

u2 + · · ·+
(
λn

λ1

)k

un

)
.

We rewrite it as
xk = λk

1 (u1 + εk) .

Since for all j > 1 we have
∣∣∣∣λj

λ1

∣∣∣∣ < 1, then lim
k→+∞

εk = 0.

Power method
principle (3/4)

The sequence
(
xk

λk
1

)
“converges” to the eigenvector of the dominant eigen-

values.

We have ‖xk‖ → +∞. Thus we need to control the norm: we may set it
to 1 at each step (by normalizing, i.e., considering yk = xk

‖xk‖
).

To have convergence also for the case λ1 < 0, we need to pick the right
direction for the eigenvector so that it does not oscillate. We may do this by
setting the largest entry in absolute value to 1 (and thus use the maximum
norm).
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The speed of convergence is given by λ2 since ‖εk‖ = O
(∣∣∣∣λ2
λ1

∣∣∣∣k
)

Power method
principe (4/4)

How to find the dominant eigenvalue?
If ϕ is a linear mapping ϕ : Cn,1 7→ C such that ϕ(u1) 6= 0, then

ϕ(xk+1)
ϕ(xk) =

ϕ
(
λk+1

1 (u1 + εk+1)
)

ϕ
(
λk

1 (u1 + εk)
) = λk+1

1 (ϕ(u1) + ϕ(εk+1))
λk

1 (ϕ(u1) + ϕ(εk))
→ λ1 for k → +∞.

The mapping ϕ can be set to the mapping defined for all x ∈ Cn,1 as
ϕ(x) = x(1) where x(1) is the first component x (if ϕ(u1) 6= 0)).

Power method -
demonstration
in Rn,n

Let us find the dominant eigenvector of M =
(

2 1
1 4

)
, which satisfies the

conditions of power method.
The exact solution is u1 = (1,

√
2+1) = 1√

2 + 1
(
√

2−1, 1), with eigenvalue

λ1 = 3 +
√

2.

k x̂k ‖x̂k − x̂k−1‖∞
0 (1.0, 1.0) -
1 (0.59999999999999998, 1.0) 0.4
2 (0.47826086956521746, 1.0) 0.121739130435
3 (0.43689320388349517, 1.0) 0.0413676656817
4 (0.42231947483588622, 1.0) 0.0145737290476
5 (0.4171202375061851, 1.0) 0.0051992373297

In the calculations, the maximum entry in absolute value is set to 1 at
each step and the convergence criterion ‖x̂k − x̂k−1‖∞ < 10−2.

Power method -
demonstration
in Cn,n (1/2)Let us consider the matrix

M =


36408 + 16769i −5412− 2481i 107256 + 49397i −492− 214i
−10656− 5164i 1584 + 762i −31392− 15210i 144 + 66i
−12876− 5954i 1914 + 881i −37932− 17539i 174 + 76i

4329− 262i −643 + 39i 12753− 771i −58 + 6i


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The eigenvalues are −2i, −i, 3i/2 and 3/2.

Let us fix the accuracy at ε = 10−6. The last 7 iterations of λ(k)
1 are:

0.0000477588150960872 - 1.99991424541241 i
-0.0000479821875446196 - 1.99998019901599 i
-0.0000272650944159076 - 2.00002375338328 i
0.0000271520045767515 - 2.00002973125038 i
0.0000154506695115737 - 1.99997272532314 i
-0.0000152424622193764 - 1.99999349337182 i
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Power method -
demonstration
in Cn,n (2/2)

Power method:
other eigenval-
uesSuppose that using the power method we found the dominant eigenvalue

λ1 and its correspoding (normalized) eigenvector u1. How can we find the
other eigenvalues?

Suppose that the matrix M is normal (i.e., that MM∗ = M∗M , where
M∗ is the conjugate transpose of M). Then its eigenvectors are orthogonal.

We can consider a new matrix M ′ defined as:

M ′ := M − λ1u1 · u∗1

The matrix M ′ has u1 as eigenvector, but the associated eigenvalue is 0,
indeed:

M ′u1 = Mu1 − λ1u1 · ‖u1‖2 = λ1u1 − λ1u1 = 0.

We can now apply the power method to the matrix M ′. The dominant
eigenvalue of M ′ will be the second largest (in absolute value) eigenvalue of
M .
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1.3 QR algoritmus

QR factoriza-
tion and QR
algorithm (1/2)The power method is not suitable to find all eigenvalues of a given matrix M .

Other algorithms are based on the fact that similar matrices have the same
eigenvalues. The goal of QR algorithm is to construct a sequence (Mk)∞k=0 of
similar matrices in the following way:

M0 = M and Mk = PkMk−1P
−1
k k ∈ N,

where each Pk is a regular matrix, Mk →M∞ and for M∞ is easy to find the
eigenvalues (for instance, M∞ is upper triangular).

QR factoriza-
tion and QR
algorithm (2/2)The QR factorization consists in expressing a real (or complex) matrix

M ∈ Rn,n as a product
M = Q ·R

where Q is an orthogonal matrix (unitary if M ∈ Cn,n) and R is upper
triangular.

There exist several algorithms to compute such a factorization (Gram-
Schmidt, LR algorithm, . . . )

The QR algorithm consists in applying such a factorization at any step,
that is for every k we have

Mk = Qk ·Rk

and we define

Mk+1 := RkQk = Q−1
k QkRkQk = Q−1

k MkQk.

We start the iteration with M0 = M . Every matrix Mk is similar to the
previous matrix Mk−1 in the sequence, so that all matrices have the same
eigenvalues.

Under certain conditions Mk converges to a triangular matrix.
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