MIE-MPI, Mathematics for Informatics - Homework no. 1

Instructions:

- You should try to solve all the exercises. Even if you do not do all the exercises, you can get all the points.
- Sign every paper of your solution on the top of the page along with the number of the homework.
- Presentation is taken into account; correct results themselves are not enough. The reasoning on how the result was found should be clearly visible.
- Comment your calculations in a reasonable way: the reader should understand what you do and why. The solution should be "possible to read", not "needed to decrypt".
- Do not answer unasked questions. It is important to know what is needed to solve the problem and what is not needed.
- If you use a result from another source than the lectures and tutorials, cite your source properly (do not forget to cite used software if applicable).
- The homework is a preparation for the next written test.
- The homework is collected at the tutorial (Thursday $24 / 10 / 2019$). If you cannot come, you can use the mailbox at the Department of Applied Mathematics, 14th floor of building A. In the latter case, send me an email at francesco.dolce@fjfi.cvut.cz before the deadline.

Exercice 1. Find all critical points, saddle points and all points of minima or maxima of functions
(a) $f(x, y)=(x-1)^{2}+y^{2}-17$,
(b) $f(x, y)=(2 x-y+1)^{2}$,
(c) $f(x, y)=x^{3}+y^{3}-3 x y$,
(d) $f(x, y)=x^{2}+y^{2}-4 \ln x-10 \ln y$.

Exercice 2. Let $f(x, y)=x^{2}-2 y^{2}-6 y x+3$. Find minima and maxima of f subject to $x+y=7$.

Exercice 3. Calculate

$$
\iint_{D}\left(x^{3} y+y^{2} x^{2}+1\right) \mathrm{d} x \mathrm{~d} y
$$

where D is equal to:
a) $[0,2] \times[0,1]$;
b) the triangle with vertices $(0,1),(1,1)$ and $(0,3)$;
c) the bounded subset of \mathbb{R}^{2} which is delimited by the x-axis, the line having equation $y=2 x-1$ and the line having equation $y=-(x-2)^{2}+8$.

